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ABSTRACT
We develop a multiscale simulation model for diffusion of solutes through porous triblock copolymer membranes. The approach combines
two techniques: self-consistent field theory (SCFT) to predict the structure of the self-assembled, solvated membrane and on-lattice kinetic
Monte Carlo (kMC) simulations to model diffusion of solutes. Solvation is simulated in SCFT by constraining the glassy membrane matrix
while relaxing the brush-like membrane pore coating against the solvent. The kMC simulations capture the resulting solute spatial distribution
and concentration-dependent local diffusivity in the polymer-coated pores; we parameterize the latter using particle-based simulations. We
apply our approach to simulate solute diffusion through nonequilibrium morphologies of a model triblock copolymer, and we correlate
diffusivity with structural descriptors of the morphologies. We also compare the model’s predictions to alternative approaches based on
simple lattice random walks and find our multiscale model to be more robust and systematic to parameterize. Our multiscale modeling
approach is general and can be readily extended in the future to other chemistries, morphologies, and models for the local solute diffusivity
and interactions with the membrane.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0127570

I. INTRODUCTION

Block copolymers self-assemble into microphase-separated
ordered structures,1,2 such as hexagonally packed cylinders, that can
produce isoporous membranes with higher selectivity and perme-
ability compared to membranes made from homopolymers.3,4 The
pore diameter is important for engineering membranes that employ
a sieving mechanism for filtration. The membrane pore diameters
can be controlled through the composition and molecular weight of
the polymer, by incorporating additives, or by using a block copoly-
mer blend.5,6 The pores can also be chemically functionalized, such
as with solute-selective ligands, to further improve separation per-
formance.7 As a result, block copolymers are promising materials

for fabricating membranes, including mesoscopic membranes used
for gas separation8 and ultrafiltration membranes used for water
filtration.3,9

There are a number of ways to fabricate block copolymer mem-
branes. One method is to spincoat a block copolymer solution onto
a substrate and anneal it, allowing the polymers to relax toward
their equilibrium state.10 The final structure can be predicted with
knowledge of only the enthalpic interactions (i.e., Flory–Huggins
parameters) and the molecular weights of the constituent blocks.11

Pores are then created by etching a sacrificial block, while another
block acts as the membrane matrix. Another prominent method
combines the highly scalable process of nonsolvent induced phase
separation, typically used to form homopolymer membranes, and
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the self-assembly of block copolymers initiated by the evaporation
of the solvent (SNIPS).12–15 Although more scalable, controlling
the membrane morphology in a SNIPS process poses a significant
challenge because nonequilibrium structures can form, including
transient percolation networks or spinodal networks.16

Diblock copolymers have often been used to make membranes
because they are relatively simple to synthesize and have a well-
known phase diagram.17 Commonly, one block is chosen to be a
glassy material, such as polystyrene, that forms a solid matrix, while
the other is a sacrificial material, such as poly(lactic acid), that can be
etched to form pores. However, triblock copolymers have recently
garnered attention18–22 because the additional architectural and
chemical complexity of the polymer offers greater tunability of the
membrane. For example, a hydrophilic block, such as poly(ethylene
oxide), can be inserted between the glassy matrix block and sacri-
ficial block in order to coat the pores and improve water uptake;
additional chemical moieties can also be added to this block to
improve selectivity.22 Furthermore, the inclusion of another block
in the matrix, e.g., attaching polyisoprene onto poly(styrene-b-4-
vinylpyridine) to make poly(isoprene-b-styrene-b-4-vinylpyridine),
has been shown to improve mechanical stability.19,21 Triblock
copolymers also have an expanded phase space that can lead to
advantageous morphologies not seen in diblocks19 and widen the
phase window of bicontinuous morphologies with improved tough-
ness.23 These bicontinuous structures also do not require alignment
of the domains, unlike cylindrical morphologies. However, as the
number of possible morphologies expands, it becomes increasingly
necessary to determine which are optimal (or even suitable) for fil-
tration and to understand the relationship between morphology and
diffusive transport of solutes through the pores.

Fickian diffusion through cylindrical and lamellar pores is well
known to be the one- and two-dimensional equivalent of bulk diffu-
sion, respectively. However, diffusion through real porous media can
be complicated by issues such as molecular interactions and confine-
ment.24 Experimentally characterizing diffusion through membrane
structures is challenging due to the need to fabricate the structures
and measure transport over the required length scales.25 As a result,
a variety of simulation studies have been performed to investigate an
analogous problem of ion self-diffusion through conducting block
copolymers.26–28 Shen et al.26 and Alshammasi and Escobedo27 both
simulated the transport of ions through common block copolymer
morphologies (lamellar, cylindrical, and gyroid) and found that dif-
fusion through the gyroid network is slower than through oriented
lamellae because the increased tortuosity of the network hampers
diffusion more than three-dimensional continuity and percolation
promotes it. On the other hand, Zhang et al.28 found that once
dimensionality was taken into account, the morphology had little
influence over the anion diffusivity through block copolymeric ionic
liquids and instead depended on the concentration of interfacial
anions.

Although these studies provide great insight into the
structure–transport relationship for various block copolymer
morphologies, they have all relied on either simple random-walk
diffusion models that do not capture certain pore-scale effects or
more detailed particle-based simulations that cannot easily access
the length scales of some membrane morphologies. For example,
Howard et al. recently combined self-consistent field theory
(SCFT), which was used to generate block copolymer membrane

morphologies, with a lattice-based random-walk transport model
to study the self-diffusion of a solute.29 To further characterize the
important features of each morphology, structural descriptors were
calculated and random-forest regression was used to investigate
which descriptors had greatest correlation with the self-diffusivity.
However, this study neglected the effect of the polymers coating the
pores and focused solely on the morphology of the glassy matrix.
Pore coatings have been shown to play an important role in water
transport through lamellar and cylindrical pores using particle-
based dissipative particle dynamics (DPD) simulations;30 however,
these simulation techniques are too computationally demanding
to apply to more complex membrane morphologies. To this end,
it would be highly beneficial to have an efficient high-throughput
method for faithfully modeling the diffusion of a solute through
various block copolymer structures.

In this study, we develop a multiscale simulation framework,
built on our prior work,29 that incorporates the effect of the pore
coating on the self-diffusion of solutes through triblock copolymer
membranes. Specifically, we focus on nonequilibrium membrane
morphologies that are difficult to simulate using more detailed mod-
els such as DPD. In order to do this, we present a novel SCFT
method for simulating the structural effect of the solvent on the
pore coating, then use an on-lattice kinetic Monte Carlo (kMC)
model accounting for obstruction from the pore coating to simulate
solute diffusion through the pores of the SCFT-generated morpholo-
gies. The kMC model uses local pore-level diffusion data from more
detailed DPD simulations to model membrane-scale diffusion at
much larger length and time scales than are accessible in DPD. Our
use of kMC is partially motivated by its recent success in capturing
the impact of shale rock features on fluid transport where discrete
regimes were used to distinguish between the center of the porous
region and the interface.31,32 After determining the self-diffusion
coefficient from kMC simulations, we compare the results of our
more detailed model with our prior work using simple random-
walk simulations based on two definitions of the pore. We show
that including the pore coating leads to qualitatively different trends
in diffusivity as a function of block fractions, which we correlate
with various structural descriptors of the morphology. We find that
the features that are important for predicting the solute diffusivity
are vastly different when effects of the pore coating are taken into
account.

II. COMPUTATIONAL FRAMEWORK
We studied membrane morphologies made from a model

ABC triblock copolymer (Fig. 1) having χACN = 35 and χABN = χBC
N = 13, where χij is the Flory–Huggins interaction parameter
between blocks i and j, and N is the overall degree of polymerization.
Tyler et al. computed the equilibrium phase diagram of this ideal-
ized nonfrustrated triblock copolymer as a function of the overall
block volume fractions fA, fB, and fC using SCFT.33 SCFT refers to a
mean-field treatment of a model of interacting polymer molecules
in which the degrees of freedom are expressed as auxiliary fields.
SCFT is implemented numerically by an algorithm to determine the
minimum free energy of the system. Such extremal solutions corre-
spond to saddle points of the Hamiltonian in the space of complex
field variables. SCFT yields direct access to free energies and ther-
modynamic properties, as well as density fields and structure. The
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FIG. 1. Multiscale simulation workflow used to study solute diffusion through the
solvated pores of the self-assembled ABC triblock copolymer membranes. First,
SCFT is used to model self-assembly of the ABC triblock copolymer. The C block
is then etched out and replaced with solvent. Another SCFT simulation is run to
relax the pore-coating B block and solvent while constraining the glassy A block to
maintain the initial matrix morphology. The resulting density distributions are input
to the kMC model, along with a model for the local diffusivity computed with DPD
simulations, to obtain the diffusivity of solute tracers through the pores.

majority of phases Tyler et al. discovered were core–shell analogs of
the structures found in diblocks, such as lamellae and hexagonally
packed cylinders, with one end block (A or C) acting as the core, the
middle block (B) acting as the shell, and the other end block (C or
A) forming a continuous domain. These structures are of particu-
lar interest in membrane fabrication because the core-forming block
can be sacrificed, e.g., using etching, to form pores coated by the
middle block embedded within a self-supporting continuous matrix.
For this study, we designated the A block as a glassy block that forms
the membrane matrix and the C block as the sacrificial block to be
removed.

In order to study the diffusion of a solute through the porous
membrane, we must resolve not only solute-level motion (∼1 nm)
and interactions with pore-level coatings and structures (∼10 nm),
but also consider the effect of the membrane structure as a whole
(many times larger than a pore) on diffusion. Since this task is cur-
rently intractable for any single simulation method, we developed
and applied a multiscale modeling workflow that incorporates vari-
ous simulation methods that are better-suited to the different scales
mentioned (Fig. 1). First, the self-assembly of the triblock copoly-
mer is simulated using SCFT. We then “etch” out the C block and
replace it with solvent. In order to obtain the distribution of the
solvent and pore-coating B block in the newly formed pores, we
run an additional SCFT simulation to reach a locally stable struc-
ture while constraining the density profile of the glassy A block so
that the matrix morphology does not change. Finally, the density
distributions from SCFT and the solute dynamics computed from
pore-level DPD simulations are input into a kMC simulation. The
solute trajectories resulting from the kMC simulations are used to

obtain the self-diffusivity of the solute through the porous network.
We describe each of these steps in detail.

A. Membrane morphology
Six self-assembled morphologies per triblock composition

were selected from the nonequilibrium morphologies generated by
Howard et al.29 to facilitate direct comparisons between that study
and this one. Details on how these morphologies were generated can
be found in their publication.29 We focus here only on morphologies
with cubic simulation cells of length 16Rg, where Rg = b(N/6)1/2 is
the radius of gyration of an ideal polymer chain and b is the statis-
tical segment length of the triblock copolymer. The simulation cell
had periodic boundary conditions in all three dimensions. From the
melt morphologies, we removed the C block and replaced it with
a solvent (S) that we modeled in SCFT as a “point” polymer, while
also choosing N = 100 as the nominal degree of polymerization of
the triblock copolymer. After etching the C block, the remaining AB
diblock had degree of polymerization NAB = ( fA + fB)N. The rela-
tive fraction of block i ∈ {A, B}within the polymer was fi/( fA + fB),
but the overall block volume fractions remained the same. The
Flory–Huggins interaction parameters between the polymer and sol-
vent were chosen to be χAS = 2 and χBS = 0 in order to model a
hydrophobic A block and a hydrophilic B block (assuming S is
water-like).

To mimic the experimental process of solvating the newly
formed membrane pores, SCFT simulations were then performed to
relax the B block and solvent to a local free-energy minimum while
effectively “freezing” the glassy A block so that the overall membrane
morphology did not change. In order to freeze the A block, a novel
method was developed and implemented into our in-house SCFT
software. A harmonic energy penalty U for the A species was added
to the Hamiltonian

βU = κ
2ρ0
∫ dr(ρA(r) − ρA,t(r))2, (1)

where ρA is the density profile of the A block, ρA,t is the target density
profile of the A block (i.e., the output from the original SCFT sim-
ulation), and κ determines the strength of the penalty. Moreover,
β = 1/(kBT), kB is the Boltzmann constant, T is the temperature,
and ρ0 is the total monomer density. For sufficiently large values
of κ, the ultimate A density profile becomes quantitatively indistin-
guishable from that obtained in the original SCFT simulation. To
our knowledge, this is the first study that employs such a Hamilto-
nian to “freeze” a target density profile in order to model the etching
and solvation process in SCFT.

The diblock and solvent (AB + S) system was represented using
the incompressible multispecies exchange model34 with Gaussian
chain statistics, and the exchange-mapped chemical potential fields
for the AB + S system were initialized using those obtained from
the ABC morphologies. The semi-implicit Siedel scheme35 was used
to perform field updates, and the modified diffusion equation was
solved using a second-order operator-splitting algorithm36 with con-
tour stepping Δs = 0.01N. A simulation with κ = 600 was run until
numerical convergence, and then the result was used to initialize
simulations with larger κ. This process of chaining together simu-
lations with increasing κ was continued until the root-mean-square
difference between the actual and target density profiles was no
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greater than 0.01 R−3
g at any location in the cell. The final outputs

of the SCFT simulations are the local volume fraction profiles ϕi(r)
(with i ∈ {A, B, C} before solvation and i ∈ {A, B, S} after solvation)
that represent the membrane morphology. These volume fraction
profiles are input to the next step of the workflow.

B. Membrane-scale diffusion
Once the morphologies were generated, we employed a contin-

uum approach to model diffusive motion through the membrane. As
a heuristic, we assumed that the solute undergoes Brownian motion,
neglecting fast-relaxing inertial motion, and we allowed for a diffu-
sion coefficient that depends on its position. For example, diffusion
can be slower in regions of higher polymer concentration where
motion is more obstructed. For simplicity, we further assumed that
the rate of diffusion was similar in all directions so that solute motion
was characterized by a scalar diffusion coefficient D(r) at each posi-
tion r; this assumption is reasonable for small solutes that are not
too close to a surface. To account for influence of the membrane
morphology on the solute distribution, we further considered an
effective external field ψ(r) that acted on the solutes. We note that
D(r) and ψ(r) are not necessarily independent inputs to the model,
as both account for effective properties of the solutes that may be
correlated, e.g., slower diffusion due to strong attraction. The proce-
dure used to connect the microscale models of D(r) and ψ(r) to the
SCFT morphologies is deferred to Sec. II C. Here, we complete the
description of the transport model.

Under these assumptions, the probability density ρ(r, t) to find
a tracer solute at position r and time t then follows a conserva-
tion law (Smoluchowski/Fokker–Planck equation) derived from the
Langevin equations of motion37

∂ρ(r, t)
∂t

= ∇ ⋅ [D(r)ρ(r)β∇ψ(r) +D(r)∇ρ(r)]. (2)

The initial condition ρ(r, 0) = δ(r − r0) was based on the initial
position r0 of the tracer at t = 0, while the boundary conditions were
periodic for the morphology, as in the SCFT calculations. At long
times, ρ evolves toward a steady state ρ∞ (r) ∼ exp[−βψ(r)], so ψ
can be chosen to achieve a targeted equilibrium distribution. Note
that Eq. (2) can equivalently be written as

∂ρ(r, t)
∂t

= ∇ ⋅ [ρ∞(r)D(r)∇(
ρ(r, t)
ρ∞(r)

)]. (3)

To solve Eq. (2), we simulated the motion of a tracer on a lattice
using a kinetic Monte Carlo (kMC) method.38–41 The membrane
morphology was discretized into a cubic lattice with edge length ℓ,
and a tracer was assumed to occupy one lattice site. A tracer start-
ing on site i was allowed to hop along Cartesian axis α to an
adjacent site i±α in either the forward (+) or reverse (−) direc-
tion with a rate k(i±α ∣i). The evolution of the probability density
ρ(i, t) to find a tracer at site i at time t [the discrete equivalent
of ρ(r, t)] is characterized by a master equation for this stochastic
process,42,43

∂ρ(i, t)
∂t

=∑
α

k(i∣i−α )ρ(i−α , t) + k(i∣i+α )ρ(i+α , t)

− [k(i−α ∣i) + k(i+α ∣i)]ρ(i, t). (4)

To choose the move rates, we first imposed detailed bal-
ance k(i±α ∣i)ρ∞(i) = k(i∣i±α )ρ∞(i±α ) using the steady-state distribu-
tion ρ∞. It can be shown that in the limit of small ℓ, Eq. (4) then
approximates

∂ρ(i, t)
∂t

= ρ∞(i)∑
α

Dα(i)
∂2

∂r2
α
( ρ(i, t)
ρ∞(i)

) (5)

+ vα(i)
∂

∂rα
( ρ(i, t)
ρ∞(i)

), (6)

where the derivatives are taken with respect to the α-component of
the position coordinate, rα. The diffusivity Dα along direction α is
defined in terms of the hopping rates at site i by

Dα(i) =
ℓ2

2
[k(i+α ∣i) + k(i−α ∣i)], (7)

while vα is an effective advection along α defined in terms of the
hopping rates at site i by

vα(i) = ℓ[k(i+α ∣i) − k(i−α ∣i)]. (8)

Note that because D was assumed to be a scalar, Dα and the sum of
the hopping rates at site i must be equal in all directions but vα need
not be equal. We compared Eq. (6) to Eq. (3) and chose vα to make
the two equivalent. This determined the hopping rates as

k(i±α ∣i) =
D(i)
ℓ2 ±

1
2ℓ
(∂D(i)

∂rα
−D(i)β∂ψ(i)

∂rα
), (9)

where the partial derivatives are evaluated at i.
Our derivation is general to any external field ψ(r) or scalar

diffusivity D(r). The external field enforces the internal membrane
morphology (e.g., regions excluded to the solute) that can be deter-
mined from measurements or simulations. It can also incorporate
interactions with the membrane, such as effective attraction due to
chemical functionalization. The diffusivity can be estimated from
experiments, empirical diffusion models, or more detailed computer
simulations.

C. Pore-scale diffusion
In this section, we will describe the specific model solute

dynamics that we studied in this work and the methodology used to
determine ψ(r) and D(r) for the kMC model described in Sec. II B;
however, we emphasize that the framework can be readily extended
to incorporate other data sources and other types of solutes. For
convenience, we assumed that the solute tracer was chemically sim-
ilar to the solvent, so its steady-state distribution ρ∞ was directly
proportional to ϕS(r) as determined by SCFT; this directly gives
βψ(r) = −lnϕS(r) from the SCFT data. Note that this amounts to
a potential that excludes the solute tracer from the walls of the pores
and reduces its concentration where the pore-coating is more dense.

To determine D(r), we performed DPD simulations44–46 of
diffusion through a single lamellar pore. DPD is a mesoscopic
particle-based simulation technique that has been widely used to
study block copolymers. Some of us recently used DPD to study
pore-level diffusion of water in triblock copolymer membranes,30

revealing that interactions between water and the polymers inside
the pore lead to slower local diffusion (i.e., at short times) in regions
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of higher polymer concentration. This decrease in the local diffusiv-
ity leads to a commensurate decrease in the average water diffusion
at long times. Here, we used DPD simulations to measure the local
tracer diffusivity D(r) that we input to the kMC model, but other
molecular modeling approaches could also be applied.

We first constructed a DPD model for the ABC triblock copoly-
mers studied using SCFT. The polymers were represented as linear
chains of N = 100 beads with mass m and nominal diameter d
connected by springs; each bead was assigned a type (A, B, or C)
according to its block. All beads interacted through the stan-
dard DPD conservative, random, and dissipative forces.46 The
DPD repulsion parameter between beads with the same type was
aii = 75kBT/d, while the DPD repulsion parameter between beads
with different types aij was chosen to achieve the desired χijN for
the model (see below). The DPD friction parameter for all beads
was γi = 4.5m/τ, where τ =

√
βmd2 is the unit of time. In addition

to the standard DPD forces, bonded beads additionally interacted
through a harmonic potential ub(r) = k(r − r0)2/2 with spring con-
stant k = 100kBT/d2 and r0 = 1.0 d. All simulations were performed
using HOOMD-blue (version 2.6.0) with features extended using
azplugins (version 0.8.0).47–49 The integration time step was 0.01 τ,
and the bead number density was 3/d3.

In order to map length scales between the DPD model and
SCFT calculations, we first prepared a homopolymer melt and
measured the radius of gyration Rg and end-to-end distance Re, find-
ing ⟨R2

g⟩1/2 = 4.466 d and ⟨R2
e⟩1/2 = 10.92 d. Both measurements are

consistent with an ideal chain having an effective segment length
b = 1.09 d,50 which is slightly larger than the nominal bead diameter.
We then carried out the analysis outlined by Groot and Warren
to connect aij approximately to χijN for our bead–spring model.46

We performed direct coexistence simulations of two homopoly-
mer oligomers having different bead types, varying the length of
the oligomers from 2 to 6 beads and the difference in the repul-
sion parameter for unlike and like beads Δaij = aij − aii in the range
10 ≤ ΔaijN ≤ 30. We initialized equal-sized slabs of each oligomer in
an orthorhombic box with square cross section (edge length 10 d)
and length 30 d then allowed the mixture to equilibrate for 105 τ,
during which time the initially separated oligomers partially dis-
solved in each other. We then sampled configurations every 100 τ
during a 105 τ production simulation. We computed the average
bead density profile with center-of-mass shifting using a bin spacing
of 0.5 d,51 extracted the coexistence volume fractions from the bulk
region of each slab, and used Flory–Huggins theory to determine
χijN.50 As in Groot and Warren’s analysis,46 χijN was approximately
linear in ΔaijN for all N studied, so we used the best fit of our data
χijN = 0.297ΔaijN − 0.124 to choose aij from χijN.

We then created lamellar morphologies of the ABC triblock
with fA = 0.5 and 0 ≤ fB ≤ 0.2 in an orthorhombic simulation box
with square cross section (edge length 50 d) and using the lamellar
spacing computed in the SCFT calculations (about 4.66Rg or 20.8 d).
We first simulated the morphologies for 5 × 104 τ. Then, we fol-
lowed a procedure analogous to the SCFT calculations of freezing the
A-block, removing the C-block, and adding solvent. We first “froze”
all A beads and any B or C beads that were in the A-rich region of the
lamella (defined as being ≥ 9 d from the center of the C-rich region)
by setting their velocities to zero. We then converted all unfrozen
C beads to solvent (S) beads, and we removed all bonds between S

beads and between S and B beads. The DPD repulsion parameter
for the A and S beads was chosen as aAS = 82kBT/d based on χAS
using Groot and Warren’s fit,46 while we used aBS = 75kBT/d to give
χBS ≈ 0. We shifted the center-of-mass velocity of the unfrozen beads
to zero and no longer integrated the equations of motion for the
frozen beads. We then simulated the unfrozen beads for 5 × 104 τ,
which allowed the B-block to relax against the solvent as in the
SCFT calculations. The volume fraction profiles—computed from
configurations sampled every 100 τ during the second half of each
simulation using the same procedure as for determining χij—were
in excellent agreement between DPD and SCFT for all lamellar
morphologies studied, both before [Fig. 2(a)] and after [Fig. 2(b)]
solvation. The agreement between the SCFT and DPD volume frac-
tion profiles confirms the interactions of the DPD model are similar
to the SCFT model, and so it is reasonable to also use the DPD model
to measure solute dynamics.

After preparing the solvated membranes, we measured the local
diffusivity D(z) of S beads parallel to the pore surface as a function
of position z along the axis normal to the pore surface. Comput-
ing the solute-tracer diffusivity from the solvent-bead diffusivity
is consistent with our simplifying assumption that the solute is
chemically similar to the solvent; an additional bead type could be
easily introduced if the solute were chemically different. We com-
puted the parallel mean-squared displacement (MSD) of the S beads
⟨Δr2

∥(t)∣z0⟩ based on their initial z-position z0 using spatial bins of
width 1.0 d. We retained only beads that remained in their initial bin
at time t in the average.52 The local diffusivity can be extracted from
the time derivative of the MSD d⟨Δr2

∥∣z0⟩/dt ∼ 4D(z0) once the dif-
fusive regime is reached; however, most particles tended to diffuse
out of their bins before this point. To address this, we selected a small
fraction of the S beads in each bin (75 beads or about 1%) as explicit
tracers and tethered their z coordinate to the center of the bin using

FIG. 2. Volume fraction profiles from DPD (points) and SCFT (lines) in lamellar
morphologies as a function of position z in the direction normal to the surface (a)
before and (b) after solvation when fA = 0.50 and fB = 0.20.
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a harmonic potential with spring constant 64kBT/d2. The number
of tracers and strength of this potential was chosen based on simula-
tions of the bulk solvent so that the number of tracers that remained
in their initial bin increased during the relevant measurement win-
dow without significantly perturbing the system. We equilibrated
the restrained system for 104 τ, simulated for another 5 × 104 τ and
sampled solvent bead configurations every 0.1 τ, then extracted the
local diffusivity D(z) from the average value of d⟨Δr2

∥∣z0⟩/dt in the
time window 500 τ to 1000 τ.

To establish a point of reference for diffusivity in the mem-
brane, we also simulated the bulk diffusivity D0 of the S beads.
We equilibrated the solvent in a cubic simulation box with edge
length 40 d for 103 τ, then sampled configurations every 10 τ dur-
ing a 5 × 104 τ production simulation. We computed the three-
dimensional MSD ⟨Δr2(t)⟩ of all S beads, and we extracted the
long-time diffusion coefficient from the average of its long-time
derivative, d⟨Δr2⟩/dt ∼ 6D0, in the time window 2500 τ to 5000 τ.
We will report all values of the diffusivity in the membranes relative
to D0.

As in our previous work, the local diffusivity was highest in
regions of lower polymer concentration and lowest near the pore
surfaces [Fig. 3(a)], which have higher polymer concentration. In
prior work, some of us showed that changes in D(z) could be
described by treating the B-block in the pore as a Brinkman medium
with a mesh size set by the polymer correlation length.30 We found
that this picture was unable to fully describe our new simulations,
which we suspected was due to the polymer model used here pro-
ducing rougher pore surfaces that created additional obstructions to
the solvent. This surface roughness is captured primarily in the A-
block concentration and not the B-block concentration [Fig. 3(b)].
We attempted to modify the Brinkman model to also include the
A-block concentration but ultimately found the fit unsatisfactory,
possibly due to fundamental differences in the obstructions created
by the frozen A-block and dynamic B-block. Accordingly, we posited
an empirical model that treated the obstruction from the frozen A-
block using a Mackie–Meares-type expression53 and the obstruction
from the dynamic B-block using our Brinkman model for an ideal
polymer chain,30

D(ϕA,ϕB) = D0(
1 − ϕA

1 + ϕA
)

m

(1 + cϕB +
c2ϕ2

B

9
)
−1

. (10)

We fit the parameters m = 1.70 and c = 1.12; m is close to the the-
oretical exponent of 2 for the standard Mackie–Meares model,53

while c is a fitting parameter accounting for the hydrodynamic
radius of the tracer and the scaling prefactor of the polymer corre-
lation length.30,50 This empirical model for D(ϕA,ϕB) was able to
fit all our lamellar measurements well [Fig. 3(c)], so we extrapo-
lated it to the more complex membrane morphologies by assuming
D(r) = D(ϕA(r),ϕB(r)). We emphasize that this assumption that
D depends solely on ϕA and ϕB partially neglects surface curvature
effects on D because D was fit for a lamellar morphology. However, it
does include curvature to a crude approximation because SCFT does
account for curvature when calculating ϕA(r) and ϕB(r). It was not
feasible for us to test this approximation, but it is an interesting topic
of future investigation.

FIG. 3. (a) Local diffusivity D(z) in lamellar morphologies with fA = 0.50 and var-
ied fB from DPD simulations. (b) The same data as a function of local A-block
volume fraction ϕA for varied fB. (c) The same data as a function of ϕA and local
B-block volume fraction ϕB. In (c), the points are colored according to the mea-
sured diffusivity and the background shows the fit to Eq. (10). The line in (b) is the
fit drawn for ϕB = 0.

D. Kinetic Monte Carlo simulation details
We applied the kMC approach of Sec. II B, using the model

inputs from Sec. II C to study the diffusion of a solute tracer through
the various membrane morphologies prepared in Sec. II A. We dis-
cretized the membrane morphology onto the same lattice as was
used in the SCFT calculations. (A smaller lattice spacing was tested
for selected configurations and found not to significantly impact
the results.) We computed ψ using ϕS, and D(r) using ϕA and ϕB
at each lattice site. To ensure there was no diffusion into regions
of large ϕA, which should be negligible in both experiments and
the DPD simulations, we set the external field to βψ =∞ when
ϕS < 0.02 to effectively disallow moves to these sites (make k zero).
We then computed the kMC hopping rates according to Eq. (9)
using a second-order central finite difference scheme to estimate the
required gradients. Care was taken to use an appropriate forward or
backward difference when βψ =∞ at a neighboring site.

To carry out the moves, we employed a rejection-free scheme
that randomly selected a move and randomly advanced the time
coordinate for each tracer according to the rates at a given lat-
tice site.54–56 For a tracer at lattice site i, we randomly chose to
move to an adjacent lattice site i±α with the weight of selecting each

J. Chem. Phys. 158, 024905 (2023); doi: 10.1063/5.0127570 158, 024905-6

Published under an exclusive license by AIP Publishing

 16 February 2024 19:29:25

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

site being proportional to k(i±α ∣i). We unconditionally accepted this
move and advanced the time coordinate for each tracer by a random
amount that was exponentially distributed with mean [∑αk(i±α ∣i)]−1,
where the sum is over all adjacent sites of i. We found that this
rejection-free scheme was computationally advantageous compared
to a scheme that advanced the time by a fixed amount but allowed
move rejection, i.e., the tracer could remain at site i.56 The rejec-
tion scheme was roughly twice as fast as the rejection-free scheme
per move because it required half as many random numbers, but the
rejection-free scheme was ultimately faster overall when the move
rejection rate exceeded 50%. This rejection rate was quite com-
mon in the nonequilibrium morphologies, where the average tracer
diffusivity was significantly less than the nominal bulk diffusivity D0.

Using this scheme, we simulated an ensemble of 5 × 104 tracers
that we randomly initialized onto all lattice sites for which βψ ≠∞.
We simulated for 104 τ to allow the tracers to relax to their equilib-
rium distribution, then sampled the tracer coordinates every 100 τ
during a 105 τ simulation. We computed ⟨Δr2⟩ for all tracers and
extracted the long-time diffusivity D from d⟨Δr2⟩/dt ∼ 6D in the
time window 2 × 104 τ to 5 × 104 τ. From this point forward, we
will distinguish between the long-time diffusivity D and the local
diffusivity D(r) based on the inclusion of the position r.

III. RESULTS AND DISCUSSION

A. Characterization of models for diffusion
Having developed our multiscale model, we proceeded to

analyze the model’s predictions and compare them to alternative
approaches. In particular, some of us previously used a simple
random-walk (RW) model for solute diffusion in triblock copoly-
mer membranes.29 Unlike the approach described in Sec. II B, the
RW model adopted a binary definition of the pores based on the
local volume fraction of the A-block matrix ϕA: sites with ϕA < 0.5
(or ϕB + ϕS ≥ 0.5) were defined as the pores, and all other sites were
defined as matrix inaccessible to the solute. Within the pores, vari-
ations in the distribution of the solute and the local diffusivity were
both neglected. This RW model is effectively a special case of the
kMC approach assuming βψ = 0 and D/D0 = 1 inside the pores, and

βψ =∞ outside the pores. The RW model is simpler than our new
approach because it does not require the additional SCFT calcula-
tion to solvate the B-block inside the pore; however, the RW model is
potentially less accurate because it neglects pore-level effects on the
solute distribution and transport.30 Hence, we compared our diffu-
sion measurements using the new approach that incorporates these
effects (Sec. II) to the RW model. We will refer to our new approach
as the “kMC model” and the approach of Ref. 29 as the “RW-B+S
model;” the latter emphasizes that the pore definition in that model
includes both the B block and the solvent.

We first considered the average solute diffusivity D as a func-
tion of the polymer block fractions fi (Fig. 4) for the nonequilibrium
morphologies of Ref. 29 (Sec. II A). We excluded all morpholo-
gies with fA ≤ 0.2 because they tended to produce matrices (using
the RW-B + S definition of pore and matrix sites) that were not
well connected and so were not mechanically viable for membrane
applications. This was not surprising given the limited content of
matrix-forming A block and that the equilibrium self-assembled
structures for these polymers, such as sphere or disordered phases,
also are not connected. We further excluded any morphologies
where the lattice sites accessible to the tracer (within each model)
were not percolated through the periodic boundaries in at least one
dimension, as these morphologies would produce D/D0 = 0 at long
times. Figure 4(a) shows the diffusivity predicted by the kMC model,
while Fig. 4(b) shows the same for the RW-B + S model. As a ver-
ification of our approach for solvating the morphologies in SCFT,
we note that we achieved nearly quantitative agreement between
Fig. 4(b) and the data of Ref. 29 (largest difference in D/D0 of 0.033).
This agreement helps confirm that our method for constraining the
matrix-forming A block is effective because simulations of the RW-B
+ S model using the solvated morphologies should produce identical
results to simulations using the original melt morphologies of Ref. 29
if ϕA(r) is successfully frozen.

In general, D increased in both models as fA decreased due to
the increased space available for the tracer to diffuse. However, the
diffusivity simulated using the kMC model was smaller than that
simulated using the RW-B + S model, particularly for smaller fA,
because the local diffusivity D(r) input to the kMC model was typ-
ically less than D0 (Fig. 3). To more easily visualize these trends, we

FIG. 4. The average diffusivity D of a solute tracer in the solvated morphologies using the (a) new kMC model, (b) RW-B + S model with pore definition ϕB + ϕS ≥ 0.5,29

and (c) RW-S model with pore definition ϕS ≥ 0.5. The block fractions fi are those of the original triblock copolymer. Open circles indicate calculations that were attempted
but could not be completed for the model because the lattice sites accessible to the tracer did not percolate for any of the six morphologies considered. The solid lines
indicate the equilibrium phase boundaries.33
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FIG. 5. The average diffusivity D of a solute tracer from Fig. 4 projected along lines
of constant (a) fB, (b) fA, and (c) fC using the new kMC model, RW-B + S model,
and RW-S model. The block fractions fi refer to the original triblock copolymer.

projected D as a function of fA along lines of constant fB [Fig. 5(a)],
which clearly showed a decrease in D with respect to fA for both
models but consistently smaller values of D in the kMC model than
in the RW-B+S model.

An even more striking difference between the two models was
the dependence of D on fB. Based on prior DPD simulations,30 we
expected the diffusivity to decrease with increasing fB because the
B block obstructs solute motion in the pores. The kMC model pro-
duced diffusivities consistent with this expectation [Fig. 4(a)], but
the RW-B+S model did not [Fig. 4(b)]. For example, in Fig. 5(a),
the diffusivities obtained using the kMC model were smaller when
fB = 0.3 than when fB = 0.1, but the diffusivities obtained using the
RW-B+S model were essentially the same. To more clearly highlight
this behavior, we projected D as a function of fB along lines of con-
stant fA [Fig. 5(b)]. For the kMC model, there was a clear monotonic
decrease in D as a function of fB; however, for the RW-B+S model,
there was very little variation in D with fB. In fact, we saw a slight
increase in D at the largest values of fB when fA = 0.4. This differ-
ence is a consequence of the kMC model incorporating a spatially

varying local diffusivity D(r) that depends on the local polymer con-
centration in the pores rather than the constant diffusivity assumed
in the RW-B+S model; we emphasize that we consider the former to
be more realistic.

Furthermore, projecting the diffusivity predicted by the kMC
model along lines of constant fC revealed that D was roughly
constant with respect to changes in fA [Fig. 5(c)]. In order to main-
tain fixed fC = 1 − fA − fB, fB must decrease as fA increases. The
local diffusivity in the pores depends on the composition, and the
exchange of A for B can lead to a direct competition between the
effects of these blocks on the diffusivity. For example, increasing fA
tends to decrease D by decreasing the matrix volume that is accessi-
ble to the solute; however, the necessary accompanying decrease in
fB at constant fC leads to less B in the pores and tends to increase
D. In contrast, in the RW-B + S model, the pore size decreases as
fA increases at constant fC, but there is no accompanying increase
in the diffusivity inside the pores (due to the decrease in fB), result-
ing in more obstructed motion and smaller D. This compensating
behavior may be sensitive to the solute and polymer chemistry (χij)
as well as the model for the solute diffusivity.

We also noted that there were some exceptions to this behav-
ior. When fC ≤ 0.2, we no longer observed constant diffusivity along
lines of constant fC in the kMC model, primarily when fA was large
[Fig. 4(a)]. Increasing fA to large values led to fragmentation of
the pores due to the formation of larger A domains, reducing the
accessible pathways for diffusion. In this case, exchanging fA for
fB at constant fC led to an overall increase in diffusivity. In mem-
brane applications, exchanging the fractions of A and B may also
have practical implications on separation performance that are not
directly captured by D. For example, if the A block is hydropho-
bic and the B block is hydrophilic, increasing the B block content
may increase water uptake. Moreover, increasing fA may lead to an
increase of dead-ends in nonequilibrium morphologies that hamper
directed transport across the membrane.57

After comparing our new approach to our prior work, we asked
whether we could combine features of both to construct a RW model
that captured similar trends in D as the kMC model but maintained
the simplicity of the RW approach. The B-block has two important
effects in the kMC model: it excludes the solute from parts of the
pore through ψ and it obstructs diffusion in the pore through D(r).
The RW model can approximately treat the first effect by redefining
the pores. We proposed an alternative model definition where sites
with ϕA + ϕB < 0.5 (or ϕS ≥ 0.5) were considered to be the pores, and
all other sites were the matrix. This should be considered a crude
but convenient approximation because even dense regions of B were
typically partially permeable to the solute in all our models. We will
refer to this model as the “RW-S” model to emphasize that the pore
definition includes essentially only the solvent.

Similar to our results with the kMC and RW-B+S models, the
RW-S model captured the monotonic decrease in D as a function
of fA [Figs. 4(c) and 5(a)]. Notably, the RW-S model also gave val-
ues of D that decreased with increasing fB [Fig. 5(b)], indicating that
effects of the B-block can be at least partially approximated as an
additional obstruction. However, D was not constant with respect
to fA at constant fC [Fig. 5(c)] in the RW-S model. This finding is
consistent with our hypothesis that D is nearly constant in the kMC
model along lines of constant fC because of a trade-off between the
A-block and B-block in the local diffusivity; the RW-S model has
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constant local diffusivity, so this trade-off cannot be captured. We
also note a practical drawback of the RW-S model: because the pore
definition is more restrictive than that in the RW-B+S model, we
were unable to run simulations for many of the polymers with large
fA or fB. Our kMC model, on the other hand, did not suffer from
this because an artificial (binary) classification of the lattice sites as
pore or matrix was not required. In this respect, we view our new
multiscale approach based on the kMC model as being more conve-
nient, systematic, and faithful to physical expectations than either of
the RW models.

B. Correlating diffusion with structure
In Ref. 29, we showed that the diffusivity of the RW-B + S

model correlated strongly with two structural descriptors of the
pores: namely, their volume v and integrated mean curvature h,
normalized by the total membrane volume. These two descriptors,
along with the normalized surface area s and integrated Gaussian
curvature g, comprise the four Minkowski functionals from integral
geometry and image analysis.58,59 Given the qualitative differences
we observed between the kMC model and the RW-B+S model, we
asked whether the diffusivity of the kMC model correlated with any
of these functionals.

The Minkowski functionals can be computed from black-and-
white (binary) images using a voxel-counting algorithm.58 The
RW-B+S model has a binary pore definition suitable for this algo-
rithm, but the kMC model does not because the solute can access
most lattice sites but diffuses at different rates through them. Given
the great interest in discovering simple structural descriptors that
correlate with diffusivity, we proceeded by adopting an additional
structural definition for the pores in the kMC model. Two natural
choices were that of either the RW-B+S model or the RW-S model.
Given that the RW-S model did not give percolated pores at many
state points [Fig. 4(c)], we chose to use the RW-B+S model to define
the pores. Hence, the Minkowski functionals we computed were the
same for a given morphology for both the kMC and RW-B + S
models, but the corresponding diffusivities were different.

We plotted D against the four Minkowski functionals for both
models (Fig. 6). In sharp contrast to the RW-B + S model [Figs. 6(e)
and 6(f)],29 D obtained using the kMC model did not correlate
strongly with the volume v or integrated mean curvature h [Figs. 6(a)
and 6(b)]. The relationship between D and v was no longer
approximately one-to-one: there were many values of v that gave
similar values of D. We rationalized this as being due to the B-block
coating the pores. Within the RW-B + S model, the pore volume
does not change as the length of the pore coating increases and nei-
ther does the diffusivity; however, the diffusivity computed using
the kMC model does change [Fig. 5(b)]. Similar differences were
observed for correlation with h between the two models. Neither the
kMC model nor the RW-B+S model showed correlation between
D and the surface area s or integrated Gaussian curvature g (not
shown).

Motivated by this lack of correlation between D and the
Minkowski functionals for the kMC model, we considered addi-
tional structural descriptors of the polymer or membrane that might
capture variations in D. The simplest descriptors we added were the
polymer block fractions fi, which we chose because of the trends
observed in Figs. 4 and 5. Only two of these block fractions are inde-
pendent parameters, so we focus our discussion on fB and fC. The
diffusivity was uncorrelated with fB for both models (not shown),
which we attribute to the inability of fB to capture major structural
changes in the morphology as fA or fC is varied for the triblock
copolymer we studied. Interestingly, D correlated well with fC in the
kMC model for sufficiently large fC [Fig. 6(c)] although it was essen-
tially uncorrelated with fC in the RW-B+S model [Fig. 6(g)]. We
noted, however, that the correlation broke down at smaller values of
fC where the pores tended to be less percolated. The block fractions
are convenient descriptors based on solely the triblock copolymer
architecture, but they do not capture the actual self-assembled mem-
brane morphology or the environment experienced by the solute
inside the pores.

Given that the local diffusivity is a function of the local compo-
sition [Eq. (10)], we posited two additional descriptors for the solute
environment to help improve on the block-fraction descriptors.

FIG. 6. Correlation of the diffusivity D
of a solute tracer calculated by the
(a)–(d) kMC model and (e)–(f) RW-B + S
model with various selected structural
descriptors: the pore volume v and inte-
grated mean curvature h (normalized by
the total volume of the membrane), the
C-block fraction of the triblock copoly-
mer fC, and the average A-block volume
fraction experienced by the solute ⟨ϕA⟩.
Data are shown for all morphologies that
percolated in at least one dimension.
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In particular, we computed the average polymer volume fractions
experienced by the solute

⟨ϕi⟩ = ∫ dr ϕi(r)ρ∞(r), (11)

where ρ∞ ∼ ϕS is the steady state probability distribution of the
solute, encoded in the kMC model by ψ. We considered both ⟨ϕA⟩
and ⟨ϕB⟩. For the RW-B+ S model, we found that D did not correlate
strongly with either ⟨ϕA⟩ [Fig. 6(h)] or ⟨ϕB⟩ (not shown); we some-
what expected this result because the local diffusivity in the RW-B
+ S model did not depend on the local polymer concentration, so
the long-time diffusivity depends primarily on the pore morphology
and this dependence is better captured by other descriptors. In the
kMC model, D had a strong correlation with ⟨ϕA⟩ [Fig. 6(d)] but not
⟨ϕB⟩ (not shown).

In order to quantify which structural descriptors correlate most
strongly with the solute diffusivity for each model, we used the
same approach as Ref. 29 and regressed D as a function of the four
Minkowski functionals, the three block fractions, and ⟨ϕA⟩ and ⟨ϕB⟩
using a random-forest model.60,61 To determine the importance of
each descriptor, we randomized the values of each descriptor and
measured the resulting mean decrease in accuracy of the model. The
importance of each descriptor for each model (Fig. 7) was deter-
mined from the relative magnitude of its mean decrease in accuracy,
such that the sum of importances was 1. The results are largely con-
sistent with our visual observations: v and h were the most important
descriptors for the RW-B + S model, while fC and ⟨ϕA⟩ were the
dominant features for the kMC model. In the kMC model, we found
that fC was roughly three times more important than ⟨ϕA⟩, which
we interpreted as being a result of fC capturing most of the variation
in D except for polymers having sufficiently small fC. It is interest-
ing that the importance of these descriptors changes significantly
between the two transport models.

These results, obtained using our new multiscale model that
accounts for pore-level effects on transport, seem to reveal vastly
different trends in diffusivity compared to a simpler model that
neglected these effects,29 providing new insights into the features
that may be important in designing triblock copolymer membranes
with nonequilibrium morphologies. We find that the diffusivity of
solvent through the pores is mainly impacted by the length of the
sacrificial block and the average contact the solvent has with the

FIG. 7. Relative importance of each feature in a random forest regression for
diffusivity calculated by the kMC model and RW-B + S model.

porous walls. The latter quantity is not readily accessible in exper-
iments, however, it fortunately appears to be most important only
when the degree of percolation of the pores is limited. Despite fail-
ing to find a direct correlation relationship between diffusivity and
structural descriptor based on the Minkowski functionals, we note
that fC does ultimately play a role in forming the structure in a way
not easily captured by these functionals. Furthermore, we empha-
size that our set of Flory–Huggins interaction parameters only
roughly approximates one triblock copolymer–solvent system, and
different interaction parameters may yield alternative or additional
correlations.

IV. CONCLUSIONS
We have developed a multiscale model to study solute diffu-

sion through a porous triblock copolymer membrane where the
pores have a brush-like coating that interacts with the solute. The
method uses SCFT to simulate self-assembly and solvation of the
membrane, with the latter implemented using a novel field the-
ory to constrain a target density profile. Then, on-lattice kMC was
used to simulate diffusion under the influence of a spatially varying
external field and local diffusivity describing the solute interactions
with the membrane. We applied our model to simulate solute diffu-
sion through nonequilibrium morphologies of a model ABC triblock
copolymer, revealing vastly different trends in diffusivity compared
to a simpler geometric model that neglected solute–membrane inter-
action effects.29 In particular, we found that the diffusivity of solvent
through the pores was mainly impacted by the length of the sacri-
ficial polymer block used to create the pores as well as the average
contact the solute had with the porous walls. The latter quantity
is not readily accessible in experiments; however, it appeared most
important when the degree of percolation of the pores was limited.

The model system studied here consists of a nonfrustrated ABC
triblock copolymer, a water-like solvent that has strong hydropho-
bic and hydrophilic interactions with the membrane-matrix A block
and pore-coating B block, respectively, and a model solute. The
Flory–Huggins interaction parameters χij that we have employed
hence correspond to only one possible realization of this system. Our
multiscale workflow can be easily applied to study specific polymer,
solvent, and solute chemistries with appropriate choice of χij for the
SCFT simulations and a model for the local diffusivity, which might
be obtained from experimental data or molecular simulations. We
also expect that the model could be straightforwardly extended to
incorporate other interactions between the solute and membrane,
such as electrostatics.
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