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Motivated by the ever-improving performance of deep learning techniques, we design a mixed
input convolutional neural network approach to predict transport properties in deformed nanoscale
materials using a height map of deformations, as can be obtained from scanning probe measure-
ments, as input. We employ our approach to study electrical transport in a graphene nanoribbon
deformed by a number of randomly positioned nano-bubbles. Our network is able to make con-
ductance predictions valid to an average error of 4.3%. We find that such low average errors are
achieved by a redundant input of energy values, yielding predictions that are 30-40% more accurate
than conventional architectures. We demonstrate that the same method can learn to predict the
valley-resolved conductance, with success specifically in identifying the energy at which inter-valley
scattering becomes prominent. We demonstrate the robustness of the approach by testing the pre-
trained network on samples with deformations differing in number and shape from the training data.
We furthermore employ a graph theoretical analysis of the structure and outputs of the network
and conclude that a tight-binding Hamiltonian can be effectively encoded in the first layer of the
network, which is supported by numerical findings. Our approach contributes a new theoretical
understanding and a refined methodology to the application of deep learning for the determination
of transport properties based on real-space disorder information.

I. INTRODUCTION

Massive progress in the accuracy and computational
efficiency of deep learning techniques, combined with
widespread application of these methods, has rendered
deep learning an increasingly viable tool for complex
problems in physics [1–4]. This can be seen in the nu-
merous recent applications of deep learning; a prolific and
successful example has been in data analysis at the LHC
[5, 6], and applications in condensed matter and adja-
cent fields have prospered, too [7–12]. A particular topic
of interest has been the prediction and identification of
phase transitions [13–18]. Among the most common deep
learning techniques, also employed in this work, is the
convolutional neural network (CNN), which is also the
standard class of neural networks used for image recog-
nition. CNNs are favored for their versatility, and the
implementation of 2D or 3D convolutions allows these
networks to map multidimensional data to almost any
correlated quantity.

Here, we show that a fast, accurate prediction of the
transport properties of deformed graphene can be ob-
tained from only a height map by applying a mixed input
neural network that includes a CNN branch. An illustra-
tion of an example deformed graphene system is included
in Fig. 1. A deformation height map can be obtained
in an experimental setting with standard imaging tech-
niques, such as scanning tunneling microscopy, making
this methodology feasible for an industrial application.
Specifically, we will focus our attention on nanoscopic de-
formations in 2D materials, referred to as nanobubbles.
The impact of these nanobubbles on electronic transport
can be studied statistically [19] or with standard numeric

methods. However, exact analytic treatment of deforma-
tions is difficult, spurring work in applying approxima-
tions to describe electronic transport in deformed mate-
rials such as graphene [20, 21]. One novel physical ef-
fect of nano-deformations in graphene is the production
of a strong effective magnetic field, up to hundreds of
Tesla, which are sensitive to the graphene valley degrees
of freedom. Depending on their shapes, these deforma-
tions can filter or split the two valleys selectively [22],
opening the door to the field of valleytronics [23]. De-
formed graphene is also of particular interest because it
has shown promise for use in numerous applications, such
as the ultrasensitive detection of nucleic acids, or as a
valley and spin filter [24–26]. Applications such as these,
especially if developed at an industrial scale, require re-
liable and efficient tools–tools faster and less expensive
than direct measurements or full calculations–to charac-
terize the physical properties of individual devices.

FIG. 1: Illustrated example of the type of deformed
graphene nanoribbon systems we consider in this work.
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FIG. 2: Diagram showing the architecture of the neural network. The convolutional kernel size was (3,3,2), while
the pool size was (2,2,1). Labels A and B correspond to each redundant energy input (See III C), while C indicates
the layer extracted for linear mapping (See V). In the text we detail results for different variations of these inputs.

In this work, we show that our approach is success-
ful, with a relative error of less than 5%. With minimal
changes our neural network structure is able to make pre-
dictions about both the total and valley-resolved compo-
nents of the conductance, successfully predicting inter-
valley scattering. Our neural network architecture was
carefully optimized for this class of problems, provid-
ing a useful methodology for similar work going forward.
We also show that the network is robust against changes
to the deformation shape and number of deformations,
which is important for non-idealized real world applica-
tions.

We additionally analyze the inner-workings of our net-
work to better understand why its predictions are highly
accurate. We numerically demonstrate that there ex-
ists a simple linear mapping from the first layer of our
network to the tight-binding Hamiltonian matrix of the
graphene system. The connection between the neural
network structure and a tight binding Hamiltonian is
studied further on purely theoretical grounds by applying
a graph theory analysis. Specifically, we prove the exis-
tence of graph morphisms between a convolutional layer
in a CNN and a tight-binding Hamiltonian. This fun-
damental equivalence relation has to our knowledge not
been previously identified, and brings valuable insight to
the form and function of neural networks and strongly
emphasizes the general applicability of our approach.

Before we proceed to discussing the structure of this
work let us first take a step back and mention some re-
cent closely related work and how our work differs from
it. Recently there has been work by Peano et al. [27]
that explored via a convolutional neural network ap-
proach how to design different band structures and suc-

cessfully predict their topological properties purely based
on the choice of unit-cell geometry. Within this context
their neural network–much like the one we will discuss in
this paper–constructed a tight binding Hamiltonian. We
stress that their work differs significantly from our work
in that we put our focus explicitly on systems without
translational invariance and instead of topology focus on
conductivities. Our work also develops the mathemati-
cal mappings between tight binding models and convolu-
tional layers.

Another work closely related to ours by Yu et al.
[28] employs a convolutional neural network approach to
make predictions about localization in disordered lattice
systems and the inverse problem of predicting possible
disorder configurations from localization properties. The
focus of their work differs significantly from ours in that
their predicted quantities do not depend on additional
input parameters, such as energy, that complicate predic-
tions and therefore necessitate a different network struc-
ture - as we will see later. Moreover, our work highlights
the important insights that can be gained from the in-
ner workings of the neural network structure. Li et al.
[29] use a neural network approach to study the conduc-
tivity in a quasi-1D wire with a small scattering region
with disordered on-site energies, but do not study energy
or valley-resolved conductivities, nor realistic shape de-
formations. Finally, a work by Torres et al. [30] used
a feed-forward neural network to study valley-resolved
transport in quasi-1D nanobubble superlattices. The fo-
cus of this work was limited to these superlattices, which
is outside the scope of our work.

The manuscript is structured as follows: In Sec. II, we
detail the tight binding Hamiltonian and in Sec. III we
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discuss the neural network architecture that was chosen
and compare its results quantitatively to other related
architectures. In Sec. IV, we analyze the performance of
the network in predicting total and valley-resolved con-
ductances. In Sec.V we discuss a graph theoretical map-
ping between a convolutional neural network layer and a
tight binding Hamiltonian, as well as a complementary
numerical result of the network. Lastly, in Sec.VI we test
the robustness of the trained neural network by evaluat-
ing its performance on deformations deviating from the
Gaussian deformations that were used to train the net-
work.

II. MODEL

While many of our methods are broadly applicable to
questions in materials physics, we consider a specific and
popular model to demonstrate our methodology. We con-
sider transport properties of a deformed graphene flake
that has dimensions of 200 by 200 lattice sites and is
connected to semi-infinite leads. For simplicity units are
chosen such that a = 1 (if a = 2.46Å, a side length of the
flake is about 50nm). Given the potential applications
of nanoscale devices, we chose to investigate a system of
comparable size. With no deformation, this system has a
conductance quantized in units of 2e2

h (e=electron charge,
h=Planck’s constant). The introduction of random out-
of-plane deformations changes this conductance profile,
with a more complex relationship emerging between the
deformations and the conductance as a function of en-
ergy.

Electronic transport in the graphene system is modeled
using a tight-binding Hamiltonian [31], written in second-
quantized form as

Ĥ =
∑
〈i,j〉,σ

tij(â
†
i,σ b̂j,σ + b̂†j,σâi,σ), (1)

where we sum over all nearest neighbor sites i and j and
spin projections σ. The operators âi and â

†
i are fermionic

creation and annihilation operators operating on site i in
sublattice A, while b̂j and b̂

†
j equivalently operate on site

j in sublattice B. Lattice deformations locally alter the
distance dij between sites i and j. This is modeled by a
distance-dependent hopping parameter [32, 33],

tij = −t0 exp

(
−3.37

∣∣∣∣dija − 1

∣∣∣∣) . (2)

We choose units such that the initial hopping parame-
ter is t0 = 1. This model of transport is implemented
in KWANT, a quantum transport package in Python
[34]. In KWANT the system is initialized as a graphene
nanoribbon with a 200x200 unit scattering region and
two semi-infinite leads. We use KWANT to obtain the
scattering matrix S. The submatrix corresponding to
transmission from the left lead to the right is s = SLR, al-
lowing computation of the total left-to-right transmission

probability by the Fisher-Lee formula [35], T = Tr
(
s†s
)
.

The transmission probability is related to the conduc-
tance by G = 2e2

h × T , where the factor of two emerges
from spin degeneracy.

By identifying the momenta of the modes correspond-
ing to each element of s, it is possible to separate s into
submatrices corresponding to transmission and scatter-
ing between the K and K’ valleys,

s =

(
sKK sKK′
sK′K sK′K′

)
. (3)

This allows separation of the left-to-right transmission
into the valley contributions,

Tαβ = Tr
(
s†αβsαβ

)
. (4)

The number of conductance modes is given by 2n + 1,
where n is the number of occupied subbands at energy
E [36], and we observe a 2-fold valley degeneracy and
a single edge mode coming from the zig-zag edges. The
transmission probabilities are normalized for each mode,
so for an undeformed system the conductance is quan-
tized and given by G(E) = (2n+ 1) 2e2

h .

III. NEURAL NETWORK

A. Network Architecture

The neural network developed for this investigation is
a mixed input neural network with a CNN branch and is
implemented in TensorFlow [37]. The network consists
of a convolutional branch and a sequential branch to pro-
cess a second round of inputs. The convolutional branch
has a design that is loosely based on the AlexNet image
recognition network [38]. A unique aspect of our network
design is the redundant input of energy; energy is input
to the sequential branch, but also included in the convo-
lutional input, which consists of a (100,100) heightmap
array and an array of the same size with every element
equal to the energy. This input array with dimensions
(100,100,2,1) is fed into the convolutional branch, and
successive rounds of convolution, pooling, and normal-
ization are applied.

The outputs of the two network branches are joined
and analyzed in a final series of dense layers to produce
final predictions for conductances. The parameters of
the model are optimized using the ADAM variant of gra-
dient backpropagation [39]. Additional specifications of
the neural network architecture are found in Table I.
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Additional Specifications
Architecture

Activation Function swish function
Kernel Initializer He Uniform
Convolutional Kernel Size (3,3,2)
Average Pool Size (2,2,1)
Dropout 0.5 after dense (2048, 256)
Padding Zero padding
Training dataset 26,250
Test dataset 8,750

Training
Optimizer Adam
Learning rate 0.001
ε 10−7

Training metric Mean Squared Error
Batch size 16
Epochs 100

TABLE I: Neural network architecture and hyperparam-
eters chosen for the optimal model.

B. Optimal Design Choices

It is also important to understand the choices that have
led to our specific type of network. The optimization of
this neural network required trial-and-error variations of
the hyperparameters and architecture. Some such varia-
tions reinforced standard choices; for example, the opti-
mal progression and geometry of convolutional layers is
identical to that found in an image recognition network
such as AlexNet.

Other common neural network design principles suc-
ceeded, too. Dropout and batch normalization layers
were found to be essential to the success of this network.
Batch normalization is implemented after convolutional
layers, normalizing the output. The reason batch nor-
malization works is disputed, but current theories pro-
pose that these layers may smooth the landscape of the
loss function [40] or reduce undesirable covariate shift-
ing of neural network parameters [41]. Dropout layers,
meanwhile, are applied after dense or fully connected lay-
ers. Dropouts randomly set some proportion of the data
points to zero, effectively introducing noise. They are
effective in preventing overfitting [42], where a network
essentially memorizes training data and cannot success-
fully generalize to unseen data.

The Adam optimizer [43] is chosen for its known
strengths compared to other optimization algorithms, no-
tably in reaching a compromise in speed and accuracy,
and avoiding a vanishing gradient. We observed optimal
performance when training with the default parameter
values in Tensorflow. A less standard feature we em-
ploy is the newly developed swish function for nonlinear
activation [44]. While ReLU is the more common alter-
native, we found swish to have better performance. The
swish function is smooth and non-monotonic, which is
thought to give an advantage in avoiding vanishing gra-
dients [45]–when the gradient of the loss function goes to

zero it inhibits learning.

C. Redundant Inputs

The impact of redundancy in neural networks has been
explored both in the context of the biological origins of
these networks in the brain [46], and in direct applica-
tions in physics [47]. We report here a marked improve-
ment of network performance with the inclusion of re-
dundant inputs.

The highly nonlinear behavior neural networks exhibit
make it challenging to understand success in network ar-
chitecture beyond empirical findings. The introduction
of a repeating energy array as a convolutional input does
not entirely follow the intuition behind these networks, as
there is no spatial variation in this constant input. The
important distinction to be made is that the heightmap
and energy array are input together. Consider the intro-
duction of deformations in a lattice: This will result in
local changes in potential, and the energy will directly
determine the impact of these changes on the electronic
transport. The stacked energy and height arrays, com-
bined with a 3D convolutional kernel, can be imagined
as a local comparison of the potential landscape with
our known electronic energy. The inclusion of the small
sequential branch near the end of the network can be
thought of as a "reminder" of this energy input, as the
exact numerical value of the energy is encoded only im-
plicitly within the convolutional output.

We now evaluate empirically the importance of redun-
dant inputs. We tested the network’s performance given
the omission of each one of two redundant input paths.
Details on network training is discussed later in Sec. IV
of the manuscript and is omitted here for brevity. Let
us briefly summarize that the final version of the net-
work seen in Fig. 2 has a mean absolute error (MAE)
of 0.61 2e2

h for predicted total conductance (see Sec. IVB
for more details), with predictions made on new, i.e. un-
trained data. We found that omitting the energy array
as a convolutional input (marked A in Fig. 2) causes the
MAE to increase to 0.87 2e2

h , while omission of the small
second branch input (marked B in Fig. 2) results in a
MAE of 0.98 2e2

h . Comparison to the performance of the
complete network shows just how important the network
redundancy is - after all, the added redundancy in net-
work architecture leads to a decrease of more than 30%
for the MAE. We share this finding with the intent of
providing more design intuition for physics applications
of NNs.

IV. TRAINING AND RESULTS

For the training data of our neural network we con-
sider random deformations of the lattice, which are mod-
eled using 2D Gaussian bumps that are randomly placed.
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FIG. 3: Network error on training data and validation data for (a), the total transmission; (b) the off diagonal
components of transmission; and (c) the diagonal components of transmission.

For concreteness in our case the number of gaussians N
is chosen uniformly from N ∈ [1, 10]. For each Gaus-
sian, Eq.(5), parameters (A, σx, σy, xc, yc) are chosen uni-
formly from the ranges in Table II below, including
the approximate values in nanometers(nm) for graphene,
a = 2.46Å.

Gaussian Parameter Bounds [a]/[nm]
A (0,10) / (0,2.5)
σx, σy (5,20) / (1.5,5)
xc, yc (-60,60) / (-15,15)

TABLE II: The numerical bounds for the amplitude,
standard deviation, and center of each Gaussian bubble.
Values are provided in both lattice units and nanometers.

These values are chosen in accordance with previous
theoretical literature [26, 48]. The random superposi-
tion of these deformations produces a net deformation
comparable to small graphene nanobubbles observed ex-
perimentally, less than 50nm in radius [49–51].

More precisely, this means that we model the height of
a point (x, y) on the graphene sample by,

z(x, y) =
N∑
n=1

An exp

(
− (x− xcn)2

2σ2
xn

− (y − ycn)2

2σ2
yn

)
. (5)

To generate the height maps that are used as inputs
of the neural network this expression is evaluated over
a 100x100 grid spanning the scattering region. Eq.(5)
is also used by KWANT in conjunction with Eq.(2) to
construct the Hamiltonian and obtain conductance val-
ues for each sample at a random energy. We focus on
energies in the first 50 subbands, corresponding to the
first 99 conductance modes. These conductance values
are the target for the network, which continually evalu-
ates its performance and uses gradient backpropagation
to improve the model parameters. A dataset of 35,000
samples was generated in KWANT, with 75% used for
supervised learning and 25% used to validate the net-
work accuracy. Networks were trained to learn the total

left-right transmission T as well as the valley-resolved
transmission components Tαβ .

A. Details of network training

Plotting the “learning curve" of the networks, Fig. 3,
we see the error of the model on both the training data
and validation data evaluated over every epoch, or cycle,
through the data. For all of these plots, the validation
error appears to converge to a fixed value, a broad indica-
tor of successful training . Tall, narrow spikes in the error
may be observed, but this does not appear to cause any
problems, as the error quickly returns to the convergent
value. There is an expected trade off with model stabil-
ity and model generalization error when modifying batch
size: large batches result in a smooth, stable curve and
validation error that will tend to converge higher, while
small batch sizes give better generalization with smaller
validation errors, but are more volatile [52, 53]. Training
neural networks is a complex task, and as such this topic
is much broader than what we discuss here.

B. Total Conductance

After 100 epochs of training, the validation error (the
network’s error on new data not encountered in training)
reaches 0.61 2e2

h mean absolute error (MAE), in a dataset

with mean conductance of roughly 41×
(

2e2

h

)
. This is a

4.3% average relative difference, based on the formula:

|yp − yc|
|yp|

× 100, (6)

where yc is the calculated value and yp is the predicted
value. To further illustrate the network’s ability, the
model is evaluated on an individual sample at 1000 lin-
early spaced energy values. Representative results are
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FIG. 4: The calculated and predicted conductance of a
single deformed sample over a range of energies. The
upper inset panel shows the relative height of the

deformed sample, and the panel below provides a closer
look at the predictions in the small boxed region. The
blue dotted line shows the solution the network provides

when trained with the non-quantized model.

shown in Fig. 4 and demonstrate the network’s success
in learning the dependence of conductance on both de-
formations and energy. An alternate model which does
not take mode numbers as inputs is seen in the inset.
The appearance of discrete steps in conductance from
the inclusion of mode numbers is a good illustration of
the fine tuning of model function that is possible with
variation in network structure. These models have com-
parable errors, so we choose the discrete model, taking
mode numbers as an input, as the primary model to per-
form further analysis.

C. Valley-Resolved Conductance

We next train a neural network on all components of
Tαβ . The valley resolved transmission brings additional
challenges to the model; computation of the off-diagonal
components TKK′ and TK′K frequently gives results with
large fluctuations (x2 or more) over very short energy
ranges. This can be attributed to the disorder intro-
duced by the deformations and is especially prominent at
higher energies [48]. Additionally, these components may
be near-zero. Both are potential problems for the gra-
dient backpropagation algorithm. To address this, two
separate models are trained, one for the valley transmis-
sions TKK and TK′K′ , and one for the inter-valley scat-
tering components TK′K and TKK′ . To get precise pre-
dictions even for the small off-diagonal scattering com-
ponents TK′K and TKK′ we scale them by a factor of 106

before training (predictions are divided by the same fac-
tor for comparison). The error in this approach is found

to reduce significantly from the unscaled case, decreasing
from 0.15 to 0.095 2e2

h . This result is a consequence of
the canonical issue of the “vanishing gradient," which we
otherwise largely avoided by use of the Swish activation
function [45].

Our method allows for the successful prediction of all
four components of the transmission. The average value
of each component and the mean absolute error in the
prediction for each component is,

〈Tαβ〉 =

(
19.79 0.28
0.28 20.66

)
, M.A.E. =

(
0.37 0.094
0.095 0.36

)
,

expressed in units of 2e2/h, where 〈Tαβ〉 is the average
transmission matrix over all samples and energies, and
M.A.E.(Tαβ) is the average prediction error over all sam-
ples and energies. This metric of error is just one measure
of model success, but in combination with plotted pre-
dictions it may provide some intuition as to the perfor-
mance of the model. The mean error corresponding to
inter-valley scattering is quite small numerically, which
can be attributed to the often near-zero value of these
components.

To better understand model performance, another pre-
diction for a single sample is included in Fig. 5. The KK
and K ′K ′ components of transmission were predicted
successfully comparing the magnitude of the error with
the total conductance model. For the off-diagonal com-
ponents representing inter-valley scattering, the model’s
approximation succeeded with an average error of 0.095
2e2

h , and this success can be seen qualitatively in Fig. 5.
This example demonstrates that this model can not only
predict the magnitude and trend of inter-valley scatter-

FIG. 5: The calculated (red) and predicted (black)
valley-resolved conductance of a single deformed sample
over a range of energies. The inset shows the height

map of the sample in question.
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ing, but can also predict whether it occurs at all, and at
what energy these effects become significant.

V. GRAPH THEORETICAL INTERPRETATION

In this section we use a graph theoretical perspective
to illuminate an interesting mathematical connection be-
tween the tight-binding Hamiltonian and a layer of a
CNN, finding that the honeycomb lattice graph is iso-
morphic to a subgraph of the convolutional layer graph.
Following this, we provide numerical evidence that is
complementary to this finding; in Appendix A we demon-
strate that the graph structure and numerical outputs to-
gether can be used to re-construct a tight binding Hamil-
tonian. This is a valuable theoretical contribution to the
existing design principles of neural networks for applica-
tions in physics. For a detailed definition of graph termi-
nology and notation, see Appendix A.

A. Honeycomb lattice as a subgraph of the
convolutional layer

Consider a single convolutional layer in a neural net-
work. In a 2D convolution, a kernel is passed over the
values of an array, transforming some N × N input X
to a N × N output Y. We consider here a 3x3 kernel,
as implemented in our neural network. The relationship
between the input array X and the output array Y is as
follows. At the index (m,n), the output value Ym,n is
given by:

Ym,n = σ

 1∑
i,j=−1

wijXm+i,n+j + βij

 , (7)

We can see that, in the language of tight-binding, the
output Ym,n is dependent on Xm,n and its first and sec-
ond nearest neighbors on the square input grid. This
extends naturally to a formulation in graph theory.

Define a graph G with the adjacency matrix A(G),
given:

Aij(G) =

{
1 j ∈ e(i)
0 j /∈ e(i)

, (8)

where e(i) is the set of nodes with which node i shares an
edge. Based on Eq.(7), in the formalism introduced by
You et al. [54], the sets e(i) defining the convolutional
graph GC are given by the set of points enclosed by a
3x3 kernel centered at a node (m,n):

k3x3(m,n) = {u ∈ (m−1,m+1), v ∈ (n−1, n+1)}. (9)

FIG. 6: Honeycomb lattice (black edges) as a subgraph
of the convolutional layer graph (all edges)

Meanwhile, the sets e(i) defining the graph of a hon-
eycomb lattice Gg are given by the sets of first nearest
neighbors,

N1(m,n) = {(m− 1, n), (m+ 1, n), (m,n± 1}. (10)

By the definitions of these edge sets, we see that:

N1(m,n) ⊆ k3x3(m,n). (11)

And thus, when both graphs are defined on a N × N
grid of points, the honeycomb graph Gg is a subgraph of
the convolutional layer graphGC . This is depicted in Fig.
6. This demonstrates simply that the graph structure of
a first nearest-neighbors tight binding Hamiltonian on a
honeycomb lattice is included within the graph structure
representing the action of our first convolutional layer.

B. Linear Map

Given this graph structural parallel, it is instructive
to ask whether the numerical inner workings of the neu-
ral network also show some parallel to our tight-binding
model.

An interesting work by Sun et al. [8] found that in a
CNN trained to predict Chern numbers from Hamilto-
nians, the Berry curvature in momentum space was ap-
proximately recreated, as an intermediate step. This was
taken to indicate the success of the CNN in recreating the
mathematical steps between input and output.

We similarly studied the intermediate outputs of each
convolutional layer - after activation and batch normal-
ization. We find that for any deformed sample, the set of
feature maps F output from the first CNN layer approxi-
mately satisfies a linear map f : F→ h to the calculated
hopping amplitudes in each direction h, such that:

h = AF, (12)
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where F is a 16-component vector of outputs at some ar-
ray index, A is a 3x16 transformation matrix, and h are
the 3 hopping amplitudes in the nearest-neighbor direc-
tions, calulated with Eq.(2). This is illustrated in Fig.
7. We focus on only one of the two arrays output by
this network layer. The inclusion of the other 100x100
component of this output, corresponding to the energy
array input, does not change appreciably the result of
this linear map, so we omit it for simplicity.

We find this linear map can recreate the calculated
hoppings at an average of 1% error. This mapping is the
simplest way for 16 output values to encode 3 nearest-
neighbor hoppings. While any arbitrarily complex func-
tion could extract hopping values from these outputs,
their appearance as a simple linear combination shows
that this information is encoded in this output, imply-
ing the network truly learns how to construct hopping
parameters from a deformation image.

We have shown that the honeycomb lattice graph Gg is
a subgraph of the convolutional graph GC . Consider now
the linear map f we have introduced here. In Appendix
A, we show it is possible to use this linear map, in conjuc-
tion with the graph relation discussed above, to form a
complete representation of the tight binding model, from
the structure and output of the first convolutional layer
of our neural network. When we use this linear map to
assign weights to the appropriate entries in the adjacency
matrix, it is possible to fully construct the matrix of the
tight-binding Hamiltonian.

C. Discussion of Extensions and Limitations

In the general consideration of physical problems with
an inherent graph structure using neural network meth-
ods, the question remains: does the graph of a convolu-
tional layer and the local “interactions" it depicts suffi-
ciently represent the important characteristics of, in our
example, electronic transport on an arbitrary 2D lattice?
Or, does the problem necessitate an exactly or nearly
isomorphic graph structure, as is possible in the more
recently developed techniques of graph neural networks
[55]?

Our network succeeded in predicting conductance val-
ues without this completely isomorphic graph structure.
In fact, our tight binding model was defined on a far
greater number of atomic sites than there were input
data points to the convolutional layer: the success of this
coarse-grained approach suggests that is is not necessary
for a neural network to have a graph structure exactly
isomorphic to the objective problem.

It is valuable to consider more complex tight binding
models. While we leave the further application of these
neural network methods to future work, let us discuss
the implications of our graph theoretical insights when
applied to different tight binding models.

In theory, if the convolutional kernel is allowed to be of
arbitrary size, there will be a subgraph isomorphic to any

FIG. 7: The exact nearest-neighbor hoppings as used in
KWANT [for the various directions a = (

√
3/2,−0.5),

b = (−
√

3/2,−0.5), c = (0, 1)], and the result extracted
via the linear mapping linear mapping from the network

intermediate output in Fig. 2 (a’,b’,c’)

tight binding model; this is apparent in the limit in which
each node is connected to all others. In Appendix A,
we show that the first nearest-neighbors kagome lattice
is isomorphic to a subgraph of the convolutional graph.
We additionally investigate in Appendix A the extension
of the graph based interpretive scheme to second and
third nearest neighbor graphs on a honeycomb lattice,
and we come across a complication; in Fig. 6 we can see
that comparing different sites, a nearest neighbor vec-
tor alternates between the site directly above and below.
The site in the other direction represents a third nearest
neighbor. This introduces an ambiguity which may be
difficult for a neural network to properly resolve.

Convolutional neural networks are versatile enough
that they could succeed to some degree even with these
more complex cases; However, in searching for an opti-
mally designed network, it is worth further investigating
techniques catering to the exact graph structure of the
problem at hand, such as graph neural networks.

While we have probed the graph structure and numer-
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ical output of the first layer of our neural network, this
makes up a small portion of the network’s total numerical
operations. The successive pooling and convolution op-
erations present an interesting and complex mathemat-
ical structure, but this complexity renders the network
as a whole difficult to interpret rigorously. Within the
framework we have developed, if the first convolutional
layer represents hoppings between adjacent lattice sites,
an average pooling operation and second convolutional
layer then represent hoppings between 2x2 sub blocks of
lattice sites.

Further development of this structure-based under-
standing of neural network design may provide interest-
ing insights into this otherwise opaque topic. This is es-
pecially true in the application of neural networks within
the field of condensed matter, given the ubiquitous ap-
pearance of graph structure in the study of physics on a
crystal lattice.

VI. ROBUSTNESS OF THE TRAINED
NETWORK

Next, we want to determine the quality of predictions
for samples that are fundamentally different from those
on which the network was trained. First, we use the same
formula and parameters as the training data to generate
Gaussian deformations, but we add more deformations
to increase the complexity of the overall sample. The
error in the networks predictions–calculated according to
Eq.(6)–increases as more Gaussians are added, as shown
in Fig. 8. For example, in samples with 15 Gaussians the
average error in the total conductance increases to 9%,
compared to 6.5% for samples with 11 Gaussians. This
indicates that the network becomes less accurate when
faced with data that differs too drastically from training
data.

Next, we want to see how robust the network is against
changes to the shape of the deformations. Therefore, we
test the network on deformed Gaussian bubbles of the
form,

z(x, y) = e
−(x−xc)2−c(x−xc)4

2σ2x
+
−(y−yc)2−d(y−yc)4

2σ2y . (13)

To obtain better quantitative insights we introduced
deformation parameters c and d that are randomly se-
lected from the range [0, 0.2]. To obtain a single metric
for the overall deformation of the sample, the deforma-
tion parameters are averaged according to Eq. (14),

g =
1

2N

N∑
n=1

cn + dn. (14)

Here, instead of a percent error we compute the relative
difference according to Eq.(15),

|yp − yc|
max(|yp| , |yc|)

× 100. (15)

FIG. 8: (a-c) Examples of different samples given to the
network. (d, e) Total conductance error increases with

the number of Gaussians, and the size of the
deformation parameter g. Samples were sorted into 20

bins, each spanning a range of 0.01 in the average
deformation parameter g. Each bin contains >6000
samples. The percent error for each bin is calculated

according to Eq. (15).

This is done to avoid misleading results: very small cal-
culated or predicted values that appear in a tiny fraction
of samples can result in excessively large percent errors
despite both results being sufficiently close to zero. See
Fig. 8.

Finally, we test the network on bubbles that are not
Gaussians but Lorentzian bubbles of the form

z(x, y) =
1

π

ΓxΓy
(x− xc)2 + (y − yc)2 + Γ2

x + Γ2
y

, (16)

where Γ is the half width at half maximum of the dis-
tribution. Γ is randomly chosen from the range [4,16] so
that the Lorentzian bubbles are roughly the same size
as the Gaussian bubbles. When tested on approximately
8800 samples the network performed very well, return-
ing an average error (calculated according to Eq.(6)) of
only 2% in the total conductance, despite the fact that
the network was trained on Gaussian deformations, not
Lorentzian ones.

We can conclude from this section that the network is
sufficiently robust against changes that it can be used in
applications to real world data, such as one could obtain
from an STM where deformations might not be perfectly
Gaussian. The robustness of the trained network can
be explained to some extent by the previous section, in
which we showed that the network forms a tight bind-
ing Hamiltonian as an intermediate step in its predic-
tions. These results indicate that the network has ac-
tually learned about the underlying physics, rather than
just learning the geometry of Gaussian deformations.
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VII. CONCLUSION

This work provides a proof-of-concept that neural
networks–convolutional neural networks in particular–
can serve as a tool to expedite determination of the phys-
ical properties of a material. We developed a neural net-
work capable of identifying the conductance of deformed
graphene nanoribbons to within 5% when given the
heightmap, energy, and number of conductance modes
at that energy. We further find that despite the fact
that the network was trained with a fixed range of Gaus-
sian deformations, predictions still remain accurate when
the quantity and type of deformation are varied, indicat-
ing a robust model. We found that once trained, our
model can predict conductance with the computational
time reduced by a factor of O(104) compared to an exact
calculation, and it requires O(N) parameters in the de-
scription of a tight-binding system with N sites, as com-
pared to the N2 parameters required to construct the
dense Hamiltonian matrix. The desired behavior of the
model can be additionally tuned with the choice of train-
ing inputs, where inclusion of the mode numbers give a
semi-quantized prediction, and omission gives a smooth
prediction. We also demonstrated the model’s ability to
learn and predict the valley-resolved components of con-
ductance with little modification to methodology.

Additionally, we gained insight into the model’s design
and function by studying the internal outputs and graph
structure of the neural network. It was found that the
graph of the tight binding model determined from the
CNN is a subgraph of the relational graph describing a
convolutional layer. We conclude that this sort of funda-
mental structural equivalence is an important factor in
the success and efficiency of this model. This should be
considered in the application and design of convolutional
and other deep learning networks to further research in
physics.

It should be noted that different problems often require
differently structured networks to obtain the best solu-
tion, but the model we developed is optimal for the prob-
lem of deformation-dependent conductance. We have
shown that many of the techniques originally developed
for image recognition networks can be readily adapted for
this class of problems. The method described here could
be tested by changing the desired output observable, or
by applying this technique to different materials, such as
3D lattices or nanostructured materials.

There are also some limitations of this method that
are worth noting. We find that including the number
of conductance modes as an input results in a semi-
quantized output. This is preferable when considering
minimal deformations, wherein the conductance retains
some quantization as in the zero-deformation limit. More
severely deformed samples do not exhibit these steps in
conductance, and as such the model trained without con-
ductance modes as an input, which outputs a smooth
conductance prediction, is superior. An improved model
would successfully differentiate between the behavior of

these cases. This may be possible by training separate
networks for the small vs. large deformation cases, or
otherwise augmenting the training data to emphasize this
difference.

Our work has demonstrated that neural network meth-
ods can be applied as an accurate approximation method
to expedite the calculation of physical properties of ma-
terials. Furthermore, we have illustrated methods in neu-
ral network construction that may be especially beneficial
for applications in physics, such as redundant input data.
We also provide new insight into the mathematical rele-
vance of convolutional networks to graph-based problems
like the tight-binding Hamiltonian. The data and code
supporting the results of this paper are available from the
corresponding author, J.N., upon reasonable request.
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Appendix A: Details of Graph Theoretical Analysis

1. Notation and Terminology

Here we briefly define the important concepts and no-
tation we use in our analysis. A graph is a finite set of
nodes connected by a finite set of edges, where each edge
connects a pair of nodes [56]. In this analysis, we work
with non-directed graphs, so each edge is defined simply
by an unordered pair of nodes. In a tight-binding frame-
work, nodes are equivalent to atomic sites, and edges to
corresponding hopping parameters. The primary tools
we will use to represent these graphs are the unweighted
and weighted adjacency matrices A,Aw. In A, Aij = 1
if and only if nodes i and j share an edge. In Aw, Aw

ij = a
when nodes i and j share an edge with weight a. These
definitions are illustrated in Fig. 9.
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FIG. 9: Adjacency matrix definition.

In each matrix, the element ij is valued at zero when
no edge exists between nodes i and j. If two graphs
G,G′ have the same adjacency matrix A, but not neces-
sarily the same edge weights, we call the graphs G and
G′ structurally isomorphic, because we know the nodes
and edges are identical. If we additionally know that G
and G′ have the same weighted adjacency matrix Aw, we
will call these graphs completely isomorphic, because we
know the nodes, edges, and weights are identical.

2. Convolutional Layer Representation of Tight
Binding Hamiltonian

The tight binding matrix is, as a symmetric matrix, al-
ways equivalent to the weighted adjacency matrix Aw of
some undirected graph with edge weights, GwH . To prove
a graph isomorphism extending to a honeycomb lattice
graph Gg, we introduce edge weights to the convolutional
graph, GC → GwC . For each node i in GC , there are k
corresponding outputs in the set of feature maps F. Sim-
ilarly, at node i in GH , there are up to N nth nearest-
neighbor hoppings in the set h, described equivalently by
the nonzero values in row i of the tight-binding matrix
H. When N ≤ k, there are neural network outputs such
that

f : F→ h (A1)

is a linear mapping from Rk → RN , which we choose to
assign the edge weights of GwC .

Beyond the theoretical existence of this linear map, we
discussed in Sec. V that there is indeed such a mapping,
accurate to about 1% error, which produces the calcu-
lated nearest-neighbors hoppings from the feature map
outputs with a linear map h = AF. We allow the assign-
ment of 0 to edges, and take this to delete the edge. This
enables a reduction to any subgraph of GC , so we turn
our attention the the graphene tight-binding Hamilto-
nian, represented by the weighted graph Gwg , where Gwg is
constructed with the tight-binding matrix as a weighted
adjacency matrix Aw(Gwg ), such that the edge between
nodes i and j has a weight equal to element ij of the
tight binding matrix:

Aw(Gwg ) : Aw
ij = Hij . (A2)

When the conditions are met for the linear map, such
that the convolutional layer’s output maps linearly to the

set of nearest-neighbor hoppings at each point, we assign
the convolutional graph edge weights accordingly,

Aw(GwC) : Aw
ij =

{
f(Fi)n j ∈ Ng(i)
0 j /∈ Ng(i)

, (A3)

where f(Fi)n is the nth of N possible second nearest-
neighbor hoppings. By the nature of the map, these are
only non-zero when the n-th node j is included within
the set of brick wall first nearest neighbors at node i,
denoted Ng(i). For any Gwg there exists a convolutional
layer output F and a linear mapping f such that the
assignment of edge weights of GwC by f makes GwC com-
pletely isomorphic to Gwg .

We have demonstrated that the graph structure and
numerical outputs of this neural network layer can be
used to construct a complete representation of the tight-
binding matrix.

3. More Complicated Lattices

Consider a first nearest neighbors tight-binding Hamil-
tonian on a Kagome lattice. Mapping this to a square
lattice is more challenging, but there are multiple peri-
odic subgraphs of GC that are isomorphic to our Kagome
lattice. One such subgraphs is depicted in Fig. 10.

FIG. 10: Kagome lattice shown as a subgraph of the
convolutional graph (not shown)

In fact, it is always possible to map a first nearest
neighbor tight binding Hamiltonian on an arbitrary 2D
lattice onto a subgraph of a convolutional graph with an
appropriately sized kernel. This is evident in the fully-
connected limit; for a (2N + 1)× (2N + 1) kernel on an
N×N grid of points, the convolutional graph is complete,
with every pair of vertices connected by an edge.

Typically, however, this upper limit is not necessary:
For both a honeycomb and Kagome lattice, we find iso-
morphic subgraphs of the convolutional graph created by
a 3x3 kernel.



12

FIG. 11: First (top) second (middle) and third
(bottom) nearest neighbors of two points on the

honeycomb lattice.

We also consider the graph mappings of second and
third order nearest neighbors on the honeycomb lattice,
Fig. 11 Some nearest neighbor points in the square lattice
(i, j) and (i+1, j) alternate between first and third near-
est neighbors in the honeycomb lattice mapping, while
second order neighbors are symmetric between sites. The
lack of translational invariance in these hoppings between
the sites of the square lattice represents a breakdown of
the exactness of the mapping we consider; to represent
exactly these graph structures would require graph neu-
ral network techniques. However, our results suggest that
this exact representation may not be necessary.

[1] A. Tanaka, A. Tomiya, and K. Hashimoto, Deep learn-
ing and physics, Mathematical physics studies (Springer,
Singapore, 2021).

[2] P. Mehta, M. Bukov, C.-H. Wang, A. G. Day, C. Richard-
son, C. K. Fisher, and D. J. Schwab, A high-bias, low-
variance introduction to Machine Learning for physicists,
Physics Reports 810, 1 (2019).

[3] F. Marquardt, Machine Learning and Quantum Devices,
SciPost Phys. Lect. Notes , 29 (2021).

[4] G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld,
N. Tishby, L. Vogt-Maranto, and L. Zdeborova, Machine
learning and the physical sciences, Reviews of Modern
Physics 91, 045002 (2019).

[5] M. Abdughani, J. Ren, L. Wu, and J. M. Yang, Probing
stop pair production at the LHC with graph neural net-
works, Journal of High Energy Physics 2019, 55 (2019).

[6] Y. Verma and S. Jena, Jet characterization in Heavy
Ion Collisions by QCD-Aware Graph Neural Networks,
arXiv:2103.14906 [hep-ph, physics:physics] (2021).

[7] K. Beer, D. Bondarenko, T. Farrelly, T. J. Osborne,
R. Salzmann, D. Scheiermann, and R. Wolf, Training
deep quantum neural networks, Nature Communications
11, 808 (2020).

[8] N. Sun, J. Yi, P. Zhang, H. Shen, and H. Zhai,
Deep Learning Topological Invariants of Band Insulators,
Physical review. B, 2018-08 Vol.98 (8), 085402 (2018).

[9] T. Fösel, P. Tighineanu, T. Weiss, and F. Marquardt, Re-
inforcement learning with neural networks for quantum
feedback, Phys. Rev. X 8, 031084 (2018).

[10] E. Bedolla, L. C. Padierna, and R. CastaÃśeda-Priego,
Machine learning for condensed matter physics, Journal
of Physics: Condensed Matter 33, 053001 (2020).

[11] J. Carrasquilla, Machine learning for quantum matter,
Advances in Physics: X 5, 1797528 (2020).

[12] J. Schmidt, M. R. G. Marques, S. Botti, and M. A. L.
Marques, Recent advances and applications of machine
learning in solid-state materials science, npj Computa-
tional Materials 5, 83 (2019).

[13] J. Carrasquilla and R. G. Melko, Machine learning phases
of matter, Nature Physics 13, 431 (2017).

[14] S. S. Schoenholz, E. D. Cubuk, D. M. Sussman, E. Kaxi-
ras, and A. J. Liu, A structural approach to relaxation
in glassy liquids, Nature Physics 12, 469 (2016).

[15] B. S. Rem, N. KÃďming, M. Tarnowski, L. Asteria,
N. FlÃďschner, C. Becker, K. Sengstock, and C. Weit-
enberg, Identifying quantum phase transitions using ar-
tificial neural networks on experimental data, Nature
Physics 15, 917 (2019).

[16] P. Suchsland and S. Wessel, Parameter diagnostics of
phases and phase transition learning by neural networks,
Physical Review B 97, 174435 (2018).

[17] J. Venderley, V. Khemani, and E.-A. Kim, Machine learn-

https://doi.org/10.1007/978-981-33-6108-9
https://doi.org/10.1007/978-981-33-6108-9
https://doi.org/10.1016/j.physrep.2019.03.001
https://doi.org/10.21468/SciPostPhysLectNotes.29
https://doi.org/10.1103/revmodphys.91.045002
https://doi.org/10.1103/revmodphys.91.045002
https://doi.org/10.1007/JHEP08(2019)055
http://arxiv.org/abs/2103.14906
https://doi.org/10.1038/s41467-020-14454-2
https://doi.org/10.1038/s41467-020-14454-2
https://doi.org/10.1103/PhysRevB.98.085402
https://doi.org/10.1103/PhysRevX.8.031084
https://doi.org/10.1088/1361-648x/abb895
https://doi.org/10.1088/1361-648x/abb895
https://doi.org/10.1080/23746149.2020.1797528
https://doi.org/10.1038/s41524-019-0221-0
https://doi.org/10.1038/s41524-019-0221-0
https://doi.org/10.1038/nphys4035
https://doi.org/10.1038/nphys3644
https://doi.org/10.1038/s41567-019-0554-0
https://doi.org/10.1038/s41567-019-0554-0
https://doi.org/10.1103/PhysRevB.97.174435


13

ing out-of-equilibrium phases of matter, Phys. Rev. Lett.
120, 257204 (2018).

[18] X.-D. Bai, J. Zhao, Y.-Y. Han, J.-C. Zhao, and J.-G.
Wang, Learning single-particle mobility edges by a neural
network based on data compression, Phys. Rev. B 103,
134203 (2021).

[19] A. Abbout, H. Ouerdane, and C. Goupil, Statistical
Analysis of the Figure of Merit of a Two-Level Thermo-
electric System: A Random Matrix Approach, Journal of
the Physical Society of Japan 85, 094704 (2016).

[20] T. Stegmann and N. Szpak, Current flow paths in de-
formed graphene: from quantum transport to classical
trajectories in curved space, New Journal of Physics 18,
053016 (2016).

[21] F. Rost, R. Gupta, M. Fleischmann, D. Weckbecker,
N. Ray, J. Olivares, M. Vogl, S. Sharma, O. Pankra-
tov, and S. Shallcross, Nonperturbative theory of effective
hamiltonians for deformations in two-dimensional mate-
rials: MoirÃľ systems and dislocations, Physical Review
B 100, 035101 (2019).

[22] M. Settnes, S. R. Power, M. Brandbyge, and A.-P. Jauho,
Graphene nanobubbles as valley filters and beam split-
ters, Phys. Rev. Lett. 117, 276801 (2016).

[23] Y. Jiang, T. Low, K. Chang, M. I. Katsnelson, and
F. Guinea, Generation of pure bulk valley current in
graphene, Phys. Rev. Lett. 110, 046601 (2013).

[24] J. Wang, Y. Xiao, V. Cecen, C. Shao, Y. Zhao, and L. Qu,
Tunable-Deformed Graphene Layers for Actuation, Fron-
tiers in Chemistry 7, 725 (2019).

[25] M. T. Hwang, M. Heiranian, Y. Kim, S. You, J. Leem,
A. Taqieddin, V. Faramarzi, Y. Jing, I. Park, A. M.
van der Zande, S. Nam, N. R. Aluru, and R. Bashir,
Ultrasensitive detection of nucleic acids using deformed
graphene channel field effect biosensors, Nature Commu-
nications 11, 1543 (2020).

[26] M. Settnes, S. R. Power, M. Brandbyge, and A.-P. Jauho,
Graphene Nanobubbles as Valley Filters and Beam Split-
ters, Physical Review Letters 117, 276801 (2016).

[27] V. Peano, F. Sapper, and F. Marquardt, Rapid explo-
ration of topological band structures using deep learning,
Phys. Rev. X 11, 021052 (2021).

[28] S. Yu, X. Piao, and N. Park, Machine learning iden-
tifies scale-free properties in disordered materials, Na-
ture Communications 11, 10.1038/s41467-020-18653-9
(2020).

[29] K. Li, J. Lu, and F. Zhai, Neural networks for model-
ing electron transport properties of mesoscopic systems,
Phys. Rev. B 102, 064205 (2020).

[30] V. Torres, P. Silva, E. A. T. de Souza, L. A. Silva, and
D. A. Bahamon, Valley notch filter in a graphene strain
superlattice: Green’s function and machine learning ap-
proach, Phys. Rev. B 100, 205411 (2019).

[31] A. Altland and B. Simons, Condensed matter field theory,
2nd ed. (Cambridge University Press, Cambridge ; New
York, 2010).

[32] V. M. Pereira, A. H. Castro Neto, and N. M. R. Peres,
Tight-binding approach to uniaxial strain in graphene,
Physical Review B 80, 045401 (2009).

[33] M. Settnes, S. R. Power, J. Lin, D. H. Petersen, and A.-
P. Jauho, Patched Green’s function techniques for two-
dimensional systems: Electronic behavior of bubbles and
perforations in graphene, Physical Review B 91, 125408
(2015).

[34] C. W. Groth, M. Wimmer, A. R. Akhmerov, and

X. Waintal, Kwant: a software package for quantum
transport, New Journal of Physics 16, 063065 (2014).

[35] D. S. Fisher and P. A. Lee, Relation between conductivity
and transmission matrix, Physical Review B 23, 6851
(1981).

[36] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S.
Novoselov, and A. K. Geim, The electronic properties of
graphene, Reviews of Modern Physics 81, 109 (2009).

[37] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,
C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin,
S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Is-
ard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Lev-
enberg, D. Mane, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever,
K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan,
F. Viegas, O. Vinyals, P. Warden, M. Wattenberg,
M. Wicke, Y. Yu, and X. Zheng, TensorFlow: Large-
Scale Machine Learning on Heterogeneous Distributed
Systems, arXiv:1603.04467 [cs] (2016).

[38] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ImageNet
classification with deep convolutional neural networks,
Communications of the ACM 60, 84 (2017).

[39] Y. LeCun, L. Bottou, G. B. Orr, and K. R. MÃĳller,
Efficient BackProp, in Neural Networks: Tricks of the
Trade, edited by G. B. Orr and K.-R. MÃĳller (Springer
Berlin Heidelberg, Berlin, Heidelberg, 1998) p. 9.

[40] S. Santurkar, D. Tsipras, A. Ilyas, and A. Mądry, How
does batch normalization help optimization?, in Proceed-
ings of the 32nd International Conference on Neural In-
formation Processing Systems, NIPS’18 (Curran Asso-
ciates Inc., Red Hook, NY, USA, 2018) p. 2488.

[41] S. Ioffe and C. Szegedy, Batch normalization: Acceler-
ating deep network training by reducing internal covari-
ate shift, in International conference on machine learning
(PMLR, 2015) p. 448.

[42] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever,
and R. Salakhutdinov, Dropout: A Simple Way to Pre-
vent Neural Networks from Overfitting, Journal of Ma-
chine Learning Research 15, 1929 (2014).

[43] D. P. Kingma and J. Ba, Adam: A method for stochastic
optimization, in 3rd International Conference on Learn-
ing Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings, edited by
Y. Bengio and Y. LeCun (2015).

[44] G. C. Tripathi, M. Rawat, and K. Rawat, Swish Activa-
tion Based Deep Neural Network Predistorter for RF-PA,
in TENCON 2019 - 2019 IEEE Region 10 Conference
(TENCON) (IEEE, Kochi, India, 2019) p. 1239.

[45] P. Ramachandran, B. Zoph, and Q. V. Le, Searching for
Activation Functions, arXiv:1710.05941 [cs] (2017).

[46] D. A. Medler and M. R. W. Dawson, Training redundant
artificial neural networks: Imposing biology on technol-
ogy, Psychological Research 57, 54 (1994).

[47] E. Agliari, F. Alemanno, A. Barra, M. Centonze, and
A. Fachechi, Neural Networks with a Redundant Repre-
sentation: Detecting the Undetectable, Physical Review
Letters 124, 028301 (2020).

[48] J. Wurm, M. Wimmer, and K. Richter, Symmetries and
the conductance of graphene nanoribbons with long-
range disorder, Physical Review B 85, 245418 (2012).

[49] H. Ghorbanfekr-Kalashami, K. S. Vasu, R. R. Nair, F. M.
Peeters, and M. Neek-Amal, Dependence of the shape
of graphene nanobubbles on trapped substance, Nature
Communications 8, 15844 (2017).

https://doi.org/10.1103/PhysRevLett.120.257204
https://doi.org/10.1103/PhysRevLett.120.257204
https://doi.org/10.1103/PhysRevB.103.134203
https://doi.org/10.1103/PhysRevB.103.134203
https://doi.org/10.7566/JPSJ.85.094704
https://doi.org/10.7566/JPSJ.85.094704
https://doi.org/10.1088/1367-2630/18/5/053016
https://doi.org/10.1088/1367-2630/18/5/053016
https://doi.org/10.1103/physrevb.100.035101
https://doi.org/10.1103/physrevb.100.035101
https://doi.org/10.1103/PhysRevLett.117.276801
https://doi.org/10.1103/PhysRevLett.110.046601
https://doi.org/10.3389/fchem.2019.00725
https://doi.org/10.3389/fchem.2019.00725
https://doi.org/10.1038/s41467-020-15330-9
https://doi.org/10.1038/s41467-020-15330-9
https://doi.org/10.1103/PhysRevLett.117.276801
https://doi.org/10.1103/PhysRevX.11.021052
https://doi.org/10.1038/s41467-020-18653-9
https://doi.org/10.1103/PhysRevB.102.064205
https://doi.org/10.1103/PhysRevB.100.205411
https://doi.org/10.1103/PhysRevB.80.045401
https://doi.org/10.1103/PhysRevB.91.125408
https://doi.org/10.1103/PhysRevB.91.125408
https://doi.org/10.1088/1367-2630/16/6/063065
https://doi.org/10.1103/PhysRevB.23.6851
https://doi.org/10.1103/PhysRevB.23.6851
https://doi.org/10.1103/RevModPhys.81.109
http://arxiv.org/abs/1603.04467
https://doi.org/10.1145/3065386
https://doi.org/10.1007/3-540-49430-8_2
https://doi.org/10.1007/3-540-49430-8_2
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.1109/TENCON.2019.8929500
https://doi.org/10.1109/TENCON.2019.8929500
http://arxiv.org/abs/1710.05941
https://doi.org/10.1007/BF00452996
https://doi.org/10.1103/PhysRevLett.124.028301
https://doi.org/10.1103/PhysRevLett.124.028301
https://doi.org/10.1103/PhysRevB.85.245418
https://doi.org/10.1038/ncomms15844
https://doi.org/10.1038/ncomms15844


14

[50] T. F. Aslyamov, E. S. Iakovlev, I. S. Akhatov, and P. A.
Zhilyaev, Model of graphene nanobubble: Combining
classical density functional and elasticity theories, The
Journal of Chemical Physics 152, 054705 (2020).

[51] Q. Kim, D. Shin, J. Park, D. A. Weitz, andW. Jhe, Initial
growth dynamics of 10 nm nanobubbles in the graphene
liquid cell, Applied Nanoscience 11, 1 (2021).

[52] D. Masters and C. Luschi, Revisiting Small Batch Train-
ing for Deep Neural Networks, arXiv:1804.07612 [cs, stat]
(2018).

[53] P. M. Radiuk, Impact of Training Set Batch Size on
the Performance of Convolutional Neural Networks for
Diverse Datasets, Information Technology and Manage-
ment Science 20, 10.1515/itms-2017-0003 (2017).

[54] J. You, J. Leskovec, K. He, and S. Xie, Graph Structure
of Neural Networks, in Proceedings of the 37th Interna-
tional Conference on Machine Learning , Proceedings of
Machine Learning Research, Vol. 119, edited by H. D. III
and A. Singh (PMLR, 2020) p. 10881.

[55] T. N. Kipf and M. Welling, Semi-supervised classifica-
tion with graph convolutional networks, in 5th Interna-
tional Conference on Learning Representations, ICLR
2017, Toulon, France, April 24-26, 2017, Conference
Track Proceedings (OpenReview.net, 2017).

[56] M. S. Rahman, Basic Graph Theory , 1st ed., Undergrad-
uate Topics in Computer Science (Springer International
Publishing : Imprint: Springer, Cham, 2017).

https://doi.org/10.1063/1.5138687
https://doi.org/10.1063/1.5138687
https://doi.org/10.1007/s13204-018-0925-3
http://arxiv.org/abs/1804.07612
http://arxiv.org/abs/1804.07612
https://doi.org/10.1515/itms-2017-0003
http://proceedings.mlr.press/v119/you20b.html
http://proceedings.mlr.press/v119/you20b.html
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.1007/978-3-319-49475-3

	Deep learning of deformation-dependent conductance in thin films: nanobubbles in graphene
	Abstract
	Introduction
	Model
	Neural Network
	Network Architecture
	Optimal Design Choices
	Redundant Inputs

	Training and Results
	Details of network training
	Total Conductance
	Valley-Resolved Conductance

	Graph theoretical interpretation
	Honeycomb lattice as a subgraph of the convolutional layer
	Linear Map
	Discussion of Extensions and Limitations

	Robustness of the trained network
	Conclusion
	Acknowledgements
	Details of Graph Theoretical Analysis
	Notation and Terminology
	Convolutional Layer Representation of Tight Binding Hamiltonian
	More Complicated Lattices

	References


