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ABSTRACT
We extend Wertheim’s thermodynamic perturbation theory to derive the association free energy of a multicomponent mixture for which
double bonds can form between any two pairs of the molecules’ arbitrary number of bonding sites. This generalization reduces in limiting
cases to prior theories that restrict double bonding to at most one pair of sites per molecule. We apply the new theory to an associating mixture
of colloidal particles (“colloids”) and flexible chain molecules (“linkers”). The linkers have two functional end groups, each of which may bond
to one of several sites on the colloids. Due to their flexibility, a significant fraction of linkers can “loop” with both ends bonding to sites on the
same colloid instead of bridging sites on different colloids. We use the theory to show that the fraction of linkers in loops depends sensitively
on the linker end-to-end distance relative to the colloid bonding-site distance, which suggests strategies for mitigating the loop formation that
may otherwise hinder linker-mediated colloidal assembly.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0033413., s

I. INTRODUCTION

It has been over 35 years since Wertheim developed a thermo-
dynamic perturbation theory (TPT) for fluids of molecules that asso-
ciate through strong directional attractions.1–4 Wertheim’s TPT has
proven to be powerful and broadly applicable, capturing the ther-
modynamic behavior of fluids comprising, e.g., small molecules with
chemically reactive sites, associating macromolecules, such as DNA
nanostars,5,6 and patchy colloidal particles (“colloids”).7–10 Indeed,
Wertheim’s TPT is a foundation for statistical associating fluid the-
ory (SAFT),11–14 which has been widely used to develop equations of
state for complex fluid mixtures.15

In practice, many applications of Wertheim’s TPT, including
SAFT, adopt a first-order approximation that treats association as
pairwise bonding into tree-like networks and is often referred to as
TPT1.2,4 We previously used TPT1 to predict the phase behavior of
mixtures of colloids and difunctional chain molecules (“linkers”) in
which linker ends associate with sites on the colloids through strong
reversible bonds (Fig. 1).16 Homogeneous colloid–linker mixtures of

this type lose thermodynamic stability for a range of colloid or linker
concentrations,16,17 phase separating into colloid-rich and colloid-
lean phases and potentially gelling.18,19 TPT1 qualitatively predicts
this transition, but we have found that it underestimates the amount
of linker required for phase separation.16,19 We hypothesized that
this underestimation was due, in part, to TPT1’s neglect of other
prevalent bonding motifs such as linkers that “loop” so that both
ends associate to the same colloid [Fig. 1(a)], i.e., form a double bond
between a linker and a colloid.

TPT1 has been extended to include double bonds for restricted
numbers of components, bonding sites, and/or pairs of sites that can
participate in the bonds.21–28 The most general result to date is the
work of Marshall,29 which includes multiple components with mul-
tiple bonding sites but permits only one pair of sites per component
to double bond. This restriction is well justified when the geometry
of the sites limits potential double bonding pairs, e.g., direct associa-
tion of colloids with small numbers of attractive patches. However, it
can break down for common linking schemes for self-assembly. For
example, nanoparticles are often coated with flexible ligands that are
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FIG. 1. Snapshots of associating colloids (red) and linkers (blue), rendered using
OVITO 2.9.0.20 Free bonding sites on the colloids are shown in gray. (a) Two
linkers “loop” to form a double bond with a colloid, while the other two linkers
bridge between different colloids. (b) Two colloids and two linkers form a “ring.”
Loop and ring bonding structures are both neglected in TPT1.

functionalized to bond with a complementary functional group on
another nanoparticle30–35 or a linking molecule.19,36–38 Control over
the specific number of functionalized ligands on each nanoparticle
is infeasible or produces low yields,39 and due to their flexibility and
surface coverage, multiple ligands on the same nanoparticle might
readily double bond with another nanoparticle or with a linker.19

Given the success of TPT1 for other associating fluids, we aim at
developing the theory to handle such cases.

Building on previous TPTs, we derive a general expression for
the association free energy of a mixture when a double bond can
form between any two pairs of sites on any of the components;
this expression reduces to TPT114 and Marshall’s result29 as spe-
cial cases. We apply the theory to the colloid–linker mixture we
previously studied, where the linker readily double bonded with
nearly any pair of sites on the colloids.16 We compute the frac-
tion of linkers forming double-bond loops. In the strong associa-
tion limit, this fraction is strongly dependent on the distribution
of linker end-to-end distances. Modifications to linker length or
flexibility that make the linker end-to-end distance incompatible
with the distance between colloid bonding sites inhibit loop forma-
tion; this consideration may prove helpful in the design of molec-
ular linkers for self-assembly. We also show that the theory readily
incorporates other prevalent bonding motifs with two-site associ-
ation, such as “rings” made from multiple linkages between col-
loids [Fig. 1(b)], and that incorporating these motifs improves its
accuracy.

The rest of this article is organized as follows. In Sec. II, we
review the fundamentals of Wertheim’s theory, which we hope will
serve as a pedagogical reference complementary to and expanding
on excellent recent reviews.40,41 In Sec. III, we derive the new the-
ory for double bonding between multiple components with multiple
sites. We apply the theory to the colloid–linker mixture in Sec. IV
before summarizing in Sec. V.

II. WERTHEIM’S THEORY
We begin by outlining Wertheim’s theory for associating

fluids,1–4 which is based on a graphical expansion in the grand
canonical ensemble using the densities of various bonding states.
Our aim is to provide a useful entry point for those seeking to under-
stand and build upon this work, as well as for those who wish to

similarly apply or extend Wertheim’s theory. We will follow
Wertheim’s derivation for molecules with multiple association sites3

with small modifications to include multiple components; any sub-
scripts or superscripts denoting the component type in this article
should be neglected when comparing to the notation from his work.

A. Mixture model
Consider a mixture of k components that are able to associate

with each other through short-ranged attractions. We will adopt a
physical model for the mixture that refers to the constituents of a
component as “molecules” that are covered with bonding “sites,” but
here, a molecule should be interpreted liberally to include not only
small molecules but also macromolecules and colloids. A molecule
of component i has a set of sites Γi = {A1, . . . ,Ani}, which we will
assume for now are rigidly fixed within the molecule so that its con-
formation can be specified by its position r and orientation Ω. The
total potential energy of the mixture U is taken to be the sum of a
one-body potential u(i)1 acting on each molecule of component i and
a pairwise interaction u(ij)2 between two molecules of components i
and j. The pairwise interaction is split into a repulsive core u(ij)R and
a short-ranged attraction u(ij)AB between sites,

u(ij)2 (1, 2) = u(ij)R (1, 2) + ∑
A∈Γi
∑

B∈Γj
u(ij)AB (1, 2), (1)

where 1 = (r1, Ω1) is a shorthand notation for the position and ori-
entation of molecule 1. The site attractions are functions of 1 and 2
through the positions of sites A and B, r(i)A (1) and r(j)B (2). The sum-
mation is taken over all pairs of sites in the two molecules, but some
sites may be noninteracting.

In the grand canonical ensemble, the temperature T, volume
V, and the chemical potentials {μi} of all components are held
constant, and the numbers of molecules {N i} fluctuate. The grand
partition function is

Ξ =
∞

∑

N1=0
⋯

∞

∑

Nk=0
∫ (

k

∏

i=1
dNi

ΛNi
i eβμiNi

Ni!
)e−βU({Ni}), (2)

where Ni indicates all the positions and orientations of the N i
molecules of component i, Λi accounts for integrals over transla-
tional and rotational momenta (i.e., is related to the thermal wave-
length), N i! is a factor for permutating labels of the molecules, and
β = 1/(kBT), with kB being Boltzmann’s constant. The one-body con-
tributions u(i)1 to the potential energy U can be grouped with the
chemical potential μi to define a modified fugacity

zi(1) = Λi exp[β(μi − u(i)1 (1))] (3)

so that for our model,

Ξ =
∞

∑

N1=0
⋯

∞

∑

Nk=0
∫ (

k

∏

i=1
dNi

1
Ni!
∏

1
zi(1))

× exp(−β∑
1,2

u(ij)2 (1, 2)). (4)
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The product of zi is taken over all molecules of component i (indexed
1), and the sum of u(ij)2 is taken over all unique pairs of molecules
(indexed 1 and 2).

B. Graphical expansion

We now define e(ij)(1, 2) = exp[−βu(ij)2 (1, 2)] as the
e-function (Boltzmann weight) associated with an interaction
between two molecules of components i and j, respectively, and
f (ij)(1, 2) = e(ij)(1, 2) − 1 as the corresponding Mayer f -function.
The integrand in Eq. (4) can be written as a product of f -functions
using

exp(−β∑
1,2

u(ij)2 (1, 2)) =∏
1,2
(1 + f (ij)(1, 2)). (5)

The integrals in Eq. (4) can then be expanded into multiple inte-
grals over different products of f -functions, and it is useful to
express these integrals as graphs (Fig. 2).42 Each integral is rep-
resented by a “z-graph” whose nodes, called field points, are
the integration variables and are each assigned a factor of the
fugacity zi. Two field points in a graph may be connected by
at most one f -bond whose presence is represented by an edge
between the points that carries a weight f (ij). There is an infi-
nite number of z-graphs in Ξ of which only a subset are con-
nected graphs, i.e., all points have joined to each other by f -
bonds. It can be shown that lnΞ is the sum of only these con-
nected graphs, and the mixture thermodynamics can be computed
using the grand potential F = −β−1 lnΞ. However, using only f -
bonds to represent association can give a poorly convergent summa-
tion for lnΞ, which motivated Wertheim to further decompose the
graphs.1

FIG. 2. Graphical representations of the integral ∫d1d2d3z1(1)z2(2)z2(3)f (12)(1,
2)f (12)(1, 3). The first graph is a connected z-graph with f -bonds between molecule
1 of component 1 (red) and molecules 2 and 3 of component 2 (blue). The other
graphs show the expansion of f using Eq. (6) into hyperpoints (larger open circles)
and bonding sites (smaller filled circles). Hyperpoints connected by an f AB-bond
also have an eR-bond (dashed line) between them, while those without an f AB-
bond have an f R-bond (dotted line). In this example, a molecule of component 1
has two bonding sites, and a molecule of component 2 has one bonding site.
We omit the graphs having two f AB-bonds at a site because these can usually
be neglected due to steric hindrance, and we do not show the label-permutation
prefactor (1/2) for the z-graph from Eq. (4).

For the model interactions defined by Eq. (1), an f -bond is
separable into repulsive and attractive parts,

f (ij)(1, 2) = f (ij)R (1, 2) + e(ij)R (1, 2)
⎡
⎢
⎢
⎢
⎢
⎣

∏

A∈Γi
∏

B∈Γj
(1 + f (ij)AB (1, 2)) − 1

⎤
⎥
⎥
⎥
⎥
⎦

,

(6)

where the subscripts denote the part of the potential. Graphically,
each point in a z-graph is replaced by a hyperpoint encompassing
the molecule’s sites, and the f -bonds are replaced by repulsive bonds
between hyperpoints and attractive bonds between sites (Fig. 2).
Each hyperpoint still carries a factor zi, and repulsive f R-bonds
are edges between two hyperpoints. Attractive f AB-bonds are edges
between sitesA and B in different hyperpoints, which have in parallel
a repulsive eR-bond between the hyperpoints.

Two hyperpoints are “directly connected” if they have a repul-
sive f R-bond or any attractive f AB-bond between their sites. Fur-
thermore, two sites are “bond-connected” if there is a path of
attractive bonds between them, while two sites are “constraint-
connected” if they are in the same hyperpoint. Now, consider the
set of z-graphs where all hyperpoints are connected by networks
of attractive bonds; Wertheim called such a graph having s hyper-
points an “s-mer” analogous to the association of monomers into
a polymer. The connected z-graphs in lnΞ can all be expressed
as s-mers with f R-bonds between hyperpoints in distinct s-mers,
including the s = 1-mer or single hyperpoint without any attractive
bonds.

Within an s-mer graph, there can be multiple networks of
bond-connected sites; these networks must be constraint-connected.
Consider two hyperpoints 1 and 2 in an s-mer that are not directly
connected by an attractive bond. For such a hyperpoint pair,
Wertheim proposed that if any site A on 1 is bond-connected to
any site B on 2, two s-mer graphs with and without an f R-bond
between 1 and 2 can be usefully combined into one graph with an
eR-bond between 1 and 2. Hence, we will form eR-bonds between
all pairs of hyperpoints in an s-mer with bond-connected sites, but
pairs of hyperpoints in an s-mer that are connected only through a
constraint connection will not have an eR-bond. By this procedure,
all hyperpoints in a bond-connected network become irreducibly
connected.43

Define ρ(i)(1) to be the sum of z-graphs obtained by turning
a field hyperpoint of component i, which is an integration vari-
able, into a “root” hyperpoint labeled 1, which is not an integration
variable. This is equivalent to the functional differentiation,

ρ(i)(1) = zi(1)
δ lnΞ
δzi(1)

, (7)

so ρ(i)(1) is the average “singlet” density of component i at 1 in
the grand canonical ensemble. The singlet density is related to the
familiar number density ρi(r1) by integration over orientations,

ρi(r1) = ∫ dΩ1ρ(i)(1). (8)

The various z-graphs in the sum ρ(i)(1) can be further analyzed in
terms of their bonding at the root hyperpoint. A z-graph is assigned
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to the sum ρ(i)α (1) if α is the set of bonded sites at 1 (α ⊆ Γi),44 and as
a result,

ρ(i)(1) = ∑
α⊆Γi

ρ(i)α (1). (9)

Now, let c(i)
∅
(1) be the sum of the subset of graphs in ρ(i)

∅
(1)/zi(1)

for which 1 is not an articulation point. It can be shown that41

ln
⎛

⎝

ρ(i)
∅
(1)

zi(1)
⎞

⎠

= c(i)
∅
(1). (10)

Furthermore, let c(i)α (1) be the sum of the subset of graphs in
ρ(i)α (1)/ρ

(i)
∅
(1) for which 1 is not a “constraint” articulation point,

i.e., the removal of the hyperpoint and any incident repulsive bonds
at 1 leaves the graph connected. ρ(i)α (1) includes all graphs bonded
at the sites α, which can be formed by composing at the root point
various c(i)a (1) for a ⊆ α, such that their union gives α, along with
the graphs that are not bonded,

ρ(i)α (1) = ρ
(i)
∅
(1) ∑

γ∈P(α)
∏

a∈γ
c(i)a (1). (11)

The sum is over all set partitions of α, denoted as P(α),45 and the
product is over all sets in each partition.

C. Topological reduction

As currently defined, c(i)α is a sum of both reducible and irre-
ducible z-graphs, and it is computationally desirable to eliminate
the reducible ones. To do so, Wertheim considered the procedure
of adding at each field point of an irreducible graph either nothing
or another graph with one root point. By the eR-bond replacement
procedure for an s-mer, the root point of the added graph must have
bonding complementary to the bonding at the field point of the irre-
ducible graph, so the added graphs can be any ρ(i)γ for γ ⊆ Γi/α.46 This
naturally leads to the definition of the auxiliary singlet densities,

σ(i)α (1) =∑
γ⊆α

ρ(i)γ (1), (12)

which are the sums of all graphs whose bonded sites at root point 1
are a subset of α. For example, σ(i)A contains all graphs bonded at A
(and not bonded elsewhere) or having no bonded sites.47 Two special
cases are σ(i)

∅
= ρ(i)
∅

, the sum of graphs not bonded at any site, and
σ(i)Γi = ρ

(i), including all possible combinations of sites. The bonded

singlet densities ρ(i)α can be expressed in terms of σ(i)α ,48

ρ(i)α (1) =∑
γ⊆α
(−1)∣α/γ∣σ(i)γ (1), (13)

with details in Appendix A.
Each field point of an irreducible graph that has a set of bonded

sites α is now reassigned a factor σ(i)Γi/α, which are precisely the graphs

not bonded at α, and c(i)α can be expressed as a sum of only irre-
ducible graphs. We define c to be the sum of all irreducible graphs

consisting of s-mer graphs and f R-bonds between s-mers where
all hyperpoints are field points and carry these factors. (Wertheim
called this sum c(0), but we will use c to avoid confusion with the
type superscripts.) All c(i)α can be obtained from c by turning a field
point bonded at α into a root point labeled 1 and removing its factor
σ(i)Γi/α. This procedure is given by the functional differentiation,

c(i)α (1) =
δc

δσ(i)Γi/α(1)
. (14)

c(i)α can also be expressed as functions of σ(i)α directly,

c(i)α = −δ∣α∣,1 − ∑
γ∈P(α)

(−1)∣γ∣(∣γ∣ − 1)!∏
a∈γ

σ(i)a
σ(i)
∅

(15)

for α ≠ ∅, with δi ,j being the Kronecker delta. [Note that this
corrects a typographical error in Eq. (27) of Ref. 3.] The inverse
relationship is

σ(i)α = σ
(i)
∅ ∑

γ∈P(α)
∏

a∈γ
(δ∣a∣,1 + c(i)a ). (16)

See Appendix A for details required to arrive at these results.

D. Thermodynamics

Given σ(i)α and c(i)α , it can be shown using a Legendre trans-
form of the grand potential that the Helmholtz free energy A of the
associating mixture is41

βA =
k

∑

i=1
∫ d1

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

σ(i)Γi (1) ln(Λ−1
i σ(i)
∅
(1)) − σ(i)Γi (1)

+ βu(i)1 (1)σ
(i)
Γi (1) + ∑

α⊆Γi
α≠∅

σ(i)Γi/α(1)c
(i)
α (1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

− c. (17)

The integrand can be expressed in terms of only σ(i)α using Eq. (15)
to replace c(i)α (see Appendix A),

∑

α⊆Γi
α≠∅

σ(i)Γi/α(1)c
(i)
α (1) = σ

(i)
Γi (1) + Q(i)(1), (18)

with

Q(i) = −∑
A∈Γi

σ(i)Γi/A + σ(i)
∅ ∑

γ∈P(Γi)
γ≠{Γi}

(−1)∣γ∣(∣γ∣ − 2)!∏
a∈γ

σ(i)a
σ(i)
∅

, (19)

to give

βA =
k

∑

i=1
∫ d1[σ(i)Γi (1) ln(Λ−1

i σ(i)
∅
(1))

+ βu(i)1 (1)σ
(i)
Γi (1) + Q(i)(1)] − c. (20)

At equilibrium, A should be minimized with respect to variations
in σ(i)α , subject to a constraint on σ(i)Γi to give a fixed number of
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molecules. Taking the functional derivative of A with respect to σ(i)α
for α ⊂ Γi gives49

0 =
δ(βA)

δσ(i)α (1)
= δ∣α∣,0

σ(i)Γi
σ(i)
∅

+
∂Q(i)

∂σ(i)α
− c(i)Γi/α. (21)

That this relationship holds can be verified by taking derivatives
of Eq. (19) and comparing them to Eq. (15). Functional differen-
tiation of A with respect to the total singlet density σ(i)Γi gives the
chemical potential μi after some manipulation, which is the correct
thermodynamic relationship.

The results so far are formally exact, but Wertheim’s theory
has been most successfully applied as an approximate TPT.2,4 In
TPT, the free energy is computed relative to a reference system with
molecules whose pairwise interactions are given by only u(ij)R and
whose free energy AR is more readily computed. The reference sys-
tem has no attractive bonds and is assumed to have the same total
densities σ(i)Γi ,

βAR =
k

∑

i=1
∫ d1[σ(i)Γi (1) ln(Λ−1

i σ(i)Γi (1)) − σ
(i)
Γi (1)

+ βu(i)1 (1)σ
(i)
Γi (1)] − cR, (22)

where cR is the sum of irreducible graphs for the reference fluid with-
out any bonding, i.e., it contains only f R-bonds and should only be
a functional of the total density σ(i)Γi . By identifying the first term
as the ideal free energy, −cR is the excess contribution to βAR. In
practice, AR is usually evaluated with a known equation of state for
the reference system; for example, AR for a spatially homogeneous
hard-sphere mixture is well approximated by Boublík’s equation of
state.50

The association free energy, ΔA = A − AR, is then

βΔA =
k

∑

i=1
∫ d1

⎡
⎢
⎢
⎢
⎢
⎣

σ(i)Γi (1) ln
⎛

⎝

σ(i)
∅
(1)

σ(i)Γi (1)

⎞

⎠

+ σ(i)Γi (1) + Q(i)(1)
⎤
⎥
⎥
⎥
⎥
⎦

− Δc.

(23)

The last term Δc = c − cR is the key to Wertheim’s theory, as it is
the contributions to the sum of irreducible graphs from association.
Although Δc formally contains all irreducible graphs with at least
one attractive bond, Wertheim discussed a few cases of “steric hin-
drance” that can simplify the graphs that need to be included. Two
particularly convenient ones are as follows:

1. The formation of an f AB-bond between site A on molecule 1
and site B on molecule 2 prevents any site in third molecule 3
from bonding with eitherA or B. This hindrance usually occurs
because of repulsion between the cores of the molecules.

2. Two sites B andC on molecule 2 cannot bond to the same siteA
on molecule 1. This can also be enforced by the site geometry or
by restricting the model to form exclusive bonds (e.g., covalent
chemistry).

Together, these hindrances remove all graphs with multiple bond-
ing of a single site, which greatly reduces the combinations that

must be considered. Further simplification can be made by includ-
ing only a limited subset of irreducible graphs, which we do
next.

III. DOUBLE-BOND ASSOCIATION
TPT1 usually includes the lowest-order irreducible graphs from

pair association in Δc.2,4 This admits at most one attractive bond
between two molecules and enforces a tree-like bonded network.
To extend TPT1 to include double bonding, we also include the
irreducible graphs with two attractive bonds between two molecules,

Δc ≈
1
2

k

∑

i=1
∑

A∈Γi

k

∑

j=1
∑

B∈Γj
∫ d1d2

× [σ(i)Γi/A(1)σ
(j)
Γj/B
(2)g(ij)R (1, 2)f (ij)AB (1, 2)]

+
1
2

k

∑

i=1
∑

AB⊆Γi
∣AB∣=2

k

∑

j=1
∑

CD⊆Γj
∣CD∣=2

∫ d1d2

× [σ(i)Γi/AB(1)σ
(j)
Γj/CD
(2)g(ij)R (1, 2)f (ij)ABCD(1, 2)], (24)

where g(ij)R is the pair correlation function in the reference fluid. The
sums over AB and CD are taken over the two-site pairs on i and j
(e.g., AB = {A, B} is a two-element subset of Γi), and

f (ij)ABCD = f
(ij)
AC f (ij)BD + f (ij)AD f (ij)BC (25)

accounts for the two way sites in AB, and CD can associate with each
other. The first term in Eq. (24) is standard in TPT1 and accounts
for all ways a single bond can form between two molecules, while
the second term accounts for all ways a double bond can form. In
practice, some or all these graphs may be zero or negligible for a
given model due to the bonding chemistry and/or site geometry, but
we do not exclude any of these at this stage.

In expressing the graph sum in this way, we have neglected any
rings (cycles) in the graph sum beyond the double bond, although
all such graphs are irreducible.22,51 Hence, the overall bonding net-
work is still a tree of single and double bonds between molecules.
Rings of molecules bonded at two sites can be included within the
framework we develop here using the approximation of Sear and
Jackson;22 we will revisit this point in Sec. IV. We also neglect the
effects of steric hindrance that prevent bonding at one site when a
bond forms at another; these effects might be treated by including
additional graphs or with a renormalization approach.27,28,52

We now differentiate Eq. (24) with respect to σ(i)α , giving

Δc(i)A (1) =
k

∑

j=1
∑

B∈Γj
∫ d2[σ(j)Γj/B(2)g

(ij)
R (1, 2)f (ij)AB (1, 2)] (26)

and

Δc(i)AB =
k

∑

j=1
∑

CD⊆Γj
∣CD∣=2

∫ d2[σ(j)Γj/CD(2)g
(ij)
R (1, 2)f (ij)ABCD(1, 2)], (27)
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so

Δc =
1
2

k

∑

i=1
∑

A∈Γi
∫ d1[σ(i)Γi/A(1)Δc

(i)
A (1)]

+
1
2

k

∑

i=1
∑

AB⊆Γi
∣AB∣=2

∫ d1[σ(i)Γi/AB(1)Δc
(i)
AB(1)]. (28)

The remaining Δc(i)α for α ⊂Γi are zero. Because cR is only a func-
tional of σ(i)Γi , we can replace c(i)α by Δc(i)α in Eq. (18),

σ(i)Γi + Q(i) = ∑
A∈Γi

σ(i)Γi/AΔc
(i)
A + ∑

AB⊆Γi
∣AB∣=2

σ(i)Γi/ABΔc
(i)
AB . (29)

We may further express Δc(i)A and Δc(i)AB in terms of σ(i)α using
Eq. (15),

Δc(i)A = −1 +
σ(i)A
σ(i)
∅

(30)

and

Δc(i)AB =
σ(i)AB
σ(i)
∅

−

σ(i)A σ(i)B
(σ(i)
∅
)

2
. (31)

These results can be directly substituted into Eq. (23) to define ΔA
using only σ(i)α ; however, this system of equations is still incomplete
for specifying all σ(i)α (and hence, ΔA).

We use Eq. (16) to find a relationship between σ(i)α in terms of
Δc(i)A and Δc(i)AB , given that all other Δc(i)α are zero for α ⊂ Γi,

σ(i)α = σ
(i)
∅ ∑

γ∈P(α)
∣a∣≤2∀a∈γ

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∏

A∈γ
∣A∣=1

(1 + Δc(i)A ) ∏
AB∈γ
∣AB∣=2

Δc(i)AB

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (32)

The sum is taken over all partitions of α having only one-element or
two-element subsets, and the products are taken over each type of
subset; all other partitions do not contribute. For |α|≥ 3, Eq. (32) can
be restated as a recursive relationship,

σ(i)α =
σ(i)A σ(i)α/A
σ(i)
∅

+ ∑
B∈α/A

⎡
⎢
⎢
⎢
⎢
⎣

σ(i)AB
σ(i)
∅

−

σ(i)A σ(i)B
(σ(i)
∅
)

2

⎤
⎥
⎥
⎥
⎥
⎦

σ(i)α/AB, (33)

after the substitution of Eqs. (30) and (31). The first term accounts
for A being a one-element subset in the first product of Eq. (32),
which contributes a factor of 1 + Δc(i)A ; this factor then multiplies
σ(i)α/A, which includes all partitions of α/A. The second term accounts
for all two-element subsets containing A, which contribute a factor
of Δc(i)AB in the second product of Eq. (32) for all B ∈ α/A. This must
multiply σ(i)α/AB, which includes all remaining partitions of α/AB. For
example, if α = ABC = {A, B, C} and we remove A, we obtain

σ(i)ABC =
σ(i)A σ(i)BC
σ(i)
∅

+
⎡
⎢
⎢
⎢
⎢
⎣

σ(i)AB
σ(i)
∅

−

σ(i)A σ(i)B
(σ(i)
∅
)

2

⎤
⎥
⎥
⎥
⎥
⎦

σ(i)C +
⎡
⎢
⎢
⎢
⎢
⎣

σ(i)AC
σ(i)
∅

−

σ(i)A σ(i)C
(σ(i)
∅
)

2

⎤
⎥
⎥
⎥
⎥
⎦

σ(i)B

=

σ(i)A σ(i)BC
σ(i)
∅

+
σ(i)B σ(i)AC
σ(i)
∅

+
σ(i)C σ(i)AB
σ(i)
∅

− 2
σ(i)A σ(i)B σ(i)C
(σ(i)
∅
)

2
. (34)

As expected, the same expression is obtained if site B or C is ini-
tially removed from α rather than A. The partitions of α having only
one-element or two-element subsets are {{A}, {B, C}}, {{B}, {A, C}},
{{C}, {A, B}}, and {{A}, {B}, {C}}, so Eq. (32) is also equivalent after
substitution and some simplification.

We now recast these equations using the notation of Chapman
and co-workers11–14 and define X(i)α (1) = σ(i)Γi/α(1)/σ

(i)
Γi (1) as the

local fraction of molecules of type i not bonded at all sites in α. [Note
the special case X(i)

∅
(1) = 1.] The association free energy is

βΔA =
k

∑

i=1
∫ d1σ(i)Γi (1)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

lnX(i)Γi (1) +
1
2 ∑A∈Γi

X(i)A (1)

×

⎛

⎜

⎝

X(i)Γi/A(1)

X(i)Γi (1)
− 1
⎞

⎟

⎠

+
1
2 ∑AB⊆Γi
∣AB∣=2

X(i)AB (1)

×

⎛

⎜

⎝

X(i)Γi/AB(1)

X(i)Γi (1)
−

X(i)Γi/A(1)X
(i)
Γi/B
(1)

(X(i)Γi (1))
2

⎞

⎟

⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (35)

while the “mass action” or “chemical equilibrium” conditions from
Δc(i)α are

− 1 +
X(i)Γi/A(1)

X(i)Γi (1)
=

k

∑

j=1
∑

B∈Γj
∫ d2[σ(j)Γj (2)X

(j)
B (2)g

(ij)
R (1, 2)f (ij)AB (1, 2)]

(36)
and

X(i)Γi/AB(1)

X(i)Γi (1)
−

X(i)Γi/A(1)X
(i)
Γi/B
(1)

(X(i)Γi (1))
2

=

k

∑

j=1
∑

CD⊆Γj
∣CD∣=2

∫ d2[σ(j)Γj (2)X
(j)
CD(2)g

(ij)
R (1, 2)f (ij)ABCD(1, 2)]. (37)

If the mixture is spatially homogeneous, none of the singlet
densities (or X(i)α ) depends on position or orientation. Carrying out
the integral in Eq. (35) gives the association free-energy density
Δa = ΔA/V in terms of the number densities ρi and X(i)α ,

βΔa =
k

∑

i=1
ρi

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

lnX(i)Γi +
1
2 ∑A∈Γi

X(i)A
⎛

⎜

⎝

X(i)Γi/A
X(i)Γi

− 1
⎞

⎟

⎠

+
1
2 ∑AB⊆Γi
∣AB∣=2

X(i)AB
⎛

⎜

⎝

X(i)Γi/AB
X(i)Γi

−

X(i)Γi/AX
(i)
Γi/B

(X(i)Γi )
2

⎞

⎟

⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (38)
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integrating Eq. (36) over 1 gives

− 1 +
X(i)Γi/A
X(i)Γi

=

k

∑

j=1
ρj∑

B∈Γj
X(j)B Δ(ij)AB , (39)

with

Δ(ij)AB = (ΩiΩj)
−1
∫ dr12dΩ1dΩ2[g

(ij)
R (r12,Ω1,Ω2)

× f (ij)AB (r12,Ω1,Ω2)], (40)

and integrating Eq. (37) over 1 gives

X(i)Γi/AB
X(i)Γi

−

X(i)Γi/AX
(i)
Γi/B

(X(i)Γi )
2
=

k

∑

j=1
ρj ∑

CD⊆Γj
∣CD∣=2

X(j)CDΔ
(ij)
ABCD, (41)

with

Δ(ij)ABCD = (ΩiΩj)
−1
∫ dr12dΩ1dΩ2[g

(ij)
R (r12,Ω1,Ω2)

× f (ij)ABCD(r12,Ω1,Ω2)], (42)

where r12 = r2 − r1 is the separation between molecules and Ωi is
the integral over orientations of a molecule of component i. Here,
we have used that g(ij)R should only depend on the relative separa-
tion between molecules in a spatially homogeneous mixture. Δ(ij)AB

and Δ(ij)ABCD are then “bond volumes” integrated over separations and
averaged over all orientations of the two molecules.13,14

Equation (32) can also be restated as

X(i)Γi/α = X
(i)
Γi ∑

γ∈P(α)
∣a∣≤2∀a∈γ

∏

A∈γ
∣A∣=1

⎛

⎜

⎝

X(i)Γi/A
X(i)Γi

⎞

⎟

⎠

× ∏

AB∈γ
∣AB∣=2

⎡
⎢
⎢
⎢
⎢
⎢
⎣

X(i)Γi/AB
X(i)Γi

−

X(i)Γi/AX
(i)
Γi/B

(X(i)Γi )
2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(43)

and equivalently, as a recursive relationship,

X(i)Γi/α =
X(i)Γi/AX

(i)
Γi/(α/A)

X(i)Γi
+ ∑

B∈α/A

⎡
⎢
⎢
⎢
⎢
⎢
⎣

X(i)Γi/AB
X(i)Γi

−

X(i)Γi/AX
(i)
Γi/B

(X(i)Γi )
2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

X(i)Γi/(α/AB). (44)

These relationships allow X(i)A and X(i)AB to be computed in terms of
X(i)Γi and all X(i)Γi/A and X(i)Γi/AB, and they also self-consistently define

X(i)Γi . Taken together, Eqs. (39), (41), and (43) comprise a system
of nonlinear equations that can be numerically solved to obtain all
X(i)α , with Eq. (38) giving the free energy; in practice, this may be

challenging for certain parameter values. There are, however, two
cases that simplify considerably: (1) no double bonds can form and
(2) a double bond can form at only one pair of sites on each molecule.
We now consider these, in turn, before applying the general theory
to a colloid–linker mixture in Sec. IV.

A. No double bonds
In TPT1, at most one bond can form between two molecules,2,4

which is a reasonable approximation when the site geometry on
the molecules inhibits double bonding, e.g., patchy colloids with
two bonding sites on opposite hemispheres, and the formation of
bonded rings of molecules is unlikely, e.g., because the bonding sites
are rigidly fixed. (This amounts to setting Δ(ij)ABCD = 0 for all pairs
of sites on all molecules.) TPT1 is the foundation of SAFT,11–15 so
we will show that we recover the SAFT equations originally derived
by Chapman for multicomponent mixtures with multiple bonding
sites14 if we neglect double bonding between molecules.

Making the simplification that Δ(ij)ABCD = 0, Eq. (44) becomes

X(i)Γi/α =
X(i)Γi/AX

(i)
Γi/(α/A)

X(i)Γi
(45)

for any A ∈ α, which when evaluated for α = Γi gives

1 =
X(i)Γi/AX

(i)
A

X(i)Γi
, (46)

and it follows that

X(i)Γi =∏
A∈Γi

X(i)A . (47)

This relationship captures the statistical independence of bonding in
TPT1: the fraction of molecules of component i that are not bonded
at any site is the product of the fraction not bonded at each site. The
free energy

βΔa =
k

∑

i=1
ρi ∑

A∈Γi
[lnX(i)A +

1
2
(1 − X(i)A )] (48)

and chemical equilibrium equations

X(i)A =
⎡
⎢
⎢
⎢
⎢
⎣

1 +
k

∑

j=1
ρj∑

B∈Γj
X(j)B Δ(ij)AB

⎤
⎥
⎥
⎥
⎥
⎦

−1

(49)

follow by substitution and are equivalent to Eqs. (3) and (4) of Ref. 14
after a conversion to express ΔA per molecule.

B. One double bond
As another special case, suppose that exactly two sites

A12 = {A1, A2} on a molecule of component i can form a dou-
ble bond with a similar set of two sites on a molecule of compo-
nent j. (We will label all these sites A1 and A2, but A1 on compo-
nent i and A1 on component j need not be the same, and similarly
for A2.) This restriction may physically correspond to a molecular
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geometry where only two of the sites are close enough to dou-
ble bond with another molecule, which was studied by Marshall
and Chapman for a one-component fluid28 and by Marshall for a
multicomponent mixture29 or a restrictive bonding chemistry.

The immediate consequence is that only Δ(ij)A12A12
≠ 0, which

drastically simplifies the expressions for σ(i)α because a maximum
of two partitions of α contribute to Eq. (43)—the partition into all
singleton sets and the partition containing one two-element subset
A12—so

X(i)A =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

X(i)Γi
X(i)Γi/A

, A ∉ A12

X(i)A12
X(i)Γi/(A12/A)

X(i)Γi
, A ∈ A12.

(50)

The first case, when A is not one of the double-bond sites, is obtained
from Eq. (44) with α = Γi and is the same as in TPT1. The sec-
ond case, when A is one of the double-bond sites, is obtained from
Eq. (44) with α = Γi/A1 and Γi/A2 and removing A2 and A1, respec-
tively. Combining Eq. (50) with Eq. (44) for α = Γi and either A ∈ A12
removed gives the additional relationship

X(i)A12

⎛

⎜

⎝

X(i)Γi/A12

X(i)Γi
−

X(i)Γi/A1
X(i)Γi/A2

(X(i)Γi )
2

⎞

⎟

⎠

= 1 −
X(i)A1

X(i)A2

X(i)A12

. (51)

Finally, it follows from applying Eq. (44) recursively that

X(i)Γi = X
(i)
A12
∏

A∈Γi/A12

X(i)A . (52)

With these results, the free energy is

βΔa =
k

∑

i=1
ρi
⎡
⎢
⎢
⎢
⎢
⎣

∑

A∈Γi
(lnX(i)A +

1
2
(1 − X(i)A ))

+ ln
⎛

⎝

X(i)A12

X(i)A1
X(i)A2

⎞

⎠

−
1
2
⎛

⎝

1 −
X(i)A1

X(i)A2

X(i)A12

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

. (53)

The free energy has been written so that the sum over sites A is the
same as TPT1, while the additional terms give the free energy due
to double-bond formation. This expression is equivalent to Eq. (19)
of Ref. 29 after some manipulations. The corresponding chemical
equilibrium equations for A ∉ A12 are the same as Eq. (49), while for
α ⊆ A12, the three X(i)α are given by the system of equations,

− 1 +
X(i)A2

X(i)A12

=

k

∑

j=1
ρj∑

B∈Γj
X(j)B Δ(ij)A1B, (54)

a similar equation with the labels A1 and A2 reversed, and

1

X(i)A12

−

X(i)A1
X(i)A2

(X(i)A12
)

2
=

k

∑

j=1
ρjX(j)A12

Δ(ij)A12A12
. (55)

IV. COLLOID–LINKER MIXTURE
Having extended Wertheim’s TPT to include general double-

bond association, we now apply the theory to a model mixture of
colloids and flexible linker molecules that we previously studied with
molecular simulations and TPT1.16 In that work, we aimed at pre-
dicting the phase behavior of the homogeneous mixture; however,
TPT also gives valuable information about the prevalence of differ-
ent bonding motifs. We measured a significant fraction of linkers
forming loops (a double bond with both linker ends attached to
the same colloid) in our simulations. Linker loops are neglected in
TPT1, so here we investigate the linker loop fraction under different
conditions as a useful test of the new theory.

A. Model
The linkers we studied were linear chains of M = 8 tangen-

tially bonded hard-sphere segments with diameter dl, which we also
called “polymers” in Ref. 16, while the colloids were hard spheres
with diameter dc = 5 dl. The mixture composition was defined using
the colloid volume fraction ηc = ρcπd3

c/6, which we varied from 0.01
to 0.15, and the linker-to-colloid number ratio ρl/ρc, which we fixed
at 1.5. Each linker had nl = 2 bonding sites, one at the center of each
end segment. Each colloid had nc = 6 bonding sites arranged at the
vertices of an octahedron at a distance d∗cl = dcl +(21/6

−1)dl ≈ 3.12dl
from the center of the colloid, where dcl = (dc + dl)/2 = 3 dl is
the hard-sphere contact distance for a colloid and a linker segment.
(Placement of the colloid bonding sites at d∗cl rather than dcl was due
to our original work using nearly hard potentials for the spheres.53)
A linker could reversibly bond to a colloid through a short-ranged
site attraction,

u(cl)
AB (1, 2) =

⎧
⎪⎪
⎨
⎪⎪
⎩

−εe−(rAB/ℓ)
2
, rAB < 2.5 ℓ

0, rAB ≥ 2.5 ℓ
(56)

where rAB = ∣r(l)B (2)− r
(c)
A (1)∣ is the distance between the linker and

colloid sites, ε is the strength of the attraction, and ℓ = 0.2 dl sets
the range of the attraction. The potential was truncated for rAB ≥ 2.5
ℓ = 0.5 dl. There was at most one bond at each site, and there were
no bonds between two colloid sites or two linker sites.

B. Perturbation theory with molecule flexibility
We developed the theory in Secs. II and III with all sites fixed

on rigid molecules, but in our colloid–linker model, the linker bond-
ing sites fluctuate with the end-to-end vector R. This intramolecular
flexibility can be incorporated into the theory with a few mod-
ifications and approximations.21,22,52 To specify the linker’s con-
formation, we redefined 1 = (r1, R1), where r1 is the position
of one end of the chain and R1 is its end-to-end vector, effec-
tively coarse-graining the internal linker segments. To appropriately
weight the conformations, the linkers were given an intramolecular
potential

βu(l)1 (R) ≈ − ln p(R), (57)

where p(R) is the probability distribution of end-to-end vectors in
the reference mixture without bonding. The linker singlet densities
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now depend on R, and this dependence may be different when both
ends of a linker are bonded than when they are free. As a result,
σ(l)Γl

may have a different R-dependence in the associating mixture

than in the reference mixture, and computing AR at the same σ(l)Γl
may be inconvenient for equations of state that are functionals of the
number density. Wertheim showed how this can be circumvented
in certain cases by choosing a reference mixture having the same
number density after integration over internal degrees of freedom
and making a small modification to Eq. (23).52 We accordingly take
the reference state to be the hard-chain mixture at the same number
density and without bonding (βε = 0).

With these modifications, we specialized the graph sum given
by Eq. (24) to our model. We first reduced the number of σ(c)α that
needed to be explicitly included. For a linker to double bond, the
arc-length distance between colloid bonding sites must be less than
the linker’s contour length L = (M − 1)dl = 7 dl. In our model,
the arc-length distance between nearest sites on the colloid was
d∗clπ/2 ≈ 4.9dl, so the linker was able to form double bonds with
any of these pairs of sites. However, the arc-length distance between
sites on opposite hemispheres was d∗clπ ≈ 9.8dl, so a linker could not
form a double bond with these sites. We accordingly excluded dou-
ble bonds between the three pairs of sites on opposite sides of the
colloid; the remaining νc = nc(nc − 2)/2 double-bond pairs were all
equivalent. We then defined the graph sum using representative sets
of colloid bonding sites, A1 for a single bond and A12 = {A1, A2} for a
double bond between nearest sites. The linker had nl = 2 equivalent
bonding sites B12 = {B1, B2}.

We next simplified the chemical equilibrium equations for a
spatially homogeneous mixture. The linker singlet densities were
constant with respect to r but not R, so we redefined X(l)α (r1)

= σ(l)Γl/α
(r1)/σ(l)Γl

(r1) for the linkers using singlet densities inte-
grated over R1. We further assumed that the distribution of end-
to-end vectors was the same for linkers having neither or one end
bonded and with both given by p(R), i.e., ρ(l)

∅
(1) = ρ(l)

∅
(r1)p(R1)

and ρ(l)B1
(1) = ρ(l)B1

(r1)p(R1). Carrying through the integration and
explicitly specializing for the difunctional linker gave

− 1 +
X(c)Γc/A1

X(c)Γc

= 2ρlX
(l)
B1
Δ1, (58)

− 1 +
X(l)B1

X(l)B12

= ncρcX(c)A1
Δ1, (59)

and

X(c)Γc/A12

X(c)Γc

−

⎛

⎜

⎝

X(c)Γc/A1

X(c)Γc

⎞

⎟

⎠

2

= 2ρlX
(l)
B12
Δ2, (60)

1

X(l)B12

−

⎛

⎝

X(l)B1

X(l)B12

⎞

⎠

2

= 2νcρcX(c)A12
Δ2, (61)

with single-bond volume

Δ1 ≈ Ω−1
c ∫ dr12dΩ1dR2[p(R2)g(cl)

R (r12,R2)f (cl)
A1B1
(r12,Ω1)] (62)

and double-bond volume

Δ2 ≈ Ω−1
c ∫ dr12dΩ1dR2[p(R2)g(cl)

R (r12,R2)

× f (cl)
A1B1
(r12,Ω1)f (cl)

A2B2
(r12,Ω1,R2)]. (63)

The factors of 2 in Eqs. (60) and (61) account for equivalent permu-
tations of the site labels. Additionally, Eq. (43) gives X(c)A1

and X(c)A12

as functions of X(c)Γc/A12
, X(c)Γc/A1

, and X(c)Γc
, along with an implicit equa-

tion for X(c)Γc
in these variables. Together, these make a complete set

of nonlinear equations in five variables that can be solved for a given
mixture composition and attraction strength ε after the evaluation
of Δ1 and Δ2. Complete details of how we evaluated these integrals
and solved these equations are given in Appendix B.

C. Pair correlation function
The pair correlation function between the colloids and link-

ers in the reference system g(cl)
R (r12,R2) depends not only on the

distance between the colloid and the linker r12 but also on the
linker’s conformation R2. We considered approximating g(cl)

R using
a superposition of the hard-sphere correlations g(cl)

hs in the mixture
obtained by dissolving the linker’s internal bonds, but we suspected
this approach might overestimate g(cl)

R because segments of poly-
mer chains are known to be depleted near the surface of colloids,54

whereas hard spheres are enriched.50

We accordingly measured g(cl)
R in molecular dynamics simu-

lations of the reference hard-chain mixture using the model and
simulation methods of Ref. 16. We simulated 1000 colloids and
1500 linkers in a cubic box with periodic boundary conditions using
LAMMPS (22 Aug 2018).53,55,56 Starting at ηc = 0.01, we first equili-
brated the mixture for 1.5 × 104 τ, where τ is the unit of time in the
simulations. We then sampled configurations for analysis every 10 τ
over a 104 τ period (1000 configurations). Finally, we linearly com-
pressed the edge length of the simulation box over 5 × 103 τ to reach
ηc = 0.02. We repeated this procedure up to and including ηc = 0.15.
We computed g(cl)

R as a histogram of three variables: the distance
from the center of the colloid to one end of the linker rB1 = ∣r12∣, the
end-to-end distance R = |R2|, and the polar angle ϕ between R2 and
r12, i.e., cosϕ = (r12 ⋅ R2)/(rB1R2). The histogram bin ranges and
widths were 3dl ≤ rB1 ≤ 4dl with width 0.25 dl, 0 dl ≤ R ≤ 7 dl with
width 0.5 dl, and 0 ≤ ϕ ≤ π with width π/9 (20○). We have labeled rB1

using the end B1, but we also took the other linker end B2 as r12 to
improve sampling.

We also computed the end-to-end vector distribution p(R) as
a histogram of R using the same R-bins as for g(cl)

R (Fig. 3). This
distribution was largely independent of ηc at the compositions we
simulated, so we used p(R) at ηc = 0.01 to calculate Δ1 and Δ2. [We
used the p(R) measured at each composition, however, to normalize
g(cl)

R .] We noted that the probability of having R commensurate with
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FIG. 3. Probability density function p for the linker end-to-end vector R as a func-
tion of the end-to-end distance |R| at ηc = 0.01 (red circles) and ηc = 0.15 (blue
squares). The black dotted line shows an empirical fit to the ηc = 0.01 distribu-
tion for |R| ≥ dl, which we used for numerical convenience when evaluating the
bond-volume integrals (Appendix B).

the distance between two colloid bonding sites (
√

2d∗cl ≈ 4.4dl) was
nonnegligible, meaning that it was likely that double bonds would
form.

The integrand of Δ1 is nonzero only when one end of the linker
interacts with a bonding site. Anticipating the hard-sphere exclusion
between the colloid and linker segment, this requires dcl ≤ rB1 ≤ r

∗,
where r∗ = d∗cl + 2.5ℓ based on the range of Eq. (56). We found
that g(cl)

R did not change significantly in this range of rB1 , tending
to increase slightly for larger rB1 . In the strong association limit of
large βε, the dominant contribution to the integral occurs when the
bonding sites overlap at rB1 ≈ d∗cl. We accordingly approximated
g(cl)

R (rB1 ,R,ϕ) ≈ g(cl)
R (d∗cl,R,ϕ), which still depended on both R and

ϕ, e.g., because the other linker end cannot penetrate the colloid.
However, further inspection of the data suggested a function of only
one other variable, namely, the distance rB2 from the center of the
colloid to the other end of the linker,

rB2 = ∣r12 + R2∣ = (r2
B1 + R2 + 2rB1R cosϕ)1/2. (64)

Conformations having rB2 < dcl had g(cl)
R (d∗cl, rB2) = 0 because this

would cause the linker end to penetrate the colloid. For larger values
of rB2 , we typically found g(cl)

R (d∗cl, rB2) < 1 for most conformations,
indicating depletion of the linker near the surface of the colloid.54

We noted that g(cl)
R (d∗cl, rB2) also had a volume fraction depen-

dence. Conveniently, scaling g(cl)
R by g(cl)

hs (d
+
cl), which we obtained

from Boublík’s equation of state,50 effectively accounted for this
composition dependence and collapsed the data [Fig. 4(a)]. [We
included in Fig. 4(a) only data for dl ≤ R ≤ 5 dl and 0 ≤ ϕ ≤ π/2, for
which we had sufficient sampling. These conformations are expected
to contribute most significantly to Δ1, as others are less probable
or wholly excluded.] Empirically, the data were well fit by a linear
function of rB2 for rB2 > dcl, which we used to evaluate Δ1.

The integrand of Δ2 is nonzero only when both ends of the
linker interact with bonding sites. Using similar reasoning as for
Δ1, we approximated g(cl)

R by its value when all the bonding sites
overlap, g(cl)

R (rB1 ,R,ϕ) ≈ g(cl)
R (d∗cl,

√

2d∗cl, 3π/4). The value of g(cl)
R

again depended on ηc, but we found that it was essentially a con-
stant across volume fractions when scaled by [g(cl)

hs (d
+
cl)]

2 [Fig. 4(b)].

FIG. 4. Simulated colloid–linker pair distribution function g(cl)
R in reference mix-

tures having varied ηc and fixed ρl/ρc = 1.5. g(cl)
R is normalized by the contact

value of the pair distribution function g(cl)
hs (d+

cl) in the hard-sphere mixture that
would be obtained by removing all bonds from the linkers.50 (a) When one linker
end is fixed at rB1 = d∗cl , g

(cl)
R /[g(cl)

hs (d+
cl)] collapses as a linear function (dashed

line) of the distance from the colloid center to the other chain end rB2 . Here, we
show data only for dl ≤ R ≤ 5 dl and 0 ≤ ϕ ≤ π/2, for which we have reliable sam-
pling. (b) When both ends of the linker are fixed at colloid bonding sites so that
rB1 = d∗cl , R =

√
2d∗cl and ϕ = 3π/4, g(cl)

R /[g(cl)
hs (d+

cl)]2 is a constant (dashed
line). The inset of (b) illustrates the definitions of rB1 , rB2 , R, and ϕ.

Qualitatively, the additional factor of g(cl)
hs (d

+
cl) here accounts for the

presence of the other chain end near the surface.21,22,51 The value of
g(cl)

R is significantly less than the superposition of the hard-sphere
correlations, presumably due to the large entropic penalty to confine
the linker near the surface of the colloid.

D. Loop fractions
With all inputs determined, we proceeded to compute the frac-

tion of colloids and linkers in different bonding states at various
attraction strengths ε and colloid volume fractions ηc. We first deter-
mined the fractions of linkers having no, one, or both ends bonded
using TPT; these fractions areX(l)B12

, 2(X(l)B1
−X(l)B12

), and 1−2X(l)B1
+X(l)B12

,
respectively, using Eq. (13). Figure 5 shows a representative result
for ηc = 0.10 as a function of ε, which was a composition where
the mixture remained a single (homogeneous) phase in our previous
simulations.16 The fraction of unbonded linkers decreased mono-
tonically as the attraction strength ε increased, the fraction of linkers
bonded at both ends concomitantly increased monotonically, and
the fraction of linkers with only one end bonded had a maximum
near βε ≈ 12.5. The TPT calculation (blue dashed line) agreed nearly
quantitatively with the simulation data (black circles).16 However,
first-order TPT, which completely neglects double bonds between
colloids and linkers, yielded comparable results that we omitted here
for clarity.

The usefulness of the newly developed theory is its ability to
predict the fraction of linkers in loops χ, which is absent from TPT1.
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FIG. 5. Fractions of linkers with (a) no bonded ends, (b) one bonded end, and (c)
two bonded ends at ηc = 0.10 and ρl/ρc = 1.5 as a function of attraction strength
ε. The lines are TPT predictions accounting for only loops (blue dashed lines)
and for both loops and two-colloid rings (red solid lines), and the black circles are
simulation data.16.

This fraction can be computed from the double-bond graphs in ρ(l)B12
,

which here is

χ = ∫
d1ρ(l)

∅
(1)Δc(l)B12

(1)

∫ d1ρ(l)B12
(1)

= 1 −
(X(l)B1

)
2

X(l)B12

. (65)

In TPT1, χ = 0 because Δc(l)B12
= 0 (Sec. III A), but with double bond-

ing included, χ should depend on ε and on the mixture composition.
We computed χ as a function of ε at volume fractions ηc = 0.01 and
ηc = 0.10 (red dotted lines in Fig. 6). At both compositions, more
loops formed as ε increased, and there were significantly more loops
at the dilute composition ηc = 0.01 than when ηc = 0.10. The latter
is more obvious considering χ as a function of ηc in the strong asso-
ciation limit, which we take here as βε = 20 (Fig. 7). Both of these
trends in the TPT predictions are qualitatively consistent with our
simulations (red circles).

By manipulating the chemical equilibrium equations for the
linkers, it can be shown in the strong association limit that

χ ≈ [1 + Kρc(
n2

c

2νc
)(

Δ2
1

Δ2
)]

−1

, (66)

where K = (X(c)A1
)

2
/X(c)A12

approaches a limiting value as βε becomes
large. Here, we assume that Δ2 ≫ Δ1 and Δ2 ∼ Δ2

1, which is moti-
vated by Eqs. (62) and (63) and supported by our calculations. For
the range of compositions we studied, K depended weakly on the
mixture composition in our numerical calculations but was approx-
imately 1. Consistent with our calculations and simulations (Fig. 7),

FIG. 6. Fraction of linkers χ in loops (red circles/lines) and two-colloid rings (blue
squares/lines) as a function of attraction strength ε at ρl/ρc = 1.5 and (a) ηc = 0.01
and (b) ηc = 0.10. Simulation data from Ref. 16 (symbols) are compared to two
TPT calculations: one including only loops (χ = χloop as red dotted lines), and one
including both loops (χloop as red solid lines) and two-colloid rings (χring as blue
dashed lines).

smaller colloid number density ρc favors loop formation (larger χ).
χ also depends on the number of colloid bonding sites nc relative
to the number of potential double bonding pairs νc and, signifi-
cantly, on the ratio of bond volumes Δ2

1/Δ2. This suggests a potential
strategy for limiting loop formation. The number of double bond-
ing pairs νc depends on the linker length, and Δ2 is also roughly
proportional to p(rA1A2), the probability of the linker having an
end-to-end vector commensurate with the distance between colloid
bonding sites (Appendix B). Reducing the compatibility between
the linker and the typical distance between colloid bonding sites
could decrease both νc and p(rA1A2), and as a result χ. This might be
achieved by modifying the linker’s length or flexibility and presents
an opportunity for engineering colloidal self-assembly.

FIG. 7. Fraction of linkers χ in loops (red circles/lines) and two-colloid rings (blue
squares/line) at βε = 20 and ρl/ρc = 1.5 as a function of colloid volume fraction
ηc. Simulation data from Ref. 16 (symbols) are compared to two TPT calculations:
one including only loops (χ = χloop as red dotted line), and one including both loops
(χloop as red solid line) and two-colloid rings (χring as blue dashed line).
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E. Loop and ring fractions
Despite qualitatively capturing the ε and ηc dependences of χ,

our TPT calculations consistently overestimated χ compared to the
simulations. We note that the simulations at smaller colloid volume
fractions (ηc ≲ 0.06) phase separated,16 but our TPT calculations
assume that the mixture is homogeneous. Some differences might
then be expected between TPT and simulations in this regime; how-
ever, similar differences were also obtained at larger volume frac-
tions where the simulated structures were homogeneous. Hence,
we suspected there might be additional bonding motifs impacting
the thermodynamics that we neglected in our approximation of
the irreducible graph sum Δc. In particular, our simulations sug-
gested that “rings,” where two linkers redundantly bridged two col-
loids [Fig. 1(b)], were also prevalent, but only double-bond graphs
[Fig. 8(a)] representing loops were included in Eq. (24).

Rings of two colloids linked by two linkers can be incorporated
into our TPT using the approximation of Sear and Jackson,22 which
adds irreducible graphs [Fig. 8(b)] to Δc,

1
4 ∑AB⊆Γc
∣AB∣=2

∑

CD⊆Γc
∣CD∣=2

∫ d1d2d3d4[σ(c)Γc/AB
(1)

× σ(c)Γc/CD
(2)σ(l)

∅
(3)σ(l)

∅
(4)g(4)R (1, 2, 3, 4)

× 16f (cl)
AE (1, 3)f (cl)

CF (2, 3)f (cl)
DG (2, 4)f (cl)

BH (1, 4)], (67)

where g(4)R is the four-body correlation function in the reference
mixture approximated by the superposition,

g(4)R (1, 2, 3, 4) ≈ g(cl)
R (1, 3)g(cl)

R (2, 3)g(cl)
R (2, 4)

× g(cl)
R (1, 4)e(cc)

R (1, 2). (68)

The sums run over all pairs of bonding sites on the colloids labeled 1
and 2, {E, F} and {G, H} are the bonding sites on the linkers labeled
3 and 4, respectively, and the factor of 16 accounts for permutations
of bonding within these sets of sites. Because this ring graph involves
only singlet densities not bonded at two sites, it will contribute only
to Δc(c)A12

and Δc(l)B12
in a similar manner to the double-bond graphs. A

similar approximation was also made by Haghmoradi et al. for mix-
tures of ring-forming colloids with two bonding sites in an article
that appeared after our work was completed.57

FIG. 8. (a) Double-bond (“loop”) graph between one colloid (larger red hyperpoint)
and one linker (smaller blue hyperpoint). (b) Ring graph with two colloids and two
linkers. Both graphs require simultaneously bonding at two sites on the colloids
and linkers. The bonding sites are labeled with general indices, and for clarity, only
the f AB-bonds (dashed lines) are drawn.

We carried out the functional differentiation of Δc including
these ring graphs, and we integrated the chemical equilibrium equa-
tions for a spatially homogeneous fluid. Two-colloid rings are only
likely to form at colloid bonding sites that are nearest neighbors
because the linkers would need to stretch significantly (R ≳ dc) to
bond at sites on opposite hemispheres. Hence, the equivalent σ(c)α
remains the same as before, and we need only add terms for the ring
graph to Eqs. (60) and (61). The result is

X(c)Γc/A12

X(c)Γc

−

⎛

⎜

⎝

X(c)Γc/A1

X(c)Γc

⎞

⎟

⎠

2

= 2ρlX
(l)
B12
Δ2 + 16(

νc

2
)(ρcX(c)A12

)(ρlX
(l)
B12
)

2
Δ4,

(69)

1

X(l)B12

−

⎛

⎝

X(l)B1

X(l)B12

⎞

⎠

2

= 2νcρcX(c)A12
Δ2 +16(

ν2
c

2
)(ρcX(c)A12

)

2
(ρlX

(l)
B12
)Δ4, (70)

with the ring-bond volume

Δ4 =Ω−2
c ∫ dr12dr13dr14dΩ1dΩ2dR3dR4

× [p(R3)p(R4)g(4)R (r12, r13, r14,R3,R4)

× f (cl)
AE (r13,Ω1)f (cl)

CF (r12, r13,Ω2,R3)

× f (cl)
DG (r12, r14,Ω2)f (cl)

BH (r14,Ω1,R4)]. (71)

Details of how we approximated Δ4 are given in Appendix B.
As in Sec. IV D, we proceeded to solve the new chemical equi-

librium equations. The fractions of linkers with zero, one, or two
bonded ends predicted by the TPT with both loops and rings (red
line in Fig. 5) were very similar to those predicted by the TPT with
only loops, and both agreed well with the simulations. We then
determined the fractions of linkers in either loops or rings. With
rings included in the TPT, χ given by Eq. (65) is now the total
fraction of linkers in either motifs. We accordingly separated the
loop-graph contributions to Δc(l)B12

and χ,

χloop = 2νcρcX(c)A12
X(l)B12

Δ2, (72)

and by subtraction, the ring-graph contribution was χring = χ − χloop.
The TPT-predicted fraction of linkers in rings (blue dashed

line in Figs. 6 and 7) is in very good agreement with the simula-
tions (blue squares). The predicted fraction of loops also decreased
in the TPT with loops and rings (red line) compared to the TPT with
only loops. This improved the agreement between the TPT and sim-
ulations, although the fraction of linkers in loops was still slightly
overpredicted in the TPT. We believe that this overprediction might
be due to the neglect of other competing bonding motifs such as
larger rings or of other irreducible graphs that include effects from
steric hindrance.52 Nonetheless, the agreement between the simula-
tions and the TPT with loops and two-colloid rings is good, and the
TPT with loops and rings is a significant improvement over TPT1,
which predicted that χ = 0 for both bonding motifs.
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V. CONCLUSIONS
We have extended Wertheim’s thermodynamic perturba-

tion theory (TPT) for fluids with strong directional attrac-
tions to include double bonds between an arbitrary num-
ber of pairs of molecular bonding sites in a multicompo-
nent mixture. This extension, which relaxes restrictions in prior
TPTs on the number of potential double-bond site pairs, was
required to model the assembly of colloidal particles (“col-
loids”) and difunctional flexible chain molecules (“linkers”).
We showed that the fraction of linkers that “looped” to make a dou-
ble bond with both ends attached to the same colloid and/or that
formed “rings” of two linkers bridging between the same two col-
loids could be reliably predicted using TPT across a range of com-
positions and attraction strengths. A large linker loop fraction may
inhibit assembly of percolated, self-supporting networks of colloids
because looped linkers do not form new bridges between colloids.
Our work suggests that the loop fraction can be reduced by making
the end-to-end distance of the linker incompatible with the distance
between colloid bonding sites, which might be achieved by modify-
ing the linker’s molecular weight or flexibility.58 It would be interest-
ing to use the developed theory to compute not only loop fractions
but also phase boundaries in order to demonstrate how loops modify
the phase behavior of the mixture, including conditions amenable to
gelation or equilibrium gels.7,59
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APPENDIX A: SITE OPERATOR ALGEBRA
Useful relationships between ρ(i)α , σ(i)α , and c(i)α can be derived

through a formalism of “site operators” (or dual numbers) that per-
mits for the manipulation of equations such as Eq. (11).3 For com-
pleteness, we will explicitly derive some of Wertheim’s key results
using this formalism. Let ε(i)A (1) be an operator of a site A on a
molecule of component i at a root point labeled 1. All site operators
commute and are defined to satisfy

(ε(i)A )
2
= 0. (A1)

For some α ⊆ Γi, define

ε(i)α =∏
A∈α

ε(i)A , (A2)

and as a result,

ε(i)α ε(i)γ =
⎧
⎪⎪
⎨
⎪⎪
⎩

ε(i)α∪γ, α ∩ γ = ∅
0, otherwise.

(A3)

Wertheim considered numbers of the form

x̊(i) = x(i)
∅

+ ∑
α⊆Γi
α≠∅

x(i)α ε(i)α (A4)

that follow the arithmetic and algebra for real numbers with the
exception that division by x̊(i) having x(i)

∅
= 0 is not permitted.

Analytical functions of x̊(i) can be computed by series expansion.
With this algebra, ρ̊(i) is defined by Eq. (A4),

ρ̊(i) = ρ(i)
∅

+ ∑
α⊆Γi
α≠∅

ρ(i)α ε(i)α , (A5)

and we will now connect σ̊(i) to ρ̊(i). We start with this same
definition for σ̊(i) and use Eq. (12) to replace σ(i)α ,

σ̊(i) = ρ(i)
∅

+ ∑
α⊆Γi
α≠∅

⎛

⎝
∑

γ⊆α
ρ(i)γ
⎞

⎠

ε(i)α

= ρ(i)
∅

+ ∑
α⊆Γi
α≠∅

⎛

⎜
⎜

⎝

ρ(i)
∅

+ ρ(i)α + ∑
γ⊂α
γ≠∅

ρ(i)γ
⎞

⎟
⎟

⎠

ε(i)α

= ρ(i)
∅

+ ∑
α⊆Γi
α≠∅

⎛

⎜
⎜

⎝

ρ(i)
∅

+ ρ(i)α + ∑
γ⊆Γi
γ≠∅

ρ(i)γ ε(i)γ
⎞

⎟
⎟

⎠

ε(i)α

=

⎛

⎜
⎜

⎝

ρ(i)
∅

+ ∑
α⊆Γi
α≠∅

ρ(i)α ε(i)α
⎞

⎟
⎟

⎠

⎛

⎜
⎜

⎝

1 + ∑
α⊆Γi
α≠∅

ε(i)α
⎞

⎟
⎟

⎠

= ρ̊(i)∏
A∈Γi
(1 + ε(i)A ). (A6)

We made use of the identity

∑

α⊆Γi
α≠∅

ε(i)α ∑
γ⊆Γi
γ≠∅

x(i)γ ε(i)γ = ∑
α⊆Γi
α≠∅

ε(i)α ∑
γ⊂α
γ≠∅

x(i)γ (A7)

in the third line and

∏

A∈Γi
(1 ± ε(i)A ) = 1 + ∑

α⊆Γi
α≠∅

(±1)∣α∣ε(i)α (A8)

in the last line.
It is now straightforward to invert this relationship,

ρ̊(i) = σ̊(i)∏
A∈Γi
(1 − ε(i)A ), (A9)

using the series expansion (1 + ε(i)A )
−1
= 1− ε(i)A . To find expressions

for ρ(i)α in terms of σ(i)α , we expand σ̊(i),
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ρ̊(i) =
⎛

⎜
⎜

⎝

σ(i)
∅

+ ∑
α⊆Γi
α≠∅

σ(i)α ε(i)α
⎞

⎟
⎟

⎠

⎛

⎜
⎜

⎝

1 + ∑
α⊆Γi
α≠∅

(−1)∣α∣ε(i)α
⎞

⎟
⎟

⎠

, (A10)

and collect coefficients of ε(i)α . This can only include terms in subsets
γ ⊆ α, giving Eq. (13).

To find expressions for c(i)α in terms of σ(i)α , we start from the
definition of c̊(i) and consider its exponential

exp(c̊(i) − c(i)
∅
) = exp

⎛

⎜
⎜

⎝

∑

α⊆Γi
α≠∅

c(i)α ε(i)α
⎞

⎟
⎟

⎠

= ∏

α⊆Γi
α≠∅

(1 + c(i)α ε(i)α ), (A11)

where in the second equality, we have separated the exponential and
used the series expansion exp(ε(i)α ) = 1 + ε(i)α . The product can be
re-expressed as a sum over partitions of α because only products of
terms in disjoint sets will survive the expansion,

exp(c̊(i) − c(i)
∅
) = 1 + ∑

α⊆Γi
α≠∅

⎛

⎝
∑

γ∈P(α)
∏

a∈γ
c(i)a
⎞

⎠

ε(i)α

=
ρ̊(i)

ρ(i)
∅

=
σ̊(i)

σ(i)
∅

∏

A∈Γi
(1 − ε(i)A ), (A12)

using Eq. (11) to arrive at the second equality and Eq. (A9) with the
replacement ρ(i)

∅
= σ(i)
∅

to obtain the last equality.
Using Eqs. (A11) and (A12) and then inverting, we can imme-

diately show

σ̊(i)

σ(i)
∅

= ∏

α⊆Γi
α≠∅

(1 + c(i)α ε(i)α )∏
A∈Γi
(1 + ε(i)A )

= ∏

α⊆Γi
α≠∅

[1 + (δ∣α∣,1 + c(i)α )ε
(i)
α ]. (A13)

Expanding this product and collecting terms as in Eq. (A12) gives
Eq. (16).

Alternatively, we can invert Eq. (A12) directly,

c̊(i) − c(i)
∅
= ln
⎛

⎝

σ̊(i)

σ(i)
∅

⎞

⎠

+ ∑
A∈Γi

ln(1 − ε(i)A )

= ln
⎛

⎝

σ̊(i)

σ(i)
∅

⎞

⎠

− ∑

A∈Γi
ε(i)A , (A14)

where the last equality used the series expansion ln(1− ε(i)A ) = −ε
(i)
A .

In order to determine expressions for c(i)α , we now series expand the
logarithm,

ln
⎛

⎝

σ̊(i)

σ(i)
∅

⎞

⎠

= ln
⎛

⎜
⎜

⎝

1 + ∑
α⊆Γi
α≠∅

σ(i)α ε(i)α
σ(i)
∅

⎞

⎟
⎟

⎠

. (A15)

Recall that in general,

ln(1 + x) =
∞

∑

n=1
(−1)n−1 xn

n
, (A16)

so the expansion can be performed in multiple variables by collecting
all terms involving disjoint sets whose union is α, i.e., these sets must
be partitions of α,

ln
⎛

⎝

σ̊(i)

σ(i)
∅

⎞

⎠

= ∑

α⊆Γi
α≠∅

⎛

⎝
∑

γ∈P(α)
(−1)∣γ∣−1 ∣γ∣!

∣γ∣ ∏a∈γ
σ(i)a
σ(i)
∅

⎞

⎠

ε(i)α . (A17)

The factor of |γ|! accounts for all permutations of γ that occur in the
expansion. This gives Eq. (15) for c(i)α .

We will now show one additional relationship that is useful for
computing the thermodynamics. We start by explicitly expanding
the sum

∑

α⊆Γi
σ(i)Γi/αc

(i)
α = σ

(i)
Γi c

(i)
∅

+ ∑
α⊂Γi
α≠∅

σ(i)Γi/αc
(i)
α + σ(i)

∅
c(i)Γi . (A18)

The second term can be re-expressed as a sum over partitions of
Γi, excluding the improper partition, by substituting Eq. (15), and
regrouping terms,

∑

α⊂Γi
α≠∅

σ(i)Γi/αc
(i)
α = −∑

A∈Γi
σ(i)Γi/A + ∑

α⊂Γi
α≠∅

σ(i)Γi/α

× ∑

γ∈P(α)
(−1)∣γ∣−1

(∣γ∣ − 1)!∏
a∈γ

σ(i)a
σ(i)
∅

= −∑

A∈Γi
σ(i)Γi/A + σ(i)

∅

× ∑

γ∈P(Γi)
γ≠{Γi}

(−1)∣γ∣−2
∣γ∣(∣γ∣ − 2)!∏

a∈γ

σ(i)a
σ(i)
∅

. (A19)

Note in the second equality that the sum excludes the improper
partition of Γi and that there is a factor of |γ| that accounts for all
permutations removing one of the terms in the partition. By direct
substitution of Eq. (15), the third term can be similarly expressed,

σ(i)
∅

c(i)Γi = σ
(i)
Γi + σ(i)

∅ ∑

γ∈P(Γi)
γ≠{Γi}

(−1)∣γ∣−1
(∣γ∣ − 1)!∏

a∈γ

σ(i)a
σ(i)
∅

. (A20)

Combining the two sums leads to

∑

α⊆Γi
σ(i)Γi/αc

(i)
α = σ

(i)
Γi (1 + c(i)

∅
) + Q(i), (A21)

where Q(i) is given by Eq. (19). Note that Q(i) does not depend
on σ(i)Γ .

APPENDIX B: NUMERICS
To evaluate Δ1, we fixed the colloid at the origin and specified

its orientation by a director through A1 having three intrinsic Euler
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angles (θc, ϕc, ψc)—0 ≤ θc ≤ 2π is a right-handed rotation around the
z axis, 0 ≤ ϕc ≤ π is a right-handed rotation about the rotated y axis,
and 0 ≤ ψc ≤ 2π is a right-handed rotation about the rotated z axis—
so Ωc = 8π2 and θc and ϕc have the same meaning as the azimuthal
and polar angles in spherical coordinates. We defined the position
rB1 of the bonded linker site B1 in spherical coordinates (rB1 , θB1 ,ϕB1)

using the colloid as the origin and rA1 as an axis, i.e., in a frame that
rotates with the colloid. We will denote the vector between two sites
A and B by rAB = rB − rA and the distance by rAB = |rAB|. The end-
to-end vector R = rB1B2 was also defined in spherical coordinates
(rB1B2 , θB1B2 ,ϕB1B2) using B1 as the origin and rB1 as the axis. These
coordinates are illustrated in Fig. 9(a).

The distance between A1 and B1 was

r2
A1B1 = (d

∗

cl)
2 + r2

B1 − 2d∗clrB1 cosϕB1 , (B1)

and with the potential given by Eq. (56), fA1B1 was nonzero
rA1B1 < 2.5ℓ, or equivalently

cosϕB1 > x(rB1) =
r2
B1 + (d∗cl)

2
− (2.5ℓ)2

2d∗clrB1

. (B2)

The end-to-end distance was limited by the segment diameter and
the contour length, dl ≤ rB1B2 ≤ L. Conformations where the linker
wraps around the colloid are either improbable or forbidden by the
hard-sphere exclusions, so we limited 0 ≤ ϕB1B2 ≤ π/2, effectively
approximating the colloid as a flat surface. With these considerations
and after integration over all colloid orientations, θB1 , and θB1B2 , the
integral for Δ1 [Eq. (62)] was

Δ1 ≈ (2π)2
∫

r∗

dcl

drB1 r
2
B1 ∫

1

x(rB1 )
d cosϕB1 ∫

L

dl

drB1B2 r
2
B1B2

× ∫

1

0
d cosϕB1B2[p(rB1B2)g

(cl)
R (d∗cl, rB2)f

(cl)
A1B1
(rA1B1)]. (B3)

We used a linear fit [Fig. 4(a)] for the pair correlation function

g(cl)
R (d∗cl, rB2) = [g

(cl)
hs (d

+
cl)](0.137rB2 − 0.0960), (B4)

with rB2 given by Eq. (64). For numerical convenience, we also fit
p(R) for |R| ≥ dl at ηc = 0.01 (Fig. 3) with a piecewise function,

FIG. 9. Schematic of linker coordinates (blue) used to evaluate (a) Δ1 and (b) Δ2 in
the frame that rotates with the colloid (red). Arrows designate integration variables,
solid lines with bars designate dependent variables, and dotted lines designate the
axis of the spherical coordinate system. Refer to the text for the meaning of each
variable.

p(r) = {
pmax + a(r − rmax)

2, r ≤ rmax

pmax exp[−b(r − rmax)
c
], r > rmax,

(B5)

where rmax = 2.76, pmax = 3.00 × 10−3, a = −5.24 × 10−4, b = 0.276,
and c = 2.45 (all units implicit and consistent with r having units
of dl).

To evaluate Δ2, we modified the scheme we used for Δ1 so that
B2 was now bonded with a site A2 on the colloid that was a nearest
neighbor of A1. The position rB2 of B2 was redefined in spherical
coordinates (rB2 , θB2 ,ϕB2)with the colloid as the origin and rA2 as the
axis [Fig. 9(b)]. The distance between A1 and B1 was unchanged, and
the distance between A2 and B2 was given by an analogous formula.
The distance between B1 and B2 was

r2
B1B2 = r

2
B1 + r2

B2 − 2rB1 rB2(sinϕB1 sin θB1 cosϕB2

− sinϕB2 sin θB2 cosϕB1

+ sinϕB1 cos θB1 sinϕB2 cos θB2). (B6)

It was then not possible to trivially integrate over θB1 and θB2 , and we
found that this increased dimensionality added a significant compu-
tational cost for evaluating Δ2. However, the distance between the
colloid sites rA1A2 is much larger than the range of Eq. (56), so to a
good approximation rB1B2 ≈ rA1A2 . As a result,

Δ2 ≈ p(rA1A2)g
(cl)
R (d∗cl,

√

2d∗cl, 3π/4)v2
A1B1 , (B7)

with

g(cl)
R (d∗cl,

√

2d∗cl, 3π/4) ≈ 0.0485[g(cl)
hs (d

+
cl)]

2 (B8)

from Fig. 4(b) and

vA1B1 = 2π∫
r∗

dcl

drB1 r
2
B1 ∫

1

x(rB1 )
d cosϕB1 f

(cl)
A1B1
(rA1B1). (B9)

To evaluate Δ4, which is an even higher dimensional integral
than Δ2, we adopted a similar approximation for determining p and
g(4)R using the positions of the colloid bonding sites rather than
the linker ends. We replaced each pairwise g(cl)

R in the superposi-
tion approximation for g(4)R using Eq. (B4). Labeling the additional
colloid bonding sites as C12 = {C1, C2} and linker bonding sites as
D12 = {D1, D2}, we obtained

Δ4 ≈ 4πv4
A1B1 ∫

√

3d∗cl +L

dc

dr12r2
12⟨p(rA1C1)p(rA2C2)

× g(cl)
R (d∗cl, rB1)g

(cl)
R (d∗cl, rB2)g

(cl)
R (d∗cl, rD1)

× g(cl)
R (d∗cl, rD2)f

(cl)
A1B1
(rA1B1)f

(cl)
C1B2
(rC1B2)

× f (cl)
C2D1
(rC2D1)f

(cl)
A2D2
(rA2D2)⟩Ω1 ,Ω2

. (B10)

We evaluated the integral over the range of colloid separations
dc ≤ r12 ≤

√

3d∗cl + L, for which the integrand is nonzero based on
e(cc)

R and p(R), using the trapezoidal rule with 21 uniformly spaced
points. The angle brackets denote an unweighted average over the
orientations of the two colloids, which we evaluated at each sepa-
ration r12 using Monte Carlo sampling. We placed one colloid with
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sites A12 at the origin (0, 0, 0) and the other with sites C12 along the
z axis at (0, 0, r12). The bonding sites on both colloids were initially
oriented along the +z and +y axes, and we generated 4 × 106 con-
figurations by drawing and applying uniformly random axis–angle
rotations to each colloid.60 In averaging, we rejected any configura-
tions in which (1) the distance rA1C1 or rA2C2 was greater than the
contour length L or less than the segment diameter dl, (2) either of
the site z-coordinates zA1 or zA2 was less than zero, or (3) either of the
site z-coordinates zC1 or zC2 was greater than r12. The first condition
rejects linker conformations excluded based on p(R), while the other
two conditions reject ring configurations that are unlikely or forbid-
den because the linkers would need to wrap around or penetrate the
colloids.

The chemical equilibrium equations can be written as five non-
linear algebraic equations in five variables: X(c)Γc/A12

, X(c)Γc/A1
, X(c)Γc

, X(l)B1
,

and X(l)B12
. In addition to Eqs. (58) and (59) and Eqs. (69) and (70),

the equations from Eq. (43) were

1 = [11(X(c)Γc/A1
)

6
− 24X(c)Γc/A12

(X(c)Γc/A1
)

4
X(c)Γc

+ 6(X(c)Γc/A12
)

2
(X(c)Γc/A1

)

2
(X(c)Γc

)

2

+ 8(X(c)Γc/A12
)

3
(X(c)Γc

)

3
]/(X(c)Γc

)

5
, (B11)

X(c)A1
= [3(X(c)Γc/A1

)

5
− 12X(c)Γc/A12

(X(c)Γc/A1
)

3
X(c)Γc

+ 10(X(c)Γc/A12
)

2
X(c)Γc/A1

(X(c)Γc
)

2
]/(X(c)Γc

)

4
, (B12)

X(c)A12
= [−2(X(c)Γc/A1

)

4
+ X(c)Γc/A12

(X(c)Γc/A1
)

2
X(c)Γc

+ 2(X(c)Γc/A12
)

2
(X(c)Γc

)

2
]/(X(c)Γc

)

3
. (B13)

The expressions for X(c)A1
and X(c)A12

were directly substituted before
solving.

To obtain numerical solutions, we first evaluated the bond vol-
ume integrals for 0 ≤ βε ≤ 20 in increments of 0.5 using the mul-
tivariable quadrature method in SciPy (version 1.3.1) with numba
(version 0.50.1).61–63 We then iteratively solved the equations for a
given composition ηc and ρl/ρc as a function of ε, starting from βε = 0
where all X(i)α = 1 and increasing in steps of 0.01. The bond volumes
at intermediate values of ε were interpolated; for βε < 5, we used
a cubic spline interpolation of the bond volumes, while for larger
ε, we used a cubic spline interpolation of the natural logarithms of
the bond volumes. The equations were solved using the SciPy imple-
mentation of the Levenberg–Marquadt algorithm with an explicitly
specified Jacobian matrix, a relative error tolerance of 10−12 in the
sum of squares, a relative error tolerance of 10−12 in the solution, and
a maximum of 5000 iterations. We used the solution from the pre-
vious value of ε as an initial guess, and we checked that 0 ≤ X(i)α ≤ 1
for both components and all α (including dependent values of X(c)α )
to ensure a physically meaningful converged solution.
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