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Salt Dissolution: Examples from Beneath the Southern High Plains 

T. C. Gustavson and R. T. Budnik 

INTRODUCTION 

Regional salt dissolution and the subsequen collapse of overlying strata 

have affected substantial parts of the Texas and Oklahoma Panhandles (Gustavson 

and others, 1980; Johnson, 1981). There are sev n salt-bearing units within 

the Permian System of the Texas Panhandle and ea tern New Mexico. With the 

probable exception of the lower Clear Fork Forma ion, all the younger salt­

bearing units are locally undergoing dissolution. 

Several lines of evidence support the concl sion that zones of salt 

dissolution underlie parts of the Southern High lains, the Rolling Plains, 

and the Canadian River Breaks (Gustavson and ot ers, 1980, 1982): (1) The 

major streams draining the region surrounding t e Southern High Plains carry 

high-solute loads, indicating that dissolution i active. For example, the 

Prairie Dog Town Fork of the Red River carries a mean annual solute load of 

1,003.4 x 103 tons of dissolved solids per year, including 425.3 x 103 tons of 

chloride per year (U.S. Geological Survey, 1969- 977). Brine springs, salt 

springs, and salt pans appear along this and oth r stream valleys. 

(2) The abrupt loss of salt sequences betw en relatively closely spaced 

oil and gas exploration wells indicates salt dis elution and not facies change. 

Structural collapse of overlying strata is evide tin the wells where salt is 

missing (fig. 1). 

(3) Brecciated zones, fractures with slick nsides, extension fractures 

filled with gypsum, and insoluble residues compo ed of mud, anhydrite, or 

dolomite overlie the uppermost salts in cores fr m the DOE-Gruy Federal 
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No. 1 Rex H. White well in Randall County, the OE-Gruy Federal No. 1 

D. N. Grabbe well and the Stone and Webster Eng neering Corp. No. 1 Zeeck and 

No. 1 Harmon wells in Swisher County, the Stone and Webster Engineering Corp. 

No. 1 Sawyer well in Donley County, the Stone ad Webster Engineering Corp. 

No. 1 G. Friemel, No. 1 J. Friemel and No. 1 Det en wells in Deaf Smith County, 

and the Stone and Webster Engineering Corp. No. Mansfield well in Oldham 

County. 

(4) Numerous sinkholes and closed depressions (dolines) have formed 

recently in the Rolling Plains and are interpret be the result of disso-

lution and subsidence (Gustavson and others, 198 

(5) Permian outcrops both east of the Capr ck Escarpment and in the 

Canadian River valley display folds, systems of xtension fractures, breccia 

beds, and remnants of caverns. 

Structural, stratigraphic, core and geomorp evidence suggest that salt 

dissolution was active beneath the Southern High Plains during the Pliocene and 

probably the Pleistocene. Two case studies are resented, one describing 

evidence for dissolution in eastern Deaf Smith C unty and one describing evi­

dence for dissolution in eastern Swisher County. Using core and stratigraphic 

data interpretations of the geology on the two c se study areas can be extrapo­

lated to the preferred sites in Deaf Smith and S isher Counties. In each case 

it is both reasonable and conservative to infer hat dissolution and subsidence 

of overlying strata occurred during the Pliocene and probably during the 

Pleistocene. 
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DEAF SMITH 

Basement Structur 

Precambrian basement in the Palo Dura Basi of the Texas Panhandle con­

sists mainly of volcanic and igneous rocks (Flan, 1956). Basement faults 

within the Palo Dura Basin strike primarily nor hwest (Budnik and Smith, 1982), 

with a secondary system striking northeast (fig 2). The structural axis of 

the basin strikes northwest through Castro and eaf Smith Counties. In eastern 

Deaf Smith County, secondary structural lows ar bounded by northeast-trendi-ng 

faults. These structural lows are paralleled by a basement high to the south­

east. Basement structural relief in the area is approximately 300 m (1,000 

ft). 

Basement structure on the Precambrian erosional surface in eastern Deaf 

Smith County has been interpreted from both well logs and approximately 136 km 

(85 mi) of seismic-reflection data. Faults, int rpreted on seismic profiles, 

offset basement rocks, but appear to die out bel w the repository horizon, the 

San Andres Formation. Stratigraphic relationshi s, however, suggest that 

structural adjustments persist higher in the sec ion to at least the Upper 

Permian Alibates Formation. 

Structural Influence on De 

Isopach maps of Paleozoic units within the alo Dura Basin suggest that 

thickness was influenced by differential subside ce during deposition (Budnik 

and Smith, 1982; Budnik, 1983). Upper Paleozoic nits thicken over a basement 

structural low in eastern Deaf Smith County and hin over basement structural 

highs. This thickening along a northeast-southwe t trend in eastern Deaf Smith 

County exists in Lower Pennsylvanian limestones (Dutton, 1980), as well as 
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Permian carbonates, elastics, and evaporites (H ndford, 1979; Presley, 1981; 

McGillis and Presley, 1981; Presley and McGillis, 1982} (figs. 3 and 4). The 

northeast-trending axes of thickening of the up er Permian San Andres and 

Alibates Formations nearly coincide and documen approximately 40 m (130 ft) of 

subsidence in this subbasin during deposition o these units. Subsidence in 

Pennsylvanian and Permian strata could be duet differential compaction of 

underlying rocks or to tectonic influences. Less than 80 m (250 ft) of Missis­

sippian carbonates lie between Pennsylvanian st ata and crystalline Precambrian 

basement; this thickness cannot provide the diff rential compaction necessary 

to account for subsidence in the overlying section. Although there is no 

evidence of fault displacement as high as either the San Andres Formation or 

the Alibates Formation, the vertical juxtapositi n and northeast orientation of 

axes of thickening above a structural low in the Precambrian basement clearly 

suggest basement structural influence in the for of a broad downwarp during 

deposition of these upper Paleozoic strata. 

Regional Jointing 

Fractures in Paleozoic and Mesozoic rocks, nterpreted from Schlumberger, 

Inc. Fracture Identification Logs run in DOE tes wells, have preferred north­

easterly and northwesterly orientations in east rn Deaf Smith County (fig. 4). 

Fractures in cores from the same intervals are n arly vertical, and some are 

mineralized with gypsum or halite. Both the nor heast and northwest fracture 

orientations are parallel to basement structural trends. In addition, the 

northeast-southwest fracture trends are parallel to the axes of thickening of 

San Andres evaporites and the Alibates Formatio (figs. 3 and 4). 

In situ stress measurements following hydra lie fracturing of Permian 

strata in the Stone and Webster Engineering Corp No. 1 Holtzclaw well in 

Randall County (fig. 5) indicate that regional n rtheast-southwest principal 
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compressive stresses occur between N40E and N60 . This is consistent with the 

observed pattern of northeast-trending fracture. 

Salt Dissolution 

Contrary to thickening trends in both unde lying and overlying units, salt 

in the Seven Rivers Formation thins above northe st-trending basement struc­

tural elements (fig. 5). The axis of thin salt, ,however, is offset approxi­

mately 16 km {10 mi) to the southeast of the axe~ of thickening of the San 

Andres and Alibates Formations. Gustavson and thers (in press) and Gustavson 

and Finley (in press) have shown that the Seven ivers salts have undergone 

extensive dissolution in the study region. Stra a immediately above salt of 

the Seven Rivers Formation contain microbreccia, insoluble residues, and 

complexly fractured units that are thought to re ult from dissolution and 

subsidence. Analyses of insoluble residues sugg st that at least 30 m (100 ft) 

of salt has been lost from the top of the Seven ivers Formation. Prior to 

dissolution of Seven Rivers salt, approximately Om (100 ft) of salt was 

removed from the overlying Salado Formation (Gus' avson and others, 1980; 

McGillis and Presley, 1981). 

Preferential dissolution that occurred alon the northeast structural 

trend may be related to in situ regional stress onditions. Northeast-

southwest principal compressive stresses nd to keep northwest-trending 

fractures closed, while northeast-trending fractu es could remain relatively 

more open. In this case, enhanced ground-water ovement along the northeast­

trending fractures could account for accelerated alt dissolution along the 

same trend. 
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Structure on the Alibates Formation 

Structure on top of the Alibates Formation which overlies the Salado and 

Seven Rivers Formations, was interpreted from 1 6 km (85 mi) of 24-fold 

seismic-reflection profiles (fig. 6). Several structural basins lie within a 

structural trough that trends to the northeast. Although the northeast struc-
i 

tural trend is apparent on structure maps of st atigraphic units below the 

Seven Rivers Formation, the smaller structural asins are not evident, and, 

thus, formation of these basins is probably not directly related to basement 

structural adjustments. 

Evidence of salt dissolution has been obser~ed in cores of the Seven 

Rivers and Salado Formations in this area, and, herefore, differential sub­

sidence as a result of dissolution may have led '!to the development of the 

structural basins recognized on the top of the A~ibates Formation. 
! 

Mid-Tertiary Erosional S rface 

Figure 7 is a structure-contour map on the ase of the High Plains Aquifer 

or the Miocene-Pliocene Ogallala Formation. It ~s, in effect, a paleotopo-
1 

graphic map of the mid-Tertiary erosional surfac, that was developed on 

Triassic Dockum Group rocks. Relief on the mid- ertiary erosional surface is 

approximately 80 m (250 ft). 

The most conspicuous paleotopographic featu, es are a regional low trending 

to the northeast from Parmer County to eastern D af Smith County, a series of 

closed basins within the paleotopographic low, ad a northeast-trending paleo­

topographic high to the east. In addition, the aleotopography in eastern Deaf 

Smith County shows a strong northeasterly grain. 

The paleotopographic low and the northeast- rending series of closed 

basins overlie the area of thin salt in the Seve Rivers Formation. The 
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northeasterly grain of the paleotopography para lels the dominant northeasterly 

orientation of fractures recognized.in the subs rface in Dockum Group and older 

strata. Some of the individual closed basins a so tend to overlie structural 

basins mapped on the Alibates Formation (figs. and 7}. The difference in the 

shapes of basins on the two maps is probably be ause they are based on differ­

ent data sets and methodologies. 

Topography 

The Southern High Plains surface slopes re 1ionally to the southeast. All 

major streams except Tierra Blanca Creek, Frio raw, and Palo Duro Creek drain 

to the southeast (fig. 8). Tierra Blanca Creek nd Frio Draw are the only 

major streams that flow to the northeast. Thes streams flow in a broad 

topographic trough that overlies the dissolution thin in Seven Rivers salt. 

Tierra Blanca Creek flows parallel to the strin I of paleotopographic lows on 
I 
I 

the mid-Tertiary erosional surface in eastern De,f Smith County and vicinity 

(compare figs. 8 and 7}. 

Plio-Pleistocene Lacustrine Deposits 

In the Late Pliocene fine-grained sediments interpreted to be lacustrine 

deposits, accumulated in a basin east of Hereford, Texas (Norton, 1954) 

(fig. 8). A larger lacustrine basin approximate y 40 km (25 mi) to the north­

east at Canyon, Texas, (fig. 8) contains a mid-P ieistocene molluscan fauna 

(Frye and Leonard, 1963; G. E. Schultz, personal 'comm uni cation, 1981) and 

presumably formed during the Pleistocene. These basins occur above the paleo­

topographic trough shown in figure 8 and along t e trend of thin Seven Rivers 

salt. 
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INTERPRETATIONS 

Structural Controls on Di solution 

Basement structural trends and overlying P leozoic thickness trends are 

oriented to the northeast beneath eastern Deaf mith County, suggesting that 

differential movement on basement fault blocks as affected the depositional 

thickness of Paleozoic formations. Fracture sys, ems in this area also trend to 

the northeast and northwest, but based on in sit stress measurements, north­

east-trending fractures are relatively more lik ly to be open. Collapse 

breccias and insoluble residues in cores indica e that thinning of salt in the 

Seven Rivers Formation in this area is the result of dissolution. The zone of 

thinnest Seven Rivers salt also trends to the no theast in eastern Deaf Smith 

County. The northeast alignment of faults, frac, ures and thickness trends 

suggests that structural adjustments and control' have propagated upwards, 

perhaps through fracture systems, to influence he pattern of dissolution. 

The zone of thin salt in eastern Deaf Smith Coun y may have resulted from 

accelerated dissolution caused by the enhanced m vement of ground water along 

northeast-trending fractures. 

Timing of Dissoluti n 

i 

Structural basins seen on the Alibates Form tion and on the mid-Tertiary 

erosional surface are thought to result from dif.erential subsidence following 

dissolution. The basins on the mid-Tertiary ero ional surface are filled with 

Ogallala Formation sediments, and the northeast- rending structural trough on 

this surface cuts across the regional paleotopog aphic slope to the southeast. 

This suggests that the episode of dissolution th t resulted in the northeast­

trending salt thin was not initiated until after regional Tertiary uplift and 
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deposition of the Miocene-Pliocene Ogallala For ation. A regional south­

easterly slope as indicated by sand distributio patterns was present in 

eastern Deaf Smith County during deposition of· he Ogallala Formation (Seni, 

1980). Subsequent to the end of Ogallala depos tion in the late Pliocene, 
I 

regional southeasterly drainage was diverted tolthe current northeasterly 
! 

drainage. The modern drainage of Tierra Blanca Creek and the valley in which 

it flows overlies and parallels the zone of thi Seven Rivers salt. Plio­

Pleistocene and Pleistocene sediments fill lacu trine basins along Tierra 

Blanca Creek. Continued dissolution and surface subsidence following the end 

of Ogallala deposition led to the formation of acustrine basins and to the 

diversion of drainage to the northeast. 

No single structural or geomorphic feature in this area provides conclu­

sive evidence of salt dissolution during the Qua ernary. However, there is a 

persistent pattern of structural and geomorphic ~eatures that can be explained 

by dissolution of Seven Rivers salt during the T rtiary and perhaps as late as 

the Quaternary. 

SWISHER COUNTY 

The Tule Formation (Pleistocene) is exposed around the margin of Lake 

Mackenzie at the boundary of Swisher and Briscoe 1 Counties and lies within a 

basin that partly resulted from subsidence duet salt dissolution (figs. 9 and 

10). 

Stratigraphy of the Tule Formation has been discussed by Evans and Meade 

(1945), Frye and Leonard (1957), Reeves (1970), umanchan (1972) and Schultz 

(in press). These sediments have generally been interpreted as lacustrine 

deposits, although Frye and Leonard (1957) though them to be fluvial. The 
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presence of thin limestone and dolomite beds an laminated mudstones is strong 

evidence that the Tule Formation is lacustrine. 

Most recently Schultz (1977 and in press) las reviewed evidence for the 

age of these beds. Based on vertebrate remains and on the presence of Lava 

Creek B Ash (Pearlette type "0") and the Cerro oledo-X Ash (Izett, 1977) 

Schultz has suggested that the Tule Beds span mot of the Irvingtonian Mammal 

Age. Earlier Evans and Meade (1945) referred to; these beds as middle Pleisto­

cene and Frye and Leonard (1957) considered the j as Kansan in age. The pres­

ence of an Irvingtonian fauna within the Tule Fo mation indicates that the 

basin that it fills must have been in existence by the early Pleistocene. 

Several possible origins have been proposed for this basin. Baker (1915) 

and Patton (1935) attributed the origin of the l rger partly filled basins on 
I 

the High Plains to subsidence due to dissolution: of Upper Permian bedded salts. 
' 

Evans and Meade (1945) suggested that solution ad deflation were both impor-

tant processes in the development of lacustrine asins on the High Plains, with 

deflation being the primary process. Frye and Jeonard (1957) suggested that 

the Tule Basin was a stream valley and not a def ation basin as suggested by 

Evans and Meade (1945). Later, Reeves (1970) su gested that the position of 

the Tule Basin, along with other large basins onlthe High Plains, was con-
' trolled by intersecting sets of regmatic shear f actures. Gustavson and Finley 

(in press) have suggested that the location of th~ Tule Basin resulted from 
I 

subsidence due to dissolution of Permian salts, ut that this subsidence prob-

ably accounts for only a small part of the depth of the basin. 

Dissolution of Permian bedded salts beneath the Tule Lake Basin is 

suggested in figure 1 which shows that the Salad Formation salts thin by 

approximately 30 m (100 ft) between the Humble O 1 Co. #1 Howard Ranch in 

central Briscoe County and the Gulf Oil Co. #1 R dgers "D" well near Tule 
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Creek. Overlying and underlying non-salt beds o not change in thickness or 

lithology which suggests that neither Permian tructural nor facies changes can 

account for the changes in salt thickness. Dif erences in regional dip between 

beds overlying and underlying the Salado Format on salts west of the Humble 

well suggest that subsidence has occurred. 

Core through the Salado Formation in the S ,one and Webster Engineering 

Corp. #1 Zeeck and the DOE/Gruy Federal #1 Grabb wells, which lie several 

kilometers west and northwest, respectively, of the Tule Basin, both contain 

insoluble residues and gypsum-filled extension f actures resulting from dis­

solution of Salado Formation salts. The net-sal map of the Salado Formation 

salts in the vicinity of the Tule Lake Basin sho s that Salado salts thin from 

150 ft in central Briscoe County to less than 50 ft beneath the Tule Lake Basin 

(fig. 11). 

If dissolution of salt has in fact occurred 1 then the structure of 

overlying units should reflect subsidence. Elev tion of the Alibates Formation 

decreases from approximately 2,625 ft above sea evel in central Briscoe County 

to about 2,500 ft beneath the Tule Basin, nearly paralleling the changes in 

Salado salt thickness (fig. 12). A structure con our map on the middle 
' 

Tertiary erosion surface at the base of the Ogall la Formation shows a paleo-

topographic trough similar to and overlying the ,tructural trough on the 

Alibates Formation (fig. 13). The vertical juxta osition of thin salt in the 

Salado Formation, attributed to dissolution, a st uctural low on the Alibates 

Formation, and a paleotopographic low on the mid le Tertiary erosion surface, 

all of which underlie the Tule Basin, suggests th t dissolution and subsidence 

have played a role in the development of the Tule Basin. 

If strata underlying the Tule Basin have und rgone subsidence, some 

evidence of deformation should be apparent in out rop. Evans and Meade (1944) 

described subtle flexures in Triassic strata expo ed in the "narrows" of Tule 



Canyon east of Lake Mackenzie and attributed th·s structure to subsidence 

resulting from dissolution (fig. 10). 
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Dockum strata exposed along the access on the north side of the Tule 

Basin are highly fractured and fractures are fi led with gypsum (var. sele­

nite). Closely spaced, less than 15 cm (6 inch s), subhorizontal, gypsum-

filled, bedding-plane fractures are common. lined (30° to 60°) and near 

vertical gypsum-filled fractures are present bu less common than bedding-plane 

fractures. Gypsum fillings in bedding-plane fra tures are mostly less than 

1.8 cm (0.75 inch) thick, and appear to have am dial scar. The geometry of 

these fractures is similar to that of extension ractures in Permian rocks east 

of this area (Goldstein, 1982). A preliminary nterpretation of the formation 
' 

of these features is that gypsum was deposited a vertical extension took 

place. Extension could have resulted from subsi ence of underlying strata as a 

result of dissolution. 

Both the Triassic Dockum Group and the Quat rnary Tule Formation strata 

show the effects of minor structural warping in he Lake Mackenzie area. In 

the area where Dockum Group strata contain gypsu -filled fractures, strikes 
I 

vary from N5°E to N80°w and dips vary from 5° to 15°N. In this same area 

strike and dip on the Tule Formation are difficu t to measure, but Tule strata 

appear to dip south between 5o and 10°. On the south side of Lake Mackenzie 

Tule beds appear to dip to the north from 5 to 1 degrees. On Texas Highway 

207, the south flank of Tule Canyon, Tule beds u '
1
derlying a syndepositionally 

disturbed horizon dip to the north at approximat ly 5 degrees. 

Fine-grained lacustrine strata would probabl not be stable on deposi­

tional slopes of 5 to 10 degrees. It seems more likely that the Tule sediments 

have been slightly tilted towards the center of he basin. Tilting could 

result from either subsidence or differential compaction of a thicker 
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fine-grained section of lacustrine sediments to ards the center of the Tule 

Basin. If tilting is due to subsidence, then d ssolution of underlying salts 

is the most likely cause. 

The Tule Formation contains an Irvingtonia fauna indicating that 

these units were deposited in a lacustrine basin that was formed by middle 

Pleistocene time. Tule beds rest unconformably on both Triassic and Ogallala 

sediments indicating that substantial erosion h d occurred prior to deposition 

of the Tule Formation. Tule sediments are at 1 ast 30 m (100 ft) thick and, 

therefore, the original basin must have been at least that depth. In addition, 

the Tule Basin lies within a larger topographic basin suggesting that at the 
i 

onset of Tule deposition the floor of the Tule asin was at least 53 m (175 ft) 
I 

below the topographic basin edge. Salt dissolu 'ion alone could not have 

accounted for a basin of this depth. Structure on the Alibates Formation 

suggests that a maximum of 30 m (100 ft) of sub idence occurred. Furthermore, 

vertical extension fracturing with mineralizati In of the fractures such as seen 

in Dockum strata beneath the Tule Basin and in ermian strata in the Rolling 

Plains suggests that the effects of subsidence d'minishes upwards (Goldstein 

and Collins, in press). Therefore, it is likel that surface erosion accounted 

for at least 30 m (100 ft) and probably more of he early Pleistocene Tule 

Basin. 

Was the surface erosion that helped to exc vate the Tule Basin primarily 

eolian deflation as suggested by Evans and Meade (1945) or was stream erosion 

as suggested by Frye and Leonard (1957) the more ,
1 

important process? There 

appears to be no direct evidence to answer this uestion. However, Recent 

intermittent lakes on the Southern High Plains i most cases have large lee 

dunes on the eastern sides indicating that defla ion was a significant process 

in their formation. Salt Lake, Illusion Lake, Y llow Lake, and Coyote Lake all 
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lie in basins that are more than 100 ft deep an similar in size to the Tule 

Basin. Stream erosion could also have eroded t e Tule Basin. However, if the 

basin was the result of stream erosion, some me hanism to create a dam over 

30 m (100 ft) high to contain the Tule Lake mus be invoked. This would be 

difficult to do given the low relief that must ave existed on the early 

Pleistocene High Plains. Furthermore, the dam ust have remained stable for a 

geologically significant period of time. There ore, it seems that deflation is 

a more likely process than stream erosion in th development of the Tule Basin. 

It appears that salt dissolution and deflat on were the most important 

processes contributing to the development of th Tule lacustrine basin. The 

age of the Tule Formation suggests that formati n of the basin and salt dis­

solution occurred during the Plio-Pleistocene. inor deformation of Tule 

Formation strata suggests that dissolution ands bsidence were active during or 

following deposition of Tule Formation sediment. 
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FIGURE CAPTIONS 

Figure 1. Stratigraphic cross section showing pper Permian, Triassic, 

Tertiary and Quaternary strata. Salt dissoluti n is illustrated between wells 

where some or all of the salt section is missin and where structural collapse 

of strata has occurred. 

Figure 2. Basement structure for the northern ~art of the Palo Duro Basin, 

Texas Panhandle. Faults in the Texas Panhandle ~trike northwest with a 

secondary system striking northeast. Basement tructure in eastern Deaf Smith 

' County is interpreted from both well logs ands ismic-reflection data. 

Figure 3. Net salt map of the middle Permian u per San Andres Formation. 

Salts tend to thicken over basement structural ows (Presley, 1981). Compare 

to figures 2 and 4. 

Figure 4. Isopach map of the Upper Permian Ali ates Formation. The Alibates 

Formation thickens over basement structural low and thins over basement struc-

tural highs (McGillis and Presley, 1981). Comp re to figures 2 and 3. In 

eastern Deaf Smith County preferred fracture ori ntations are northwest and 
I 

northeast. Fractures are interpreted from Sehl 1mberger, Inc. Fracture Identi-

fication Logs. 

Figure 5. Net-salt map of the Upper Permian Se .en Rivers Formation. The 
'1 

northeast trend of thinning of the uppermost sal~ in this part of the Palo Duro 

Basin parallels local northeast fracture trends ~nd northeast-trending basement 
I 

faults. Thinning in this case is attributed to I alt dissolution. Collapse 
i 

breccias and other evidence of dissolution were observed in cores from Stone 

and Webster Engineering Corp. J. Friemel No. 1 A), G. Friemel No. 1 (B), and 

Detten No. 1 (C). In situ stress measurements w re made in the Stone and 

Webster Engineering Corp. No. 1 Holtzclaw well ( ). 
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Figure 6. Structure-contour map on top of the pper Permian Alibates Forma­

tion. Structure on the Alibates Formation prob bly resulted partly from col­

lapse following dissolution of salt in the unde, lying Salado and Seven Rivers 

Formations. Two-way travel times have been cor ected for velocity differences 

in overlying units and converted to elevation a ove sea level. 

Figure 7. Structure-contour map on the base of the Ogallala Formation. A 

series of paleotopographic lows and closed depr ssions on the mid-Tertiary 

erosional surface overlies the northeast struct ral and dissolution-collapse 

trends. Paleotopographic lows probably result f om both stream erosion and 

collapse following dissolution (after Knowles a !d others, 1982). 

Figure 8. Topographic map of a part of the Sou .hern High Plains of the Texas 

Panhandle. Contours are in feet below sea level. Deaf Smith County, Texas, is 

a potential location for a high-level nuclear w .ste repository. Regional 

topographic slope on the Southern High Plains isl to the southeast at approxi­

mately 2.0 m/km (10.6 ft/mi). Streams drain to he southeast with the excep­

tion of Tierra Blanca Creek, Palo Duro Creek, ad their tributaries. 

Figure 9. Topographic map derived from U.S. Geo ogical Survey Cope Creek and 

Rock Creek 7.5-minute (1965) Quadrangles showing locations of stops and archeo­

logical sites. 

Figure 10. Geologic map of portions of Cope Cre k and Rock Creek Quadrangles 

(after Kumanchan, 1972). 

Figure 11. Net-salt map for the Upper Permian S lado Formation, Swisher and 

Briscoe Counties. 

Figure 12. Structure-contour map on the top of he Upper Permian Alibates 

Formation, Swisher and Briscoe Counties. 
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Figure 13. Paleotopography on the middle Tertiary erosion surface (base of the 

High Plains Aquifer), Swisher and Briscoe Coun ies (after Knowles and others, 

1982). 
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