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Abstract 
Cooperative 3D printing (C3DP) is an emerging technology designed to overcome the 

limitations of traditional 3D printing, including speed and scalability. C3DP achieves this by 
partitioning prints into smaller jobs, e.g., chunks, and assigning them to a team of mobile 3D 
printers that work cooperatively in parallel allowing for autonomous additive manufacturing of 
large objects via a swarm-based system. Our prior work established a framework for optimizing 
job placement by connecting geometric partitioning algorithms with path planning and scheduling 
algorithms. However, this framework was not physically validated. In this paper, we present the 
first physical validation of the job placement algorithm by chunking and printing two objects using 
the proposed algorithm. The objects used in the test cases vary in size and complexity, from a 
small and simple object to a large object with intricate geometry. We demonstrate that our 
optimized placement algorithm provides results comparable to the physical C3DP system, 
providing a significant step forward in the practical implementation of C3DP technology. 

Keywords: Job Placement, Cooperative 3D Printing, Additive Manufacturing 
 
 

Introduction 
 

The low cost and high adaptability of additive manufacturing (AM) make it an ideal tool 
for rapid prototyping and iterative design, while it has also garnered attention in medical and 
aerospace applications [1]. However, a persistent drawback of traditional AM systems is their lack 
of scalability, both regarding manufacturing speed as well as the size of objects that can be printed 
[2]. While efforts have been made to upscale the commonly used gantry or robot arm techniques, 
drawbacks persist with these technologies regarding print resolution and portability [3]. 
Cooperative 3D printing (C3DP) is an emerging AM technology that utilizes a swarm of mobile 
3D printing robots working in tandem to manufacture large-scale parts at high speeds without 
having to compromise in printing resolution. In its current iteration, the C3DP system consists of 
three primary components set upon a factory floor [4]. These components are: 
 

1. Selective compliance assembly robot arm (SCARA) based 3D printing platforms that can 
be mounted to the factory floor to perform print actions. 

2. Mobile transporters for moving the SCARA printers around the factory floor. 
3. Mountable build plates with dimensions of 300x300 mm upon which the SCARA printers 

can print. 
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The factory floor itself consists of multiple modular floor tiles connected with an integrated 
power supply for the SCARA printers to draw from. An example setup of the factory floor, 
complete with each of the components is shown in Figure 1. 

 

 
Figure 1: The Cooperative 3D Printing Platform [5]. (i) SCARA Based 3D Printing Platform, (ii) 

Mobile Transporter, and (iii) Mountable Build Plate. 
 

 

  
Figure 2: Flow Chart of the C3DP Process 

 
 The C3DP system involves several discrete processes that must be completed in order to 
convert an input STL file into a cooperative print. In the current system, there are five steps that 
must be completed before printing can begin, and these are shown in Figure 2.  
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The first step is chunking. This is the process of breaking down a single CAD model (e.g., 
an STL file) into smaller pieces, or “chunks”, that can then be printed by a single printing robot. 
By breaking an object down into chunks, multiple robots can work on the individual parts of a 
larger object at the same time without interfering with one another. This chunking process is further 
broken down into the Z and XY directions. Z-chunking is the process of turning a tall object into 
multiple shorter objects that can each be printed as a distinct job in the C3DP process. This is 
necessary because the printing robots have a maximum height they can reach while mounted, and 
any part taller than this limit can’t be printed without chunking. Previously, we developed software 
to automate the Z-chunking process while generating assembly geometry to facilitate easy 
assembly after printing [6].  

The XY-chunking process occurs after Z-chunking and provides a method for breaking up 
the individual jobs into printable chunks. The limit on the size of these XY-chunks is the 
dimensions of the build plate, which, as mentioned previously, is 300x300 mm. Each chunk is 
connected to its neighbors using sloped interfaces, allowing the current chunk to be printed on top 
of the previous chunk. This allows adjacent chunks to form a mechanical bond, eliminating the 
need for assembly after the printing process [7]. One common question for XY-chunking is the 
quality and mechanical strength at the interfaces of these chunked parts. While an in-depth study 
would be beneficial, preliminary testing has shown that carefully controlling variables such as the 
interface slope, number of shell layers, and amount of overlap can result in parts of equal or higher 
strength than non-chunked parts given specific loading conditions [8]. Another option currently 
being developed is a layer-wise cooperation strategy that could provide even greater interfacial 
strength while also allowing adjacent chunks to be printed simultaneously [9].  

The chunks resulting from the XY-chunking process need to be printed in a certain order 
due to the dependency between them. Specifically, any part with an overhang (or negative slope) 
must be printed after the adjacent part (with positive slope) that it overlaps with. Using this logic, 
a dependency tree can be created showing the required print order for each part. An example of 
the full chunking process can be seen in Figure 3. 

Figure 3: Chunking of a Tall Box Object [5] 

The placing, scheduling, and path planning steps of the process are then used to determine 
where each job should be placed on the factory floor, how the chunks will be assigned to different 
robots, and how they should move from one place to another on the factory floor. The placement 
optimization algorithm used in this study incorporates all three of these steps and will be described 
in further detail in the next section. After the print is set up and the scheduling is finished, each 
chunk will be sliced to generate the G-code, which are then weaved together based on the schedule 
and sent to the assigned robots. Print settings have been developed specifically for use with the 
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SCARA printing systems, with a layer height of 0.4 mm, a grid pattern infill with a density of 
20%, and a 50 mm/s printing speed. These are the steps that will be taken over the course of this 
study. In the next sections, we will outline the motivation behind this project, followed by an 
overview of the test cases that will be used, then conclude with a summary and discussion of the 
results. 
 

Motivation 
 

 In our previous work, we developed an approach to optimize the placement of printing jobs 
in the C3DP system using a genetic algorithm [5]. The algorithm starts by generating a random 
population of placements (each member is a placement of the chunks on the floor), which are then 
evaluated using a scheduler that dynamically assigns chunks to each available printer based on 
their relative position on the floor and spot in the dependency tree [10, 11]. This scheduler then 
uses a basic A* algorithm for path planning [12], which determines the locations the robots will 
occupy at each time interval to avoid collisions if multiple robots are moving simultaneously [13]. 
Using these methods, the total makespan of each member of the population is evaluated by taking 
the highest combined print and move time of the printers. Finally, the genetic algorithm generates 
a new population based on the fittest members of the previous generation until it converges to an 
optimal placement. 
 
 While our previous work has demonstrated the capability and effectiveness of the proposed 
C3DP pipeline computationally, a physical experimental study is an important link yet to be 
accomplished for research validation and verification. To address this gap, we aim to physically 
validate the algorithms and methods that make up the full C3DP process, specifically regarding 
the placing, scheduling, and path planning by running various test cases on the physical C3DP 
system. Such a physical validation study is of great importance and value since the C3DP system 
introduces several additional complexities that aren’t accounted for in the placement algorithm, 
such as printer orientation, the independence of printers and transporters, and various additional 
actions that the printers must perform. By performing this physical validation, we hope to 
determine what additional factors need to be considered in the optimization algorithm in order to 
make the C3DP framework more robust against various uncertainties in the actual manufacturing 
process and thus improve print efficiency. 
 

Methodology and Test Cases 
 

 Based on the C3DP system and the framework presented in Figure 2, we run two unique 
test cases to validate the placement optimization algorithm in different scenarios. These test cases 
vary the geometric complexity of the object in question to determine how it would influence the 
performance and outcomes of the C3DP system, specifically in relation to job placement 
optimization. The steps for running each of the test cases are shown in Figure 4. 
 
 The physical validation process starts by first modelling the object to be printed and saving 
it as an STL file. Second, the chunking process starts by Z-chunking the model into a desired 
number of layers, or jobs, followed by XY-chunking each layer based on the desired length and 
width. Third, the placement optimization algorithm must be executed, which requires inputting the 
dependency tree and print times for each chunk. Fourth, build plates are set up at the location of 
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Figure 4: Flow Chart of Physical Validation Process 

 
each chunk on the build floor, as determined by the algorithm. Fifth, transporters are instructed to 
move the printers to the desired build plate based on the results from the scheduler. Finally, the 
total makespan of the physical system is compared to that produced by the scheduling and path 
planning algorithm. 
 
Test Case 1: Small Box 
 
 For the first test case, we decided to use an object with simple geometry. This “small box” 
test case has dimensions of 60x20x30 mm. These specific dimensions were chosen to ensure that 
once the box was fully chunked, each individual chunk would have identical dimensions. This was 
done to reduce the computational complexity of the placement algorithm since, in this case, each 
chunk should finish printing at roughly the same time, and each printer should move directly onto 
its neighbor. To this end, the overhang that is typically present on parts chunked in the XY-plane 
to ensure mechanical bonding between adjacent parts has been removed for this test. It is worth 
noting that the removal of this sloped boundary does not impact the objective of this paper, as the 
primary focus is to test the C3DP workflow, and not to verify the mechanical integrity of parts 
chunked in the XY-direction, which has been done previously. As a result, each of the printed 
chunks has dimensions 20x20x10 mm. While the lack of an overhang means there are technically 
no dependencies, an origin chunk was still chosen to ensure each printer started at the same chunk 
within its respective print. The test case and its dependency tree are shown in Figure 5. 
 

 
Figure 5: Small Box Test Case. (a) Full Model, (b) Chunked Model, (c) Dependency Tree 
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Test Case 2: 3DBenchy 
 
 The next test case uses a resized version of the popular 3DBenchy model [14], which was 
also used as a test case in the previous paper. The previous paper used this model to validate the 
algorithm for any case with a rectangular footprint, not only objects with strictly rectangular jobs, 
such as the small box test case [5]. For this paper, the model will be used to validate the algorithm 
in the case where the chunks being printed are not identical, and the individual jobs have a varying 
number of chunks. The dimensions of the 3DBenchy model used in this test case are 200x103x160 
mm. Due to the non-uniformity of this model, the first layer has three chunks, the second layer has 
four chunks, and the third layer has two chunks. This test case and its dependency tree are shown 
in Figure 6. 
 

 
Figure 6: 3DBenchy Test Case. (a) Full Model, (b) Chunked Model, (c) Dependency Tree 

 
Results 

 
 Before the above case studies could be tested, the parameters of the placement algorithm 
had to be determined. In our previous study, we tuned the parameters of the genetic algorithm to 
maximize the speed of convergence to a quality solution [5]. These parameters were determined 
to be a 40% mutation chance and 10% crossover chance, with 30% of elite populations carried 
over to the next generation and 30% new populations generated. This leaves 40% of the population 
to be generated from crossover and mutation via the previous generation. These parameters were 
used on each of the above test cases, with the results from the genetic algorithm being used to 
optimally place each job on the build floor. 
 

      
Figure 7: Small Box Placement Results 
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Figure 8: 3DBenchy Placement Results 

 
 

The results from the placement algorithm for the small box and 3DBenchy tests are shown 
in Figures 7 and 8, respectively. In these diagrams, the printing robots are represented by gray 
squares and numbered from one to three. The chunks are represented by different colored squares 
to differentiate between jobs and are labeled with two numbers. The first number represents the 
robot that is tasked with printing that chunk, while the second number represents where the chunk 
lies in that robot’s schedule. For example, a chunk labeled “2, 3” will be the third chunk printed 
by robot two. Lastly, the arrows show the path the robot is expected to take to move from one 
location to another. This is determined by the path planning algorithm described previously, 
wherein a robot will attempt to find the shortest, unobstructed path available when moving. A good 
example of this is presented with printer 3 in the 3DBenchy test case. When attempting to move 
from chunk 1 to chunk 2, the shortest path is obstructed by printer 2. As a result, the robot must 
find a new path around the job it is currently working on to reach its desired destination.  
  

 
Figure 9: Small Box Initial Testing Setup 
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Figure 10: 3DBenchy Initial Testing Setup 

 
 Next, the physical setup of the C3DP system for the small box and 3DBenchy test cases 
are shown in Figures 9 and 10, respectively, with the simulated and experimental results of each 
test case shown in Figures 11 and 12. These graphs show the times for actions taken by each robot, 
divided into movement and print times. Each discrete movement and print are shown with both 
experimental and simulated results, allowing each action to be easily compared. The total time for 
each test case to be completed represents the total makespan of the object with the C3DP system. 
These makespans are shown in Table 1 for the simulated and experimental C3DP cases, along with 
the estimated print times of each object without the use of C3DP. 
 

Table 1: Total Makespans of Examined Test Cases 
Test Case Simulated C3DP 

Makespan (mins) 
Experimental 
C3DP Makespan 
(mins) 

Simulated Non-
C3DP Makespan 
(mins) 

Percentage Error 
(Simulated vs. 
Experimental) 

Percentage Error 
(Simulated C3DP 
vs. Non-C3DP) 

Small Box 30.6 43.0 46 41% 50% 
3DBenchy 423.6 503.0 893 19% 111% 

 
 This table shows one of the benefits of the C3DP system, scalability. The makespan of 
each test case without the division of labor provided by C3DP is significantly larger than when 
C3DP is used, and this difference is increased as the total makespan gets larger, as demonstrated 
by the percentage error between the simulated C3DP and non-C3DP makespans for each test case. 
Figure 13 shows the fully assembled 3Dbenchy model manufactured using C3DP, and effectively 
demonstrates the division of labor utilized in the process. However, the simulated results for C3DP 
don’t perfectly match with the experimental results obtained using the physical C3DP system, as 
shown by the percentage error between the simulated and experimental tests. The smaller test case 
provides a greater error, but for both, the experimental results show a greater makespan than what 
is predicted by the simulation. The reasons for these differences will be discussed in the next 
section. 
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Figure 11: Small Box Testing Results. (a) Movement Times, (b) Print Times 

 

 
Figure 12: 3DBenchy Testing Results. (a) Movement Times, (b) Print Times 

 
 

 
Figure 13: Assembled Model of 3DBenchy Test Case (Orange: Printer 1, Black: Printer 2,  

Gray: Printer 3) 
 

Discussion/Analysis 
 

 As shown in Figures 10 and 11 the actions of each robot can be neatly broken down into 
two primary types: movement and printing. As such, the following discussion will focus on each 
of these actions and how they can be better incorporated to improve the robustness of the job 
placement algorithm. 
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Movement Actions 
 
 The simulation handles movement in a very basic manner. When a robot needs to move, it 
can go to any adjacent square so long as it is unoccupied, and each move takes exactly 36 seconds 
(0.6 minutes) regardless of direction. This move time was determined by pre-calibration of the 
system. Also, the orientation of the robot is not accounted for, so as long as the robot is next to its 
target chunk, the move action is complete. 
 
 In the physical system, movement is a much more complicated process. Not only is 
orientation important (both in terms of movement speed and printer direction), but there are 
additional actions that must be taken and requirements that must be met to complete a move. First, 
in the physical system, the transporters and printers are two separate objects. As such, for a move 
action to start, the printer must unmount from the floor and onto the transporter. The same is true 
at the end of a move action, with the printer having to mount to the floor and release the transporter. 
The transporter also must drive out from under the printer, creating another requirement that there 
must be an empty tile behind the printer wherever it is to be mounted. Lastly, since the transporters 
run off an internal power supply, they must return to their charging dock when not actively in use 
to maintain battery life. This creates an additional requirement that the transporter must always 
have a path back to its charging dock when not in use. 
 
 Comparing the results from simulated moves to those for physical moves leads to a few 
key observations: First, for single moves, the simulated results are nearly identical to the 
experimental tests. This makes sense, as single moves were used to determine the move time that 
was imputed into the simulation. However, the experimental times were consistently shorter for 
longer chain moves than the simulated times. This is because there is a significant time delay 
between sending a command to the transporter and the transporter performing that command. Once 
the command is received, however, the transporter can perform a long chain of moves without 
having to communicate with the control hub again, decreasing the time of consecutive moves.  
Another observation is seen in the small box test with the first move of robots 1 and 3. These 
moves should take the same amount of time according to the simulation, and yet the experimental 
results are over 20 seconds off. This is because, as mentioned previously, the simulation does not 
account for orientation, while in the physical system, the final orientation of the printer is very 
important. In this case, printer 1 had to rotate to face the desired chunk while printer 3 did not, 
resulting in a longer move time. Lastly, it must be noted that the move times shown in the figures 
above do not account for mounting and unmounting, which must be completed before and after 
every move, adding approximately 1 minute to every move time.  
 
Printing Actions 
 
 The print times in the simulation are also very simple, using the time estimate for each 
chunk from the slicing software. There are a few additional actions related to printing that the 
physical system must perform, but the simulation does not account for. First, the printer must 
complete a homing sequence during which it moves in each direction until it contacts a mechanical 
limit switch. This process is completed before and after every print, which takes about 40 seconds 
and is included in the total print time for the experimental results. Second, the nozzle needs time 
to reach the desired printing temperature of 240℃, which takes about 100 seconds and is also 
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included in the total print time for the experimental results. Lastly, the printer should be calibrated 
after every move to ensure high print quality on the new build plate. This can take anywhere from 
2 to 20 minutes, depending on the size of the object being printed and desired accuracy of the 
calibration. While calibrating at every location is technically not necessary, neglecting it will result 
in printing errors unless the build plates are perfectly identical, which is difficult to verify. 
Regardless, while a calibration was done before each print, due to the variability of viable 
calibration times it is not included in the experimental results. 
 
 When comparing the simulated and experimental results, it is readily apparent that the 
experimental print times are consistently larger than the simulated times, even with the homing 
and heating times removed. The percentage error between the two varies from around 5% up to 
over 20% in the most extreme cases. This is at least partially to do with the fact that the SCARA 
printers being used for these tests aren’t registered in the Cura software, and as such, there is a 
difference in how long it takes the printer to execute certain G-code commands. It also seems to 
be related to chunk complexity, as chunks with simple geometries tend to produce less error than 
those with more complex geometries. For an example from the 3Dbenchy test, the second print 
completed by printer 2 took about 21% longer to complete than the slicer estimate. This makes 
sense when looking at the chunk, as it is composed of tall thin walls that are loosely connected, 
and an internal geometry that is completely removed from the rest of the print. However, this is 
not a complete explanation, as even the simple chunks from the small box test case took about 
12% longer to complete on average than the slicer predicted. Regardless of the reason, this error 
cannot be easily accounted for in the simulation and will require custom slicing software to correct. 
 

Conclusion 
 

 This paper provided a physical validation of the job placement optimization algorithm we 
proposed in our previous work for use in cooperative 3D printing. The purpose of this work was 
not to simply prove that the algorithm works as intended, which was already done previously, but 
instead to compare the experimental results from physical testing to the computational results 
produced by the algorithm. Using this comparison, we hope to tune the optimization algorithm to 
more closely resemble the physical C3DP system, such that the makespan estimate computed by 
the algorithm accurately predicts the real makespan. This is an important step forward in 
developing C3DP technology. While the parts tested in this paper are relatively small and capable 
of being printed in under a day, this technology is meant to manufacture parts at a large scale, 
where the full makespan of an object could be days or weeks. In these cases, it will be important 
that the C3DP system can not only provide optimal placement for printing but also accurately 
estimate how long the process will take. 
 In the future, we will use our findings from this paper to better tune the algorithm for use 
with the C3DP system. This will include adjustments to account for the various factors that are not 
currently considered, such as the time for homing, calibrating, and heating of the nozzle. It will 
also be adjusted to consider the printer and transporter as two distinct agents, which will add some 
additional constraints for placement while also adding additional complexity regarding the path 
planning and scheduling. Another addition that will eventually have to be made is regarding the 
final assembly of the manufactured object. In order to complete the automation of the C3DP 
system, another type of robot will be necessary to assemble the manufactured jobs into a finished 
product. To this end, the placement optimization algorithm will have to account for this assembly 

1289



robot in the path planning and configure the jobs in such a way that they can be easily assembled 
after printing. A preliminary version of this requirement is already included in the optimization 
algorithm, which ensures that all jobs are placed closest to their neighbors in the final assembly. 
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