
Copyright

by

William D. Huntington

2022



The Dissertation Committee for William D. Huntington

certifies that this is the approved version of the following dissertation:

A Neutral Atom Storage Ring and Intense Cold Atom

Source

Committee:

Daniel Heinzen, Supervisor

Ernst-Ludwig Florin

Greg O. Sitz

Shyam Shankar



A Neutral Atom Storage Ring and Intense Cold Atom 

Source

by

William D. Huntington

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

December 2022



...



Acknowledgments

It was a long journey to get to this thesis and there are many people to thank

that helped along the way. Foremost amongst them is my loving wife, dancer and

astronomer, Susan Huntington. Her support, patience, and love during this part of

my life was incredible and I will always be indebted.

Thank you to my parents, Scott and Kelly, for your nurturing yet laissez-

faire attitude that allowed me to grow on my own. To my grandparents, “Nana”

and “Papa”, thank you for your always supportive love of me.

There were many wonderful educators along the way, too many to thank.

Most prominent amongst them is Jan Colsby for encouraging me to take AP and

honors classes in high school. To my high school physics teacher Mr. Dennison,

thank you for your class. To my high school biology teacher Mrs. Martinez, thank

you for the wonderful educational opportunities and experiences you afforded me.

To my undergraduate physics professor and advisor Dr. Davis, thank you for the

expertly taught classes and mentorship you provided.

The machine shop has been an integral part of my research and they have

always been professional and willing to go the extra mile to help. Thank you Jack,

Kenny, Bryan, Alan, Richard, Flint, Ed and others. I really enjoyed shooting the

breeze with y’all.

Perhaps the biggest reason I became enamored with physics is because of

books, particularly science fiction. Thank you Isaac Asimov, Lewis Carroll Epstein,

Ray Bradbury, Kurt Vonnegut, Richard Feynman, Arthur C. Clarke, Robert Hein-

v



lein and numerous pulp science fiction authors amongst others for putting ideas to

paper and sparking curiosity in myself and countless other scientists.

I wouldn’t be the physicist I am today if it wasn’t for my tight knit family

of fellow physics students at San Diego State University. To Adriana Carmona,

Enrique Hurtado and Francisco Santos, thank you for being part of this journey.

I would also like to thank my advisor, Dr. Daniel Heinzen, for his financial

support, advice, and guidance.

William D. Huntington

The University of Texas at Austin

October 2022

vi



A Neutral Atom Storage Ring and Intense Cold Atom

Source

Publication No.

William D. Huntington, Ph.D.

The University of Texas at Austin, 2022

Supervisor: Daniel Heinzen
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The ring is in the shape of a “racetrack” with two bending sections of 1 meter ra-

dius and is composed entirely of linear segments of magnets. A permanent magnet

injection system continuously guides particles from an existing source into the ring

using an optical pumping scheme. The dynamics of the design are well explained

by charged particle accelerator theory extended to neutral particles. The proposed

design is over an order of magnitude larger than previous neutral atom storage rings

and provides over 2 orders of magnitude greater trapping depth. An extensive sim-

ulation was developed to characterize and optimize the ring and injector system.

The design is optimized for our existing source of 7Li atoms, although theory and
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simulation indicate it will work well with other paramagnetic species. With our

source it is expected to build up a circulating flux of around 5× 1014 atoms/s and

an atom number of about 2 × 1013. It has previously been suggested that such a

design is unstable, but in this work it is shown that an essential stability criteria

was neglected.

Also presented is the improvement and characterization of an intense, con-

tinuous cold atom beam to be used to load the storage ring. The beam is generated

via post nozzle seeding of a supersonic cryogenic 4He jet with hot 7Li atoms. The

atomic beam is brought to a focus 176 cm from the nozzle by a 10 cm bore diameter

permanent magnet hexapole lens. At the focus the beam is measured to have a flux
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Chapter 1

Introduction

Cold atomic and molecular beams are important tools in experimental physics.

They are used for precision measurement experiments such as defining the second

or searching for time-reversal symmetry violation, dark matter, and spatio-temporal

variation of constants [1–5]. They also enable studying ultracold collisions, ultra-

cold chemistry, and quantum gases [6, 7]. Many experiments’ Signal-to-Noise Ratio

(SNR) are limited by atom/molecular number, flux, and/or density. In a beam,

especially a continuous one, only a small fraction of the time-averaged capturable

atoms are typically used during measurements. Additionally, many methods of gen-

erating cold beams use laser cooling which can require very specific and complicated

laser-optical schemes.

This thesis describes two projects motivated by these issues. The first project

is the characterization and improvement of a existing novel intense cold continuous

source of 7Li atoms. The source is generated without laser cooling and works by

seeding hot 7Li atoms from an oven into a supersonic adiabatic expansion of 4He

originating from a cryogenic nozzle. The resulting beam is extracted and focused

by a Halbach array permanent magnet atom lens [8]. A thorough simulation char-

acterizing the aberrations affecting the atom lens was performed.

1



The second project is the modeling and design of a meter-scale permanent

magnet storage ring, to be continuously loaded by the existing 7Li source. It is shown

that the design is applicable to other species as well. The ring is composed entirely

of discrete segments of permanent magnet atom lenses. It has previously been found

that such a design is unstable [9]. By applying charged particle accelerator theory

and carrying out an extensive simulation, I show such a design is stable with the

right arrangement of magnets. The design is expected to build up a large circulating

flux and atom number under anticipated loss mechanisms.

1.1 An Intense Cold, Continuous Beam

Laser cooling has been the primary method of producing cold beams [10–14].

However, the method is more difficult to apply to molecular and atomic species with

complicated energy level structures, though progress is being made [15, 16]. This

motivates the use of laser-free methods such as a supersonic expansion where the

species expands from an orifice and adiabatically cools. This results in temperatures

as low as 200 mK, though one to a few Kelvin is more typical [17–22]. This results in

beams with a large forward velocity [23,24]. Another alternative is to seed the species

into a cold buffer gas that then effusively escapes through an orifice [25]. Seeding is

most commonly done with pulsed laser ablation of a solid target to preserve cryogenic

temperatures. The resulting beams have a lower forward velocity of around 40 to

150 m/s and temperatures on the order of one to a few Kelvin.

The source described in this work shares the favorable features of supersonic
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and effusive sources while achieving lower temperatures 1. The cryogenically cooled

nozzle produces a 4He jet with a forward velocity of about 210 m/s and milliKelvin

temperature thanks to the adiabatic cooling of supersonic expansions [27]. Without

cryogenically cooling the nozzle, the forward velocity would exceed 1500 m/s. Seed-

ing before the 4He expansion would result in clogging of the nozzle orifice by frozen

7Li unless only small amounts of 7Li were used. By seeding 7Li into the 4He jet

after the expansion we can exploit the low temperatures and the forward directed

nature of a supersonic expansion while producing a significant flux of 7Li. Focusing

of the 7Li beam increases its intensity and facilitates its separation from the 4He

beam which is unaffected and continues to expand. Focusing of neutral atoms has

been previously performed [8, 28, 29], but to our knowledge it has not been applied

to a seeded supersonic beam.

With this method we have produced a 7Li beam with a flux of 2 × 1012

atoms/s, a forward velocity of 210(2) m/s, a brightness of 1.8(6)×1019 m−2s−1sr−1,

and a longitudinal temperature of 7 mK in the moving frame. To our knowledge this

temperature is substantially lower than that of any previous seeded jet source. This

combination of very low temperature, continuous output, modest forward velocity,

magnetic extraction, and high flux distinguishes our work from previous work on

seeded supersonic jets and buffer gas sources. A simulation of the seeding dynamics

was developed by colleague Jeremy Glick with a complete theoretical model of the

Li-He collision cross section from 1 mK to 3000 K. The simulation, in conjunction

1The source described in this work was originally designed and built by previous graduate student
Michael Borysow [26].
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with particle tracing through the atom lens and considering background gas induced

losses, explains within 40% the observed flux at the focus. This implies we have a

good understanding of the physics from the source to the focus.

An overview of the source physics is given in Chapter 2. The characteri-

zation of the source, including simulations of the seeding dynamics and the atom

lens aberrations, is described in Chapter 3. To the best of our knowledge no such

characterization of atom lens aberrations has been presented before.

1.2 A Meter Scale Neutral Atom Storage Ring

A neutral atom or molecular storage ring can be used to study novel physics

[30–36], perform precision measurements [37–39], or amplify the flux of an exist-

ing source [40]. A variety of storage rings, or toroidal traps, have been built and

demonstrated. Atoms have been trapped in rings using conventional atom trapping

techniques of lasers and/or time varying magnetic fields [41–47]. The diameters

of these traps are typically less than a mm and are loaded with a pulse of atoms.

Trap depths are less than a mK with around 1 × 106 or less atoms. Bose–Einstein

condensates (BEC) have successfully been produced with these techniques.

Several molecular storage rings have been demonstrated using static high

voltage electric fields [48–50]. This method is only applicable to molecular species

with electric dipole moments which precludes the use of ground state atoms. Col-

lections of high voltage wires are arranged toroidally to produce confining hexapole

electric fields in which a pulse of molecules are injected. So far only ammonia or

deuterated ammonia have been demonstrated. The most robust of these design has
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a 50 cm diameter and is composed of 40 individual straight electric hexapoles [49].

The segments allow multiple pulses of molecules to be injected which circulate up

to 13 seconds and travel over a mile at a speed of about 124 m/s. Up to 26 packets

were injected with half traveling clockwise and the other counterclockwise. The

maximum number of stored molecules is about 3 × 107. The lifetime is limited by

blackbody-induced transitions out of the trapped state and collisions with back-

ground gases. Previous designs had more than an order of magnitude lower lifetime

because of a zero field at the center of the hexapole inducing Majorana loss. The

transverse trap depth is about 750 mK.

Another approach to trap neutral species is to use static magnetic fields to

act on the particle’s magnetic moment. This was first successfully carried out in

the 1980s with neutrons using superconducting wires to produce a 2 meter diameter

toroidal hexapole field [51]. Shortly thereafter a proposal was made to use spatially

varying magnetic fields to confine ground state hydrogen atoms in hopes of achieving

a BEC [52]. The authors incorrectly claimed that high field seeking particles cannot

be trapped in a ring without either spatial or temporal variation of magnetic fields.

This error was pointed out by Ketterle and Pritchard when they described the theory

of confining high and weak field seeking neutral particles in static toroidal magnetic

fields [53].

Weak field seeking particles can be strongly confined in a static magnetic

storage ring. However, they are susceptible to loss by spin-exchange when colliding

with another particle unless both particles are in a stretched state [54]. High field

seeking particles on the other hand are only weakly confined to a small radius thanks
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to the centrifugal pseudo force. They are immune to spin-exchange collision losses.

Varying the magnetic field in space can be shown to result in strong confining for

ground state particles, but the varying magnetic field results in viscous heating. For

these reasons, Ketterle and Pritchard suggested that a storage ring to trap high field

seeking particles is the most promising design for forming a BEC.

Several static magnetic storage rings have since been demonstrated, all op-

erating with weak field seekers, pulsed loading, and trapping energies of a few mK

or less [55–58]. Two have reported the production of a BEC [55,57]. Spin-exchange

losses are avoided by optical pumping into a stretched state. Lifetimes range from 1

to 90 seconds, limited by either collisions with background gas or particle’s spin flip-

ping when passing through zeros in the magnetic field. Trap lifetimes of 50 and 90

seconds were achieved by adding a small magnetic field to “plug” the zeros [55,57].

Diameters range from 1.3 mm to 10 cm and the number of trapped atoms range

from 1× 106 to 5× 108.

The design described in this work differs from previous designs in several

ways. First, magnetic fields are produced by neodymium permanent magnets in-

stead of current carrying coils. Magnets are arranged in a Halbach array hexapole

configuration with numerous straight segments defining a racetrack shaped particle

orbit. The use of permanent magnets results in a trapping potential of around 550

mK, more than two orders of magnitude higher than existing coil based neutral

atom storage rings. This allows loading with larger volumes of phase space and/or

hotter collections of particles. Second, optical pumping is used to continuously load

the ring. This allows for the build up of a large number of atoms. Using our existing
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source for loading and with the anticipated vacuum lifetime of 50 seconds, simula-

tions indicate that a circulating flux of about 5× 1014 atoms/s and atom number of

2×1013 will be generated. This is more than 4 orders of magnitude higher than any

existing source. Third, the diameter of the bending portions is 2 meters and the

ring encloses an area of about 5 m2. This is an area nearly 700 times larger than the

next largest design [57]. A possible use of a neutral atom storage ring is as a Sagnac

interferometer in which the sensitivity is proportional to the enclosed area [59]. The

proposed design has the potential to be far more accurate than existing rings.

Charged particle accelerator theory is extended to the case of paramagnetic

particles. The theory yields predictions which include particle phase space behavior,

density and velocity profiles, stability concerns, and the use of other species. These

predictions agree well with an extensive and original 3D particle tracing simulation.

In [9] a similar racetrack design was analyzed with 3D particle tracing and was found

to be unstable. As explained by this theory, only specific configurations of design

parameters result in stability and must be chosen carefully. This was not accounted

for in [9].

The Lonestar6 supercomputer at the Texas Advanced Computing Center 2

(TACC) was used to find an optimized design for our 7Li source. Despite being

optimized for our species/source combination, the proposed design is shown theo-

retically and by simulation to be usable with other species/source combination and

will achieve nearly the same performance.

2The author acknowledges the Texas Advanced Computing Center (TACC) at The University of
Texas at Austin for providing HPC resources that have contributed to the research results reported
within this thesis. URL: http://www.tacc.utexas.edu
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An overview of the relevant portions of charged particle accelerator theory

applied to paramagnetic particles is given in Chapter 4. The simulation of the ring is

described in Chapter 5. The proposed design is described and analyzed in Chapter 6.

Practical concerns such as vacuum, optical pumping, assembly, and magnet material

tolerances are discussed as well.
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Chapter 2

Apparatus Overview

This chapter describes an intense cold continuous source of 7Li atoms. The

majority of the apparatus was designed and assembled by a previous graduate stu-

dent, Michael Borysow, and extensive details can be found in his thesis [26]. When

I joined the research group, the experiment had been moved from another building

and was partially assembled. Changes to the apparatus have been primarily the

installation of the hexapole lens, the addition of an observation cell for the focus,

a new atomic oven, an improved helium gas manifold and metering system, appli-

cation of optical pumping, upgrades to the laser and optical system, upgrades to

the cryogenic system, temperature control of the nozzle with a heater and feedback

loop, and the replacement of LabView with Python for streamlined data collection

and analysis.

2.1 Introduction

A schematic of the source is shown in Figure 2.1. Room temperature 4He gas

is cooled to about 4.4 K by a cryo-refrigerator while being fed into a small cylindrical

copper nozzle. The gas exits the nozzle through a small hole and undergoes a

supersonic expansion into a vacuum chamber and cools to about a milliKelvin.
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Figure 2.1: Overview of the existing source. As shown, we refer to the region inside
the cryogenic shielding the “near field” and the region near the focus the “far field”.
The camera (FLI ML1001) used for imaging the focus in the far field has been moved
to the near field in this photo. (a) A photograph of the apparatus. One coil of each
optical pumping Helmholtz coil pair is highlighted in blue. (b) A schematic of the
apparatus.
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The gas reaches a terminal velocity of about 210 m/s. An effusive lithium beam

produced from an oven beneath the nozzle is directed into the helium jet at an

angle of 50◦. A small fraction of the lithium atoms are entrained in the jet and are

cooled to around 10 mK by collisions with the helium gas. The expanding gas is

intercepted by a skimmer, which allows a central core of the beam into the following

room temperature region of the vacuum chamber. Helium that does not enter the

skimmer is pumped away by a charcoal Cryo-adsorption pump [60].

The lithium beam enters a magnetic hexapole (also referred to as sextupole)

atom lens, which brings the lithium atoms to a focus by acting on their magnetic

moments. In order to produce the highest flux at the focus, the 7Li atoms are

optically pumped into the ground state hyperfine level F = 2,MF = 2 (Lithium D

line transition and other information is given in Figure D.1 for reference). Without

this step roughly half the atoms would be defocused by the lens and lost. It also

ensures that all atoms experience the same relationship between magnetic force

and magnetic field. Helium atoms are not focused by the atom lens, and therefore

continue on ballistic trajectories until they hit a room temperature surface. These

atoms are then removed by a large diffusion pump below the atom lens.

2.1.1 Brightness and Brilliance

No single number fully characterizes a beam’s distribution in phase space.

Besides the obvious metrics of flux (particles per second), intensity (particles per

second per area), and temperature, an atomic beam can be further described by
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its brightness and brilliance 1. These terms are borrowed from the field of optics.

Brightness (or radiance) describes the number of particles, per unit time, per unit

area in the four dimensional transverse position-angle phase space. The brightness,

R, at an infinitesimal point in phase space is given

R =
dI

dA · dΩ
, (2.1)

where I, A, and Ω are flux, area, and solid angle respectively. The average brightness

in phase space can be found by integration. In practice this may be challenging

because it requires mapping out the distribution of I in phase space. However, in

the case of cylindrical symmetry, which occurs often with beams, we can define the

average brightness to be

R̄ =
I

πr2 ·∆Ω
, (2.2)

where I is the flux in a circle of radius r and solid angle of ∆Ω. This is often referred

to simply as the brightness rather than average brightness. From the solid angle of

a cone we have

Ω = 2π(1− cos(θ)) = 2π(1− cos(arctan(∆v⊥/2v∥)))

Ω ≈ π

4

(
∆v⊥
v∥

)2

,
(2.3)

where ∆v⊥ is the full width spread in the transverse velocity, v∥ is the nominal

longitudinal velocity, and the paraxial approximation was used.

We account for the longitudinal velocity component of phase space with

1Unfortunately, the definitions of these terms varies in the literature.
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brilliance B. Similarly, this is defined as

B̄ = R
v∥

∆v∥
. (2.4)

2.2 Supersonic Helium Jet

The helium jet is produced by flowing helium gas through a simple sonic

nozzle consisting of a 200 µm diameter hole drilled in the thin, flat face of a copper

cylinder. Although it is possible that a shaped nozzle could produce better results, a

sonic nozzle was chosen for its well-understood properties [61]. A shaped nozzle also

has a more forward directed flux which could increase the vacuum load outside of

the cryogenic region. Helium flow is metered by an MKS GE50A flow meter. Heat

exchangers connected to the two stages of the refrigerator cool the gas so that it

reaches a temperature in the range of 4.2 K to 4.6 K inside the nozzle. The number

of atoms leaving the nozzle per second is [61]

ṄHe ≈ 0.403
P0

kBT0
u0d

2, (2.5)

where P0 is the stagnation (pre-nozzle) gas pressure, d the nozzle diameter, T0 is

the temperature of the nozzle, and u0 =
√
2kBT0/mHe, with mHe the mass of a

helium atom.

The terminal forward velocity of the jet is [61]

vf =
√
5kBT0/mHe. (2.6)
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Typically this is quite large (about 1750 m/s at room temperature), which is a

downside of seeded supersonic jets if a goal is to trap atoms. However our nozzle

produces a jet with a much lower forward velocity because it is cooled to cryogenic

temperatures.

In an effusive source the density profile follows n = n0 cos(θ)/r
2 where θ is

the angle from the axis of the nozzle, r is the distance from the nozzle, and n0 is a

constant. In a supersonic source the flux is more forward directed. At distances of

about r > 4d the density distribution follows [62]

n = n0 cos(1.15 · θ2)/r2. (2.7)

In order to reach milliKelvin temperatures it is necessary to avoid the for-

mation of helium clusters, since otherwise the heat of condensation is released into

the expanding gas [21]. The onset of cluster formation is described by the Hagena

parameter [63]

Γ∗ = κ
P0d

0.85

T 2.29
0

, (2.8)

where κ is a species-specific condensation parameter. Over a fairly wide range of

parameters and gas species, it is found that substantial cluster formation occurs only

when Γ∗ > 300. This scaling law has not been tested in our parameter range, but

He cluster formation in cryogenic jets with much smaller nozzles than ours has been

studied [64–66]. They observed some formation of dimers and trimers with Hagena

parameter as low as Γ∗ ≈ 50, but heating of the jet generally remained small up to

Γ∗ ≈ 300. Because of clustering it is not possible to form a cold slow beam of pure
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7Li.

Helium has an unusually low κ of 3.85 K2.29µm−0.85mbar−1 [67, 68], due to

the weakness of the He-He interaction and the fact that the helium dimer has only

one bound state with an extremely small binding energy of about 1.1 mK [69].

It also has an elastic collision cross-section that increases dramatically as the jet

temperature falls [70]. These factors allow helium jets to remain collisional to much

larger distances and cool to much lower temperatures than jets of other species.

The nozzle diameter d = 200 µm was chosen in order to maximize helium

beam brightness without producing an excessively large Hagena parameter. For

instance, with P0 = 25 mbar and T0 = 4.4 K the nozzle produces a flow of 200

SCCM and has a Hagena parameter of Γ∗ = 290. So far, we have not seen any clear

evidence that our results are affected by helium cluster formation.

In our initial search for the focus we noticed that the nozzle temperature

fluctuated. During image acquisition of fluorescence, lasting only a few minutes

typically, the nozzle would slowly heat up. The forward velocity would increase

and the location of the focus would then drift which was a serious hindrance to

locating it. We temporarily solved the problem by flowing helium for long periods

of time and allowing the nozzle temperature to equilibriate, but this wasted time

and helium. To eliminate this problem we stabilized the nozzle temperature with a

50 watt cryogenic heater clamped to the top of the nozzle and a Lakeshore model

325 PID temperature controller. The stabilized nozzle temperature is a few tenths

of a degree above its value with no helium flow, and typically in the range from 4.2

K to 4.6 K. It is important to wait for the nozzle temperature to stabilize before
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taking data which requires about 1 minute.

The forward velocity of the jet is about 210 m/s with a He flowrate of 50

Standard Cubic Centimeters per Minute (SCCM) for extended periods of time. As

the flowrate increases, the nozzle temperature setpoint may need to be increased to

account for the extra thermal load of the flowrate. If not increased the nozzle will

heat up past the setpoint and the focus will move. Above 250 SCCM even short

runs of 1-2 minutes require the nozzle to held at a higher setpoint resulting in speeds

of 217(2) m/s.

As the helium gas expands, its density drops and therefore its collision rate

drops. This results in a region of continuum flow near the nozzle, a region of

molecular flow far from the nozzle, and an intermediate flow region between these

two [61, 71]. In the intermediate region, collisions are no longer frequent enough to

maintain local thermal equilibrium so the temperatures parallel and perpendicular

to the nominal jet velocity decouple and become unequal. At distances greater

than a few nozzle diameters, but still in the continuum flow region, the helium

adiabatically cools according to [71]

T (z) = 0.287 T0

(z
d

)−4/3
, (2.9)

where T is the helium temperature and z is the distance from the nozzle.

The quality of the nozzle and helium may affect the expansion. We believe

we have found this to be the case with our nozzle which had a nicked and pitted

opening as shown in Figure 2.2. After polishing with Simichrome the measured
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Figure 2.2: Photo of the nicked and pitted front face of the nozzle.

temperature of the focus decreased by 10s of milliKelvin and the location changed

by about 18 cm. Inspired by this we also upgraded the He gas delivery system to all

stainless steel and added a nitrogen purge system with the goal of reducing impurities

entering the expansion. Impurities have been observed to elevate the temperature

of a supersonic expansion [72]. Admittedly, it is unlikely that impurities in the He

gas would actually make it out of the nozzle. Instead they will likely condense on a

surface in the cryogenic portion of the gas manifold.

Adiabatic cooling extends only as far as the continuum flow region. Using

the known He-He cross section [70] and density profile of the jet the helium mean-

free path at z = 4 cm with a flow rate of 50 SCCM is estimated to be 2 mm.

Continuum flow therefore likely continues to at least z = 4 cm. Thus, according

to Equation 2.9, the He gas should reach a temperature of about 1 mK. A similar

estimate yields that only a few collisions remain for distances greater than z = 10

cm and thus cooling has effectively ceased.
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Shock fronts are a common feature of supersonic jets [62, 73]. These form

as the supersonic flow, which travels faster than the local speed of sound, is unable

to respond to downstream boundary conditions. This results in an over-expansion

of the jet, which is compensated for by the formation of shock fronts. These non-

isentropic regions add entropy to the jet, heating it and potentially preventing the

extraction of the seeded species. When shocks are present, supersonic beam ex-

periments use a skimmer [61] to penetrate through the shock front and extract the

central portion of the beam.

The skimmer is located 16 cm from the nozzle with an inlet diameter of 1

in, as shown in Figure 2.3. The rim of the skimmer is sharpened to a knife’s edge.

At this location the jet is in free molecular flow. The skimmer was placed at this

point to avoid skimmer interference effects that can occur with placement closer to

the jet and because it was estimated that with the high speed of the charcoal pump

no shock would form out to this distance, even at the highest He flow rate. We have

seen no evidence of shock fronts.

The capture half angle of the atom lens is about .064 radian. Since this is

a relatively small angle, it is important that entrainment is maximized along the

centerline of the jet. To facilitate this the nozzle can be displaced and tilted in

order to maximize seeding efficiency and alignment to the skimmer. Adjustments

are made by three threaded rods that connect the back free flange to the front flange

mounted to the chamber. Under vacuum the force on the back flange can cause the

bellows to translate in a manner that cannot be corrected by adjustments of the

threaded rods. This caused a clear shift of the nozzle from the skimmer centerline.
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To compensate this transverse supports were added. One must be extremely careful

when making adjustments to not crash the nozzle into any part of the cryogenics.

Because adjustments are made against the force of vacuum, it is not possible to feel

such a collision occurring.

In order to efficiently capture and extract the seeded lithium, the jet must

be of intermediate transverse collisional thickness. If it is too thin, atoms may

overshoot the jet, while if it is too thick they may bounce off of it. The transverse

collisional thickness varies with distance z as 1/z, so it is possible to increase or

decrease the collisional thickness with a change in the seeding location by adjusting

the nozzle. When estimating this location, it is important to take into account the

energy dependence of the Li-He cross-section. Fortunately, this cross-section has

been calculated to high accuracy [74, 75]. In practice we optimize the seeding by

moving the nozzle in or out until a maximum signal is measured.

The first few Li-He collisions will have high relative energies, for which the

cross-section is small. This means that the lithium atoms can easily penetrate into

the jet even at locations where the helium jet is thick for He-He collisions. After the

first few collisions the relative collision energy drops and the cross-section increases

substantially. This results in a pronounced increase in the collision rate, and causes

the lithium atom to become entrained with the He flow and to approach the He

jet temperature. An implication of this is that the highest energy collisions occur

in the outskirts of the jet and most energy is deposited and remains there. This

limits heating of the center of the jet which could elevate the base temperature of

the lithium beam. A simulation of the source discussed in Section 5 suggests that
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this is largely true, though a non-negligible amount of energy may enter the center

of the jet from the outskirts.

2.3 Cryogenics and Vacuum

A schematic of the cryogenic region is shown in Figure 2.3. Cryogenic com-

ponents are cooled by a two-stage Cryomech model PT410 Pulse Tube Refrigerator

(PTR). The first stage has a cooling capacity of 40 watts at a temperature of 45 K,

and the second stage has a cooling capacity of 1 watt at a temperature of 4.2 K. The

cryogenic region is surrounded by an 18x18x18 inch copper heat shield thermally

connected to the PTR’s first stage. This provides isolation of the cryogenic region

from room temperature blackbody radiation. The shield is suspended by thin walled

stainless steel tubing from the vacuum chamber’s ceiling to minimize thermal con-

duction. Multiple layers of superinsulation are placed both outside and inside this

shield to reduce radiative heat loads [76]. Additional insulation was added through-

out the apparatus and found to reduce the temperature in the first stage by about

0.5 K. Helium flows into the cryogenic region through a heat exchanger connected

to the PTR’s first stage, then through a second heat exchanger connected to the

second stage, and finally through the nozzle.

PTRs apply cooling power in pulses which caused an unexpected issue with

our data analysis. Fluorescence data in the far field (Figure 2.1) would often be

excessively noisy beyond what is expected from shot, background, or camera noise.

After investigation we determined the cause was the periodic nature of the PTR

[77]. During the cycle the cooling power would vary, which resulted in the nozzle
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Figure 2.3: (a) Photograph of the cryogenic region. (b) Schematic of the cryogenic
region.
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temperature varying, and therefore the forward velocity. The effect is small but

enough to make data analysis more challenging. The solution was to simply collect

data at integer multiples of the period of the PTR, about 700 ms. The discovery

of this was somewhat shocking, considering that over 40 lbs of cryogenic copper is

present which one would think buffers such an effect.

Thermal connections to the refrigerator cold plates are made by multiple flex-

ible copper braids welded to clamps. Each braid is composed of 2880 36-gauge wires.

The braids allow for spatial adjustments to the helium source during operation, and

prevent the transfer of excessive strain to the PTR. The first and second stage cold

plates are rated to 22 and 11 lbs of transverse force respectively. Unfortunately,

during reassembly after the experiment was moved, one of 8 connections to the 45

K cold plate could not be completed without the application of excessive force. To

decrease thermal resistance, Apiezon N is applied at all thermal junctions. C10100

copper is used throughout to maintain conduction at cryogenic temperatures [78].

In order to avoid shock front formation and excessive helium background gas

pressures, it is necessary to have a very high pumping capacity for the helium gas.

This is provided by a toroidal charcoal cryopump. It consists of 60 rectangular 4x16

inch copper fins covered in an epoxied layer of charcoal. These fins are thermally

connected to the second stage of the refrigerator, and typically operate at a tem-

perature of 4.0 to 5.5 K. At these temperatures, the charcoal is a highly effective

adsorption-based pump for helium gas [60]. The rectangular openings between the

fins form an approximately cylindrical pump opening that surrounds the expanding

jet. The finned structure provides efficient pumping because most helium atoms

22



collide with a fin surface that faces another fin. If the helium atom is not adsorbed

it will then scatter into the opposite fin. The process repeats until the atom is

adsorbed.

Helium atoms have an adsorption energy on charcoal from 80 K to 300 K

per atom, varying with the quantity of helium already adsorbed [60]. This is the

dominant heat load on the experiment, and sets a limit on the helium flow rate.

The pump was designed for a maximum flowrate of 300 SCCM and we have found

this to be approximately correct. Flowrates of abut 400 SCCM and higher overload

the pumping capabilities.

1.2 to 1.4% of the directed flow of the helium exits the cryogenic region

through the skimmer and is pumped away by a CVC PVMS-1000 diffusion pump

and a cooled chevron baffle that has an estimated net pump speed for helium of 3,500

L/s. The diffusion pump is backed by a Leybold D90AC rough pump. Oil from the

rough pump entering the experiment is a serious concern because it contaminates

gauges and increases the base chamber pressure. To help prevent this, argon is bled

into the foreline to maintain a pressure of about 100 millitorr, which results in a

mean free path of roughly 0.1 mm [79]. Without this the mean free path would be

large enough for oil particles to freely travel down the length of of the foreline. A

molecular sieve trap containing zeolite 13X is used as well.

To determine the pumping speed of the cryopump we conducted an exper-

iment where we blocked the line of sight between the helium nozzle and skimmer

opening. The gas load on the diffusion pump is then dominated by the flow of scat-

tered cryogenic helium background gas through the skimmer opening. Assuming
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that the cryopump speed, S1, is much larger than the skimmer conductance, C12,

the pressure in the cryogenic region is

P1 ≈
QN

S1
, (2.10)

where QN is the gas flow through the nozzle. The room temperature region 4He

pressure is

P2 ≈
P1C12

S2
, (2.11)

where S2 is the speed of the diffusion pump. In our experiment we measured a linear

relationship between P2 and QN of P2 = γQN . Solving for S1 then gives

S1 ≈
QNC12

P2S2
=

C12

γS2
, (2.12)

The temperature of the 4He gas must be between the 4.4 K and 45 K temperature

of the cryogenic region surfaces. Using a value of 15K the skimmer conductance is

then C12 = 2.9
√
T/mD2 = 36 L/s where D is the skimmer aperture diameter in

cm and m is the molar mass of 4He. Using our measured value of γ = 4.7 × 10−7

s/L yields S1 ≈ 20, 000 L/s. Combining uncertainties in the value of γ and S2 we

estimate this is accurate within a factor of 2.

The estimated background gas pressure and density in the cryogenic region,

with our maximum flow rate of 300 SCCM, are 7 × 10−6 torr and 6 × 10−18 m−3

respectively. Using the He-He collision cross-section [70] at T = 15 K of σ = 8 ×

10−15 m2, the estimated mean free path of a helium atom in the cryogenic region is

about 20 cm. With this pressure and mean free path, the jet should transition from
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continuum to molecular flow without any formation of a shock front. We have seen

no evidence of any effects of shocks in our experiment.

The charcoal has a finite capacity to adsorb helium. We find that we can

flow helium continuously at a rate of 50 SCCM for over 12 hours. However as the

charcoal fills with helium, the pressure in the cryogenic region begins to increase.

We have observed that measured flux decreases with long run times and believe

that this elevated pressure is the explanation. As the charcoal continues to fill with

helium eventually a runaway condition occurs as elevated pressure promotes thermal

conduction which increases charcoal temperature. Eventually the charcoal climbs

in temperature by tens of Kelvin and sheds its helium. The experiment can be left

running until it is again cooled to its previous temperature, but this takes about 6

hours. The run time can be extended by shutting off the helium flow between data

acquisition.

2.4 Lithium Oven

The lithium oven is a two piece design with a separable reservoir and nozzle,

both heated independently, as shown schematically in Figures 2.4 and 2.5. Heating

is generated by mineral insulated Inconel sheathed heater cables that are wound

around and vacuum brazed to the oven. The heater cables are purchased from

ARi industries. It is important that the top and bottom can be heated separately

so that the top can be held at a higher temperature. This prevents migration of

lithium to the top which would, and has, resulted in clogging. The oven can be

easily run with only the top heater working, which we were forced to do for about
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Figure 2.4: Schematic of lithium oven and insulation. The 1050 K oven is insulated
from the cryogenics by several methods.

a year after the bottom heater broke after 10 years of age. This turned out to be

completely adequate for purposes of characterizing the source, although the total

flux was reduced. The delay was quite lengthy and we would recommend having a

second oven on hand.

The oven is loaded with about 1.5 grams of lithium wire and can be run at its

maximum temperature continuously for several hours. It is constructed of Stainless

Steel (SS) and is suspended by SS wires inside a copper cylinder, which is cooled by

room temperature water at the base. Multiple layers of thin SS sheets surround the

oven providing a degree of radiation insulation. The copper cylinder resides inside

an extension into the 45 K shielding. These insulating techniques allow the oven to

operate at temperatures up to 1050 K with very minor heating of the cryogenics,
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Figure 2.5: Photographs of the lithium oven and the lithium oven housing.
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although they are separated by only 5.5 cm. The half angle of the extracted beam

from the 45 K shielding is approximately 0.09 radians.

The oven nozzle is a conical design with a 1 mm diameter hole. When heated

to 1050 K the Knudsen number is estimated to be 0.14, in the intermediate region

between supersonic and effusive. The oven was designed with a shaped nozzle to

potentially generate a more forward directed flux, but the extent to which this is

occurring in our application is unknown.

Refilling the oven is tedious, requires about 4 hours if everything goes cor-

rectly, and presents many opportunities to break components. Care must be taken

to not strip any screws that may have seized when the oven was heated. Originally

we used boron nitride spray as an anti-seize which performed poorly and resulted

in about a 50% chance of a seized screw. We then tried silver plated screws with

some improvement. However, it turned out that the boron nitride was expired by

a decade and using fresh boron nitride (Momentive Performance Materials Boron

Nitride Spray II) worked flawlessly. It is also possible that the different brand was

the solution. New socket or flathead head screws are used during every refill to

reduce the chance of stripping. 316 SS screws from McMaster-Carr are sufficient.

We would originally fill the oven inside a glove bag of argon but found this to be

unnecessary as long as the lithium, after two steps of ether rinsing, is transferred to

the reservoir quickly. Once in the reservoir it can be protected from oxidation by

filling with ether until it is capped.
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Figure 2.6: (a) Photo of the optics table. (b) The spectroscopy laser. (c) The optical
pumping laser. (d) The optical pumping amplifier.

2.5 Laser Optics System

Two lasers are used for spectroscopy and optical pumping operating on the

2S → 2P transition near 670.8 nm, shown in Figure 2.6. Both are external cavity

diode lasers in a Littrow configuration. The spectroscopy laser outputs about 7.5

mW, and the optical pumping laser outputs 500 mW from an Eagleyard tapered

amplifier. The spectroscopy laser is typically used by sweeping over a frequency

range of about 5 GHz. The laser is frequency locked and controlled by a home-

made PI circuit that uses the transmittance through a tunable low finesse Coherent

1906 etalon as the lock point. The frequency is controlled by changing the opti-

cal path length of the etalon with an externally applied voltage that modulates a

servo controlled glass plate inside the etalon. The original laser-optical system was

only the spectroscopy laser without frequency locking and was controlled by directly
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changing the piezo voltage.

The spectroscopy laser is calibrated with a separate reference atomic beam

produced by an oven housed in a cylinderical chamber. The chamber is pumped

to about 1 × 10−6 torr. The oven is typically ran at about 400◦C, and the output

is collimated by a small slit of width 0.02 inches located 1 inch from the oven

output. At this temperature the lithium supply has yet to be exhausted after years

of running. A small portion of the spectroscopy laser power is sent through a window

into the chamber and retroflected. Retroreflecton eliminates the dependence of the

frequency scale on the angle between the laser and the oven output because the

frequency of the dip between the two shifted peaks is independent of the angle.

Calibration data is recorded by a PMT. The D2 line of 7Li is used for cali-

bration. The separation between the two ground state 7Li hyperfine levels is 803.504

MHz and is used to set the frequency scaling. The frequency scale is relative to the

22S1/2 F = 2 → 22P3/2 transition measured in the reference chamber. Every time

fluorescence data is recorded in the experiment the laser is swept over a range that

encompasses the D2 line and signal is recorded. During analysis this calibration

signal is used to set the frequency scale.

When it eases analysis a repumper laser is added to the spectroscopy laser to

prevent unwanted optical pumping. This is done with an Electro-Optic Modulator

(EOM) driven at 803.504 MHz, producing two side-bands one of which serves as the

repumper. Calibration was originally done with a doppler-free spectroscopy scheme.

This was replaced by the above system for the addition of the optical pumping laser.

The optical pumping laser is used to pump atoms in the near field into the
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22S1/2 |F = 2,mF = 2⟩ state in which atoms experience the ideal magnetic force as

explained in Section 2.6. Right hand circular (RHC) polarized light is produced from

a Quarter Wave Plate (QWP) and is used to drive σ+ transitions. The extinction

ratio of the QWP through our vacuum windows has been measured to be 100:1 at

atmospheric pressure. A vertical magnetic field of 2 G with transverse components

less than 20 mG produced by Helmholtz coils is used. Large coils are used to

maintain a definite magnetic field direction out to the atom lens. The resulting

optical pumping efficiency is around 95%. When performing transverse fluorescence

in the far field we attempt to preserve the optical pumping with a similar magnetic

field and the use of RHC polarized light.

The laser is locked to the 22S1/2 F = 2 → 22P1/2 F
′ = 2 transition with the

reference atomic beam used for calibrating the spectroscopy laser. The locking signal

is recorded with a second PMT. The lock is a simple homemade proportional circuit

controlling the laser piezo voltage. The maximum angular divergence of atoms that

exit the skimmer have a Doppler shift of about 20 MHz. To optically pump all

capturable atoms, the laser frequency is broadened. This is done by dithering the

current supply of the laser at 800 kHz at an amplitude that widens the laser linewidth

to about 25 MHz. Frequency broadening with current modulation has the additional

benefit of reducing excess scattered photons as compared to power broadening. This

is important at high densities as re-absorption of scattered photons could limit the

efficiency of the optical pumping.

Fluorescence spectroscopy in the near field (Figure 2.1) is performed by

sending a laser down the center-line of the jet through the skimmer or vertically
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through a window in the cryogenic region. The Doppler shift from the longitudinal

data is used to determine the atom forward velocity. In the far field, a laser can be

used vertically, horizontally transverse, or longitudinally in the observation cell. At

certain oven temperatures the beam is sufficiently dense to allow absorption imaging

in the far field.

Flourescence data is taken in the experiment with two cameras. The first

camera is positioned to image the nozzle region in the near field and the second

is located about 176 cm downstream of the nozzle for imaging the focus in the far

field (Figure 2.1). A window limits the Field Of View (FOV) of the nozzle to about

4-5 cm past the nozzle depending on its location. In hindsight it would have be

beneficial to have extended this FOV to include distances up to the skimmer.

Several different camera brands have been used including Thorlabs, Ximea,

FLIR, and FLI. We have found that commercial Complementary Metal Oxide Semi-

conductor (CMOS) cameras, contrary to their specifications, are actually quite poor

choices for imaging when one wants to relate signal to photons. The first reason

for this is that these cameras may employ lenslets on the chip surface to help direct

light rays into the imaging substrate. This makes it difficult to determine what

fraction of photons that enter the camera are actually counted and it is not possible

to find data on this effect for many cameras. Second, these cameras may adjust

black levels autonomously which has been a source of frustration. The effect can

be disabled in some cameras, and in the case of Ximea, required technical support

to contact the chip manufacturer. The solution was to send an opaque command

to the camera which we were warned could cause other undesired effects though it
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Figure 2.7: An image of the laser/camera control and data analysis GUI.

appears to have worked. In the future it would be best to avoid cameras designed

for scanning barcodes and other machine vision applications. The current near field

camera is a Ximea brand MC031MG-SY-UB CMOS. The far field camera is a FLI

brand Charge Coupled Device (CCD) ML1001 camera meant for scientific or as-

tronomy applications. An advantage of CCD over CMOS cameras is the ability to

bin pixels and significantly increase the signal to noise ratio at the cost of losing

resolution. This has been instrumental in our experiment.

The cameras and spectroscopy laser are controlled by a homemade Python

Graphical User Interface (GUI) shown in Figure 2.7. The cameras are controlled

with Python libraries (ximea for the Ximea MC031MG-SY-UB, and pyfli for the

FLI ML1001). Voltages and PMT signal are controlled and read with a National

Instruments PCI-6251 that is controlled with a Python library (nidaqmx). The GUI

is also used to perform temperature analysis with a result shown in Figure 3.2.
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Figure 2.8: Photographs of the far field optomechanic setup. The camera has been
removed in this photo. Left and Right refer to the direction when viewed from the
nozzle’s perspective.

Initial characterization of the far field, primarily finding the focus, was chal-

lenging due to an inadequate setup. It took a few iterations to develop a technique

that we could use to reliably find the focus in 3 dimensions. The first issue was the

camera as previously described. Another issue was the optomechanic setup. We

were misusing a optomechanic platform that could move in 3 dimensions over large

distance, but would spontaneously shift under the excessive weight. The third issue

was we were also using a very narrow laser to induce fluorescence.

The current solution is a sliding upper/lower platform that moves along

rails and gliders from the 80/20 brand as shown in Figure 2.8. The lower platform

supports a pair of cylindrical lenses that produce a vertically orientated laser with

a waist of 2.8(3) cm and 0.59(3) mm in the longitudinal and transverse directions
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Figure 2.9: (a) Image of the magnetic field and potential of the atom lens. (b)
Photograph of a single layer of the lens and the fully assembled lens in a holder.

respectively. The large longitudinal beam waist minimizes the need to move the

beam during characterization and eases analysis. The camera resides on the upper

platform.

2.6 Magnetic Lens

To collect the expanding lithium beam, a magnetic lens built by an under-

graduate student Travis Biles is used. The input face of the magnetic lens is located
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72 cm beyond the nozzle. The beam is brought to a focus 176 cm beyond the nozzle

for a forward velocity of 207 m/s. The helium atoms are unaffected by the lens and

continue expanding. We defined the focus as the point with the minimum FWHM.

This choice is explained in Section 3.2.

The lens is a permanent magnet Halbach array hexapole configuration as

shown in Figure 2.9. It is formed of two concentric layers with cuboidal magnets

of dimensions 1x1x1 in and 1.5x1.5x1 in. Longitudinally each layer is 1 in long.

The field strength is about 0.9 tesla at a radius of 4.5 cm, which is approximately

the usable aperture before field quality sharply decreases. The inner layer magnet

grade is N4017 and the outer layer is N4012. Simulations indicated that the inner

grade may be exposed to magnetic fields that could demagnetize the material, so

the higher grade N4017 was used there. The original design was 10 layers long,

however when installed it was found that the focus was occurring too close to the

magnet face to appear in the observation cell. The lens was reduced to 6 layers

and the focus appeared in the observation cell. It is worth noting that the process

of removing or adding layers is quite tedious and a bit dangerous because of the

strength of magnetic fields at play.

For later use we will review the physics of atom-magnetic field interactions

and magnetic materials. A neutral alkali atom in a magnetic field has ground state

potential energy

V = −
∆Ehf

2(2I + 1)
+ gIµBMB ±

∆Ehf

2

√
1 +

4M

2I + 1
x+ x2, (2.13)
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Figure 2.10: Potential energy shift of ground state 7Li atom in a magnetic field.
Above a few hundred gauss the atom-field interaction becomes dominated by the
electron-field interaction.

where

x = (gJ − gI)
µBB0

∆Ehf
, (2.14)

I is the nuclear spin quantum number, J is the total electron angular momentum

quantum number, gi is the nuclear g-factor, gj is the Lande g-factor, M is the total

atomic angular momentum (F ) projection quantum number, ∆Ehf is the hyperfine

splitting at zero magnetic field, µB is the Bohr magneton, and B0 is the norm of

the magnetic field [80]. The plus-minus outside the square root corresponds to the

sign of the electron spin projection ms. This is known as the Breit-Rabi equation.

A Breit-Rabi diagram for ground state 7Li is shown in Figure 2.10.

Notice that the lines become nearly straight by 500 gauss, while the fields
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inside a permanent magnet lens reach values of nearly 10,000 gauss. To first order

in a permanent magnetic lens it is reasonable to expand Equation 2.13 to get

V ≈ ±µBB0, (2.15)

where gI was dropped because gI ≪ gJ , we neglected terms that do not depend

on B0, and used gJ ≈ 2. In this regime the interaction between the atom and

the magnetic field is dominated by the electron, so the Breit-Rabi diagram simply

becomes two sets of parallel lines with the slopes dictated by the z projection of

the electron. We optically pump our atoms into the 22S1/2 |F = 2,mF = 2⟩ state

which experiences a linear restoring force everywhere (Figure 2.10). The force on

the atom is then simply

F⃗ = −∇ (±µBB0) = ∓µB∇B0. (2.16)

Equation 2.16 only holds under the adiabatic approximation which assumes

that the magnetic field vector changes direction slowly. If the magnetic field vector

changes too fast then an atom may undergo a Majorana spin-flip and transition

into a high field seeking state and be lost. This can occur near the vicinity of a

magnetic field zero-point where the magnetic field vector changes direction rapidly.

The timescale is set by the period of Larmor procession. To avoid this effect, traps

will typically have an additional magnetic field of a few gauss added to “plug” the

zeros.

To achieve radial lensing we need a restoring force that is linear in radial
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displacement and thus a magnetic potential second order in radial displacement.

To see this recall that a lens works by deflecting rays (or atoms) by an amount

proportional to the ray’s displacement from the center of the lens. To find the right

magnetic field we look to the multipole expansion of 2D magnetic fields. In polar

coordinates this is conveniently expressed as [81]

Bθ =
∞∑
n=1

rn−1 (an sin(nθ) + bn cos(nθ))

and

Br =
∞∑
n=1

rn−1 (−an cos(nθ) + bn sin(nθ)) ,

(2.17)

where θ is the polar angle, r is the radius, and an and bn are the amplitudes. n = 1

are the dipole terms, n = 2 the quadrupole terms, n = 3 the hexapole terms,

and so on. an is known as the “skew” amplitude and bn the “upright” amplitude.

This expansion is used extensively in charged particle accelerator theory as will be

discussed in Chapter 4. Equation 2.17 can also be rewritten with a trigonometric

identity in a form where the variables an and bn become An and ϕn where ϕn

describes the orientation of multipole n and An the amplitude.

The magnetic norm of a single multipole is

Bn = |Brnr̂ +Bθnθ̂| = Knr
n−1, (2.18)

which is more conveniently expressed by

Bn = Bp

(
r

rp

)n−1

, (2.19)
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where Bp is Bn at radius rp, and rp is typically the magnet bore radius and also

known as the pole face radius. With n = 3 (hexapole) we get what we were looking

for, namely

B0 = Bp

(
r

rp

)2

, (2.20)

which with Equation 2.16 gives

F⃗ = µB∇⃗rB0 = ∓2BpµB
r

r2p
r̂, (2.21)

a linear restoring force for a low field seeking atom and thus provides focusing.

We should stop and consider an important distinction between Equations

2.17 and 2.19. The magnetic multipole expansion is an orthogonal basis and any

magnetic field can be expressed by a linear combination of Equation 2.17. Turning

this around, we can decompose any desired realistic magnetic field into its multipole

components. This property is exploited in accelerator magnet design to eliminate

unwanted magnetic fields by applying a canceling multipole term. Unfortunately,

Equation 2.19 does not possess the same properties.

A multipole of order n can be produced interior to an annular cylinder if the

magnetization in the cylinder follows

M̂n = cos(θ(n+ 1))x̂+ sin(θ(n+ 1))ŷ, (2.22)

which can be approximated by discrete magnets [82] as shown in Figure 2.11. The

resulting field is only a pure multipole for infinitely long magnetic material. Trun-

cation introduces fringing fields that cause the multipole to not only be imperfect
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Figure 2.11: (a) The magnetic field norm of a hexapole field produced by an ideally
magnetized material. (b) The same field but produced by a discrete approximation
to the continuously varying magnetization. Near the edges the break down of the
approximation can be seen.

in the 2D plane, but also introduces longitudinal effects.

2.6.1 Permanent Magnets

Neodymium permanent magnets, or NdFeB magnets, are a common choice

for constructing Halbach arrays. They produce strong magnetic fields and are rel-

atively cheap and robust. To a decent approximation they are a hard magnetic

material as opposed to iron which is soft. This means that once magnetized they

tend to maintain their magnetization even when opposing magnetic fields are intro-

duced.

A common tool for understanding the behavior of a magnetic material is

the B-H curve. An example B-H curve for neodymium is shown in Figure 2.12.

The “knee” is the region where the hard material properties of the magnet begin to

rapidly break down and magnet is at risk of demagnetization. The other terms will
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Figure 2.12: B-H curve of N5211 for demagnetizing fields [83]. Both the normal and
intrinsic curves are plotted.

Figure 2.13: Plots of B⃗, M⃗ , and H⃗.
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be explained shortly.

Recall that the relation between B⃗ and H⃗ is

H⃗ ≡ B⃗

µ0
− M⃗, (2.23)

which with Maxwell’s equations give

∇⃗ × H⃗ = µ0J⃗free

and

∇⃗ · H⃗ = −∇⃗ · M⃗,

(2.24)

where J⃗free is free current and we ignored electric fields. Notice that not only is H⃗

produced by currents, but it is also produced by discontinuities in M⃗ . A magnetized

bar has no free current, but does have ∇⃗ · M⃗ ̸= 0 at its end. This produces an H⃗

that is in the opposite direction to B⃗ and M⃗ inside the material as shown in Figure

2.13. For a constant M⃗ this results in reducing the strength of B⃗. As the magnet’s

length is increased the average strength of H⃗ falls. A magnet formed into a toroid

will have no discontinuties in magnetization and there will be no H⃗.

The “normal” curve shown in Figure 2.12 is the total measured magnetic

field as a function of H⃗ while the intrinsic curve is defined as the measured magnetic

field without the contribution of H⃗. From Equation 2.23 this gives for the intrinsic

curve

B⃗intrinsic = µ0M⃗(H⃗), (2.25)

where we have included that M⃗ is a function of H⃗.
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The intrinsic curve thus describes the magnetizing behavior of H⃗. In a

neodymium permanent magnet an opposed H⃗ works to demagnetize the magnet

as seen in Figure 2.12. We made no mention of the origin of H⃗ such as wether

it originated from an external coil, another magnet, or from the magnetic material

itself. Because the permanent magnet produces its own opposing internal H⃗ (Figure

2.13), it can partially demagnetize itself. This is known as self demagnetizing and

depends on the geometry of the magnet.

Away from the knee of the intrinsic curve the slope can be approximate by

a straight line with slope χ (Figure 2.12). Thus M⃗ can be written as

M⃗ ≈ M⃗0 + χH⃗. (2.26)

Now if we add H⃗ back to the intrinsic curve to get the normal curve, then we have

over the region away from the knee

B⃗ = µ0H⃗ + µ0M⃗ = µ0H⃗ (1 + χ) + M⃗0 = µrµ0H⃗ + µ0M⃗0, (2.27)

where µr is the relative permeability. The reader may notice what appears to be

some notational abuse. Typically µr and χ are defined by M⃗ = χH⃗ and B⃗ = µH⃗.

This is intentional because we have approximated the B-H curve as a perfect hard

material with the additional contribution of a linear soft material.

In permanent magnets this relative permeability is known as the recoil per-
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meability. It is a tensor with typical values in neodymium permanent magnets of

µr =


1.05 0 0

0 1.15 0

0 0 1.15

 (2.28)

for magnetization aligned along the x axis [84].

For reference, the effect of self demagnetization of a cube is to reduce the

total magnetization by about 1.6% while the difference in magnetization between

the two neodymium grades N52 and N50 is about 2.5%. For many applications the

recoil permeability is ignored, while attention is only given to remaining away from

the knee. However, in a permanent magnet storage ring where particles may make

hundreds or thousands of revolutions, this may not be reasonable.

2.6.2 Magnet Imperfections

In reality magnetic material have prescribed tolerances. A permanent mag-

net has three key tolerance parameters: dimensional deviations, magnetization angle

deviations, and magnetization strength deviations. Dimensional deviations are devi-

ations in the size of the magnet. Magnetization strength deviations are deviations in

the mean magnetization, ⟨|M⃗ |⟩, of the magnet. The magnetization angle deviation

is the tilt of the magnetization vector from the intended direction. Table 2.1 gives

the tolerances for high quality magnets (as opposed to novelty grade magnets).
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Type value unit

Dimensional ∼.002 ± inches

Magnetization angle ∼3 + degrees

Magnetization strength ∼1 ± %

Table 2.1: Standard high quality NdFeB magnet tolerances. This was assembled
from vendor spec sheets and private communications. The values can vary and some
vendors can provide nearly arbitrary tolerances at greater cost.
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Chapter 3

Source Characterization

This chapter reviews recent work on characterizing and improving the exist-

ing source. Experimental measurements as well as simulated results are included.

3.1 Near Field

Characterization of the near field sheds light on the seeding dynamics and its

efficiency. Performing fluorescence spectroscopy in this region allows us to measure

the velocity spread of the lithium atoms as well as the density within the capturable

solid angle of the magnet. These results can be compared with simulations and give

crucial insight into the conditions that maximize extracted flux.

Transverse and longitudinal spectral profiles for a range of flow rates are

shown in Figure 3.1. Laser intensity was below 1 µW/cm2 for all measurements.

Measurements were taken 4 cm beyond the nozzle. The fluorescence is from the

22S1/2 F = 2 → 22P3/2 transitions without a repumper and very low laser power

to limit optical pumping. The lineshapes are asymmetric, which indicates lithium

atoms which still have a relatively high velocity compared to the expected velocity

distribution of the jet. The asymmetry in the transverse data indicates there is an

unthermalized velocity component upwards through the jet. Within the viewing
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Figure 3.1: Near field fluorescence image and data from transverse laser. (a) Image
of longitudinal fluorescence in the near field up to the limit of the FOV. The green
square indicates the region that corresponds to the fluorescence profiles and is en-
larged for visibility. (b) Longitudinal fluorescence profiles for various flow rates in
the near field. (c) Transverse fluorescence spectra in the near field. The red line
depicts the natural linewidth (5.9 MHz) at the peak value for reference. Notice for
higher flow rates the profile narrows indicating better thermalization at the mea-
surement point.
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Figure 3.2: Data analysis example applied to 250 SCCM flow for longitudinal data.
The fit is to the entire profile. Agreement is reasonable for except for the asymmetry.

region the width of the profile decreases further from the nozzle. Collisions likely

continue to occur past 4 cm, the limit of the viewing region, reducing the asymmetry

and width of the velocity distribution. As mentioned it would have been beneficial

if the FOV were larger so that this collisionality could be measured.

Because the lineshapes are asymmetric their temperature is not well de-

scribed by a Maxwell-Boltzman distribution. The atoms are not in thermal equi-

librium, for which case ascribing a temperature to them is dubious. However, we

can consider the full distribution to be a thermalized portion, which results in the

sharp central distribution, and an unthermalized distribution resulting in the long

tails. Fitting the distribution then gives some measure of the temperature of the

thermalized portion.

The width of the distributions for He flowrates above 100 SCCM is larger but
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not significantly larger than the natural linewidth. A simple Gaussian distribution

fit would then overestimate the temperature. Accounting for the natural linewidth

results in a Voigt profile which is the convolution of a Lorentzian and Gaussian.

Furthermore, because the hyperfine transitions are not well resolved and overlap a

multi-Voigt fit must be used where each transition is appropriately weighted. Laser

linewidth broadening, if modeled as a Gaussian, is easily added the multi-Voigt

by the convolution property σVoigt =
√
σ2
thermal + σ2

laser. A similiar property exists

for Lorentzian distributions. σlaser is less than a MHz and makes little difference

for temperatures above about 10 mK. Applying this analysis to the 250 SCCM

longitudinal profile shown Figure 3.1, the narrowest profile, yields a temperature

of about 50 mK. There is non-negligible absorption occurring in the longitudinal

which further complicates the analysis. The fit and characterization produced by the

experiment control and analysis GUI is shown in Figure 3.2. The same analysis yields

around 20 mK for the transverse. In the longitudinal at the measured density, some

absorption is anticipated which may result in an elevated measured temperature.

Two parameters we can vary to maximize signal are the He flow rate and

the seeding distance. The seeding distance is the distance from the nozzle to the

centerline of the lithium beam from the oven and is determined by analyzing fluores-

cence images with zero helium flow. We found that a flow rate of 150 SCCM and a

seeding distance of 1.7 cm maximized signal. This contrasts with the far field where

the values are 0.7 cm and 50 SCCM. This will be discussed in the next section.
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Flow Rate
(SCCM)

Measured Density
(×108 cm−3)

Simulated Density
(×108 cm−3)

50a 2.4(4) 2.3(4)

50 1.1(2) 1.0(2)

100 2.6(5) 2.4(4)

150 4.5(8) 3.2(5)

200 4.0(7) 3.1(5)

250b 3.7(7) 2.6(4)

300b 3.1(6) 2.1(3)

Table 3.1: Near field average 7Li density within the capturable solid angle of the
skimmer compared to simulation. a: Seeding distance of 0.7 cm. b: The nozzle
temperature set point must be increased at higher flow rates such that the terminal
velocity is 217(2) m/s instead of 210(2) m/s.

The average lithium atom density n over volume V is given by

n =
ℏωΦ(w)
σ(w)

(∫∫∫
V
l(r⃗)I(r⃗)dV

)−1

, (3.1)

where l(r⃗) is the spatial profile of the atomic beam normalized to a height of one, I(r⃗)

is the laser intensity, σ(w) is the broadened cross section, and Φ(w) is the number

of scattered photons per second. For greatest signal to noise the resonant frequency

w0 is used. Φ accounts for the collection fraction and efficiencies of the imaging

system. The spatial profile is determined by fitting the fluorescence signal assuming

cylindrical symmetry. σ(w) accounts for frequency broadening from the natural

linewidth, laser linewidth, Doppler broadening, and hyperfine structure [80, 85].

This is calculated numerically by

σ(w) = ζ
3

4
λ2A21s(w), (3.2)
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where A21 is the Einstein rate coefficient, ζ is a factor that depends on the polar-

ization, and s(w) is the measured spectral profile with area normalized to 1 Hz.

Average atomic density values for various He flow rates are given in Table

3.1 along with a comparison with the predicted value from a simulation described in

Section 3.2.1. The oven temperature was 800 K. The forward velocity and seeding

distance are 210(2) m/s and 1.7 cm respectively, except where indicated. To make

the comparison, we needed to determine the flux leaving the oven into the near

field. This was done by turning off helium flow and sweeping the laser over a wide

range while taking images of the fluorescence from the oven. The density profile,

and therefore flux, of the oven could then be determined with Equation 3.1. This

was measured to be 1.4(2)× 1014 s−1.

The average density within the capture angle of the skimmer includes atoms

which have not entirely thermalized with the jet. Since atoms with a high relative

velocity to the jet are not focused by the hexapole magnet, it is not expected that

the entirety of the atoms that escape through the skimmer will survive to the atomic

focus.

3.2 Far Field

In the far field the atomic beam is brought to a focus in the observation

cell by the hexapole lens. We consider this focus to be the usable portion of our

source. Defining exactly what the focus is and how much of it to consider usable

is somewhat arbitrary. In terms of the focus there are at least two options: the

minimum COLC, or similar concept, and the minimum FWHM. We elected to use
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the minimum FWHM because the COLC is not applicable, as previously explained.

Since one of our goals was to use this source to load a storage ring, we looked

to the constraints that the storage ring may impose to decide how much of the focus

is usable. From Chapter 4 the bore radius of a 1 m bending radius magnet is about

2 cm. With this in mind we decided to define a 1 cm diameter circle at the focus as

the usable portion of the source.

This choice is also reasonable in a more general sense. Some authors have

used the entire output of their source to compute figures of merit such as flux, but

this is misleading because only a fraction of that output can be expected to be used

in most situations. A 1 cm diameter circle located tens of centimeters from the

magnet defines a reasonable size in both position and momentum space.

Unlike in the near field, the far field signal is maximized for He flowrates

of 50 SCCM and a seeding distance of 0.7 cm. The flow rate is lower because

the negative effects of pressure in the far field outweigh the positive benefits of the

greater density shown in Table 3.1. As will be explained in Section 3.2.1, the smaller

seeding distance results in more efficient seeding at this lower flow rate. The pressure

issue will be discussed in Section 3.3.

Characterization of the far field is similar to the near field. In the far field

we also make use of absorption imaging for more reliable results at higher density

values. This is only appreciably present at lithium oven temperatures above 900 K.

Absorption imaging is done by sending a ≳5 cm diameter horizontal laser through

the focus and into the camera. A lens is used before the camera to fit the laser onto

the CCD chip. An absorption image is taken in 3 steps. First a dark image is taken
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Figure 3.3: Absorption spectroscopy results at the atomic focus. The data is fit to
the Abel transform of a Lorentzian profile to determine the FWHM of the atomic
beam. In the bottom right corner is an example absorption image.

with the laser blocked and no He flow. Next the laser is unblocked and an image is

taken. Finally the He flow is turned on and a third image is taken. The dark image

is subtracted from both images and the absorption image is produced by dividing

the two images pixel wise.

Figure 3.3 shows absorption profiles from 3 absorption images and an ex-

ample of an absorption image. A repumper beam is present and the laser power

was well below the saturation intensity. To aid in analysis the curves are fit to the

Abel transform of a Lorentzian [86]. An Abel transform is used to transform a ra-

dial function into its projection from the side, which is exactly what our absorption

image is. The Lorentzian was used because of its reasonable fit and simple analytic

formula for the Abel transformed version. The radial Lorentzian is ∝ /(r2+(Γ/2)2)

and the Abel transformed version is simply ∝ /
√
r2 + (Γ/2)2. Absorption is very

54



Figure 3.4: Spatial profile at the atomic focus for different oven temperatures fit
to a q-Gaussian distribution. The data is from fluorescence spectroscopy and is
normalized to the peak signal at the highest oven temperature.

weak off resonance so fluorescence measurements are used to determine temperature

and the total broadened cross section.

Figure 3.4 shows similar data but for fluorescence. Here we have found the

best fit is given by a q-Gauss [87, 88]. It is a Gaussian-like distribution, but has

larger variable-sized tails. A Lorentzian profile also works, but not as well. We

have no motivation for using the q-Gauss distribution except that it fits well, is not

overly complicated, and has only a few parameters. At maximum oven temperature,

around 1030 K, and laser intensity well above saturation the focus is bright enough

to be photographed as shown in Figure 3.5.

The FWHM from fluorescence data as a function of distance from the nozzle

is given in Figure 3.6 over a range of 14 cm. The focus occurs approximately 176

cm from the nozzle. The temperature of the lithium oven was 820 K, and the beam
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Figure 3.5: A photograph of the focus taken at the highest oven temperature and
high laser power. The focus is inside the the green dashed outline and is clearly
visible even with a camera flash.

Figure 3.6: FWHM of the focused beam vs distance from the nozzle.
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had a forward velocity of 207(3) m/s. The viewing region is about 7 cm, though

about 6 cm is usable, so the laser and camera platform had to be moved several

times which results in the discontinuities. The beam is fairly flat over a large region

which contributed to the difficulty of finding it.

For both fluorescence and absorption imaging, the FWHM increases with

increasing oven temperature. The near field spatial profile follows the same trend

which suggests that this effect is related to the seeding dynamics. We currently do

not have an explanation for the effect. One possible explanation is the additional

heat load from the oven because of the increased flux and atom temperature. While

the size of the focus increases with oven temperature the location of the focus re-

mains unchanged. The lithium atom temperature appears to increase with oven

temperature, but the increase is on the order of our resolution.

If our theory that collisions continue past our observation point in the near

field is true then the temperature in the far field should be lower. We can mea-

sure this temperature transversely and longitudinally. Quantifying the temperature

transversely is somewhat subtle. One method is to measure it using the entire ve-

locity distribution. However, this is not quite correct because that distribution is

not an equilibrium distribution and overestimates the temperature of the atoms.

For example, consider a 1 µK cloud of atoms launched from the nozzle that trav-

els through the lens and comes to a focus. At the focus the velocity distribution

may be significantly more broad than the initial thermal distribution because of

the geometric effect of focusing the atoms. Measuring the temperature using the

entire distribution would then significantly overestimate the temperature. On the
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other hand, there may be times where it is helpful to think of this distribution as

characterized by an effective temperature.

Another method of measuring the temperature is to model the effect that

the lens has on the velocity profile. This effect can be expressed as the convolution

of a geometric profile from the lens with the multi-Voigt profile described in Section

3.1. The geometric profile, not accounting for lens aberrations, is

n(v⊥) ≈
√
1− (v⊥/v⊥0)2, (3.3)

where v⊥ is the transverse velocity and v⊥0 is the maximum transverse velocity

exiting the atom lens. Deconvolving the geometric profile from the data results in

the original multi-Voigt profile. In practice numeric deconvolution is an ill-poised

problem. Instead a convolution of the geometric effect with a parameterized multi-

Voigt is used to determine the temperature by curve fitting. Additionally, due to

the substantial geometric aberrations in the lens, atoms traveling through the lens

at larger radii do not contribute significantly to the flux within the 1 cm diameter

circle. To account for this v⊥0 is added as a parameter in the fit.

Longitudinally the temperature is measured with a laser tilted at 13◦ to

avoid depumping the optically pumped atoms and potential slowing effects. Because

the beam is tilted, some of the transverse velocity distribution will appear in the

longitudinal measurement. To minimize this the temperature is measured 5 cm past

the focus.

Figure 3.7 shows far field longitudinal and transverse profiles with the under-
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Figure 3.7: Data, fits, and underlying convolving profiles for fluorescence data at the
atomic focus. Heights are arbitrary. The transverse and longitudinal temperature
can be extracted. (a) Longitudinal fluorescence profile. All 6 hyperfine transitions
are present. (b) Transverse fluorescence profiles. Optical pumping is applied result-
ing in a single transition. The geometric effect of atom lens focusing is included.
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lying convolving profiles. The transverse profile was measured with optical pumping

in the near and far field with the only allowed transition being 22S1/2 |F = 2,mF = 2⟩

→ 22P3/2 |F = 3,mF = 3⟩ so only a single Voigt profile is present. The probe laser

power was kept below 1 µW/cm2 such that an atom scattered less than one pho-

ton on average to limit unwanted transitions from magnetic field or polarization

imperfections. The spectral profile is measured over a 1 cm tall region. The longi-

tudinal laser is scanned over the D2 line and a repumper is present yielding 6 total

transitions. The measurement is at the center of the beam over a few pixels.

The measured transverse temperature is about 15 mK, though values up to

20 mK still result in a reasonable fit. The measured longitudinal temperature is

about 7 mK and varies by a few mK for different runs that are otherwise the same.

These temperatures are much lower than the near field values which substantiates

our assumption that further cooling is occurring past our limited near field viewing

region. The profiles are also now symmetric. However, there may be some effective

cooling from velocity filtering by the lens. From the transverse profile the FWHM

of the velocity distribution is 13.4(1) m/s.

3.2.1 Monte-Carlo Simulation of Seeding

Three different simulations have been carried out to model the seeding dy-

namics. The first two were conducted by the previous graduate student Michael

Borysow using a model based on the available theoretical cross sections at the time

and assuming isotropic scattering. The third simulation, briefly reviewed here, was

developed by colleague Jeremy Glick and made use of newly available fully quan-
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Quantity Fluorescence Absorption

FWHM (mm) 5.01(4) 4.41(3)

Densitya (cm−3) 3.4(6)× 108 2.64(9)× 108

Intensitya (cm−2s−1) 7(1)× 1012 5.6(2)× 1012

Flux b (s−1) 2.3(4)× 1012 1.54(6)× 1012

Brightnessa (m−2s−1sr−1) 1.8(6)× 1019 -

Brilliancea (m−2s−1sr−1) 4.3(4)× 1020 -

T⊥ (mK) < 20 -

T∥ (mK) 7(3) -

vterminal (m/s) 210(2) -

Table 3.2: Parameters of the source at the focus. a Peak value at focus. b Value in
1 cm diameter circle at focus

tum mechanical differential cross sections from theoretical calculations [74,75]. The

simulation is written in Python and makes use of the Numba library described in

Section 5.6.1.

The simulation works by time stepping lithium atoms through the jet. Lithium

atoms originate from the oven with initial phase coordinates sampled from an ef-

fusive distribution. At each time step there is a probability of collision with the

background He based on the local density, collision cross section, and relative veloc-

ity.

An example of some selected simulated trajectories are shown in Figure 3.8.

Because small scattering angles are most probable at high relative collision energies,

it is possible for particles to undergo many collisions without being deflected into the

beam and becoming thermalized. At the other extreme it is possible for a particle

to experience many collisions in the jet periphery and bounce off the jet. Both

situations are shown in Figure 3.8. This effect can also occur for the lithium beam
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Figure 3.8: Example simulation results for 200 SCCM of He flow. Three distinct
types of particles are shown: one which is deflected by the jet, one seeded and within
the capturable solid angle of the skimmer and one which undergoes collisions but
passes through the jet.

as a whole, as shown in Figure 3.9. For a low flow rate the lithium beam mostly

pass through the jet, while for a higher flow rate it mostly bounces off the jet. An

intermediate value is optimal.

As mentioned, the optimal He flow rate and seeding distance differ dramat-

ically between the near field and far field. The difference in flow is explained by

vacuum considerations, but the seeding distance difference was a source of confu-

sion. To understand the cause, the He flow rate and seeding distance were varied in

the simulation. The maximum average density occurs approximately 1.7 cm from

the nozzle with a flow rate of 150 SCCM which matches near field observations.

With a flowrate of 50 SCCM, a seeding distance of 0.7 cm is optimal instead of 1.7

cm which matches observation. This is shown in Table 3.3.

62



Figure 3.9: 2D histogram of 5×106 simulated particles and the positions of particles
that pass the xy plane 4.1 cm from the nozzle. The black circle indicates particles
that are within the capturable solid angle of the skimmer projected to the xy plane.
The number above each plot gives the helium flow rate.

Another source of confusion that was cleared up by the simulation is the

asymmetry and long tails of the lithium velocity distribution. Initially it was ex-

pected that any particle that makes it out to 4 cm in the jet would be entirely

thermalized. However, the simulation predicts that many particles can reach this

point without an adequate number of collisions to be fully thermalized. Many par-

ticles can also reach this location with large velocities.

This explained another unexpected observation. Transverse fluorescence in

the far field results in a spatial distribution that initially follows a Lorentzian, but

with much heavier tails over the entire 7 cm viewable region. This made it impossible

to define a figure of merit such as Circle Of Least Confusion (COLC). It also made

it appear that only a small fraction of thermalized atoms were reaching the focus

which significantly disagreed with expected results. We thought perhaps the signal

was from the lens performing much worse than anticipated near the bore face and
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Flow Rate (SCCM) 50* 50 100 150 200 250 300

Efficiency (%) 0.11 0.04 0.21 0.37 0.43 0.25 0.20

Table 3.3: Simulated results for the percentage of atoms that arrive at the atomic
focus from the lithium source. *Seeding distance of 0.7 cm. All other results are for
1.7cm.

failing to focus atoms. We tested this by placing an aperture on the lens input and

saw no difference in the size and shape of the tails. We now believe that this effect

occurs from the fairly large population of lithium atoms which are not thermalized

yet escape through the skimmer. Their high velocities prevent focusing and they

appear as a nearly constant background signal.

3.2.2 Modeling the Focus

The jet seeding simulation can be combined with a particle tracing simula-

tion, described in Chapter 5, to predict the shape and location of the atomic beam

focus. To do this the jet seeding simulation is extended to 10 cm past the nozzle

to account for further 4He-7Li collisions that are expected to occur. Beyond this

distance and out to the magnet it is estimated that there is less than one collision

on average per lithium atom for a helium flow of 50 SCCM. The phase space co-

ordinates of the atoms at 10 cm from the nozzle are used as initial conditions for

particle tracing through the lens.

This model predicts a focus location that is very close to the observed lo-

cation but about half the observed FWHM. The disagreement is still not well un-

derstood, but one possible explanation is heating in the jet. The seeding simulation
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does not account for heating but a simple model can be used. In this model the

base temperature of adiabatic cooling is limited to a minimum value. The results of

this model and the adiabatic model are shown in Figure 3.10. There is much better

agreement for a temperature of 3 mK, but there is no physical motivation to choose

this value although it is not far off from the measured temperature. For now we can

say that small amounts of heating is detrimental to the focus and possibly explains

the difference in FWHM.

The effect of heating is explained by a virtual source [89], an imaginary

source of atoms located at the nozzle plane that would produce the same spatial and

velocity distribution at a given distance from the nozzle neglecting collisions. The

phase space distribution of the virtual source is produced by projecting atoms back

to the plane of the nozzle. Higher temperatures produce larger velocity distributions

which in turn result in a larger virtual source size. With the virtual source as the

object, our lens then produces a larger image for higher jet temperatures.

In addition to the location and FWHM of the focus, the model can be used to

predict the seeding efficiency of atoms arriving within a 1 cm diameter circle at the

focus. These results are presented in Table 3.3. Accurate measurements of the flux

leaving the oven shielding are performed at lower temperatures to avoid absorption

effects. At an oven temperature of 800 K, we measure a flux of 1.4(2) × 1014 s−1

leaving the oven shielding, while a flux of 3.8(7) × 1010 s−1 is measured at the

focus. This gives a total efficiency of 0.03% and accounting for a 2.5 times loss from

background pressure, discussed below, agrees within 40% of the simulated results.
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Figure 3.10: Simulated focus results versus flourescence data. (a) Measured trans-
verse profile vs simulated transverse profile. (b) FWHM versus distance from nozzle
for data and simulation. In the legend adiabatic refers to a pure adiabatic expan-
sion, while 3 and 5 mK refer to introducing a temperature floor in the expansion.

3.3 Effects of Background Gas Pressure

A major design concern is sufficient vacuum pumping to reduce scattering

between lithium atoms and background gas helium atoms to negligible levels. We

tested whether this condition was satisfied with a simple experiment. While flowing

helium through the nozzle at 50 SCCM we introduced additional helium into the far

field through a valve and recorded the signal at the focus. If collisions are happening

they should be explained by Beer’s law

dT

dz
= nσT → T = T0e

−nσL, (3.4)

where n is the density of background helium, σ is the He-Li cross section that moves a

lithium atom out of the focus, L is the distance from the skimmer aperture through

to the focus, and T is the transmittance. This depends on a roughly constant

pressure throughout the far field, which was validated with MolFlow+ [90]. The
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Figure 3.11: Relative signal at the focus versus chamber pressure. The first data
point is with on nozzle flow and the following data point include helium metered
into the chamber.

distance from the nozzle to the focus is not used because the ratio of cryopump

speed to skimmer conductance is so great that there should be hardly any pressure

increase in the near field. Replacing n with the ideal gas law, collecting constants

besides He pressure PHe into β, and replacing the transmittance with signal S gives

S = S0e
−βPHe . (3.5)

The results of measurement and fit are given in Figure 3.11. The total

chamber pressure is fit instead of He partial pressure, but the results are identical

as long as the base chamber pressure is used as reference rather than 0 pressure.

The base chamber pressure includes almost no helium partial pressure.

Our measurements show that even at our lowest operating flow rate of 50

SCCM, about 60% of the lithium atoms are lost. The flux of our source would be

about 2.5 times higher at 50 SCCM if the far field pressure could be reduced by

an order of magnitude. If this low pressure were maintaned up to the maximum

67



seeding efficiency flowrate of 200 SCCM, then from Table 3.3 the total flux increase

would be about 2.5× (0.43/0.11) ≈ 10 times.

3.4 Atom Lens

The performance of the atomic focus is ultimately limited by the performance

of the atom lens. In the ideal case the source, or the object, would be a point source

expansion with zero temperature. An ideal lens would then image another point

source of zero temperature and with an angular divergence set by the magnification.

In reality this would not occur because of the following aberrations:

1. Magnetization deviating from the ideal relation, Equation 2.22, because of the

use of discrete magnets which reduces the magnetic field purity.

2. Truncating the lens produces fringing fields, both inside and out of the lens,

reducing the field purity and introducing longitudinal forces.

3. Permanent magnets deviating from the ideal hard material approximation.

Note that in the following sections the soft material nature of permanent

magnets is accounted for by default in the Halbach array lens. The aberration

will be explored by disabling this feature.

4. Atoms must slow down when entering the lens to conserve energy as they

climb the initial potential. They then speed up as they leave. This does not

occur by the same amount for all atoms.
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5. If all atoms have the same speed, then there is a distribution of longitudinal

velocities ∝ cos θ resulting in some atoms spending more time in the lens.

6. Material imperfections introduce additional multipoles and reduce field purity.

7. Assembly misalignments of individual magnets introduce additional multipoles

and reduce field purity.

8. Gravity deflects atoms away from the optical axis.

3.4.1 Ideal Lens

We will first use an ideal lens model to understand the impact of the some

of the lens aberrations as well as the relation between temperature and spot size.

The aberrations we will explore are 4, 5, and 8. An ideal lens will give the best

case scenario of these effects without the impact of other aberrations. The lens is

modeled as a purely transverse restoring force that is only applied within the bore.

The parameters of the ideal lens are chosen to most match the values of our existing

lens. To review, the existing lens is 72 cm from the nozzle, has a bore radius of 5

cm, a length of 6 in and a pole face field strength of about 1 tesla. The ideal lens is

matched by varying the pole face strength to achieve the same focus. This yields a

value of 1.0145 tesla. The focus is defined to be the point with the minimum D90,

which from simulations is 188.9 cm past the nozzle.

This appears to conflict with our previous statement that the focus is 176 cm

past the nozzle. However, we experimentally defined our focus to be the minimum

FWHM, which is not at the same location as the minimum D90. There are two
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Aberration Location (cm) D90 (mm) Note

None 188.9 <.001

Gravity (8) 188.9 <.001 Vertical shift of -0.209 mm

Velocity distribution (5) 188.8 0.2181

Energy conservation (4) 186.2 1.125

Table 3.4: Focus location and size for various aberrations in an ideal lens.

Figure 3.12: Focusing behavior of an ideal lens vs particle temperature. Particles
originate from a point source at the nozzle. (a) Focus size and transmittance vs
temperature. Transmittance is relative to the transmittance at zero temperature.
(b) Focus location vs temperature.

reasons for this discrepancy. First, the measured FWHM was for a flowrate of 207

m/s, while simulations here are done for 210 m/s. Second, the seeding is not as

simple as a point source and the object is not necessarily positioned at the nozzle.

Results for the aberrations are shown in Table 3.4. The effect of each aber-

ration is calculated with the other aberrations disabled. The energy conservation

aberration was introduced by adjusting the longitudinal velocity of a particle when

entering and exiting the ideal lens based on energy conservation. Unsurprisingly the

effect of introducing gravity is to simply shift the focus.

Let us also consider the effects of imaging a point source with non zero
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Figure 3.13: Performance of an ideally magnetized lens vs restricted aperture. The
solid line indicates the results from the full lens. The dashed lines indicate the
results when using only an inner plane free of fringe field effects. The small uptick
of the inner plane model occurs because the ideal magnetization model breaks down
close to the bore face.

temperature. To include the effects of temperature, the point source’s velocity

components are perturbed by sampling from a Maxwell-Boltzmann velocity distri-

bution. Results are shown in Figure 3.12. The relative transmission decreases with

increasing temperature indicating that some velocity filtering is occurring. The tem-

perature of our source is a minimum of about 5 mK longitudinally and a maximum

of about 20 mK transversely which corresponds to a D90 of about 6-12 mm. Again,

this neglects any seeding dynamics.

3.4.2 Ideally Magnetized Lens

Next we will consider a lens of continuous magnetic material, modeled by 48

wedges, with magnetization according to Equation 2.22 (see Figure 2.11). This is

the ideal case of a physically realistic hexapole lens. Similar to the previous section

where we tuned the magnetic field of the ideal lens to match our current lens, here
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we tune the width of the magnetic material. This gives a width of 0.9963 inches.

Here we will investigate the truncation aberration 2. We will disable aberrations 5

and 8. Aberrations 1, 3, 6, and 7 are not applicable.

First the full lens is characterized for a baseline. It is common in optics to

restrict the aperture of a system to reduce the aberrations, so we will apply the

same concept here. Note that no material dimensions of the lens are changing, only

a restriction to the bore aperture for particles is being applied. Next we will remove

the truncation aberration by modeling the force from the lens as coming from the

central plane of a very long lens where the effects of fringe fields have fallen to zero.

The distance over which the force is applied must be tuned to reproduce the same

focus location. This gives a length of about 15.10 cm. Results are shown in Figure

3.13. The effects of fringe fields dominated the previously explored aberrations and

are comparable to a temperature of 30 mK at full aperture.

3.4.3 Halbach Array Lens

Finally we consider a Halbach array lens with the same parameters as our

existing lens. Similar to the previous section we will analyze the lens by character-

izing the baseline and then a truncated model. The field region length was reduced

to 15.105 cm. Results are shown in Figure 3.14. Next we will consider the effects

of material imperfections, deviations from the hard material model, and assembly

tolerances (6,3,7). As mentioned, the soft material nature of permanent magnets

has already been included in the Halbach lens model data in Figure 3.14. Using

the hard material model shifts the focus about 5 cm closer to the magnet and size
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Figure 3.14: Performance of a Halbach array lens vs restricted aperture. The solid
line indicates the results from the full lens. The dashed lines indicate the results
when using only an inner plane free of fringe field effects.

of the focus changes about in proportion to the magnification. The majority of

the difference comes from the bulk self-demagnetization effect, explained in Section

5.3. Meshing each cuboid into smaller domains and accounting for magnet-magnet

interactions is a small correction that shifts the focus by a few additional mm.

Results from material imperfections using the tolerances specified in Section

2.1 are shown in Table 3.5. Imperfections are randomly applied to each cuboid.

Results from assembly misalignment are shown in Table 3.6 for several aperture sizes.

Translational assembly tolerance is ± 250 µm and rotational assembly tolerance is

± 0.5◦. The model is not entirely physical because magnets can overlap, but the

overlap is very small.

3.4.4 Analysis

Without fringe fields the Halbach array and ideally magnetized lens have very

similar performance up to around 3-4 cm. After that the aberrations introduced by
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Aperture (cm) Location, error (cm) D90, error (mm)

4 178.1 ± 0.13 — [178.3] 8.33 ± 0.015 — [8.44]

3 182.6 ± 0.20 — [183.1] 3.12 ± 0.083 — [3.04]

2 186.7 ± 0.26 — [186.7] 1.49 ± 0.30 — [0.86]

1 187.5 ± 8.6 — [188.9] 2.93 ± 0.96 — [0.11]

Table 3.5: Mean and RMS values for focus location and size for standard neodymium
permanent magnet imperfections. Quantities in square brackets ([]) are the values
without imperfections.

Aperture (cm) Location, error (cm) D90, error (mm)

4 178.1 ± 0.21 — [178.3] 8.35 ± 0.058 — [8.44]

3 182.8 ± 0.18 — [183.1] 3.03 ± 0.017 — [3.04]

2 186.5 ± 0.27 — [186.7] 0.934 ± 0.086 — [0.86]

1 188.6 ± 0.90 — [188.9] 0.842 ± 0.48 — [0.11]

Table 3.6: Mean and RMS values for focus location and size for alignment errors.
Translational tolerance is ± 250 µm and rotational is ± 0.5◦. Quantities in square
brackets ([]) are the values without imperfections.
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Figure 3.15: The effective length of our Halbach array lens. (a) A heatmap of the
effective length across the bore radius. (b) The azimuthally averaged effective length
as a function of bore radius. The same result is given for charged particles.

discrete magnets begin to become substantial. Not surprisingly, with fringe fields

removed the ideally magnetized lens is effectively an ideal lens. Artificially disabling

longitudinal forces has little effect on results so the fringe field’s effect on focusing

is primarily by reducing transverse field purity.

The effects of fringing fields are analogous to spherical aberrations in light

optics, which result in greater focusing power for larger apertures. In a magnetic lens

this is explained by a concept in accelerator physics known as effective length [91,92].

As its name implies, it is the length of the component that the particle effectively

experiences from the field forces. Fields that extend past the input/output of a

component will increase the effective length as long as the fields inside aren’t reduced

by a compensating amount.
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The effective length is given by

Leff(x, y) =

∫
g(x, y, z)dz

g0(x, y, zcenter)
, (3.6)

where g is a transverse field quantity, g0 is the value of g in the center of the

component, x and y are transverse coordinates inside the component’s bore, and

z is the distance longitudinally through the component. The effective length is

measured at some transverse x and y with the integral performed along z from −∞

to +∞ (in reality a sufficiently long distance). For a neutral atom lens g(x, y, z)

equals the radial component of ∇⃗B0(x, y, z). For a charged particle g is proportion

to the relevant components of B⃗.

For an ideal lens the effective length is constant for all valid x and y and

is equal to the length of the lens. An effective length that increases with displace-

ment from the bore centerline would signify spherical aberrations because particles

experience focusing forces over a greater length.

The effective length is shown for the Halbach array lens in Figure 3.15. The

effective length’s strong radial dependence is the explanation for the lens’ spherical

aberrations. The field value Bx does not have the same dependence however. It

can be shown that quantities proportional to B⃗ have this feature in multipole fields

produced by magnetized material [82]. For a Halbach array the relation does not

exactly hold and thus the slight tilt. Unfortunately quantities such as ∇⃗B0 do not

have the same property.

For smaller apertures material imperfections and misalignments are domi-
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nant. However, in Section 6.7.2 we will see that this is likely a significant overes-

timate of the impact of imperfections and is the worst case scenario assuming the

proper assembly technique and vendor is chosen. Unfortunately, for our existing

lens this was not done. The assembly tolerances are also rather loose and likely an

overestimate. Fortunately, these effects largely wash out when using the entire lens

because the poorly focused atoms originating from near the lens center is a small

fraction of the total flux. For example, the lens region of radius 1-4 cm contains

(42 − 12)/12 = 15 times as many particles as the region of radius 0-1 cm.

The impact of imperfections can be understood by an analysis of the mul-

tipole spectrum. Imperfections introduce unwanted multipole terms which have a

larger impact near the lens center where the field values are smaller. For example,

consider the trivial case of simply shifting the lens vertically by δy. The new radial

force for r ≫ ∆y is

Fr ≈ −Kr(1 + sin (θ)∆y/r) ≈ −Kr, (3.7)

while for r ≪ ∆z it is

Fr ≈ −K∆y(1 + r/∆y) ≈ −K∆y, (3.8)

where K = 2µBBp/r
2
p.

We can analyze the multipole spectrum of the magnetic field to determine

the impact of material imperfections. From Equation 2.17 using the orthogonality

of multipoles and considering only skew terms and radial components we get
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Figure 3.16: (a) Multipole spectrum of the atom lens with material imperfections at
a radius of 1 and 3 cm. (b) log10 heatmap of an example of the difference between
using perfect and imperfect magnets. Different random errors result in qualitatively
similar plots.

Br = −
∑
n

anr
n−1 cos(nθ)

−
∮

Brakr
k−1 cos(nθ)dθ =

∮
a2kr

2(k−1) cos(kθ)2dθ

−
∮

Br cos(kθ)dθ = akr
k−1π

ak =
−
∮
Br cos(kθ)dθ

rk−1π
,

(3.9)

where the integral is taken around a circle of radius r. Upright terms must be con-

sidered as well. Other integration schemes can be used such as an area integral.

This integral gives the average amplitudes of the multipoles at radius r. For com-

parison it can be helpful to scale ak by rk−1 to get a value that is proportional to

the multipole’s contribution to the total field at r and has units of tesla.
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Figure 3.16(a) shows the scaled amplitudes relative to the hexapole ampli-

tude for a range of multipole terms for circles at a radius of 1 cm and 3 cm for the

atom lens with material imperfections. Amplitudes represent the norm of skew and

upright amplitudes. Both circles were located at the lens center. The multipole

spectrum will in general be different at different planes in the lens. Notice that

the greater relative strength of additional poles for the 1 cm circle, particularly the

dipole term. Figure 3.16(b) shows a log10 heatmap of the difference between the

magnetic field for perfect and imperfect materials.

The two minima occur because of the addition of a dipole term to a hexapole

term. This gives for the total field

B⃗ =
(
a3r

2 cos(3θ) + a1 cos(θ + ϕ)
)
x̂+

(
a3r

2 sin(3θ) + a1 sin(θ + ϕ)
)
ŷ, (3.10)

where ϕ is the angle of the dipole field. For a3r
2 ≪ a1, valid near the lens center, it

can be shown that

|B⃗|near ≈ a1 + a3r
2 cos(2θ − ϕ), (3.11)

which decreases along the lines θ1 = (ϕ − π)/2 and θ1 = (ϕ − 3π)/2. Far from

the lens origin we have |B⃗|far = a3r
2. Smoothly joining the near and far solutions

results in two minima separated by ∆θ = π which is exactly what appears in Figure

3.16(b). Thus the central lens region appears roughly as two lensing regions. This

can be clearly seen in images of the focus shown in Figure 3.17(b) for an aperture

of 1 cm and 6 configurations of random material imperfections. A double focus is

apparent in each image.
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Figure 3.17: Heatmaps of relative intensity at the focus of 6 different configurations
of random magnet errors in the atom lens with a 1 cm aperture. The red dotted
circle depicts the D90. The relative intensity is scaled in each figure independently.
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Chapter 4

Neutral Atom Storage Ring Dynamics

4.1 Introduction

Given the success of particle accelerators, it is unsurprising that accelerator

theory has reached an extremely high level of development. However, the term

“accelerator physics” is somewhat of a misnomer because large portions of the theory

deal with particles not under the influence of longitudinal acceleration. Much of

this theory is readily extended to the study of a neutral atom storage ring. In

the following chapter the most relevant aspects of accelerator theory [81,91–93] are

reviewed and extended to the case of neutral atoms in magnetic fields.

Before moving onto the accelerator formalism we will introduce bending and

beam combination from an atomic physics perspective. We discussed focusing in

Section 2.6. We will also derive a system of differential equations that result in

linear solutions mapping initial to final phase space coordinates for a particle’s tra-

jectory through magnet elements. The mapping can be framed in terms of matrices

analogous to the ABCD matrices in optics. Equations can also be derived that con-

veniently describe the behavior of ensembles of particles. Next we will compare this

theory to results from a time stepping simulation and will find good agreement. We

end by considering the use of different species and some numerical methods.
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4.2 Neutral Atom Beam Manipulation

4.2.1 Bending

Let us begin by reviewing bending of charged particles in magnetic fields.

Charged particles interact with the magnetic field via the familiar Lorentz force

F⃗ = qv⃗ × B⃗, (4.1)

where q and v⃗ are the particle’s charge and velocity respectively. Dipole magnetic

fields are conventionally used to bend charged particles, though additional higher

order terms may be added to produce focusing or effects. The bending radius in

a dipole field is found by balancing the centrifugal pseudo force and the magnetic

force which gives
mv2

rb
= qvBz

rb =
mv

qBz
,

(4.2)

where the particle’s velocity is perpendicular to ẑ. For reference a singly ionized

lithium atom with a speed 210 m/s in a 1 tesla field will have a bending radius of

Li7 II bending radius =
1.165× 10−26 Kg · 210 m/s

1.602× 10−19 C · 1 T
= 15 µm. (4.3)

Now consider neutral Li7. Here the bending radius is given by

rb =
mv2

µB|∇⃗B0|
, (4.4)

where the particle’s velocity is perpendicular to the gradient ∇⃗B0 and B0 is the
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magnetic field norm |B⃗|. A reasonable region of magnetic field is perhaps a cen-

timeter which gives an average gradient of ∼ 100 T/m. The approximate bending

radius for neutral Li7 is then

Li7 I bending radius =
1.165× 10−26 Kg · (210 m/s)2

9.274× 10−24 J/T · 100.0 T/m
= 55 cm, (4.5)

which is more than 4 orders of magnitude larger than that for ionized lithium.

Charged particle storage rings are orders of magnitude more compact than neutral

particle storage rings.

But how do we produce this bending force? In Chapter 2 we used the

multipole expansion to find a field configuration that yielded lensing. We can apply

a similar procedure here. Any multipole higher than dipole would work because

there is a non zero gradient. Applying the radial gradient operator ∇r to Equation

2.19 gives

∇rB0 = Bp(n− 1)

(
rn−2

rn−1
p

)
, (4.6)

which suggests the use of large values of n for bending. In principle this is true for a

single particle, however we are interested in a beam of particles that may be spread

out in the bore of the element. Using some fraction of the bore radius δ = r/rp gives

∇rB0 = Bp(n− 1)

(
δn−2

rp

)
, (4.7)

where it can be shown that the maximal value now depends on δ. For δ closer

to 1 the optimal value of n is larger, while for δ closer to zero a smaller value is

optimal. In a beam of particles we want δ to be small enough for the magnet bore
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to accommodate the width of the beam. For a single particle, δ could be very close

to 1. Using a value of δ = 0.95 would give a bending radius of about 7.5 cm for

7Li. One can continue down this path and find the optimal multipole for the given

conditions.

An obvious alternative is to simply use a revolved hexapole lens, or a hexapole

waveguide. This has the property of being an approximate linear transformation and

we know it possesses reasonably well behaved focusing in practice. We will see that

this linear behavior of hexapole lenses and waveguides is essential to accelerator the-

ory. It is also a low order multipole which qualitatively agrees with the principle of

smaller values of δ for a particle beam. It is possible that some higher order term, or

even combination of terms is better, but in general the behavior of the system then

has to be analyzed entirely numerically and it is not clear which choice is superior.

For these reasons I chose not to pursue other multipole benders, though they may

hold promise.

A magnetic hexapole bender, from this point forward referred to as a bender,

can be considered a trap. The trap depth is Vtrap = µBBp in the lab frame. In the

particle frame the effects of bending can be considered an asymmetric modulation

of the trap depth, decreasing the depth outward radially and increasing the depth

inward radially as shown in Figure 4.1. To maximize trapping particles must be

mode matched into the bender, otherwise they will oscillate about the minimum.

Another way to say this is that there is an ideal orbit for the particle, and if it

enters off of that orbit it will oscillate about the orbit. We will discuss this concept

extensively in the following sections. The optimal mode matching radius for loading
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Figure 4.1: The trap model of bending. Particles are displaced from the center of
the magnetic potential because of the centrifugal pseudo force. From the particle’s
perspective the trap height is reduced on one side and increased on the other.
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is the radius which results in zero net force in the particle’s frame. In the particle’s

frame the force is given by

F = Fc + Fm =
mv2

r
− 2µBBp

r − rb
r2p

, (4.8)

where rb is the radial center of the lens bore. For F = 0 we solve for r to get the

mode matching radius, ro,

ro =
rb
2
+

1

2

√
r2b −

2mv2r2p
µBBp

. (4.9)

A particle loaded with r ̸= ro will experience restoring forces. To determine

these forces we must first account for the conservation of angular momentum by

plugging L = mvr into Equation 4.8 to get

F = Fc + Fm =
L2

mr3
− 2µBBp

r − rb
r2p

. (4.10)

Making the approximation that deviations from ro are small and expressing these

deviations as x = r − ro we can expand Equation 4.10 to get

F = Fc + Fm ≈
(

L2

mr3o
− 2µBBp

ro − rb
r2p

)
−
(
3L2

mr4o
+

2µBBp

r2p

)
x, (4.11)

where the first term in parenthesis is zero from Equation 4.8 with r = ro (Figure

4.1). In the particle’s frame it experiences a restoring force with an effective spring

constant

K =
3L2

mr4o
+

2µBBp

r2p
. (4.12)
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The first term originates from conservation of angular momentum resulting in the

particle slowing down for outward radial displacements and the centrifugal pseudo

force then weakening, or speeding up for inward displacements and the centrifugal

pseudo force then strengthening.

A detail we have overlooked is the slowing a particle experiences as it enters

a hexapole lens as discussed in Section 2.6. This will affect the orbit of the particle

by changing the initial angular momentum. By applying energy conservation it is

easy to show that

∆v ≈ µBBp(r − rb)
2

mvr2p
, (4.13)

where ∆v is the reduction in velocity. With typical values of Bp = 1 Tesla and

rp = 1 m and entering the bore halfway to the pole face we get ∆v ≈ 1 m/s. This

is a small but not totally negligible value. This effect can be included in Equation

4.9.

So far we have been considering a bender formed by a continuous revolution

of a lens. This can of course be done by using short revolved permanent magnets,

but the cost of producing such exotic permanent magnets is prohibitive. A more

practical approach we have elected to use is to approximate the bender as a series

of short lenses.

4.2.2 Injection

The storage ring can be thought of as a toroidal trap. Particles cannot be

introduced into a trap that confines in all directions without an irreversible process
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Figure 4.2: Diagram of continuously injecting the atom beam into the storage ring.
The last stage of optical pumping must be highly efficient to avoid excessive losses
of already injected atoms.

because to have entered the trap they must have had enough energy to climb the

potential and will then be able to exit. With a pulsed source this can be done by

rapidly turning the trap on. In accelerators this is done with a component known

as a kicker magnet which abruptly shifts the particle bunch from one beam line to

another. A continuous source requires a continuous irreversible process. Optical

pumping is a natural choice for this. We refer to the continuous component as a

combiner.

The problem is to guide an injected beam on top of an existing circulating

beam. This is quite similar to the famous Stern-Gerlach experiment. One way

to achieve this is to simply use a Stern-Gerlach magnet which applies a nearly

constant force. The injected beam is optically pumped into a high field seeking

88



Figure 4.3: An example of an accelerator lattice. In this example the bending
element is a curved lens. The drift regions are regions of the lattice approximately
free of electromagnetic fields.

state (untrapped) and will bend in the opposite direction of the circulating low field

seeking state (trapped) beam. The two beams combine at the output and both

are pumped into the low field seeking state. The efficiency of this pumping will

introduce a loss mechanism.

An alternative approach is to combine the beams using a hexapole lens as

shown in Figure 4.2. The principle is identical to the Stern-Gerlach magnet, and has

the added benefit that the fields are confining for the circulating atoms though they

are diverging for the injected atoms. If particles that do enter the ring circulate for

longer periods of time then this can be an advantageous trade off.

4.3 Particle Accelerators

An accelerator is composed of a series of components that guide and deflect

a beam of charged particles. In analogy with light optics, the system of elements and

phenomena of deflection is also called beam optics. Components include bending

sections, focusing sections, accelerating sections, insertion devices, field free regions

and RF beam cooling components. Field free regions are conventionally referred

89



to as a drift regions. The components are typically far enough apart such that

the interactions between components are neglected to first order. Magnetic fields

are the primary method of deflecting particles, particularly dipole magnetic fields

for bending and quadrupole magnetic fields for focusing. Higher order fields such

as hexapole or octupole can be used for correcting aberrations and adjusting other

perturbations.

The series of magnetic deflecting components, or elements, is referred to

as a lattice. The lattice defines the design orbit, shown in Figure 4.3, which is

the orbit that a particle with the ideal initial phase space coordinates would travel

along. This ideal particle travels along the design orbit at the design speed or

design momentum. Particles that deviate from the ideal initial conditions will

still travel in the vicinity of this orbit, though in general will undergo oscillations

about it known as betatron oscillation. In a purely linear accelerator this orbit

will be a straight line, whereas in a circular accelerator some lattice elements will

bend the orbit and it will return to its starting point after traveling a total bending

angle of 2π radians. In a lattice with bending, a particle with zero initial trans-

verse displacement and momentum but with the incorrect longitudinal momentum,

known as an off momentum particle, will deviate from the design orbit because

of centrifugal pseudo forces. This is referred to as chromatic behavior, another

analogy to light optics.
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Figure 4.4: The Frenet-Serret coordinate system. The design orbit is the orbit of the
particle with ideal initial conditions. Particles that deviate from these conditions
travel in a coordinate system that moves along and is relative to the design orbit.
This simplifies the equations of motion and analysis, but introduces pseudo forces
that must be accounted for. The lab frame is represented by the ijk coordinate
system.
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4.4 Frenet-Serret Coordinate System

A purely linear lattice is adequately described by a Cartesian coordinate sys-

tem and a purely circular lattice with constant bending radius is well described by

cylindrical coordinates. However, a real storage ring is composed of discrete linear

and bending sections which may have different bending radii. This motivates the

adoption of a more general curvilinear coordinate system, the Frenet-Serret coor-

dinate system depicted in Figure 4.4. In this coordinate system a particle’s phase

space coordinates are defined relative to the design orbit. A Cartesian coordinate

system travels along the design orbit, with the unit vector ûz tangent to the orbit,

ûx horizontally perpendicular to the orbit, and ûy vertically perpendicular to the

orbit.

For later use we will derive the relationship between an infinitesimal change

in the global coordinate system and the Frenet-Serret coordinate system. First, the

particle’s location in a global coordinate system can be described by

r⃗ = r⃗o(z) + x(z)u⃗x + y(z)u⃗y, (4.14)

where r⃗o(z) is the coordinates of the orbit at distance z along the orbit, and u⃗x and

u⃗y are the orbit unit vectors in the global coordinate system. Assuming no bending

in the vertical direction we have

u⃗z(z) =
dr⃗o(z)

dz
,

du⃗x(z)

dz
= k0(z)u⃗z(z), and

du⃗y(z)

dz
= 0, (4.15)

where the bending radius r0 is expressed as k0 = 1/r0. In the following sections the
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reason for this notation will become clear. With the above relations it can be shown

that

dr⃗ = dxu⃗x + dyu⃗y + hdzu⃗z, (4.16)

where

h = 1 + k0x. (4.17)

4.5 Equations of Motion

The equations of motion in the Frenet-Serret coordinate system can be de-

rived with Lagrangian mechanics. In the following derivation gravity is neglected.

This is justified because the force of gravity is orders of mangitude weaker than the

magnetic force a particle typically experiences. The kinetic energy in Frenet-Serret

coordinates is given by

T =
m

2
˙⃗r · ˙⃗r =

m

2

(
ẋ2 + ẏ2 + h2ż2

)
, (4.18)

where we used Equation 4.16.

Combining this with the potential for a paramagnetic atom in a magnetic

field the Lagrangian is then

L = T − V =
m

2

(
ẋ2 + ẏ2 + h2ż2

)
− µB0(x, y, z), (4.19)

where µ is positive for low field seeking and negative for high field seeking and is

constant. Our first approximation to arrive at linear solutions is to replace the
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continuous dependence of B0(x, y, z) on z with a rectangle function as

B0(x, y, z) ≈
∑
i

B0i(x, y)Π(z, zi, Li), (4.20)

where Π is a rectangle function with value 1 between zi to zi+Li, the index i refers

to the ith magnetic element, zi the beginning of the ith magnetic element, and Li

the length of the ith element. This is known as the hard edge approximation which

assumes that magnetic fields abruptly turn on and off when entering or exiting a

magnetic element. Additionally, we assume that the degree of bending k0 follows

a similar rectangle function relation. In Section 4.14 we will discuss methods to

improve this approximation. For convenience the term B0(x, y) will be assumed to

refer to Equation 4.20 with the appropriate value of i.

The new Lagrangian is then

L =
m

2
(ẋ2 + ẏ2 + h2ż2)− µB0(x, y). (4.21)

Recall that Lagrange’s equation without constraints is

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0. (4.22)

We can immediately note the presence of a conserved quantity because

d

dt

∂L

∂ż
= 0, (4.23)

94



with value

∂L

∂ż
= mh2ż = m(1 + k0x)

2ż = m(1 + k0xi)
2żi = l, (4.24)

where l is constant and xi and zi are the initial values entering an element of constant

k0.

The conserved quantity is simply angular momentum expressed in the Frenet-

Serret coordinate system. Keep in mind that this is for a specific element, and l will

in general have different values in different elements. The full equations of motion

are

m(1 + k0x)
2ż = l,

mẍ− k0m(1 + k0x)ż
2 + µ

∂

∂x
B0(x, y) = 0,

and

mÿ + µ
∂

∂y
B0(x, y) = 0.

(4.25)

Using the conserved quantity l, the equations of motion can be reduced to

mẍ− k0l
2

m(1 + k0x)3
+ µ

∂

∂x
B0(x, y) = 0

and

mÿ + µ
∂

∂y
B0(x, y) = 0.

(4.26)

It is advantageous to change the parameterization from time to distance along the

design orbit z. In this parameterization time derivatives are replaced by derivatives
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with respect to z represented by primes. The new derivative operators are given by

q̇i =
dqi
dt

= v
dqi
ds

= v
dz

ds

dqi
dz

=
v

s′
dqi
dz

=
v

s′
q′i

and

q̈i =
d

dt

dqi
dt

=
v2

s′2
(q′′i − s′′

q′i
s′
),

(4.27)

where

s′ = |dr⃗
dz

| =
√
x′2 + y′2 + h2, (4.28)

v is the speed of a particle along its own trajectory, s is the distance along that

trajectory, and Equation 4.16 was used. Our new equations of motion are

m
v2

s′2
(x′′ − s′′

x′

s′
)− k0l

2

m(1 + k0x)3
+ µ

∂

∂x
B0(x, y) = 0

and

m
v2

s′2
(y′′ − s′′

y′

s′
) + µ

∂

∂y
B0(x, y) = 0.

(4.29)

To arrive at linear solutions, several approximations must be made. The

first approximation is that transverse particle displacements are small compared to

bending radii which gives k0x ≪ 1 and h ≈ 1. The next approximation is the familiar

paraxial approximation from optics, which assumes that rays and the optical axis

form small angles. Here this corresponds to x′ = ẋ/ż ≪ 1 and y′ = ẏ/ż ≪ 1, and

thus s′ ≈ 1 and s′′ ≈ 0. To motivate this approximation, consider that the velocity

for a lithium atom to just overcome a trap depth of 1 tesla is about 40 m/s which

corresponds to an angle of about 0.19 radians. This is approximately the maximum

transverse velocity one could expect from a trapped lithium atom, while the typical
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value is half or less. Finally, combining the above assumptions we can use l ≈ mv.

Applying these approximations yield

x′′ − k0(1− k0x) +
(1 + 2k0x)

mv2
µ0

∂

∂x
B0(x, y) = 0

and

y′′ +
(1 + 2k0x)

mv2
µ0

∂

∂y
B0(x, y) = 0.

(4.30)

In our new z parameterization, coupling between x and y has become explicit.

Notice that this is only present in regions with bending, i.e. k0 = (1/r0) ̸= 0. This

coupling occurs because as a particle travels through a bend, horizontal deviations

result in changes to path length and thus transit time. In the time parameterization

this would appear when integrating the equations of motion.

We can rewrite the bending force from Equation 4.10 to get an explicit

relation for the magnetic force. Doing so yields

µ0
∂

∂x
B0(x, y) = mv2ok0 + kmx

and

µ0
∂

∂y
B0(x, y) = kmy,

(4.31)

where km is the magnetic force spring constant 2µBp/r
2
p, vo is the design speed,

and km is positive(negative) for low(high) field. We have used the design speed in

Equation 4.11 because that yields the correct bending radius of ro. Substituting
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this into Equation 4.30 and expanding to first order in x gives

x′′ +

(
k20 +

2k20v
2
o

v2
+

km
mv2

)
x+ k0

v2o
v2

− k0 = 0

and

y′′ +
kmy

mv2
= 0.

(4.32)

Recall that v is the speed of a particle along its own trajectory, and vo is the

speed of the ideal particle traveling along the design orbit. Let us replace v with

the relation

v = vo(1 + δ) → δ =
v − vo
vo

. (4.33)

The particle’s deviation from the design speed is now expressed with the variable

δ. A particle with δ ̸= 0 is an off momentum particle. If we assume δ ≪ 1 then

we can expand Equation 4.32 in δ. This is reasonable considering that even for a

100 mK beam of lithium atoms the FWHM spread in velocity is ∼ 26 m/s, yielding

δ ≈ 0.1. Inserting Equation 4.33 into Equation 4.30 and expanding to first order in

δ · x yields

x′′ +

(
km
mv2o

+ 3k20

)
x− 2δk0 = 0

and

y′′ +
kmy

mv2o
= 0.

(4.34)

We have finally arrived at the desired result: a system of equations of motion

that yield linear solutions. Along the way we made several approximations, though

it will be shown in Section 4.12 that our equations of motion work reasonably well.

Once again, note that for an element with no nominal bending, such as a linear
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waveguide, k0 is zero and the equations of motion for x and y are identical.

Let us inspect each term in our equations of motion. The term ±k/mv2o

is the effective spring constant of the magnetic element. For larger values of mass

the effective spring constant is reduced because of the larger inertia and therefore

resistance to deflection. Larger values of vo reduce the effective spring constant

for more subtle reasons. The term is squared because of two phenomena. First,

faster particles spend less time in an element and therefore experience proportionally

less bending. Second, recall that the z parameterization resulted in slopes (x′)

and rates of change of slopes (x′′) rather than velocity (ẋ) or acceleration (ẍ). A

faster particle experiencing the same total transverse momentum kick would result

in proportionally smaller changes in x′ and x′′. Thus the combined effect is the

presence of a v2o term. The term 3k20 originates from the conserved quantity l which

is just conservation of angular momentum introducing a restoring pseudo force.

Finally, the term 2δk0 results from particles with non design speeds experiencing a

magnetic force which does not exactly balance their centrifugal pseudo-force. The

centrifugal pseudo-force depends on speed to the second power, and so the expansion

in δ results in a factor of 2.

4.6 Solution and Matrix Formalism

Before solving Equations 4.34 we will rephrase them in a more general form

u′′(z) +Ku(z)− P = 0, (4.35)
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where P = 2δk0 andK = km
mv2o

+3k20. Because of the relative strength of the magnetic

forces, we will assume that the sign of K is dictated by the sign of km.

This is an inhomogenous second order ordinary differential equation to which

the solution is well known. The total solution is the sum of two solutions,

u(z) = uc(z) + Up(z), (4.36)

where uc is the complementary solution when P = 0 and Up is the particular solution

for the system when P ̸= 0. We will solve this inside a single element of constant

P and K with z replaced by ∆z = z − zi where zi is the beginning of the element.

The solutions are

uc(∆z) = uci coshΩ +
u′ci√
−K

sinhΩ,

u′c(∆z) = uci
√
−K sinhΩ + u′ci coshΩ,

Up(∆z) = Upi coshΩ +
U ′
pi√
−K

sinhΩ +
P

K
(1− coshΩ),

and

U ′
p(∆z) = Upi

√
−K sinhΩ + U ′

pi coshΩ− P
√
−K

K
sinhΩ,

(4.37)

where the i subscript indicates the value of u or U at ∆z = 0, and Ω = ∆z
√
−K.

For low field seeking, K > 0 and the hyperbolic sines and cosines become ordinary

sines and cosines which yields oscillatory behavior. For high field seeking, K < 0

which results in Up(∆z) → ∞ and U ′
p(∆z) → ∞ for ∆z → ∞.

The two solutions have distinct physical significance. For particles with

design speed, δ = 0, uc(z) is the only solution and describes the behavior of the

100



particles relative to the design orbit. For off momentum particles (δ ̸= 0) there can

be an additional offset from the design orbit of value Up(z). This is interpreted as a

shifted orbit about which the particle oscillates rather than the design orbit. This

is a first order chromatic correction.

Equations 4.37 are most helpfully represented as three 3x3 matrices for each

of the conditions K = 0, K < 0, and K > 0. Additionally, we will replace P with

the value 2k0. The full matrices for an element are

K = 0 : M(∆z) =


1 ∆z 0

0 1 0

0 0 1

 ,

K > 0 : M(∆z) =


cosΩ sinΩ/

√
K 2k0 (1− cosΩ) /K

−
√
K sinΩ cosΩ 2k0 sinΩ/

√
K

0 0 1

 ,

and

K < 0 : M(∆z) =


coshΩ sinhΩ/

√
|K| 2k0 (1− coshΩ) /K√

|K| sinhΩ coshΩ 2k0 sinhΩ/
√
|K|

0 0 1

 ,

(4.38)

where Ω =
√
|K|∆z. K = 0 represents a field free region, K > 0 a focusing region,

and K < 0 a de-focusing region. The total matrix for an element of length L is

M(L). The matrices can also be used to map the trajectory through an element by

replacing ∆z with the depth into the element. We have only considered elements in

which the bending radius is constant, but this is not the case for the combiner. We

will address this numerically in Section 4.14.
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The above matrices are commonly known as transfer matrices, and map

initial conditions to final conditions through an element such as a lens, drift region,

or bender. They are analogous to the well-known ABCD matrices in ray optics. In

the x dimension chromatic effects can be accounted for by the use of a length three

vector by

X =


x

x′

δ


Xf = MXi,

(4.39)

where Xi is the initial value of X and Xf is final value after traveling through the

element(s). In the y dimension the matrices can be reduced to their upper left 2x2

sub-matrices and a length two vector is used. One can also use a length five vector,

[x, x′, y, y′, δ] with the appropriate 5x5 matrix.

The transfer matrices have the interesting and useful property that their

determinant is always 1. In the case of K = 0 this is readily apparent. For K ̸= 0

note that the matrices have the form
C S E

C ′ S′ F

0 0 1

 , (4.40)

where C and S are ordinary or hyperbolic sine and cosine functions, and C ′ and S′

are the respective z derivatives. The determinant is

detM = CS′ − SC ′ = 1 (4.41)
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by basic ordinary and hyperbolic trig identities. We will make use of this property

later.

Because of the linearity of the matrices, a series of elements can be repre-

sented by a single transfer matrix by multiplying the sequence of transfer matrices

together in order, such as

Mtotal =
N∏
i

Mi, (4.42)

where N is the number of elements, and Mi is the ith transfer matrix in the x or

y dimension (or both if using the full 5x5 transfer matrix). For a periodic lattice,

i can be extended to values greater than the total number of elements for particles

making multiple revolutions.

We may also be interested in the transfer matrix some total depth z into the

lattice. This is found by

M(z) =


M0(z), if z ≤ L0

Mj+1(z − zj+1)
∏j

i Mi, otherwise.

(4.43)

4.6.1 Periodic Stability Criteria

Particles will ideally experience a large number of revolutions in a circular

lattice. For example, at the LHC a beam of protons will circulate several hundred

million times. One factor in achieving this is the stability of the lattice, which loosely

speaking is the degree to which particles do not wander away from the design orbit.

There are many considerations to take into account when designing a stable periodic

lattice, and the simplest is the stability of the transfer matrices.
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Figure 4.5: A simple periodic linear lattice. The unit cell, the smallest unit of
symmetry, is two lenses. A particle that reaches the end of the second lens is
effectively mapped back to the input of the first lens.

In a storage ring the lattice is periodic, that is

M(z) = M(z + Lp), (4.44)

where Lp is the path length of the design orbit for one revolution. For N circulations

we have the transfer matrix

MN = MN
period. (4.45)

It is not guaranteed that as N → ∞ the components of M∞ do not grow unbounded.

Consider the trivial example of a drift region of length Ld with transfer matrix

Mdrift =

1 Ld

0 1

 , (4.46)

which raised to the power N can be shown to give the transfer matrix

MN
drift =

1 NLd

0 1

 , (4.47)

which grows unbounded as N → ∞.
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Let us consider a simple periodic lattice of two ideal lenses, shown in Figure

4.5. One can think of a periodic lattice as a crystal, with the smallest repeating

unit known as a unit cell. Both lenses have a length of 10 cm and bore radius of 1

cm. The first lens has Bp = 0.9 tesla and the second has Bp = 0.1 tesla. The total

transfer matrix in x or y, neglecting chromaticity and assuming a design speed of

210 m/s, is

Mtotal = Mlens 2Mlens 1 =

−0.373 0.023

−13.7 −1.84

 ,

where

Mlens 1 =

 0.825 0.094

−3.397 0.825


and

Mlens 2 =

−0.230 0.054

−17.5 −0.230

 .

(4.48)

Raising Mtotal to the 100th power gives

M100
total =

−2.03E + 19 −1.79E + 18

1.07E + 21 9.41E + 19

 , (4.49)

which would map even nanometer or nanoradian initial values to unrealistically large

final values. The results of a time-stepping simulation of the trajectory of particle

in this lattice are shown in Figure 4.6. Even in a system with no drift regions and

only elements with a restoring force, we still encounter unconditionally unstable

behavior.

This behavior can be predicted using the eigenvalues of the transfer matrix.

105



Figure 4.6: Results of numerical time-stepping through the lattice shown in Figure
4.10. (a) The particle’s trajectory along the length of the lattice. The particle
collides with the lens bore after traveling through 20 unit cells. (b) The particle’s
trajectory through phase space. The particle’s initial position in phase space is
amplified through every lens.

The eigenvalues, λ, of a matrix are a measure of the magnitude of a matrix, and so

must remain bounded if raised to the power N for N → ∞. The eigenvalues of a

2x2 transfer matrix are found by solving

det (M− λI) =

A− λ B

C D − λ

 = λ2 − λ (A+D) + 1 = 0, (4.50)

where we made use of Equation 4.41. This yields the two eigenvalues

λ± =
1

2
(A+D)±

√(
1

2
(A+D)

)2

− 1 (4.51)

and the diagonalized matrix λ± 0

0 λ±

 . (4.52)

This matrix must have eigenvalues |λ±| <= 1 otherwise it will grow unbounded as
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N → ∞. Solving |λ±| <= 1 yields the stability condition

|A+D| = |Tr (M) | ≤ 2. (4.53)

The trace of the total transfer matrix in Equation 4.48 is ∼ -2.2, which is

an unstable transfer matrix. Changing the value of the pole face magnetic field of

the second lens from 0.9 tesla to 0.5 tesla yields A+D ≈ −1.1, a stable solution.

The eigenvalue equation of a 3x3 transfer matrix is

det (M3x3 − λI) =


A− λ B E

C D − λ F

0 0 1− λ

 = λ2 − λ (A+D) + 1, (4.54)

which yields the same eigenvalue problem. Thus the chromatic behavior of the

lattice does not affect the stability.

It is important to keep in mind that the stability condition we derived is in

the context of the approximations and assumptions that led us to linear equations of

motions. Substantial deviations from these approximations and assumptions could

yield unstable lattice configurations, even if Equation 4.53 is satisfied. Nonlinear

forces can introduce instability into specific regions of phase. There are also other

stability conditions such as the avoidance of resonances, discussed in Section 4.8,

that are not accounted for in this analysis and impose additional stability criteria.
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4.6.2 Stability Regions

In the previous section we observed that a periodic lattice of two lenses

could be tuned into or out of a region of instability by changing the strength of

the magnetic fields. This implies that one cannot simply choose what seem like

reasonable values for key parameters and achieve a viable lattice. In fact, even for

simple systems the dependence of the stability on element parameters can be quite

complex. For example, consider Figure 4.7 which plots stability against the field

strength in the lenses of the lattice in Figure 4.5. More complicated systems with

more variable parameters will in general have more complicated higher dimensional

regions of stability.

The size of stability regions is negatively affected by the addition of non-

confining elements. We can study this by adding a drift region between each lens in

our two lens lattice. Figure 4.8 shows the reduction in the size of stability regions

as the length of the drift element increases.

4.6.3 Dispersion

In Section 4.6 we derived a set of matrices (Equation 4.38) that map a

particle’s initial coordinates to final coordinates while including chromatic effects.

An alternative formulation that is particularly helpful for periodic lattices is possible.

To arrive at this, we introduce a different form of Equation 4.36,

u(z) = uβ(z) +D(z)δ, (4.55)
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Figure 4.7: Stability plot of the two lens system shown in Figure 4.5 as a function
of field strength of each lens.

where D(z) is known as dispersion, and uβ(z) is the trajectory when δ = 0. D(z)δ

can be thought of as a new orbit offset from the design orbit that the particle oscil-

lates about with displacement uβ(z). The equation of motion for D(z) is Equation

4.35 with δ = 1,

D′′(z) +KD(z)− 2k0 = 0. (4.56)

This has the same 3x3 matrix solutions we already found. The vector we

now propagate is

D(z) =


D(z)

D′(z)

1

 , (4.57)

according to

Df = MDi. (4.58)
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Figure 4.8: Stability plots of the two lens system shown in Figure 4.5 with drift
regions between each lens. As the length of the drift elements increases, the size of
the stability regions as a function of lens strength decreases.

An important detail is that dispersion is only generated when the third column of

the first and second row of the 3x3 transfer matrix is nonzero, which only occurs for

elements with bending.

To summarize, we set δ = 1 so that the complementary solution to Equation

4.56 can be simply scaled by δ to find the resulting trajectory offset. It is a feature of

the complementary solution that it is proportional to the source term, which is 2k0δ.

We are only interested in the complementary solution to Equation 4.56 because it is

still just Equation 4.35, to which we already found the particular solution, labeled

uβ(z) in this case.
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To find D(z) in a linear lattice we propagate the vector 4.57 through the

lattice with initial value [0, 0, 1]. For periodic lattices we have D(z) = D(z + Lp),

giving

D(z + Lp) = D(z) = MperiodD(z). (4.59)

With some algebra this yields

D(z)′ =
m21m13 +m23(1−m11)

2−m11 −m22

and

D(z) =
m12D

′ +m13

1−m11
,

(4.60)

where mij is the periodic transfer matrix element in the ith column and jth row at

location z.

4.7 The Hill Equation

So far we have developed a formalism that allows us to propagate a parti-

cle’s coordinates through a series of elements using a matrix formalism. With this

matrix formalism we can also predict whether a periodic lattice will be stable and

able to support many particle revolutions. Now we will derive a method suited to

determining the behavior of an ensemble of particles in a periodic lattice. To arrive

at this method, we start by solving the Hill differential equation

u′′ +K(z)u = 0, (4.61)
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whereK(z) is a piecewise periodic function and u is x or y. This differential equation

appears in many problems in physics. We can solve this by substituting the ansatz

u(z) = Aw(z) cos (Ψ(z) + ϕ) (4.62)

into Equation 4.61, which yields

A
[
w′′ − wΨ′2 −K(z)w

]
cos (Ψ + ϕ)−

[
2w′Ψ′ + wΨ′′] sin (Ψ + ϕ) = 0, (4.63)

where Ψ = Ψ(z) and w = w(z). For a solution where A ̸= 0 and Ψ + ϕ is not a

constant, the two terms must equal zero independently everywhere in the lattice.

This requires

w′′ − wΨ′2 −K(z)w = 0 (4.64)

and

2w′Ψ′ + wΨ′′ = 0, (4.65)

with Equation 4.65 yielding for Ψ

Ψ(z) =

∫ z

0

ds

w2(s)
. (4.66)

Inserting this into Equation 4.64 gives

w′′ − 1

w3
−K(z)w = 0. (4.67)

Unfortunately this equation has no known analytic solutions, but in the
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following sections we will work out methods to circumvent this issue. To facilitate

this, we will replace the term w(z) with
√
β. β(z) is known as the beta function. For

similiar reasons, we will also replace A with
√
ϵ, where ϵ is known as the emittance.

Both β and ϵ have units of distance. The final solution and its derivative are

u(z) =
√

ϵβ(z) cos (Ψ(z) + ϕ) (4.68)

and

u′(z) = −
√

ϵ

β(z)
[α(z) cos (Ψ(z) + ϕ) + sin (Ψ(z) + ϕ)] , (4.69)

where α(z) = −β′(z)
2 . It can be shown with Floquet’s Theorom that

β(z) = β(z + Lp). (4.70)

Notice that there are 4 variables in Equation 4.68: ϵ, β(z), Ψ(z), and ϕ.

The values β(z) and Ψ(z) are given by solutions to Equations 4.64 and 4.65. Thus,

these terms are independent of the initial particle conditions ui and u′i. The terms

ϵ and ϕ must then depend on the initial particle conditions. Notice that these value

have no z dependence. Notice as well that because of the squared term in Equation

4.66, Ψ must be a monotonically increasing function. A particle with a given ϵ and

ϕ will thus travel through the lattice with its phase advancing according to Ψ(z)

performing oscillations with maximum amplitude
√
ϵβ(z). The envelope that the

particle traces out is then

Amplitude envelope =
√

ϵβ(z). (4.71)
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For an ensemble of particles where the largest value of emittance is ϵmax, we have

Ensemble envelope =
√
ϵmaxβ(z). (4.72)

Previously if we wanted to determine the envelope of an ensemble of particles in

a periodic lattice, we would have needed to apply matrix multiplication to each

particle’s initial coordinates to propagate it through the lattice. Now, we only need

to determine β(z) and ϵmax.

Notice that we did not include dispersion here. This means our solution is

the particular solution to Hill’s equation. The complementary solution is included

by simply adding δD(z) and δD′(z) to Equation 4.68 and 4.69 respectively.

4.7.1 Acceptance

Particles with larger values of ϵ will oscillate with larger amplitudes. Even-

tually a value of ϵ is reached that causes oscillation amplitudes that cannot be

supported by the lattice. The value that this occurs at is known as the acceptance

and from Equation 4.69 is given by

Acceptance = ϵmax =

(
d(z)2

β(z)

)
min

, (4.73)

where d(z) is the aperture of the lattice at z.

An off momentum particle may have the same emittance as an on momentum

particle, but its shifted orbit will change its position relative to the aperture which
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can be viewed as a different sized aperture. We can replace Equation 4.73 with

Acceptance = ϵmax =

(
(d(z)− δD(z))2

β(z)

)
min

(4.74)

to account for chromatic effects. Asymmetric lattices can be accounted for by using

two values for d(z).

4.7.2 Tune

The phase of particle oscillations, Equation 4.68, increases monotonically

with z according to Equation 4.66. In a periodic lattice the phase will grow by the

same amount every revolution because of relation 4.70. As we will see, this periodic

increase in phase is extremely important in the study of resonances in periodic

lattices. To facilitate this a new variable, tune, is introduced and defined as

Q =
Ψ(z + Lp)−Ψ(z)

2π
=

1

2π

∫ Lp

0

1

β(z)
, (4.75)

where Equation 4.66 was used. The tune is simply the number of oscillations a

particle undergoes within its envelope,
√
ϵβ(z) , per unit cell. Because the tune is

proportional to the total phase advance per element we have

Q ∝
∑
i

Ωi ∝

√
µBp

m

Lp

v
, (4.76)

where Bp is the average magnetic pole face strength.

Particles with different longitudinal velocities will experience different tune
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shifts per revolution. The absolute shift is

∆Q = Qδ ̸=0 −Qδ=0 = Q
v

v +∆v
−Q ≈ |δ|Q. (4.77)

This can be used to define a coherence length for a swarm of particles. A reasonable

definition is the number of revolutions, Nc, for the tune to drift by a value of 1 which

means the phase has drifted by 2π. For a swarm of particles with velocity width of

about 2∆v the coherence length in terms of revolutions is then

Nc =
v

|∆v|
1

Q
=

1

Q|δ|
, (4.78)

where v is the design speed. As expected for ∆v = 0 the coherence length is infinite.

In reality the tune shift will depend on the initial position of the particles as well

because of nonlinear forces.

4.8 Resonances

So far we have developed a linear theory of a storage ring. There are numer-

ous considerations and methods to improve the realism of our model [91]. We will

only consider perhaps the most important: resonances.

An otherwise ideal lattice can possess undesired forces which in a periodic

system may be disastrous. Consider a short ideal lens installed with a small shift in

the horizontal direction of ∆x. This results in a new force

Fx = −Km (x+∆x) = −Kmx−Km∆x = −Kmx+ Fx0, (4.79)
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where we have effectively introduced a small constant force of Fx0. This is known as

a dipole error because it results from an unwanted dipole contribution in the case

of charged particles. Because the lens is short this new force can be considered a

small kick to the particle’s angle resulting in x′ → x′ + ∆θ. In general the effect

of this kick will average to zero because the particle will arrive with a different

phase each revolution. However, in the special case of an integer lattice tune, the

particle will experience the force in a coherent manner. It will then continually

receive a small increase of ∆θ and its emittance may grow large enough that it is

lost. Tune must be avoided when designing a lattice integer. Similar reasoning can

be applied to higher order errors, with the next term being the quadrupole error

from an unwanted lensing force. The resonance condition is then a half integer tune.

Higher order terms have diminishing impact.

The derivation of the impact of resonances is rather tedious and involved.

The approach is to determine the new equilibrium orbit after many revolutions

under the influence of errors distributed around the lattice. We will simply write

down the results for the leading dipole term,

u(z) =

√
β(z)

2 sin(πQ)

∑
i

√
βiθi cos ((Ψ(z)− ϕ+ π)Q) , (4.80)

where dipole errors are located at zi, and θi and βi are the dipole kick and beta

function at zi respectively. This result is only valid for dipole errors that can be

approximate as discrete kicks. It also assumes the presence of damping and is the

equilibrium orbit after several damping time constants. The relevant detail however

is that the effects of dipole errors are amplified by the term 1/ sin(πQ), where it is
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Figure 4.9: Constant emittance ellipse in phase space. In general the ellipse will
have a different shape at each location z in the lattice.

clear that integer tunes and near integer tunes are to be avoided.

4.9 Phase Space

In the previous section we derived a relationship for the envelope a particle

traces out in position space. We can extend this idea to a 2 dimensional phase space

of x, x′ and y, y′. Rather than an envelope, a particle will be confined to exist on

the perimeter of an ellipse that periodically evolves through the lattice. Similiar to

the amplitude envelope
√

ϵmaxβ(z), we require a relation that does not depend on

the phase (Ψ(z) + ϕ) of the particle. Eliminating the phase in Equation 4.68 and
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4.69, with some algebra we get

γ(z)u(z)2 + 2α(z)u(z)u′(z) + β(z)u′2(z) = ϵ, (4.81a)

α(z) =
−β′(z)

2
, (4.81b)

and

γ(z) = (1 + α(z)2)/β(z), (4.81c)

where the definition of α(z) has been intentionally repeated for reference. In this

context the parameters β(z), α(z), and γ(z) are commonly referred to as Twiss

parameters.

Equation 4.81 is the equation of an ellipse as plotted in Figure 4.9. A particle

with emittance ϵ at location z will be located somewhere along the perimeter of the

ellipse. In a periodic lattice a particle making multiple revolutions will in general

arrive at location z +NLp at a different point on the perimeter of the ellipse than

previous arrivals. If one plots the u, u′ values of the particle at location z + NLp,

the ellipse in Figure 4.9 would be produced for sufficient N . This is also known as a

Poincaré map and appears frequently in the study of dynamical systems. Note that

a particle will only fully trace out the ellipse as N → ∞ if the phase advances by

an irrational number every Lp.

To account for off momentum particles we must include the effects of disper-

sion. An off momentum particle’s emittance ellipse is relative to the its dispersive
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orbit. A more general relation for emittance in the x dimension is then

γ(z)xϵ(z)
2 + 2α(z)xϵ(z)x

′
ϵ(z) + β(z)x′2ϵ (z) = ϵ,

where

xϵ(z) = x(z)− δD(z)

and

x′ϵ(z) = x′(z)− δD′(z).

(4.82)

We are often more interested in the emittance of a distribution of particles than of

a single particle. There are several ways to quantify this. A common approach is to

define the emittance statistically as

ϵRMS =
√
⟨u2⟩⟨u′2⟩ − ⟨uu′⟩2, (4.83)

where the total emittance is ϵ = 4ϵRMS [94]. Another common approach is to use

the emittance of the 90th percentile particle.

The relative density and temperature of a circulating beam can be related

to the Twiss parameters. The transverse maximum position is given by
√
ϵβ and

the maximum transverse velocity is ϵγ. Thus

n ∝
√
β

and

T ∝ √
γ,

(4.84)

where n is the particle density and T is the particle temperature.
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4.10 Determining the Beta Function

Section 4.7 introduced a powerful technique for understanding the behavior

of ensembles of particles with the derivation of Equation 4.68. However, Equation

4.67 could not be solved analytically and the value of β(z) was left unspecified. Here

we derive a method to determine the value of β(z).

First, note the relationship

ϵ = γu2 + 2αuu′ + βu′2 =
[
u u′

]γ α

α β

u
u′

 = UTB−1U, (4.85)

where

B =

 β −α

−α γ

 (4.86)

is the beta matrix and we have dropped the explicit z dependence for notational

simplicity.

The vector U(z) is transformed according to

U2 = M12U1 (4.87)

where the subscripts 1 and 2 correspond to positions z and z+∆z respectively. We

can determine the relationship between B1 and B2 in terms of transfer matrices.

Starting with

ϵ = UT
1 B

−1
1 U1, (4.88)
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applying some elementary matrix identities, and rearranging terms we can arrive at

ϵ = UT
2

(
M12B

−1
1 MT

12

)−1
U2, (4.89)

which finally leads to

B2 = M12B1M
T
12. (4.90)

In the case of a linear lattice, if we can determine the value of the beta matrix

at some point in the lattice we can then use Equation 4.90 to produce β(z) at any

other point. For an injection system this is easily done by backwards propagating

B(zinj) from the ring through the injector, where zinj is the injection location.

For a periodic lattice we have the relation 4.70, which leads to

B(z + Lp) = MtotalB(z)MT
total = B(z)

 β −α

−α γ

 =

m11 m12

m21 m22

 β −α

−α γ

m11 m21

m12 m22


(4.91)

since the components of B are functions of only β. Some algebra then yields the

desired relations

β =
2m12

±
√
4− (m11 +m22)

2
=

2m12

±
√
4− Tr (M)2

, (4.92a)

α =
m11 −m22

2m12
β, (4.92b)
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and

γ =
1 + α2

β
, (4.92c)

where the stability relation Equation 4.53 that we derived by general arguments

about eigenvalues has appeared in Equation 4.92a.

It is worth pointing out a minor subtlety in Equations 4.92. The matrix

term m12 is not guaranteed to be positive, which could result in β < 0. This is

non-physical because the particle’s envelope is proportional to
√
β. Thus the sign

of the term ±
√
4− Tr (M)2 must be chosen correctly based on the sign of m12.

4.11 Differences With Charged Particles

So far we have largely neglected discussion of charged particles for which the

theory was originally developed. The major differences are

1. In Equation 4.34 the term 2δk0 is replaced by δk0.

2. In Equation 4.34 v2o is replaced by vo.

3. Multipoles yield different forces for charged particles.

4. Charged particles produce radiation when accelerated which introduces intrin-

sic damping into the system.

The first 2 differences arise from the fact that a charged particle’s velocity

appears in the Lorentz force. For neutral atoms this would be similar to a situation

where the magnetic field strength is multiplied by a factor of velocity. This would
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result in every v2 term being reduced to v. This implies that the behavior of a

lattice for neutral atoms is more sensitive to changes in particle velocity.

The third difference results in different roles for multipoles than we saw

for neutral atoms. Dipoles produce bending for charged particles and quadrupoles

result in lensing. However, there is a difficulty in charged particle lensing that does

not occur in neutral atom lensing. The magnetic field from an upright quadrupole

(Equation 2.17) is

B⃗ = −gyx̂− gxŷ, (4.93)

which gives a Lorentz force of

F⃗ = gvzxx⃗− gvzyy⃗, (4.94)

where g is the field gradient with units T/m and a positive charge is assumed.

Notice that the force is focusing for y and defocusing for x. It can be shown that

a series of quadrupoles of alternating polarity will result in overall focusing of the

beam. This approach is known as alternating-gradient focusing or strong focusing

for historical reasons. Higher order multipoles and combinations of multipoles also

find roles in accelerators. Sextupole and octupole magnets can be judiciously used

to reduce chromatic aberrations and can correct for some perturbations. See [91]

for more details.

The fact that charged particles emit radiation when accelerating is of great

advantage to charged particle storage rings. This results in particle dampening that

counteracts unwanted particle deviations to some extent. However, a downside is
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Figure 4.10: Graphical depiction of a periodic linear lattice and the profiles of Twiss
parameters through the unit cell. The parameters repeat periodically.

that particles cannot circulate without being continually re-accelerated because they

lose energy at every turn.

4.12 Comparison With Time Stepping

4.12.1 Linear Lattice

We can compare the theory we have developed to simulated results of ideal

elements. First, consider a simple periodic lattice composed of a lens followed by a

drift element. Figure 4.10 shows a graphical representation of the lattice along with

its Twiss parameters.

Next, a swarm of particles is initialized on a grid in phase space in the x

dimension and numerically time-stepped through the lattice. Results are shown in
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Figure 4.11: Plots of relative survival through the periodic lattice in Figure 4.10
versus initial phase coordinates. Revolutions are passes through the unit cell. Rela-
tive survival is the fraction of revolutions a particle makes of the maximum possible.
For high numbers of revolutions, there is good agreement between theory and pre-
diction. For low numbers more revolutions are required for high emittance particles
to collide with an aperture.
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Figure 4.11. After a sufficient number of revolutions, the simulated survival agrees

with the predicted survival. Multiple revolutions are required because though many

particles may exceed the acceptance, it will take in general multiple revolutions

for the particle to actually collide with the limiting aperture. Results for x and y

are visually indistinguishable because the Twiss parameters are identical in both

dimensions and the effects of gravity are negligible.

It is not surprising that there is such excellent agreement between theory

and simulation for a linear lattice. When deriving the equations of motion (Section

4.5) we made numerous approximations. However, in the case of a linear lattice

where k0 = 1/r0 = 1/∞ = 0, most approximations are not required.

4.12.2 Circular Lattice

We saw excellent agreement between predicted and simulated results for

a linear lattice in the previous section. Now we turn our attention to the more

challenging model of a circular lattice. A graphical representation of the lattice

along with its Twiss parameters is shown in Figure 4.12. Once again, a swarm of

particles is generated and time stepped through the lattice. Results are shown in

Figure 4.13.

In the y direction there is still excellent agreement between theory and sim-

ulation, however in the x direction this is not the case. A region of particle loss has

appeared within what is predicted to be a region of survival. It also turns out that

the shape and location of this region is dependent on the specifics of the lattice.

Consider Figure 4.14, which depicts the survival as a function of the length

127



Figure 4.12: Graphical depiction of periodic linear lattice and profiles of the Twiss
parameters through the unit cell. The lattice is composed of 8 unit cells, each
deflecting a particle by 45 degrees.
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Figure 4.13: Images of relative survival through the periodic lattice in Figure 4.10
versus initial phase coordinates in the x and y dimension. Revolutions refers to
passes through the unit cell. Relative survival is the fraction of revolutions a particle
makes of the maximum possible.
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Figure 4.14: Plot of particle survival as a function of lens length in the lattice shown
in Figure 4.12. Notice the appearance of non-linear effects for a range of lens lengths.
Also note that the acceptable particle emittance increases. Though not shown, it
eventually decreases.
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Figure 4.15: Particle emittance versus initial phase space coordinates for the lattice
in Figure 4.12. Revolutions refers to passes through the unit cell. Nonlinear forces
result in a change in emittance not explained by linear theory.

of the lens. Only within a range of lengths is the disagreement between predicted

and simulated results present. The disagreement moves through the phase space

ellipse as a function of lens length. Notice that longer lens lengths allow for the

acceptance of particles with larger emittance values. The trend eventually reverses.

This hints at an optimization problem if one is interested in maximizing the volume

of phase space that can be accepted. This is a form of a mode matching problem.

Next, consider the behavior of the emittance of each particle as shown in

Figure 4.15 as a function of revolutions for a lens length of 15 cm. Recall that we

defined the emittance to be a constant, yet in Figure 4.15 it is clearly increasing for

many particles. This is a nonlinear effect from the presence of bending that is not

accounted for in our linear theory.

A comparison of the stability behavior of the circular lattice is shown in

Figure 4.16. Particles are initialized with zero transverse phase space coordinates
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Figure 4.16: Particle survival versus longitudinal velocity. A spectrum of deadbands,
regions with no survival, is present and is a general feature of lattices.

and traced for 10 seconds. Over a wide range of longitudinal velocities there is good

agreement between simulation and theory. For higher velocities a cutoff occurs

around 270 m/s that is not explained by stability criteria. However, accounting

for dispersion yields a cutoff of about 270 m/s. Notice that the regions of stability

are narrower and closer together at lower velocities. This occurs because unstable

regions occur periodically with respect to tune and tune is inversely proportion

to longitudinal velocity (Equation 4.76). The unstable regions are analogous to

deadbands in a transfer function.

Finally we can compare the predicted survival to the simulated value for a

swarm of particles in phase space. Here we use a swarm of 1000 particles pseudo-

randomly distributed in phase space. Transverse particle positions are distributed

in a circle of 10 mm diameter, transverse velocities are distributed in a circle of 20
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m/s diameter, and longitudinal velocities are distributed between 200 and 220 m/s.

Particles are traced for 10 seconds. Theory predicts 56% of particles survive while

simulation indicates 49% survive.

4.13 Different Species

Assuming our approximations hold, we can use the preceding theory to de-

sign a neutral atom storage ring for an atomic or molecular species. An obvious

question is whether other species can be used. As far as the physics of the stor-

age ring is concerned, only a particle’s mass, velocity, and magnetic moment are

relevant. If these parameters can be varied in a manner that does not change the

equations of motion, then the answer is yes.

From Equation 4.34 the general equation of motion is

u′′(z) +

(
± 2µBp(z)

mv2orp(z)
2
+ 3k0(z)

2

)
u(z)− 2δk0(z) = 0, (4.95)

where it is assumed the magnetic moment µ is a constant. m and µ are charac-

teristics of the species, while vo is characteristic of the source of the species. Our

previous discussion of the design orbit implied that the speed vo is a feature of the

lattice, but this is actually not the case. Recall that the design orbit in a bending

element is determined by balancing the centrifugal pseudo force and magnetic force.

From Equation 4.9 the particle parameters that defined this radius all appear in the

term 2mv2o/µ, which also appears in our equation of motion.

Therefore we can write down a species dependent factor for which a specific
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lattice is designed to operate with. This factor is

ξ =
2µ

mv2
=

µ

Ek
, (4.96)

where µ is the magnetic moment of the species and is assumed to be constant, m is

the mass of the species, v is the longitudinal velocity of the species, and Ek is the

particle’s kinetic energy. The subscript was dropped from vo. We will refer to this

factor as the species factor. A given lattice designed with a specific ξ can be used

with any species/source combination that results in the same ξ.

A possible source design is one which generates a thermal particle distribu-

tion to load a storage ring. The storage ring samples some half width ∆v about

some point vk which is typically the peak or mean of the distribution. These can be

related to temperature and mass by

vk = Ck

√
T/m

and

∆v = βσ = βCσ

√
T/m,

(4.97)

where Ck and Cσ are constants that depend on the source characteristics (such as

effusive, supersonic, etc), σ is the variance squared, and β is a unitless number. Here

thermal distribution is being used in a general sense to mean any distribution were

some central value of the longitudinal velocity is proportional to
√
T . Plugging this
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Figure 4.17: Mean revolutions of a swarm of particles through a periodic lattice
versus initial longitudinal velocity. The stable alkali atoms are shown. Several
initial temperatures are shown. Revolutions are scaled by 1/vz relative to Li for
comparison. Maximum revolutions possible is 230.8 for Li.

into δ and ξ gives

ξ =
2u

C2
kT

and

δ =
∆v

vk
= β

Cσ

Ck
,

(4.98)

which now only depend on µ and T .

The equations of motion for a thermal source then only depend on the tem-

perature of the source and the magnetic moment. This is a very convenient property.

For example, a storage ring loaded with a source of neutral alkali atoms at temper-

ature T could be as efficiently loaded with another source of a different species of

alkali atoms at the same temperature.
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Figure 4.18: Modeling a lens as short slices to account for fringe fields.(a) The spring
constant K = 2µBp/mv2r2p versus position in the lens along the red dashed line in
image b. The black circles indicate the location of the transfer matrix produced from
∆L and each averaged value of K. (b) Heatmap of the transverse force applied by
the lens.

Let us test this model in the periodic lattice shown in Figure 4.12 for the

ground state alkali atoms. Figure 4.17 shows the mean number of particle revolu-

tions for several temperatures of swarms launched from a point source within the

lattice. 100 particles are sampled from a thermal distribution and time stepped for

10 seconds. There is good agreement over a wide range of masses. In Section 6.6

we will see that this phenomena holds for a more realistic lattice.

4.14 Numerical Methods

Real magnetic elements do not obey the hard edge approximation as their

fields extend past their input/output planes. This model can be improved by taking

into account the effective length described in Section 3.4.4. The effective length is

used in place of the material length for the transfer matrices (Equation 4.38). A

further improvement is to model the element as small slices and construct a transfer
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matrix for each slice as shown in Figure 4.18 for a lens of length 7.5 cm and bore

radius of 2 cm. The total matrix is the product of each slice. In the case of a lens

this is done by determining the average value of K in each segment of length ∆L

and producing a transfer matrix from K and ∆L.

For the lens shown in Figure 4.18 the transfer matrices for the three methods

are

Naive model: M =

1.337 0.1285

6.138 1.337

 ,

Effective length model: M =

1.337 0.1283

6.130 1.337

 ,

and

Sliced lens model: M =

1.318 0.1214

6.072 1.318

 ,

(4.99)

where the matrices were computed for field values on or along the red dashed line in

the figure. All three matrices are fairly similar, but their differences could become

significant in a periodic system. Note that for the effective length and naive model

two drift regions needed to be included at the entrance and exit to match the region

used for the sliced lens model. Also note that because of field aberrations the values

will change depending on the location of the red dashed line.

We have neglected to consider elements in which the bending radius varies,

which occurs in the combiner. If the combiner is viewed as many short bending

sections with each neighbor’s radius changing by a small amount, it can be easily

modeled numerically with the above method.
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An additional method is to expand the transfer matrices to include mappings

for higher order terms of τn1+n2+n3 = xn1y
n
2 δ

n
3 . We discarded terms higher than τ1.

They can be included, but the linear nature of the transfer matrices is lost.
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Chapter 5

Simulation Overview

5.1 Introduction

The construction of a permanent magnet meter-scale neutral atom storage

ring is a significant experimental undertaking. To the best of our knowledge it has

never been done before and the theory developed in Chapter 4 is somewhat novel.

Additionally, it has been proposed that it may not be possible to find a stable

configuration [9]. Therefore to reduce the possibility of failure, a full simulation1 of

the storage ring was developed in Python, taking advantage of the Numba library

[95] to increase performance.

A lattice can be specified as a series of elements such as drift regions, lenses,

benders, and combiners. Idealized models can be used, or in the case of permanent

magnet arrays, analytically computed magnetic fields can be specified. Results

from a Finite Element Method (FEM) simulation, such as COMSOL Multiphysics,

can be provided for iron based elements. For faster yet less accurate evaluations,

approximate symmetry can be exploited to reduce the computational overhead of

generating magnetic fields. Specified assembly tolerances and magnetic material

1The codebase can be found on GitHub (link: “https://github.com/BillyTheKidPhysicist/storageRing.git”).
At the time of writing the commit ID is “d53c3b3c83f1e16559880ec7a681fdfaffb3775e”.
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imperfections can be included. Particles are time-stepped through the lattice, and

phase space coordinates and energies can be logged at each step. The effects of Li-Li

collisions can be approximately accounted for as well.

A specific storage ring design is created by coupling a linear injector lattice

and circular ring lattice. The design is parameterized by variables such as ele-

ment length or radii, typically 10-20 in number, and then used to find an optimal

solution. This procedure can be quite computationally intensive considering each

solution takes 1-10 minutes when exploiting symmetry. When including the effects

of misalignments and material imperfections, evaluation time is on the order of an

hour. An allocation at the Texas Advanced Computing Center (TACC) for the Lon-

estar6 supercomputer was awarded which aided modeling efforts. Each node of this

computer has 128 processors and only a single node was needed. In the following

chapter technical details of the simulation are described, as well as some brief theory

of numerical methods.

5.2 Particle Time Stepping

They are a wide variety of time stepping procedures available [96]. Ulti-

mately the velocity Verlet method was chosen for its simple and efficient implemen-

tation and favorable performance compared to other methods. Let us briefly review

some of the theory behind time-stepping.

We will only consider solving first order Ordinary Differential Equations
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(ODE) of the form

du(t)

dt
= u̇ = f(u(t)), (5.1)

for which a wide variety of well-established methods exist. In general, the methods

yield procedures for mapping u(t) → u(t + h) where h is a sufficiently small value.

The term h is commonly constant which allows us to define

un := u(nh). (5.2)

Newton’s equation of motion is a second order ODE given by

ẍ =
F (x)

m
(5.3)

and can be transformed into the two first order ODEs

ẋ = p/m (5.4a)

and

ṗ = F (x), (5.4b)

where we have assumed ṁ = 0. This can now be solved by numerical methods for

Equation 5.1.

5.2.1 Euler Method

The simplest integration scheme for Equation 5.1 is known as the Euler

method, or more precisely, the explicit Euler method. Tayloring expanding u(t) to
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first order to gives

un+1 = un + f(un)h+O(h2). (5.5)

To solve Equation 5.1 up to time T one starts with an initial value of u0 and applies

the above procedure for T/h iterations. For Newton’s equation we have

xn+1 = xn +
pn
m

h (5.6a)

and

pn+1 = pn + F (xn)h. (5.6b)

Ignoring any computer precision concerns, our solution is only an approximate one

because of the discretization of time and the loss of higher order terms in Equation

5.5. In general it is impossible to know how much our approximate solution deviates

from the exact solution because we do not have access to the exact solution. Instead,

it is common to characterize error by the terms neglected in our solution method.

In the case of the Euler method it is clear from Equation 5.5 that the error

per step, or local error, is

ϵlocal = O(h2). (5.7)

In contrast to the local error, we are also concerned with the global error which is

the order of the error accumulated over N steps. The global error is then

ϵglobal = ϵlocalN = ϵlocal
T

h
= O(h). (5.8)

The stability of a numerical method can be quantified either in a general
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way, or for a specific problem. We are primarily concerned with harmonic behavior,

expressed by

ẍ = −ω2mx, (5.9)

for which the time stepping procedure according to the Euler method is

xn+1 = xn +
pn
m

h (5.10a)

and

pn+1 = −ω2mhxn + pn. (5.10b)

This can be written in matrix form as

Xn+1 = MXn. (5.11)

If N iterations are carried out, then the solution is Xf = MNXi. In analogy

with Section 4.6.1, Xf will diverge if the magnitude of the eigenvalues of M are

greater than 1. Some algebra yields for the eigenvalues

|λ| =
√
1 + h2ω2, (5.12)

which does not satisfy |λ| ≤ 1 for non-trivial values of h and ω. Thus, the Euler

method is unconditionally unstable for solving a harmonic oscillator.

It can be shown that in general the Euler method exhibits poor stability

and energy conservation. For these reasons the method is rarely used outside of a

pedagogical role.
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5.2.2 Implicit Euler Method

A more practical method is the implicit Euler method, given by

un+1 = un + f(un+1)h, (5.13)

where the only difference is that we have replaced f(un) with f(un+1). In general,

each iteration must be solved with an iterative technique such as Newton’s method.

Compared to the explicit Euler method, the implicit method has superior

energy conservation and stability behavior. Implicit methods typically have superior

performance compared to their explicit counterparts for a given step size. However,

the extra task of solving Equation 5.13 may outweigh the benefits of simply reducing

the step size of the explicit method.

5.2.3 Velocity Verlet

The method chosen for the simulation is the velocity Verlet algorithm, a

common algorithm for solving Newtons’ equation of motion. It is given by

xn+1 = xn +
pn
m

h+
1

2
F (xn)h

2 (5.14a)

and

pn+1 = pn +
F (xn) + F (xn+1)

2
h. (5.14b)

Determining the local and global error is more involved than for the Euler

method, though it follows a similar procedure of Taylor expansions. The results
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Figure 5.1: Trajectories in positions space for a radial harmonic oscillator with
oscillation frequency ω. The timestep h is the specified fraction of ω. (a) Trajectories
produced by the Euler method. (b) Trajectories produced by the velocity Verlet
method.

yield a local error in position and velocity of O(h4) and O(h2) respectively, and a

global error of O(h2). The stability criteria for a harmonic oscillator is given by the

same procedure we used in Section 5.2.1 and yields

hω ≤ 2, (5.15)

which is conditionally stable. A comparison between the Euler method and the

velocity Verlet method is given in Figure 5.1 for a harmonic oscillator. The veloc-

ity Verlet method also possesses the desired feature of being symplectic. Loosely

speaking, an integrator is symplectic if it conserves an approximate form of the

Hamiltonian.
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5.3 Magnetic Forces

The gradient of the norm of the magnetic field is computed by forward or

central difference of the norm of the magnet field. This is then used to compute the

force with Equation 2.16. Magnetic fields are calculated depending on the element.

In the case of an idealized component Equation 2.20 is used for the magnetic field

norm.

For ideal cuboidal permanent magnets analytic solutions exist. Thus the

magnetic field produced by a Halbach array of cuboid magnets can be solved for

exactly. This is fortunate because the computation time for the same results by

the Finite Element Method (FEM) can be significantly longer and implementation

would be more cumbersome. An excellent library exists for generating magnetic

fields from analytical results [97]. Fields can be generated from dipoles, rectangular

and cylindrical sheets of current, and lines of currents.

The FEM is typically used to deal with magnetic models that include soft

materials. However, one can account for soft materials with the magnetostatic

Method of Moments (MoM) [98]. This method works by modeling the magnetized

material of the system as N domains with each domain represented by a magnetic

dipole. In the case of cuboid magnets, the magnet can be divided into smaller

cuboids or simply left as a single domain. The magnetization of each dipole is then

adjusted to satisfy Maxwell’s equations and the B-H curve which in general requires

an iterative solver. As discussed in Section 2.6.1, a permanent magnet can be more

accurately modeled by modifying the square B-H curve with the addition of a linear

permeability term. In this case the system results in an NxN matrix that can be
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Figure 5.2: A diagram of the linear interpolation scheme and the limit it sets on
the usable interior region. The green semicircle indicates the radius of the valid
interpolation region. The radius of the semicircle increases with decreasing grid
spacing

easily solved to give the new magnetization values. The results are valid as long

as the demagnetizing fields are small enough that the B-H curve is still in a linear

regime. A downside of this method is that the complexity scales as N2, whereas

FEM complexity scales as N . However, MoM is more easily implemented

The material and dimensional tolerances of permanent magnets are ac-

counted for by modifying the relevant values of each cuboid. The deviation is

sampled from a uniform distribution bounded by the tolerance.

Magnetic force calculations are computationally expensive and the simula-

tion would be unusable if they were required at each time step. Thus an interpolation

scheme is used. A natural and efficient choice is linear interpolation which in 3D is

referred to as trilinear interpolation. A Numba compliant version was implemented.

A downside of trilinear interpolation is that a grid is required rather than a

scattering of points that can conform to a geometry. An implication of this is that

the grid spacing sets the maximum usable region of the element’s bore, otherwise
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Figure 5.3: Magnetic field norm versus distance through a hexapole Halbach array
lens. Distances are normalized to the bore radius rp. The total length of the lens is
10rp. (a) Magnetic field norm plotted against the distance along 4 lines of different
radial displacement from the bore centerline. The dots indicate the field value at
the center of the lens. (b) A log scaled plot of (a). (c) A heatmap of the magnetic
field norm of the lens. The dashed lines correspond to the lines in plots (a) and (b).

the interpolation would include fields inside the magnetic material, as shown in

Figure 5.2. Fortunately, feasible grid sizes result in regions that are larger than

restrictions imposed by vacuum tubes. The grid cell size must be chosen such that

it is sufficiently small compared to the bore radius of the element. An alternative

interpolation scheme could be implemented as an improvement, such as barycentric

interpolation, but I found trilinear to be adequate.

In principle a single magnetic component’s fields affect a particle’s trajec-

tory everywhere in space and thus a fully accurate model would include the effect

of all magnetic components at every interpolation point. This would result in un-

reasonable computation times. In practice, at sufficiently large distances the impact

becomes negligible. Magnetic field values for a hexapole lens drop to less than a per-

cent of their peak values for distances larger than 1.5rp from the lens face, as shown
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in Figure 5.3. This can be used to exploit symmetry and reduce computation time.

Elements are placed such that their interpolation region extends to a distance 1.5rp

and no overlap between interpolation regions occurs. Thus two elements of bore

radius rp1 and rp2 would be separated by a distance of at minimum 1.5(rp1 + rp2).

Since each element is considered independent of its neighbors, symmetry within each

element is used. this works out nicely because gaps between magnetic elements exist

for other reasons such as vacuum or optical access.

The minimum cross sectional symmetry of a 12 magnet hexapole Halbach

array is a wedge of 15◦ which can reproduce the field everywhere in the cross sec-

tion using mirroring, reflecting, and rotating. However, this symmetry can only be

exactly used inside of an infinitely long lens. If long enough, a lens can be broken

into two regions of symmetry to a high degree of accuracy. This is done using two

regions: an outer region representing the input/output of the lens that extends 2rp

in and 1.5rp out of the lens, and a cross section that is applied inside for depths

≥ 2rp. Additionally, since trilinear interpolation is being used, 15◦ would not pro-

duce the required interpolation grid point placement. Instead, a 90◦ symmetry is

used as shown in Figure 5.2.

In the case of a bending element a similar approach is used, except that

the interior is not accurately modeled by a cross section. The unit cell of half of a

bending magnet slice is exploited for interior symmetry instead. The fringing region

is accounted for by an interpolation region that extends from 1.5rp outside the first

bending magnet to 2 unit cells inside.

Approximating magnetic elements as being independent of each other to
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Figure 5.4: A comparison of the energy conservation behavior of the two models
of the magnetic field. The total energy is calculated along 4 lines through the lens
shown in (a). The energy at each point is calculated by taking the cumulative sum
of the total work and potential energy of the previous points. (b) The energy along
the 4 lines for the model where the magnetic fields are truncated 1.5 bore radii from
the lens face. (c) The same plot as (b) except the longer range energy model is used.

utilize symmetry does negatively affect simulation realism, particularly in the form

of particles gaining or losing excessive amounts of energy. However, the approx-

imation is useful for optimization. Results can be corroborated by using a more

realistic interpolation model that does not use symmetry. Instead, the magnetic

field is interpolated everywhere inside the element and includes the fields of neigh-

boring elements up to some maximum distance. Results such as total survival time

or revolutions of a swarm of particles agree within a factor of two typically for sim-

ulation times of 100 seconds. Results diverge more strongly for longer times. When

analyzing heating or phase space behavior the results can differ significantly. A

simple comparison of the two models is shown in Figure 5.4 for a single lens.
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5.4 Building Lattices

Assembling the lattice is conceptually straight forward. In the case of a linear

lattice this is done by defining the initial location and angle of the first element, then

adding the following elements. Elements line up by connecting their design orbit

so that the ideal particle will follow this orbit exactly (barring numerical or other

deviations). For lenses and drifts the design orbit is straight down the bore center.

For a bender the design orbit is the orbit that a particle is in equilibrium with the

centrifugal pseudo-force and the magnetic force (Section 4.2.1). For an ideal bender

this is calculated analytically, while for the segmented bender this is the orbit that

results in minimal RMS particle amplitude. This is determined by a minimization

routine. There is always some oscillation because of the segmented nature of the

bender, but a particle following the design orbit oscillates with an amplitude on the

order of microns.

For closed lattices the procedure is the same as for linear lattices with the

added constraint that the final element’s position and output angle aligns with the

initial element. For certain configurations this can be done rather easily analytically.

For example, the simplest realistic closed lattice of two ideal benders and a single

combiner can be reduced to a geometry problem of aligning 3 triangles. This requires

leaving parameters of the lattice unspecified such as bending radii and element

lengths to be later determined by constraints. Any convex closed lattice of ideal

benders and combiners can be solved analytically. However, this can be tedious and

does not extend to the inclusion of segmented benders because they cannot take on

any bending radius and angle once the segment length is defined.
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The problem is framed as a minimization problem to reduce a cost function

instead. The cost is defined as the misalignment of the beginning and end of the

lattice. An additional cost is applied to enforce that the final bending radii are very

similar to the desired bending radii. The parameters that are varied are the bending

radii, number of lenses in the benders, and the length of lenses. The user can specify

in which elements the parameters can be varied to achieve a closed lattice. Typically

there are multiple similar configurations that achieve a closed lattice.

5.5 Optimization

A reasonable figure of merit for a storage ring lattice is the flux multiplication

F which is how many times the input flux (atoms/second) is amplified within the

ring. This is defined as

F =

∑N
i Ri

N
, (5.16)

where Ri is the number of revolutions of the ith particle before loss and N is the

total number of particles. Probabilistic loss mechanisms such as vacuum and optical

pumping can be included by weighting Ri which is discussed in Section 6.7. This

value is defined for a specific collection of particles so a representative sample size

must be used to characterize the lattice.

The efficiency of a lattice can be defined to be

ϵ = F/Fmax, (5.17)
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where

Fmax =

∑N
i viT/Lt

N
, (5.18)

T is the maximum simulation time, vi is the longitudinal velocity of the ith particle

and Lt is the total length of the lattice.

Neglecting losses not intrinsic to the ring such as vacuum or optical pumping,

there are three phenomena that will prevent ϵ = 1 for a given initial distribution:

1. Issues with the simulation such as too coarse of time stepping or magnetic

field interpolation.

2. Particles starting in regions that collide with the vacuum walls almost imme-

diately and would have been lost even with perfect stability.

3. Particles being lost due to instability. In practice this could apply to every

particle as the effects of small errors in the lattice accumulate.

Mechanism 1 is addressed by iteratively reducing the relevant parameters

until the model results clearly converge. Parameters are selected that result in a

balanced trade-off between simulation time and precision. Mechanisms 2 and 3 can

be reduced by an optimization routine as was alluded to in Section 4.12.2. The two

mechanisms are in tension with each other and one dominates the other at certain

time scales. For example, if the initial swarm is spread out in phase space such that

many particles are initially lost to mechanism 2, then with a short simulation time

the optimization routine may produce a lattice configuration that does not yield
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long particle lifetimes. On the other hand a very long timescale will be biased in

the other direction.

A reasonable choice for the timescale is to use the vacuum lifetime as an

upper limit. Typical trap lifetimes for alkali atoms are 10s to 100 seconds. I chose

a simulation time of 100 seconds when optimizing. The current design results in

about a 50 second vacuum lifetime (Appendix B).

There are numerous optimization schemes to choose from and it there is not

a general method for selecting one. The most straight forward and naive method

is a grid search. Assuming a model requires 5 minutes to evaluate, there are 10

parameters, and we use a fairly coarse grid of 5 points per dimension, then the total

evaluation time would be about 13,500 CPU-hours. For 5 parameters the total time

is only 4.3 CPU-hours. This is known as the curse of dimensionality.

We saw in Section 4.6.1 the existence of distinct regions of stability. This

implies the existence of numerous local minima. The problem is therefore one of

global minimization in contrast to local minimization. Many local optimizer schemes

can be shown to eventually converge to the minima. This usually cannot be done

with a global optimizer. Many global optimizers are heuristic strategies inspired by

the natural world such as “ant colony optimization” or “simulated annealing”.

A powerful and general global optimization strategy is Differential Evolu-

tion (DE), shown in Figure 5.5. The strategy is inspired by natural selection. A

population is initialized in the parameter space with each member’s DNA being

the parameter values at its respective location in parameter space. The member’s

fitness is inversely related to the value of the cost function at that location. At each
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Figure 5.5: A simple example of the Differential Evolution (DE) algorithm. Mem-
bers explore a cost function landscape and compete with each other to find a global
minima.

iteration every member’s DNA (the parent) is mixed with other members DNA and

a new member (the offspring) is produced. If the offspring is more fit (less cost)

than its parent it replaces the parent. A variety of recipes for mixing exist. A

standard recipe is to randomly select one member and then take the difference of

its DNA with the most fit member to produce new DNA to mix with the parent’s

DNA. The new DNA is randomly mutated and then segments are randomly inserted

into the parent’s DNA. Because we took the difference in DNA the population will

eventually converge to a single DNA. Multiple generations are modeled by sweeping

through the entire population. An example of DE is shown in Figure 5.5.

In the original DE algorithm the cost function for each member is evalu-

ated serially for each generation. All the members must produce children before

proceeding to another sweep through the population. The SciPy [99] library offers

an implementation in which multiple cost functions are evaluated in parallel for

improved performance. However, this parallel evaluation is applied for each genera-

tion. This can bottleneck efficiency for problems where the cost function evaluation

155



time varies across orders of magnitude. In the extreme all but one member of the

population is rapidly evaluated. The remaining member uses one processor of the

CPU and the rest are idled. This occurs when optimizing the storage ring system.

For the initial iterations the vast majority of configurations result in either invalid

geometries or the loss of all particles nearly immediately. A single long lived solu-

tion will then bottleneck the computer. To prevent this an asynchronous version

of DE was implemented wherein members can evolve independently of the rest of

population and different generations exist at the same time. This has proven very

helpful when using the Lonestar6 super computer.

On a typical personal computer, the optimization time can still be quite

long, on the order of days or even weeks. An alternative approach is to separate the

problem into two problems, injection and circulation, which can significantly reduce

the computation time. Additionally, simulating the injection system is more than

an order of magnitude faster than simulating the ring system.

To simulate the injection system a reduced model, or surrogate model, of

the ring system is still used to enforce the constraint that the injection system must

not overlap with the ring system. The surrogate model also includes a lens after the

combiner to encourage a more realistic result. A reasonable guess of element sizes

is used. The figure of merit for the injector is then simply what fraction of particles

survive through to the end of the combiner.

The optimal parameters from the injection system are then used to optimize

the ring system. Finally, both systems are coupled together and the last step is to

“polish” the results where the full system is optimized. This can be another global
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optimization routine that starts from the optimal point and explores a parameter

space with bounds shrunk around the optimal point, or a local optimizer strategy.

Separating the problem in this way reduces the computation time to 2 or 3 days

though it may get stuck in a local minima.

5.6 Miscellaneous

5.6.1 Performant Python

Python is an interpreted language rather than compiled, which loosely speak-

ing means each line is recompiled each time. This makes the language a poor choice

for problems which require many loops and functions, which is exactly what a time

stepping simulation requires. However, many simulation problems are bottle necked

by a small portion of the logic. In this case only a few hundred lines of code are

the culprit amongst the roughly 10,000 lines. Rather than abandoning Python, and

losing the features which have made it so popular, the problematic Python code

can be replaced with high performance code. There are a few methods to do this.

Historically the most popular is Cython which allows for python functions to be

written in a mixed C/Python language. “Boost.Python” is another option that

converts C++ modules to functions that can be called by Python.

An exciting alternative is the Numba library [95]. The library works by

using a Just In Time (JIT) compiler that reduces Python code to high performance

low-level code the first time the function is called. The library is used by simply

adding a single line above a compliant python function and results in performance

similar to code written in C. For reference, in a simple simulation of tracing a particle
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through an ideal lens, the evaluation time per step is about 2500 ns without Numba

and about 10 ns with Numba. For more information on high performance Python

see [100].

5.6.2 Vacuum

A simple model of the vacuum in the ring and injector is used for analysis

and optimization. Pressure profiles are calculated throughout the vacuum system

resulting from outgassing, pumping, and gas flow. Surprisingly, there appears to

be no publicly available Python libraries that do this. I implemented a simple

version based on the fundamental vacuum equations briefly reviewed below. The

fundamental vacuum equations are

Q12 = C12P1 − C21P2

and

Q = SP,

(5.19)

where P is pressure, Q is the gas flow, C is the conductance, and S is pumping

speed [79]. S and C have the same units of volume/time. The subscripts 1 and

2 indicate regions of vacuum separated by some restriction to gas flow. For an

interconnected system of N vacuum regions this can be expressed with matrices as

Q = (C+ S)P, (5.20)

where Q and P are length N vectors and S and C are N ×N matrices. The system

can solved directly if S and C are independent of P, otherwise an iterative method
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is required. The pressure profile in tubes can be determined with this method by

modeling them as many shorter tubes. The effects of outgassing can be included in

a similar fashion
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Chapter 6

Simulation Results

6.1 Introduction

This chapter describes an optimized storage ring design. Various aspects of

the design are characterized by simulation including phase space behavior, expected

flux, feasibility of evaporative cooling, and use with other species. Loss mechanisms

are discussed, including practical considerations such as material and alignment

errors. The design described achieves about 30% of the maximum flux possible

considering vacuum limited lifetime and optical pumping efficiencies.

6.2 Overview

An overview of the lattice is shown in Figure 6.1. Magnetic elements are

labeled and their details are given in Appendix C. The round-trip length of the design

orbit of the ring is about 8.04 m and the design speed is 210 m/s. Particles originate

from a 1 cm diameter aperture surrounding the existing atomic focus. Their phase

space distribution is a model of the focus and is described in the following sections.

To reduce Majorana spin-flips a solenoidal winding is present in every magnetic

element to prevent a zero field at the center of the element. The field generated is

around 5 gauss and has a negligible effect on simulation results.
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Figure 6.1: Graphical overview of the injector/storage ring system with vacuum
system. The view is from above directed vertically downward. Particles originate
from the source and travel through the injection system into the ring where they
begin to circulate and build up a large flux. Dimensions are approximate. ”El N” is
the element label for later reference where ”N” is a number assigned to each element.
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Atoms from the atomic focus enter a lens (El 1) with a horizontally transverse

offset of 11.4 mm. The offset shifts the lithium beam out of the helium beam, and

the helium beam continues to a dump chamber where it is pumped away. The

lithium beam then travels through a series of 3 lenses (El 2, 3, and 4). These lenses

allow for small adjustments to the injected beam to tune the mode matching into

the ring as well as allowing space for differential pumping. The pressure drop from

the existing source to the ring needs to be about 3 orders of magnitude for adequate

lifetime. In this region He diffusing from the existing chamber will dominate the

pressure.

As atoms leave the last lens of the injector (El 4) they are optically pumped

from a low field seeking state to a high field seeking state (). They then enter the

combiner magnet (El 5) and are deflected in the opposite direction of the circulating

beam. Both beams join at the output colinear with each other and the injected

beam is pumped into the low field seeking stretched state 22S1/2 |F = 2,mF = 2⟩.

A large gap is present between the output of the combiner and the next element

so that fringe fields will have fallen to low enough values to allow high field optical

pumping. Details of the optical pumping setup are described in Appendix A.

The atoms then begin circulating in the ring periodically traveling through

elements 5-15. Elements 7-9 and 12-14 form bender 1 and 2 respectively. Each

bender is split at its apex to allow for vacuum pump access. Between each split is a

short lens (El 8 and 13) to couple the atoms between the half benders. Elements 10

and 11 transfer atoms from one bending section to another with space for pumping

and observation. Elements 15 and 6 mode match atoms into and out of the combiner
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respectively.

6.3 Flux

In Section 5.5 the flux multiplication, F , was introduced as a possible figure

of merit. It describes how many times the input flux (atoms/second) is amplified

within the ring. It is possible that a storage ring would support an infinite number

of revolutions for some regions of initial phase space, which would result in F = ∞

without any additional losses. In reality there are several loss mechanisms, includ-

ing imperfect optical pumping, vacuum, material imperfection, misalignments, and

Majorana spin-flip losses. The addition of a solenoidal coil to the vacuum system is

expected to nearly eliminate Majorana spin-flips so we will not consider this limit.

At the output of the combiner both the injected and circulating beam pass

through the optical pumping region. For an atom in the circulating beam there

is some probability of being inadvertently pumped into the untrapped high field

seeking state and being lost. The optical pumping efficiency, ϵ, is defined to be the

fraction of particles remaining in the trapped low field state. The optical pumping

efficiency for the circulating beam is estimated to be 99.96% for a single pass through

the optical pumping region. This sets an upper limit on F of about 2500 from

Equation 6.6. This depends strongly on the exact value of efficiency as shown in

Table 6.2. However, this is the value for the low atom density limit neglecting

radiation trapping effects. Including radiation trapping in the model results in

an upper limit of about 1600 times. When other loss mechanisms are included,

the differences in efficiency gives results that are negligibly different, though this
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Figure 6.2: Results of simulating injection and circulation in the storage ring where
the only loss mechanism is particles colliding with vacuum walls. (a) Flux multi-
plication versus simulation time. (b) Percent survival of particles versus simulation
time. About 20% of particles are lost through the injection system, and another
35% are lost in the next 10 revolutions. About 20% of particles are very long lived.

assumption begins breaking down for F > 1000. Another limit is set by vacuum

lifetime. Appendix B describes a possible vacuum system that would achieve a

lifetime of about 50 seconds. From Equation 6.4 this results in a vacuum limited

F of about 1300, assuming only vacuum losses. Perhaps the most concerning is the

limit from the introduction of magnet errors described in Section 2.6.2. This has

the possibility of reducing F to less than 50. In Section 6.7.2 a solution is presented

that largely alleviates this concern.

Figure 6.2 shows the result of a simulation where the only loss mechanism
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is particles colliding with vacuum walls. 1000 particles were injected from the focus

and allowed to circulate for up to 500 seconds. About 20% of particles are long

lived and survive over 13,000 revolutions. Combining the simulated results with

the vacuum lifetime and optical pumping efficiency using Equation 6.7 gives a flux

multiplication of about 240 times. Table 6.1 presents the flux multiplication for

different values of vacuum lifetime and optical pumping efficiency for the simulated

results as well as the zero vacuum wall collision loss case. The proposed design is

performing at about 30% of the optimal value given realistic vacuum and optical

pumping constraints. The maximum flux of the source is about 2×1012 1/s at the

focus and with the anticipated flux multiplication this results in a flux of 4.8× 1014

atoms/s circulating in the storage ring. This corresponds to about 1.8× 1013 total

atoms circulating in the ring. As discussed in Section 3.3, we expect the flux at the

focus to increase up to 10 fold if the chamber pressure is reduced.

The simulation was performed with a 1 µs time step and a dense field inter-

polation requiring 30 GB of memory. A particle which survives to 500 seconds will

perform around 500 million time steps. This raises the possibility of small errors

compounding and producing unrealistic results, but less refined models were not

significantly different. In the end, the weighted impact of particles surviving past

100 seconds is largely negligible for realistic vacuum and optical pumping limits.

6.3.1 Initial Phase Space Distribution

The phase space distribution of the source of particles used for optimization

comes from the combined jet seeding particle tracing simulation used to model the
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Figure 6.3: Initial phase space distribution used for modeling and optimizing the
storage ring. The distribution comes from the combined jet seeding particle tracing
simulation with 3 mK temperature floor. The symmetry of the magnet is clearly
seen in (a) and somewhat visible in (b) and (d). In (e) the long high velocity tail of
the distribution is apparent.

166



τ (s)
ϵ (%)

100 99.99 99.96 99.9 99

∞ ? (∞) 1700a (10000) 650 (2500) 280 (1000) 35 (99)

200 1200a (5200) 850 (3400) 460 (1700) 240 (840) 34 (98)

100 670 (2600) 550 (2100) 350 (1300) 210 (720) 34 (96)

50 360 (1300) 320 (1200) 240 (860) 170 (570) 33 (92)

30 220 (780) 210 (730) 180 (600) 130 (440) 32 (88)

10 83 (260) 81 (250) 76 (240) 67 (210) 26 (72)

Table 6.1: Simulated flux multiplication under the influence of optical pumping
efficiency, ϵ, and vacuum lifetime, τ , losses. Values in parenthesis are the joint
optical pumping/vacuum limited only case and represent the upper limit. The low
atom density limit of optical pumping efficiency is assumed. The yellow cell is the
anticipated value. aThese values may be dubious because they depend more strongly on very

long lived particles and the low atom density approximation for optical pumping is violated.

focus described in Section 3.2.2. The 3 mK temperature floor model is used instead

of the adiabatic condition because of its close fit to observed data. The initial phase

space distribution of this model is shown in Figure 6.3. Notice that the longitudinal

velocity is artificially truncated. This is because the distribution has a very long

tail for higher velocities while only a small portion near the peak velocity arrive to

the atomic focus and can enter the ring. A range of 10 m/s on either side of the

peak velocity is used.

6.4 Stability

An important characteristic of a storage ring is its stability. In our linearized

theory derived in Chapter 4, stability is only dependent on the longitudinal velocity

of a particle. In reality the presence of nonlinear forces introduce a dependence

on other initial phase space coordinates. This dependence is stronger for particles
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Figure 6.4: Relative survival of particles versus initial longitudinal velocity. A value
of 1 indicates the particle surviving to the simulation time. (a) Stability behavior
over a range of 150-250 m/s for 3 simulation times. For reference, the red line in
the first figure is the survival value of one revolution around the ring. (b) Stability
behavior over 190-230 m/s with smaller velocity spacing for a simulation time of 50
seconds.
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that more strongly violate the linear assumptions which occurs for trajectories in

phase space that are further from the ideal. For particles that exist near the ideal

trajectory in phase space, the linear stability assumption is more accurate. If cooling

is applied particles will move towards the ideal phase space trajectory which make its

stability of central importance. Figure 6.4 depicts the stability characteristics of the

ring. Particles are launched from within the ring with zero transverse momentum

and position, and allowed to circulate for 50 seconds. As we saw in Section 4.12.2,

deadbands separate regions of stability.

The drop off of particle survival at higher velocities occurs because magnetic

forces cannot balance the centrifugal pseudo forces. Equivalently, their value of δ

is so large that their dispersive orbit carries them into a collision with an aperture.

The reason for the drop off at lower velocities is less clear. One explanation is that

particles are lost after passing through the combiner because they are more strongly

deflected than faster particles and fail to be aimed into the following element. How-

ever, nearly every particle that is lost before making one full revolution survives

well past the combiner. Another explanation is simply that the oscillations that the

slower particles experience from the imbalance of the centrifugal pseudo force and

magnetic force build in amplitude for each pass through a bender.

Figure 6.5 shows the simulated stability characteristics versus the theoretical

predictions. Notice that the number of deadbands increase and regions of stability

shrink at lower velocities as we already saw in Section 4. The general sparsity of

stable regions is a possible explanation for the lack of survival at lower velocities.

Around the central velocity region there is reasonable agreement between predicted
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Figure 6.5: Relative survival of simulated particles and predicted survival versus
longitudinal velocity. A value of 1 indicates the particle surviving to the simulation
time. Particles have zero initial transverse momentum and position displacement.

and simulated survival.

6.5 Phase Space behavior

The trajectories of particles through phase space can shed light on a dy-

namical system. Figure 6.6 shows Poincaré maps at the output of the combiner

for an ellipsoidal swarm of 12,536 particles. The swarm was launched from within

the ring at the combiner output. No particle collided with vacuum apertures. The

statistical definition of emittance, Equation 4.83, is given for each figure. Recall

that the emittance is proportional to phase space area.

The ellipse begins to deform after a few tens of revolutions and starts to fold

in on itself. Eventually the ellipse reaches an equilibrium with an elliptical interior

and exterior. The emittance increases by about 60% and nearly reaches its final
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Figure 6.6: Poincaré maps for a range of revolutions in the storage ring. R is the
number of revolutions and ϵ is the emittance in units of mm·mrad/s.
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value by 160 revolutions. Interestingly, the phase space distribution continues to

evolve and mix substantially after this point. This is a well known phenomena in

accelerator physics called phase space filamentation. It is possible for a lattice to

preserve transverse phase space area yet distort the phase space distribution into an

undesired shape. Typically this occurs by the distribution revolving around itself

with “filaments” exactly as seen here.

In a linear system the evolution through phase space is an affine transfor-

mation such as a rotation, translation, scaling etc. Clearly the transformation from

R = 0 → R = 1000 is not affine, while R = 0 → R = 20 is approximately affine. In

analogy with optics one could prescribe a phase space coherence length of approxi-

mately 10 revolutions which corresponds to about 400 ms.

We can also analyze the phase space acceptance of the storage ring/injector

system to gain insights on what distributions can be used. To do this a swarm

of 1 million particles is initialized in phase space, launched from the focus into

the injector, and allowed to circulate for 10 seconds. Results are shown in Figure

6.7. The effects of longitudinal instability are clearly seen in Figure 6.7(e), but

there is less contrast between stable and unstable regions than in Figure 6.4. The

asymmetries of the injection system can be seen in 6.7(a-d). Unsurprisingly, there

is a large amount of overlap between Figures 6.7 and 6.3.

6.6 Different Species

In Section 4.13 we saw that an ideal storage ring could accept different species

as long as they had the same species factor ξ = 2µ/mv2 = µ/Ek. For reference, the
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Figure 6.7: Acceptance of particles versus initial phase space location for a 6 dimen-
sional distribution. A relative survival of 1 indicates that the particles survived to
the simulation cutoff time. All figures are histograms, so the relative survival is the
average in the pin/pixel.
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Figure 6.8: Mean particle revolutions versus velocity for the stable alkali atoms.
Various temperatures are shown. Revolutions are scaled by 210/vz for comparison.
The maximum revolutions possible is 261.1 for Li.

species factor of our source is ξ0 ≈ .036 T−1 at 210 m/s. We also found if a thermal

distribution is used as the source of loading then as long as the magnetic moment

and temperature are identical, any species can be used.

The simulated results agreed for a lattice using only ideal elements with no

combiner or injection system. To test whether the agreement still holds, a similar

simulation was carried out. 100 particles were injected from a thermal point source

at the focus and traced through the ring for up to 10 seconds. Results are shown in

Figure 6.8. Once again there is good agreement over a wide range of masses.

Our source’s nozzle produces a He beam with forward velocity of 210 m/s,

but this can be intentionally increased using the nozzle heater. The species factor

can be rearranged to give µ/m = v2ξ/2. Because v can be increased, any species
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can be used with this design as long as it satisfies

µ

m
≥ 1

2
v2minξ0 ≈ 796, (6.1)

where vmin is the minimum forward velocity of the jet which is currently 210 m/s.

For alkali atoms this is only satisfied with the stable isotopes 6Li and 7Li.

In principle the forward velocity can be reduced with further cooling. Tem-

peratures of about 1.5 K can be achieved using a 2 stage PTR, such as the one used

in this experiment, and evaporative cooling of 4He [105, 106]. From Equation 2.6

the new jet forward velocity would be 210
√
1.5/4.5 ≈ 121 m/s. The next lightest

alkali atom is sodium which from Equation 6.1 requires v ≈ 116 m/s. It may be

possible to use sodium, but a more careful analysis is required. Other alkali atoms

could be used, but this would require temperatures below 1K where it is challenging

to maintain the necessary high cooling power [107].

Another approach for applicable species such as alkali atoms would be the

use of laser slowing which results in velocities of tens of m/s [108–110]. This could

be done continuously if an offset lens is used to shift the slowed atoms out of the

laser and into the injection system.

6.7 Loss Mechanisms

In this section loss mechanisms are investigated such as collisions with back-

ground gas, optical pumping inefficiencies, misalignments, and material imperfec-

tions. Li-Li collision induced losses are discussed in Section 6.8.
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6.7.1 Vacuum and Optical Pumping

The vacuum lifetime sets an upper limit on the possible flux multiplication.

Without losses the flux multiplication can be written as

F =

∫
dF =

1

N

N∑
i

∫ Ri

0
dR =

1

N

N∑
i

∫ T0

0
(vi/Lt)dt, (6.2)

where Equation 5.16 was used and Lt is the total length of the lattice. Including

vacuum losses yields

F =
1

N

N∑
i

∫ Ri

0
e−t/τdR =

1

N

N∑
i

∫ Ri

0
e−RLt/τvidR

F =
1

N

N∑
i

τvi
Lt

(
1− e−RiLt/τvi

)
,

(6.3)

where τ is the vacuum lifetime. Assuming each particle has approximately the

same velocity v and reaches the same number of revolutions R0, the limiting case of

R0 → ∞ yields

F =
τv

Lt
, (6.4)

which is the vacuum limited case.

The optical pumping sets another limit on the flux multiplication. We can

characterize the optical pumping efficiency, ϵ, as the probability of a circulating

particle remaining in the trapped low field state. After R revolutions this probability

is ϵR. Inserting this into Equation 6.2 yields

F =
1

N

N∑
i

∫ Ri

0
ϵRdR =

1

N

N∑
i

ϵRi − 1

log ϵ
. (6.5)
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ϵ 95% 98% 99% 99.5% 99.9% 99.99%

F 19.5 49.5 99.5 199 999 9,999

Table 6.2: Flux multiplication versus optical pumping efficiency assuming only op-
tical pumping losses.

Again assuming Ri = R0 and taking R0 → ∞ gives

F =
1

| log ϵ|
, (6.6)

which is the optical pumping limited case. Table 6.2 shows F for several values of

ϵ. There is a strong dependence of the exact value of F on ϵ.

We can combine both losses to get

F =
1

N

N∑
i

ωi
1− ϵRie−Ri/ωi

1− ωi log ϵ
, (6.7)

where ωi = viτ/Lt is the number of revolutions made in one vacuum lifetime. Once

again assuming Ri = R0 and taking R0 → ∞ gives

F =
ω

1− ω log ϵ
, (6.8)

where ω = vτ/Lt.

6.7.2 Permanent Magnet Imperfections

As mentioned, magnet imperfections have the possibility of severely con-

straining the performance of the design. In this section we will analyze this issue and

discuss a few methods to circumvent it. Modeling these effects is computationally
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Figure 6.9: Flux multiplication versus tolerance for permanent magnet errors. There
are 4 runs at each model and error bars are the RMS value. While one tolerance
value was swept, the others were held at zero. The dashed red lines specify the
tolerances in Table 2.1.

expensive so to ease analysis, a less refined model is used. The flux multiplication of

this model without imperfections is used as a baseline to which the results of models

with magnet imperfections are compared. With no magnet imperfections, infinite

vacuum lifetime, and perfect optical pumping efficiency, the model results in a flux

multiplication of about 480. The model of the focus is used with 1000 particles.

Very long permanent magnets are impractical because they are fragile and handling

them is difficult. In this model magnets have a length to width ratio of two, or the

nearest viable value. In a bender the length of each magnet is the length of the

individual segment.

Randomly applying the tolerances specified in Table 2.1 for 30 different

models results in a flux multiplication of 18 ± 3. This is a reduction of about 95%
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Figure 6.10: Flux multiplication from errors applied to one element at a time. There
are 10 runs per element and errorbars are the RMS value.

from the baseline. The dependence of flux on the tolerance is shown in Figure 6.9.

The biggest impact is clearly the magnetization angle. The results shown are for a

design with slightly different dimension, but the difference is minor.

The effects of errors applied to one element at a time are shown in Figure

6.10. Interestingly, El 5 and 6 (the combiner and the lens after the combiner) are

both large hexapole lenses of similar length yet have very different effects on results.

What is happening is that the beam is traveling through the edge of the combiner

while it is traveling through the center of the following lens. As explained in Section

3.4.4, the impact of magnet imperfections is relatively stronger near the center of

the lens.

It would be hard to justify building the system with such a low level of

performance. However, there are a few possible solutions to the problem. The first

is to simply purchase magnets with a magnetization angle tolerance of less than 1
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degree. From speaking with the supplier Dexter Magnetics, the total magnet cost,

which is already on the order of 10,000 US dollars, would increase by 5-10 times.

However, it may be possible to find lower cost vendors.

Another solution is inspired by a similar problem that occurs with ferro-

magnets in accelerators [92]. The characteristics of steel vary from manufacturer

to manufacturer and even batch to batch which could result in the performance of

electromagnets varying by unacceptable amounts. Rather than requiring challeng-

ing and expensive tolerances to ensure consistency, the ferromagnets are assembled

out of thin sheets of steel that have been randomly selected from the entire stock.

This results in the deviations between batches and manufacturers averaging out.

For permanent magnets this would entail using many thin magnets. A prelimi-

nary investigation of this approach was not promising because tens of thousands of

magnets would be required, which is impractical.

Yet another solution from accelerator physics is the use of shimming which is

the addition or subtraction of iron to shape the magnetic field [92]. This is typically

done to extend the usable field region and improve fringe fields. The method works

because magnetic field lines are mostly perpendicular to interfaces between materials

when the difference in permeability is large between the materials. This condition

is met at the interface of air and unsaturated steel which allows field lines to be

“aimed”.

One version of this approach is to apply shimming to individual magnets.

Figure 6.11 depicts this with a 1x1 cm N52 grade neodymium cuboid. The simple

addition of a 1 mm shim to each end redirects the field towards the intended di-
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Figure 6.11: Results of shimming a 1x1 cm infinitely long permanent magnet with a
1 mm steel shim. Figures (a) and (c) show the magnet with the ideal magnetization
and a tilt of 5◦ respectively. Figures (b) and (d) show the same magnets with the
shim added to each end. The magnetic field lines are clearly straightened with
the addition of the shim. Figure (e) plots the magnetic field angle as a function
of magnetization angle tilt for a point located 1 cm from the magnet face for the
shimmed and unshimmed magnet.

181



rection. This was simulated with COMSOL in 2D and assumes material extends

infinitely in and out of plane. Shimming could also be used in the bore of the ele-

ment. This is somewhat similar to an accelerator magnet design known as a hybrid

magnet, which is effectively a ferromagnet where the coils have been replaced by

permanent magnets [111,112].

A more clever and possibly simpler solution is to exploit a detail of the

manufacturing process. A basic understanding of the manufacturing process of

neodymium magnets will make this clear [113]. Raw materials are combined together

in a furnace to react and form chunks of NdFeB. The chunks are reduced to a fine

powder then pressed into a block under a magnetic field to align the powder particles.

At this point the block is not appreciably magnetized. The block is cut into the

desired shapes, often by an Electrical Discharge Machine (EDM) and then coated.

Finally, the shapes are magnetized. The details of the process vary depending on the

size and shape of the final product. Depending on the manufacturer, a lot of magnets

may have been all cut from the same block and magnetized together at the same

time. This is an important detail because it implies that the magnetization errors

within a batch are all be nearly identical. The dimensional errors may be identical

as well because of the nature of EDM cutting. Even if the errors vary throughout

the batch, they will be very correlated for magnets that were close together during

the process.

Assuming that each element is assembled from permanent magnets with the

same errors and the errors vary from element to element, the flux multiplication

of 30 different models is 410 ± 80. This is a 15% reduction from baseline. This
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Figure 6.12: To overcome material errors, particularly magnetization direction er-
rors, each lens must be assembled from magnets that are near each other in the
batch so that the errors are correlated.

assumes that the magnets are installed such that their magnetization vectors all

deviate by the same direction as shown in Figure 6.12. The results are now quite

adequate and magnets with reasonable tolerances can be used. To reiterate, this

only works if the magnets are from the same batch and delivered in a pattern that

can be used to place the magnets correctly. Dexter Magnetics has stated that they

can provide magnets which all originate from the same batch.

6.7.3 Assembly Misalignment

Another source of loss is assembly tolerances. One form of assembly mis-

alignment is the misplacement of individual elements. To understand the impact of

this, each element was randomly perturbed in 3D up to some maximum deviation.

The element is randomly translated and rotated such that the maximum separation

from the ideal position is up to the maximum deviation. The same model mentioned

in the previous section was used. Figure 6.13 shows the relationship between flux

multiplication and this tolerance. Benders are neglected in this analysis.
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Figure 6.13: Impact of assembly alignment tolerances on performance. At each
tolerance value the system was modeled 10 times. Error bars are the RMS value.

A fairly tight tolerance is required to achieve nearly optimal results. Particle

accelerators have the same problem and a variety of solutions exist [92,93,114]. One

technique is to first assemble the system as precisely as reasonably possible, then

perturb each element until the desired performance is achieved. This can be done

systematically by placing a beam monitor after the first element and making ad-

justments until the desired alignment is achieved. The beam monitor is then placed

after the next element and the process is repeated. It is likely that something like

this will be required for the storage ring. Possibly a third step involving perturbing

each element to maximise total flux will be required. Another form of misalignment

is the placement of individual magnet cuboids in their mounts. This is approxi-

mately the same problem as the material errors, and thus it is essential that the

angular deviations remain below 1 degree.

Particles could be lost during injection if the focus moves from the design
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Figure 6.14: Relative flux multiplication versus deviation of the focus from the ideal
case. Orbit coordinates are specified.

location or otherwise changes. Based on our experience longitudinal position and

velocity variations of a few millimeters and m/s should be expected. Improvements

to the nozzle temperature control would likely improve this. Transverse behavior

has been observed to be much more consistent with position and angle variations

of less than a millimeter and degree. Figure 6.14 shows the dependence of survival

on deviations of the focus from ideal. 1000 particles were injected from the focus

and simulated for 10 seconds. Over a reasonable range of values the design still

performs well. At the focus a 1 cm aperture will be present and is not included in

this analysis.

6.8 Cooling

One application of a neutral atom storage ring is to produce a degenerate or

near degenerate gas with a nonzero momentum vector. This would likely require the
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use of evaporative cooling. The temperature of our focus is around 10 mK, while

Bose-Einstein Condensation (BEC) in alkali atoms has been achieved in the range

of tens of nanoKelvin to a few microKelvin depending on the density [115–119]. The

design must be resistant to intrabeam Li-Li collisions across this temperature range

or evaporative cooling will not be possible.

This stability can be tested with a simple collisional model similar to the

seeding simulation. A constant collision rate Γ and beam temperature T is assumed

everywhere in the ring. The beam is assumed to be traveling at 210 m/s. At each

time step the probability of collisions is p = Γh, where h is the time step and p ≪ 1.

A collision occurs by first sampling a 3D velocity vector from a thermal distribution

of temperature T with the appropriate mean velocity. This velocity vector is then

used as a collision partner with the circulating atom. A random scattering direction

is chosen in the center of mass frame. Typically a few hundred collisions per trap

lifetime are required for evaporative cooling [120]. For our anticipated vacuum

lifetime of 50 seconds, this corresponds to Γ ≈ 5 s−1.

The collision rate in the storage ring can be estimated with the Li-Li cross

section, relative Li-Li velocity, and mean density. The mean density in the ring

can be determined from the simulated density profile which is given in Figure 6.19.

The predicted profile from the Twiss parameters from Equation 4.84 is given as

well and shows good agreement. From this plot the mean density is n ≈ 6 ×

1016 m−3. Assuming a lithium temperature of about 10 mK, the relative velocity

is approximately vrel =
√
16KT/πm ≈ 7.8 m/s. This neglects relative velocity

originating from beam dynamics. Unfortunately, data on the 7Li-7Li cross section
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Figure 6.15: Relative survival versus temperature for several collision rates. Relative
survival is the mean particle revolutions of the swarm divided by the maximum
possible.

is not available at 10 mK. The best we can do is use the S-wave scattering cross

section which is σLi−Li = 8πa2 ≈ 6 × 10−17 m2 [121]. The collision rate is then

Γ = vrelnσLi−Li ≈ 30 s−1.

Figure 6.15 shows the survival of 1000 particles originating from the simu-

lated focus for a range of Γ and T values. The particles were traced for 50 seconds.

From 50 nK to about 1 mK the survival of particles is increased with greater colli-

sionality. Around 10 mK the trend reverses.

The results indicate that there would be substantial losses and the circulat-

ing flux would be reduced. However, this is not likely to be the case for two reasons.

First, the S-wave scattering cross section is likely an overestimate because it is only

valid for temperatures much less than 10 mK, and cross sections typically fall with

increasing temperature for alkali atoms. For example, the He-Li cross section de-
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Figure 6.16: Heating of a swarm versus revolutions for 3 different initial tempera-
tures: 1 mK, 1 µK, and 50 nK.

creases by at least 60% from the S-wave limit to 10 mK [74, 75]. Second, and most

importantly, the losses result in evaporative cooling. If the temperature falls by a

factor of 3, which is quite small for evaporative cooling, then losses cease. There-

fore, collisional losses will probably not be a substantial loss mechanism. Further

investigation is needed.

If the atoms were instead cooled before entering the ring, then the ability

of the ring to maintain low temperatures is relevant. To determine what degree of

heating may be occurring, a swarm of 1000 particles with temperatures of 1 mK,

1µK and 50 nK was launched from within the ring and allowed to circulate for 50

seconds. Three particles were lost to collision with the vacuum tubes for the 1 mK

swarm but otherwise there were no losses. The swarm was launched from between
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El 14 and 15 and the temperature was measured at that point as well. Results are

shown in Figure 6.16.

For milliKelvin initial temperature the lattice introduces negligible heating.

For microKelvin and nanoKelvin temperature, this is also true for the x dimension

but not the y dimension. By 200 revolutions the y dimension heats up to about 2

mK. Disabling the gravitational force results in this effect disappearing. It is not

clear what conclusions can be drawn from this. On one hand it is possible that

the oscillations produced by gravity induce this heating. This could occur by the

swarm being moved into regions with more non linear forces that shear the swarm

in velocity space. On the other hand, it is possible that this is a limitation of the

simulation because only small changes in velocity can result in heating. The use of

a less refined model did not appreciably change results.

Assuming this temperature increase is a real effect, it can be considered a

form of heating. In the y dimension the 50 nK swarm reaches equilibrium in about

20 seconds. In the first second the temperature fits reasonably well to a straight

line with a slope of about 30 nK/s. The first 5 seconds fit well to a second order

polynomial giving T ≈ 14.4 + 29.9t+ 19.3t2, where t is time.

Notice the strong periodic behavior for 50 nk and the initial dip for 1 mK and

1 µK. This is because the coherence length for such low temperature point swarms

is larger than one revolution. Table 6.3 gives the coherence length for the different

temperature swarms from Equation 4.78, where ∆v is one standard deviation of the

thermal distribution. For very low temperature swarms the measured temperature

is strongly affected by the characteristics of the lattice.
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Temperature 1 mK 1 µK 100 nK

Nc 8.2 260 820

Table 6.3: Coherence length for different Li atom temperatures. Nc is the coherence
length in terms of revolutions through the lattice.

Measuring the temperature at different points in the lattice from the swarm’s

origin results in different temperature measurements. From Figure 4.9 the particle’s

maximum transverse velocity is proportional to the Twiss parameter γ as v⊥ ∝ √
γ.

From the Maxwell-Boltzman distribution we have σv ∝
√
T which yields for the

transverse temperature

T⊥ ∝ γ. (6.9)

The particle’s measured temperature depends on the value of γ which varies

through the lattice as shown in Figure 6.17. Figure 6.18 shows the excellent agree-

ment between γ and temperature in the y direction for a 1µK swarm. The x

direction fits similarly well. There are no interactions between particles so they are

not in thermal equilibrium. Therefore, these measurements are not measurements

of temperature strictly speaking.
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Figure 6.17: Twiss parameters (β, α, γ) and dispersion (D) plotted against z in the
ring. z = 0 shortly after the combiner (El 5) and increases clockwise around the
ring. Some numerical artifacts are present in the form of sharp peaks.

Figure 6.18: Simulated temperature in y and temperature predicted from theory by
scaling γ relative to the first data point. The locations of measurement are between
the elements specified on the x-axis. Magnetic fields are very weak at these locations.
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Figure 6.19: Simulated density profile and predicted density profile from Twiss
parameters. The predicted profile is

√
β(z) scaled by the peak simulated value. The

density is the mean value over a circle that contains 90% of particles. A circulating
particle flux of 4.8× 1014 s−1 at 210 m/s is assumed.
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Chapter 7

Conclusion

In this thesis the design and characterization of a meter scale permanent

magnet storage ring has been presented. The improvement and characterization of

a cold continuous source of 7Li atoms that will be used to load the ring has been

described as well. The source achieves a flux of 2×1012 atoms/s, a forward velocity of

210(2) m/s, a brightness of 1.8(6)×1019 m−2s−1sr−1, and a longitudinal temperature

of 7 mK in the moving frame. Improvements to the vacuum are expected to increase

flux by an order of magnitude.

With the existing source the storage ring is anticipated to build up a flux of

about 5×1014 atoms/s and atom number of about 2×1013. Continuous loading will

be achieved with optical pumping. The theory of charged particle accelerators has

been extended to paramagnetic species and shown to agree well with an extensive

simulation. Simulations indicate that the design is amenable to evaporative cooling.

Permanent magnet imperfections are a major design concern, but a technique to

circumvent these issues was described. Although the storage ring design is based on

the existing source, it can be used with other atomic and molecular species as long

as a combination of the velocity, magnetic moment, and mass of the species satisfy

a constraint. Beside the construction of the ring, future work could consider the
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introduction of an output coupler to produce an intense pulse out of the circulating

flux. The use of variable mechanical apertures within the ring to perform forced

evaporative cooling should be investigated as well.
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Appendix A

Optical Pumping

This section describes the optical scheme to enable the continuous injection

of atoms as described in Section 4.2.2. The majority of the work described here

was done by colleague Jeremy Glick. We optically pump atoms seeding into the jet

in the low field limit and achieve an efficiency of 90-95% by careful control of laser

polarization. However, the same efficiency in the storage ring would result in 5-10%

of atoms being pumped into the high field seeking state and being lost. This would

severely limit our possible flux as shown in Table 6.2. A value of at least 99.5% is

needed which requires a different approach.

A viable alternative is high field optical pumping. For field above a few tens

of gauss the level splitting become appreciable as shown in Figure 2.10. Transitions

into unwanted states are now suppressed by both polarization selection rules and

large splitting. The pumping can be applied with a laser for each transition, which

would be technically challenging and costly. Alternatively, a specific field value can

be chosen that minimizes the number of required lasers by introducing dark states.

The goal is to minimize the transition rate for the |2, 2⟩ → |2, 1⟩ and |2, 2⟩ → |1, 1⟩

states and minimize the number of laser needed to pump into the |2, 2⟩ state.

The magnetic field will be produced by a ferromagnetic dipole magnet shown
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Figure A.1: Schematic of the proposed optical pumping magnet. The unusual shape
of the pole face is from the addition of shims to improve the field quality. The red
arrow depicts the laser and the blue depicts the beam.
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Figure A.2: Relative splitting for σ+ transitions for 22S1/2 → 22P1/2 with a 145 G
external field.

in Figure A.1. The magnet pole face is shimmed to maximize the region of acceptable

magnetic field [92]. The design uses 1010 steel with a driving current of 885 ampere-

turns. A similar grade will work with small changes to the current . It is important

that neighboring hexapole lenses be far enough away so that fringe fields have fallen

to an acceptable level (Figure 5.3).

A field value of 145 G is an optimal value for σ+ polarization. This results

in the shifts for ground state to excited state transitions shown in Figure A.2. The

existing near field optical pumping laser will be used to drive this scheme. Since this

laser’s line-width is broadened to about 20 MHz and has 803.504 MHz sidebands

from an EOM, ground state transitions in Figure A.2 can be driven with the addition

of a 80 MHz EOM except for the |1, 1⟩ → |2, 2⟩ transition. For this a singlet AOM

driven at 200 MHz will be used. This results in 10 different laser frequencies, but

3 are off resonance of any transition so in effect there are 7. Accounting for the
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Figure A.3: Diagram of the 3 level system used to model the effects of radiation
trapping in [122].

.

spectrum of side-bands and line-width of the laser the closest σ− transition for

driving an atom from the |2, 2⟩ ground state is about 50 MHz off resonance. The

optical pumping efficiency is estimated by numerically solving the system of rate

equations. There are 16 rate equations and 7 lasers in the model. The models

indicate that the efficiency of optically pumping injected atoms is 99.62% and the

efficiency for the circulating atoms is 99.96%. States |2, 2⟩ and |2, 1⟩ are considered

trapped. These results are for a laser intensity of 1 mW/cm2 being sent through

the EOM’s with a modulation depth of 1.12 rad for the 800 MHz sidebands and

1.45 rad for the 80 MHz sidebands. For the output of the AOM a laser intensity

of 4 mW/cm2 is used. The effects of laser noise is negligible. These values were

optimized for maximum optical pumping efficiency of the circulating atoms.

A serious concern is the efficiency of the optical pumping as the atom density

increases. When injected atom are pumped from high field seeking to low field

seeking their final transition into the trapped ground state emits a photon that can

excite an atom out of the trapped ground state. With low atom density this photon
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Figure A.4: Optical pumping efficiency versus atom density. The efficiency decreases
with greater density because of the radiation trapping effect.

is not likely to interact with another atom. At higher density however it may excite

a trapped ground state atom into an excited state. At this point the atom may

fall back into the trapped ground state and emit the same frequency photon or fall

into an untrapped ground state. As density increases the probability that a new

trapped atom results in an untrapped atom increases towards unity. This effect can

be estimated with a 3 level system, shown in Figure A.3, according to reference [122].

The results are shown in Figure A.4 and are scaled by the low field optical

pumping efficiency. Density refers to the density in the optical pumping region. This

can be used to determine the maximum possible flux multiplication. The density in

the optical pumping region is approximately given by

n =
FṄ0

vA
=

Ṅ0

vA| log ϵ(n)|
, (A.1)

where A is the area of the optical pumping region, Ṅ0 is the loaded flux of atoms,

v is the speed of the atoms and Equation 6.6 was used. Solving this requires a
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numerical method. Circulating atoms are spread out over a region of about 3 cm in

diameter in the optical pumping magnet, the loaded flux is about 1×1012 s−1, and

the atoms travel at about 210 m/s. Using these parameters results in n ≈ 2× 1016,

F ≈ 1600, ϵ ≈ 0.9995, and a circulating flux of about 3× 1015. It was assumed that

the only loss mechanism is optical pumping.
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Appendix B

Vacuum System

A central design goal is for the storage ring to build up a large value of

atomic flux and a possible limit on this is vacuum lifetime. A typical long vacuum

lifetime in a trap ranges from 1 to 100 seconds. From Equation 6.4 this spans a

range of about 30 to 3000 times flux multiplication. A reasonable goal of 1000 times

flux multiplication corresponds to about a 40 second vacuum lifetime. Figure B.2

and Figure B.1 show schematics of possible vacuum system for the injector and ring

respectively1. There are 3 major possible gas loads; Hydrogen outgassing in the

storage ring vacuum chamber, background helium diffusing into the storage ring

from the existing chamber, and directed helium from the nozzle entering the storage

ring. The ring is particularly challenging because the long bending segments are

conductance limited so even with infinite pumping speeds the pressure from out

gassing can only be reduced so much. To asses the impact of these sources we must

first relate pressure to lifetime.

Vacuum lifetime can be expressed as

τ =
1

nKx−y
, (B.1)

1I would like to thank Jeremy Glick for the initial work he did on the vacuum system design.
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where Kx−y is the thermally averaged rate constant for a collision between the

trapped particle x and a background gas particle y, n is the background gas density,

P is the background gas pressure, and T is the background gas temperature.

Values ofKx−y typically assume that the trapped particle is stationary which

our lithium atoms are not. However this is not a significant concern because the

FWHM of the velocity distributions of Helium and Hydrogen is over 5 times larger

than 200 m/s so lithium atoms appear nearly stationary. Kx−y can also be given for

a specific trap depth because not all collisions will result in a particle being lost. It’s

not clear what value of trap depth is most appropriate for our situation. Collisions

which do not result in a Li atom being lost immediately may still excite oscillation

that result in it being lost shortly afterwords. Even if the atom is not lost, this is

a form of undesired heating. A conservative choice is to use the total collision rate

constant.

It can be difficult to find reliable values of Kx−y. Fortunately NIST is work-

ing on developing a vacuum standard using trapped Lithium atoms [123]. They have

carried out extensive theoretical calculations of thermally averaged rate constants

for Li-He and Li-H2 [124,125] resulting in the following values:

KLi−He = (1.461± .013)× 10−9 cm3/s

KLi−H2 = (6.0± .1)× 10−9 cm3/s

(B.2)

Because the collisions of both background gases add we need to double our

lifetime requirement for each to 80 seconds. This results in the following require-
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Figure B.1: Schematic of the ring vacuum system. The transparent grey squares
represent lens material. The material is not shown for the bending sections.

ments:

PHe < 2.6× 10−10 torr

PH2 < 6.3× 10−11 torr.

(B.3)

This is the Ultra High Vacuum (UHV) regime.

Hydrogen outgasses from stainless at appreciable rates in a UHV system

with a nearly infinite lifetime at room temperature. A recent paper studied the
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Figure B.2: Schematic of the injector vacuum system.The transparent grey squares
represent lens material.

outgassing rate of H2 from 7 chambers made of different material and/or different

treatments [126]. They measured an outgassing rate of 5 × 10−12 torr L/s cm2

for 316 stainless steel. This agrees within a factor of two with the value from

CERN [127]. Assuming the vacuum system of the ring is made entirely of 316

stainless steel this would result in a mean pressure of about 5 × 10−10 torr and

a lifetime of about 11 seconds. As previously mentioned, the issue is primarily

the bending sections building up excessive pressure. One solution is to divide the

bending sections and introduce pumps at each split until an adequate pressure is

achieved. The downside to this is that additional pumps are required, the complexity

of the design increases, and performance of the design may decrease. One alternative

approach is to use a different material such as titanium or aluminum which both have

very low H2 outgassing. Aluminum UHV vacuum chambers are a newer technique

and require hardening so that CF flanges can still be used. We elected to not
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Figure B.3: He and H2 pressure throughout the ring. The red dot indicates the
location of the 200 L/s ion pump near the combiner. The He pressure is maximum
at the combiner because of diffusion through the injector, and is minimum on the
other side of the ring. H2 pressure is maximum in the bending sections where the
pumps are conductance limited.
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consider aluminum primarily because of its novelty. Titanium is a more proven

option. However experience in our group and discussion with other groups leave us

concerned that is may not perform as expected.

Another promising approach is to heat treat the stainless steel under vacuum

and rapidly outgas the H2. This is known as vacuum firing. CERN operates a 6

meter tall 1 meter diameter cylindrical chamber for this purpose and describes that

vacuum firing at 950C for 2 hours results in an outgassing rate of 1.5 × 10−13

torr L/s cm2 for “austenitic stainless steel”. They report a lower outgassing rate

of “≈ 3.8 × 10−15 torr L/s cm2” but assume a higher value for design purposes.

Reference [126] reports that vacuum firing 316 stainless steel at 950C for results in

an outgassing rate of 4× 10−14 torr L/s cm2.

Conservatively assuming an outgassing rate of 5× 10−13 torr L/s cm2 with

vacuum firing results in a mean pressure of about 4.6× 10−11 torr and a lifetime of

about 110 seconds which meets our design goals. The resulting pressure profile is

shown in Figure B.3. Reference [126] reports an outgassing rate of about 2× 10−14

torr L/s cm2 which is acceptable as well but as mentioned is more suspect.

The existing chamber has a pressure of about 2×10−6 torr above the diffusion

pump which is dominated by He. This pressure need to be reduce by 4 orders of

magnitude which requires multiple stages of differential pumping. The system begins

with a 1 cm aperture at the focus. The background He gas load through the aperture

is Q = PC ≈ 5× 10−7 torr L/s. The system branches into a line that the directed

He from the nozzle follows into a dump chamber and a line that enters the storage

ring vacuum. The line to the storage ring has in the following order: two 1000 L/s
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diffusion pumps, a valve, and a 200 L/s turbo pump follow. The valve is to allow

the storage ring vacuum to be isolated from the existing chamber when needed such

as when the existing chamber needs to be vented. There is some concern using

a diffusion pump in proximity to an UHV chamber because of the possibility of

oil entering the UHV system. Oil back streaming cannot be completely prevented,

but it may be possible to reduce it to tolerable levels. Reference [128] describes

some techniques. A common solution are optically dense cooled baffles above the

diffusion pump, however this reduces pump speed by abut 50%. Agilent sells a

diffusion pump, the VHS-4, that an “extended cold cap” can be used with which

reduces the backstreaming to the levels of an optically dense baffle while preserving

80 % of the pumping speed. For He the speed is 1200 L/s and the flange has the

same dimension as diffusion pump flanges shown in the vacuum diagram.

The injection vacuum system ends in the combiner which is pumped by a

200 L/s ion pump. Unfortunately, ion pump speeds are reduced to 10% of their

rated value for Helium. The system was modeled with the technique described in

Section 5.6.2. The net He gas load into the storage ring is about 8 × 10−9 torr

L/s. The resulting pressure profile is shown in Figure B.3. The mean pressure is

about 1.7× 10−10 torr and the vacuum life is about 120 seconds which satisfies our

requirements with room to spare. There will also be a small gas load of He diffusing

through glass windows.

To analyze the impact of the directed flow we can use Equation 2.7 to get

the infinitesimal gas load

dQ ≈ γ cos(θ)2/r2da, (B.4)
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where Q is the gas load in units of torr L/s, γ is an undetermined constant, and

the result is approximate because we dropped the 1.15 factor. What we want is a

function like Q = Q0 cos(1.15θ) where Q is the gas load into half angle θ and Q0 is

the total gas load of the nozzle. Some algebra yields

Q = Q0(1− cos(θ0)
3), (B.5)

where the proof is left to the reader.

The half angle of the aperture is about 0.5/176 ≈ .003 radians, and the total

gas flow through the nozzle at 100 SCCM is 1.25 torr L/s. From Equation B.5 this

corresponds to about 2 × 10−5 torr L/s which is substantial. If this gas load was

allowed to travel with the lithium beam directly into the storage ring a vacuum

speed of about 80,000 L/s would be required to meet our He pressure requirement.

An alternative approach is to move the lithium beam out of the helium beam

with a shifted lens. The helium beam can then be dumped into a chamber where it

is pumped away. A possible design for this is a 10 cm long pickoff tube with 1.2 cm

diameter, so that it is slightly larger than the helium beam, that ends in a chamber

with a 1000 L/s pump. The pressure in the dump chamber is then about 2× 10−8

torr which results in about 1× 10−7 torr L/s of gas load diffusing back through the

pickoff tube. This is a small fraction of the gas load from background He in the

existing chamber entering the injector.
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Appendix C

Design Dimensions

The dimensions of the design are given in Figure C.1. The meaning of each

term is described below and additional details are given. Keep in mind that all

elements are either a hexapole lens or composed of hexapole lenses.

• “El #” refers to the element labeling in Figure 6.1.

• “Length” is the longitudinal material length of the element.

• “Bore ID” is the inside diameter of the element from magnet face to magnet

face

• “Magnet width” is the transverse widths of the cuboidal magnets that form

the element.

• “Vacuum ID” is the inside diameter of the vacuum tube through the element.

• “Input position” describes the location of the transverse radial center of the

input plane of the element with x, y displacements. In this coordinate system

the focus is the origin and the nozzle is aligned along -x̂ as shown in Figure

6.1.

• “Angle” is the angle the input of the element makes with +x̂.
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• “Bender radius” is the radius of the bender measured at the center of a single

hexapole lens segment.

• “Bend angle” is the total angle that the particle is deflected by traveling

through the bender.

• “Centrifugal offset” is the radial offset of the design orbit because of the cen-

trifugal pseudo-force. This number is added to the “Bender radius” to get the

radius of the design orbit.

• “Number of segments” is the number of full length hexapole lens segments.

The beginning and end of a bender is a half length segment. Thus N segments

mean N − 1 full length segments and 2 half length segments.

• “Segment length” is the longitudinal length of the cuboidal magnets that com-

pose each hexapole lens segment in the benders.

• The thinnest vacuum wall is 40 thousandths of an inch. For some elements

this may be larger so that the interpolation scheme shown in Figure 5.2 works

correctly without using an unnecessary number of interpolation points. The

slightly restricted aperture does not affect results meaningfully in those ele-

ments. In the bender section however it is important to use a wall thickness

near this value.

• In the combiner the wall thickness is larger because it is assumed the vacuum

system in that region will be more like a vacuum chamber than a circular

vacuum tube.
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• More details of the combiner are given in Figure C.2.
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Figure C.1: Dimensions and parameters of each element in the design. Distance
units are centimeters and angle units are degrees unless otherwise specified.
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Figure C.2: Dimensions and parameters of the loading scheme. Distance units are
centimeters and angle units are degrees. The black dashed line is the centerline of
the hexapole lens. The blue dot dashed line represents the offset from the centerline
where the circulating and injected beam join at the output.
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Appendix D

Lithium D Line

Figure D.1 depicts the Lithium D line transition and relevant parameters for

reference.
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Figure D.1: Figure modified from [129].
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Appendix E

Stern-Gerlach Magnet

We initially considered using a Stern-Gerlach style magnet for continuous

injection. With this magnet the horizontal bending force is nearly constant. It

can be constructed by the combination of a dipole and quadrupole multipole term

(Equation 2.17). The magnetic field is given by

B⃗ = B⃗dipole + B⃗quadrupole = c2yx̂+ (c1 + c2x)ŷ, (E.1)

where c1 is the strength of the dipole term, c2 is the strength of the quadrupole

term, and x and y are transverse coordinates. This results in a force of

Fx =
−µBc2(c1 + c2x)

|B⃗|
x̂+

−µBc2y

|B⃗|
ŷ (E.2)

where it is assumed the atom is in a low field seeking state. The bending and

combination of both beams is in the x direction. For small values of x and y this

gives a constant bending force of

Fx ≈ −µBc2 (E.3)
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Figure E.1: a) Profile of pole face of Stern-Gerlach style combiner magnet. The
origin (0,0) is the center of the combiner and location of optimal bending. b) Image
of the completed design. The magnet is composed of 15 7.5 in long sheets.

We designed and built a Stern-Gerlach combiner magnet 1, shown in Figure

E.1 . The required field is produced by a “c” shaped ferromagnetic and water

cooled current carrying coils. The multipole values are c1 ≈ 1 T and c2 ≈ 17.5

T/m. A major downside of this approach is that there is very minimal confinement

in x and thus particles effectively drift through this region compared to the design

orbit. Additionally, the specific design suffers from a small bore aperture of 1.2

cm vertical height. Simulations indicated poor performance. A permanent magnet

hexapole lens yielded better results.

1This magnet was designed by a previous undergraduate student Collin Diver as a senior project.
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[35] B. T. Seaman, M. Krämer, D. Z. Anderson, and M. J. Holland, “Atomtron-

ics: Ultracold-atom analogs of electronic devices,” Phys. Rev. A, vol. 75,

p. 023615, Feb 2007.

[36] L. Amico, M. Boshier, G. Birkl, A. Minguzzi, C. Miniatura, L.-C. Kwek,

D. Aghamalyan, V. Ahufinger, D. Anderson, N. Andrei, A. S. Arnold, M. Baker,

223



T. A. Bell, T. Bland, J. P. Brantut, D. Cassettari, W. J. Chetcuti, F. Chevy,

R. Citro, S. De Palo, R. Dumke, M. Edwards, R. Folman, J. Fortagh, S. A.

Gardiner, B. M. Garraway, G. Gauthier, A. Günther, T. Haug, C. Huf-

nagel, M. Keil, P. Ireland, M. Lebrat, W. Li, L. Longchambon, J. Mompart,

O. Morsch, P. Naldesi, T. W. Neely, M. Olshanii, E. Orignac, S. Pandey,
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R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W. Moore, J. Vander-

Plas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R.

Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and

SciPy 1.0 Contributors, “SciPy 1.0: Fundamental Algorithms for Scientific

Computing in Python,” Nature Methods, vol. 17, pp. 261–272, 2020.

[100] M. Gorelick and I. Ozsvald, High Performance Python: Practical Performant

Programming for Humans. O’Reilly Media, 2020.

232



[101] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virta-

nen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern,

M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del
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