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The emergence of controlled, two-dimensional moiré materials1–6 has uncovered a

new platform for investigating topological physics7–9. Twisted double bilayer graphene

(TDBG) has been predicted to host a topologically non-trivial gapped phase with Chern

number equal to two at charge neutrality, when half the flat bands are filled8,9. However, it

can be difficult to diagnose topological states using a single measurement because it is ideal

to probe the bulk and edge properties at the same time. Here, we report a combination of

chemical potential measurements, transport measurements, and theoretical calculations

that show that twisted double bilayer graphene can host metallic edge transport while si-

multaneously being insulating in the bulk. A Landauer-Büttiker analysis of measurements

on multi-terminal samples allows us to quantitatively assess edge state scattering. We in-

terpret these results as signatures of the predicted topological phase at charge neutrality.
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The tunability of moiré materials1–6 by angle and carrier density powers the realization

of novel topological phases7–9, such as correlated Chern insulators that break time-reversal-

symmetry10–16. The long moiré period justifies low-energy effective models that neglect17 weak

scattering between distant regions of momentum space known as valleys. The application of a

transverse electric field causes bulk TDBG to open a gap at charge neutrality to a topological

state analogous to the quantum spin Hall (QSH) state characterized by a non-zero valley Chern

number CV = 28,9, indicating two pairs of counter-propagating edge states per spin. However,

disruption of the moiré pattern on the edge is expected to break the valley symmetry, leaving

the states susceptible to scattering and their fate uncertain.

A simultaneous investigation of bulk and edge properties is necessary to reveal the band

topology of an electronic system. We employ a sample design shown in Fig. 1a that allows

simultaneous electron transport and chemical potential measurements. Our samples consist of a

double layer where one layer is a controlled moiré material TDBG, with a twist angle (θ) range

of 0.97◦ − 1.60◦. The second layer is a graphene back-gate (GrBG), consisting of monolayer

or bilayer graphene with terminals for resistance measurements. The TDBG and GrBG layers

are separated by a hexagonal boron-nitride (hBN) dielectric. The GrBG acts not only as the

back-gate, but as a Kelvin probe of the TDBG chemical potential18,19. The double layer is

encapsulated in hBN, with an added graphite top-gate, and placed on a SiO2/Si substrate, which

serves as an additional gate. This sample architecture allows access to the chemical potential

of the TDBG in a wide range of carrier density (n) and transverse electric field (E). Similar

double-layers have been used to probe chemical potentials and thermodynamic gaps in bilayer

graphene19, and twisted bilayer graphene14, albeit without control of the transverse electric field.

An optical micrograph of the sample is illustrated in Fig. 1b.

The longitudinal resistance (Rxx) of the TDBG is measured as a function of top-gate bias

(VTG) and graphene back-gate bias (VBG) to determine the twist angle, and characterize the
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sample quality. The VTG and VBG values tune n and E independently according to n =

(CTGVTG +CBGVBG)/e, and E = (CTGVTG−CBGVBG)/2ε0, where e is the electron charge, ε0

is the vacuum permittivity, and CTG and CBG are the capacitances per unit area of the top- and

back-gate, respectively. The values of CTG and CBG can be first determined from the dielectric

thickness, and confirmed with magnetotransport measurements (see Supplementary Informa-

tion section A). Figure 1c shows the contour plot of Rxx as a function of n and E, which ex-

hibits resistance maxima at densities commensurate with ns = 2.2× 1012 cm−2 associated with

filling of one moiré band with 4-fold spin-valley degeneracy. Resistance maxima are observed

at n = 0,±ns,±3ns, consistent with single-particle band structure calculations, as well as cor-

related insulators at n = ±ns/2
3–6. The Rxx maxima at n = ±2ns are a surprise because no gap

between the second and third moiré bands is predicted in single-particle band calculations. We

tentatively attribute the Rxx maxima at n = ±2ns to a gap opening driven by electron-electron

interactions. The twist angle (θ) can be extracted using the equation ns = 8√
3

(2a−1 sin(θ/2))
2,

where a = 2.46 Å is the graphene lattice constant. Figure 1d shows a line cut of Rxx vs. n

measured along the dashed line in Fig. 1c. Sharp Rxx peaks at integer n/ns = 0,±1,−2,+3,

and fractional n/ns = +1/2 further illustrate the observations in Fig. 1c, and highlight the high

TDBG sample quality.

We focus primarily on the TDBG properties at charge neutrality where one of the two flat

bands, per valley per spin is filled. The bulk topology20 can be determined from the Bistritzer-

MacDonald Hamiltonian17. Figure 1e shows how the twisting of the two graphene Brillouin

zones forms the moiré Brillouin zone for the K valley. In Fig. 1f, we show the calculated band

structure at an applied interlayer potential V = 15 meV using the parameters in Ref.20, and

highlight the highest valence band at charge neutrality, labelled −1. This band carries a Chern

number +2, and because all lower bands carry zero Chern number, the total Chern number

of the occupied bands is CK = 2. The K ′ valley is related to K by time-reversal and must
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have opposite Chern number. Therefore the phase is characterized by the valley Chern number

CV = (CK − CK′)/2 = 2 at charge neutrality.

By tuning the GrBG doping (nBG) with a substrate bias (Vs), we are able to directly probe the

TDBG chemical potential (µ) as a function of both n and E. An analysis of the band alignment

in the heterostructure (see Supplementary Information section B) shows that when the GrBG is

charge neutral (nBG = 0), the TDBG chemical potential satisfies:

µ = eVBG

(
1 +

Cs

CBG

)
− eVs

Cs

CBG

, (1)

where Cs is the capacitance per unit area between the substrate and the GrBG. To determine

the charge neutrality gap at different E-fields, we utilize Eq. (1) and Fig. 2a data, which

shows a contour plot of Rxx vs. VTG and VBG for a TDBG sample with θ = 0.97◦. Along

the black dashed diagonal the TDBG density is n = 0, while the E-field varies. By mapping

the longitudinal resistance of the GrBG (RBG) vs. VTG and VBG and tracking the GrBG charge

neutrality, µ can be extracted according to Eq. (1). Figure 2b-d show three contour plots ofRBG

vs. VTG and VBG in the vicinity of nBG = 0, measured at different Vs values. The corresponding

VTG and VBG ranges used in Figs. 2b-d are marked by rectangles in Fig. 2a. By changing the Vs

value at which the RBG vs. VTG and VBG data are acquired, the E-field value at the intersection

point of the n = 0 and nBG = 0 lines can be tuned accordingly. Indeed, the TDBG charge

neutrality gaps are measured at three E values in Figs. 2b-d – 0.15 V/nm (panel b), 0.37 V/nm

(panel c), and 0.29 V/nm (panel d). The black dashed lines in Figs. 2b-d illustrate the evolution

of GrBG charge neutrality with VTG and VBG, which can be readily converted into a µ vs. n

dependence using Eq. (1). The clear step in the GrBG charge neutrality line observed as it

crosses the TDBG n = 0 line shown in Figs. 2c and 2d reveals a thermodynamic gap at the

TDBG charge neutrality. In contrast to Figs. 2c and 2d data, in Fig. 2b the nBG = 0 line is flat

at n = 0, indicating the absence of a gap at low E-field. Due to our emphasis on TDBG charge
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neutrality in this work, we show RBG vs. VTG and VBG only in the vicinity of double neutrality

n = nBG = 0 in Figs. 2b and 2c. However, the µ values can also be probed away from n = 0.

Indeed, Fig. 2d shows a contour plot of RBG vs. VTG and VBG that captures a wider TDBG

density range, and displays features that indicate gaps at other moiré filling factors.

Figure 2e summarizes the µ vs. n dependence near n = 0, at varied E values. The µ vs. n

step at n = 0 marks the opening of a gap (∆0) which increases with the applied E-field. The

evolution of ∆0 vs. E for two samples with twist angles θ = 0.97◦ and θ = 1.60◦ is shown in

Fig. 3a. For comparison Fig. 3a data include the gap at neutrality measured in Bernal stacked

bilayer graphene as a function ofE-field19. In both samples the ∆0 values exceed 100 K at large

E-fields, and are as high as 300 K in the θ = 0.97◦ TDBG.

Figure 3b shows the longitudinal resistivity (ρxx) vs. E measured at n = 0 for three TDBG

samples with θ values between 0.97◦ and 1.60◦. The E-field range where ∆0 opens in the

θ = 0.97◦ sample is highlighted. The ρxx values remain low in the E-field range where ∆0

is negligible, and show a sharp increase concomitant with the gap opening. Surprisingly, the

TDBG ρxx values then decrease with increasing E, and remain well within the expected range

of a metallic electron system (< h/e2, where h is Planck’s constant) despite the gap opening

for all three samples. We note that similar low Rxx values at n = 0 and at high E-fields

can be seen in previous studies21,22. Figure 3b also shows ρxx vs. E at n = 0 data for a

Bernal stacked bilayer graphene19. While both the TDBG and Bernal stacked bilayer graphene

have a E-field dependent gap at neutrality, the ρxx vs. E dependence of the Bernal stacked

graphene is markedly different, quickly reaching large values with increasing E, as expected

for a prototypical band insulator. In Fig. 3c we show the ratio of the nonlocal resistance (RNL) to

Rxx as a function of n andE measured in the θ = 0.97◦ TDBG. The measurement configuration

schematics for RNL and Rxx are shown in the Fig. 3c insets. These data show a large RNL/Rxx

ratio at charge neutrality and at high E-fields when ∆0 opens, which signals a distinct change
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in the current pattern. It is noteworthy that both RNL and Rxx values remain well below h/e2 at

charge neutrality, and the RNL/Rxx ratio remains small elsewhere in Fig. 3c contour plot. The

sharp increase in RNL/Rxx ratio at charge neutrality combined with the low ρxx values when

∆0 opens suggests the presence of edge transport when the TDBG is gapped.

The presence of edge transport may not necessarily stem from non-trivial bulk topology.

Indeed, electrostatic edge states due to finite sample width can emerge in small-bandgap semi-

conductors23. To further test the origin of the edge transport in TDBG, it is important to examine

a similar twisted system, but with a topologically trivial gap. To this end, in Fig. 3b we include

ρxx vs. E measured at n = 0 for a TDBG with θ = 181.10◦, i.e. twisted at a small angle

with respect to 180◦. Additional data measured in a TDBG with θ = 181.9◦ can be found in

Supplementary Information section C. The TDBGs with θ ≈ 180◦ have a similar band structure

as TDBGs with θ ≈ 0◦, and open a gap at n = 0 at finite E-fields (see Supplementary Infor-

mation section D). The magnetotransport properties of the θ = 181.10◦ TDBG (Fig. S2) reveal

a rich Hofstadter butterfly comparable to samples with θ ≈ 0◦ (Fig. S1), indicating a similarly

high quality sample. However, thanks to the C2y symmetry in TDBGs with θ ≈ 180◦ the gap

at neutrality is topologically trivial with CV = 09. Figure 3d compares ρxx vs. E at n = 0 at

different temperatures measured in the θ = 181.10◦ TDBG (left panel) with ρxx vs. E at n = 0

for the three TDBGs twisted with respect to 0◦ (right panel). The contrast between the two sets

of samples is noteworthy – ρxx quickly reaches values significantly larger than h/e2, with an

insulating temperature dependence in the θ = 181.10◦ TDBG, while the TDBGs with θ ≈ 0◦

show ρxx lower than h/e2 when the gap opens at neutrality. The contrast between the θ ≈ 180◦

TDBG and the θ ≈ 0◦ TDBGs suggests non-trivial edge transport in the TDBGs with θ ≈ 0◦,

which we associate with the emergence of a topological valley Chern insulator.

To better describe the TDBG band structure and topology, we compute a single-particle

phase diagram for TDBG20 for θ = 0.8◦ − 1.8◦ and varying V , controlled by the applied E-
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field. We extract the indirect gap at charge neutrality ∆0 from the band structure as depicted

in Fig. 1f, and compute the Chern numbers of the occupied bands. Figure 4a shows a contour

plot of ∆0 vs. θ and V , which reveals a gap closing and reopening (blue dashed line) for all

angles at small V . Beyond the gap closing, corresponding to larger E-fields, we find a gapped

topological phase with CV = 2. The results are consistent with the experimental data in our

samples. Interestingly, Fig. 4a data predicts a trivial insulator for θ > 1.1◦ with a gap of

approximately 2 meV at E = 0 which may account for the ρxx decrease at small E-fields for

the θ = 1.60◦ TDBG in Fig. 3b, and observed for TDBGs with θ = 1.55− 1.9◦ in Ref.24.

Figures 4b and 4c show the phase diagrams at n/ns = ±1, dominated by a gapless phase

and a trivial insulator. However, at θ ≈ 0.9◦ and small E-fields, a gapped state with CV = +1

(shaded area) appears for both n/ns = ±1. In this state at n/ns = +1 in valleyK, the upper flat

band has Chern number −1 which only partially cancels the Chern number +2 carried by all

valence bands. Similarly, at n/ns = −1, the dispersive bands below the flat bands carry Chern

number 1, and the lower flat band carrying Chern number 1 is unoccupied. It is noteworthy

that in addition to the large RNL/Rxx observed at n = 0, Fig. 3c data shows satellites of finite

RNL/Rxx at n/ns = 1, a possible signature of the topological state at this filling factor. There

is also a RNL/Rxx peak at n/ns = −1, but with a weaker nonlocal resistance, indicating some

degree of particle-hole symmetry breaking. This finding is consistent with the shaded region of

Fig. 4c data which is interrupted by a metallic phase near θ = 0.97◦.

To quantitatively probe the edge state transport (Fig. 4d) we employ the Landauer-Büttiker

(LB) formalism25–27. The θ = 1.60◦ TDBG has nine terminals i = 1, . . . , 9 which enables a

variety four-terminal resistance measurements relating the currents Ii and voltages Vi (Fig. 4e).

The LB equation, normalized by 2CV to include spin degeneracy, reads

Ii = 2CV
e2

h

N∑
j=1

(TjiVi − TijVj) . (2)
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Here Tij is the transmission probability from j → i, N = 9 in our sample. Because the

disruption of the moiré pattern on the edge and the sample geometry the transmission matrix T is

not expected to take a simple form. We derive an exact inverse relating resistance measurements

to the entries of T , extending prior results for a four-terminal sample28 (see Supplementary

Information section E). Using the matrix T (E) we then extract the order parameter

σ(E) =
2CV e

2

18h

9∑
i 6=j

Tij(E) (3)

where σ, the total edge conductance, is equal to 4e2/h when edge states do not back-scatter

(see Supplementary Information section E.6). Figure 4f shows σ vs. E and reveals a divergence

in the order parameter at the topological phase transition at E = 0.33 V/nm. For larger E

in the topological phase, σ decays quickly to a constant finite value. To further illustrate the

edge transport, Fig. 4f shows ||∆T (E)||, the average deviation of T (E) from T (0.7 V/nm)

defined by the Frobenius norm (see Supplementary Information section E.6). A small value of

||∆T (E)|| means that T (E) is close to T (0.7 V/nm) in every entry. Once the gap is open, we

find that ||∆T (E)|| ≈ 0, indicating that the whole matrix T (E) and the edge states it describes

are independent of E, suggestive of topological effects.

Lastly, we comment on the contrast with Bernal stacked bilayer graphene, a material with

large Berry curvature at the Brillouin zone corners, and theoretically expected to possess edge

states for specific terminations29,30. In TDBG, we find the transverse edge state localization

length ξ ≈ 100 nm, whereas ξ ≈ 1 nm in Bernal graphene (Supplementary Information section

F), making the edge states much more sensitive to edge disorder. This implies that edge states

scattering in TDBG is significantly reduced thanks to the long moiré period.

In summary, simultaneous thermodynamic and transport properties can provide unique in-

sights into band topology effects in moiré materials, particularly for states that do not break

time-reversal symmetry. The data suggests the emergence of a tunable topological insulator in
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TDBG, as a consequence of non-zero valley Chern numbers of the moiré bands.
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vs. VTG and VBG. The black dashed lines mark the RBG maxima indicating to the GrBG charge
neutrality loci (nBG = 0). The corresponding VTG and VBG ranges used in panels b-c and d
are marked by white and red rectangles in panel a, respectively. The data in panels a-d are
measured at T = 1.5 K. e, µ vs. n at different E-field values, in the vicinity of n = 0. ∆0 can
be extracted from the change in µ at n = 0.
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Figure 3: Gapped bulk and edge states. a, Charge neutrality thermodynamic gap ∆0 vs. E
for two TDBG samples, and Bernal stacked bilayer graphene. The ∆0 value in TDBG increases
rapidly at a finite E, and remains finite once is open. Red and green dashed lines are guides to
the eye. The error bars represent measurement uncertainty. b, ρxx vs. E at charge neutrality
measured in the θ = 0.97◦, 1.01◦, 1.60◦, and 181.10◦ TDBG samples. The shaded areas mark
the gapped region for the 0.97◦ TDBG. In the 0.97◦, 1.01◦, and 1.60◦ samples, the ρxx values
show an initial increase when the gap opens, but subsequently decrease with increasing E. In
contrast, ρxx increases with E to values significantly larger than h/e2 in the 181.10◦ sample.
The ρxx vs. E measured at n = 0 in a Bernal stacked bilayer graphene is included. c, Contour
plot of RNL/Rxx vs. n/ns and E measured in the θ = 0.97◦ TDBG. The insets show the
measurement configuration schematics for RNL (upper left) and Rxx (lower right); the arrows
mark the current direction. The large RNL/Rxx ≈ 1 ratio at n/ns = 0 and finite E-fields signals
edge transport. d, Left panel: temperature dependence of ρxx vs. E at n = 0 measured in
181.10◦ sample. The shaded area marks the gapped region. Right panel: ρxx vs. E measured in
the small-twist-angle TDBGs. The shaded area marks the gapped region for the 0.97◦ sample.
The data in panels a-d are measured at T = 1.5 K unless otherwise noted.
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Figure 4: TDBG Phase Diagrams. a-c, The valley Chern number CV as a function of θ and
V for the a, gap between the lowest conduction band and highest valence band (∆0), b, gap
between the first and second conduction bands (∆1), and c, gap between the first and second
valence band (∆−1). The dashed lines indicate Chern number transitions in neighboring bands,
e.g. C(2,3)

K (C(−2,−3)
K ) is the Chern number computed for the connected second and third con-

duction (valence) bands in the K valley. In panels b and c, the shaded areas mark gapped
regions with nonzero CV at filling n/ns = +1 and −1, respectively. d, Schematic of counter-
propagating edge states. Due to the breaking of the valley symmetry, scattering on the edge can
lead to localization. e, Examples of four-terminal resistance at charge neutrality (RCNP) vs. E
measured in a multi-terminal TDBG with θ = 1.60◦. The four-digit notations denote the mea-
surement configurations in the form of (current in, current out, voltage +, voltage −). f, T (E)
calculated using 64 independent resistance measurements. σ(E) diverges when the gap closes,
and has values of the order of e2/h in the topological phase. For E < 0.33 V/nm, σ shows sig-
nificant variation, expected in a bulk conductor. The norm of ∆T (E) = T (E)− T (0.7 V/nm)
is close to zero in the gapped phase, indicating that all T (E) entries are insensitive to the applied
E-field.
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Methods

Sample Fabrication

All the graphene, graphite, and hBN flakes used to fabricate our samples are mechanically ex-

foliated, and inspected by optical microscopy. The hBN flakes are subsequently inspected with

atomic force microscopy to confirm their thickness and surface roughness. Optical contrast

and Raman spectroscopy were used to confirm the layer number for monolayer and bilayer

graphene. The TDBG samples are assembled by sequential pick-up steps utilizing a hemi-

spherical polypropylene carbonate (PPC)/polydimethylsiloxane (PDMS) handle. The back-gate

structure is first prepared by picking up a monolayer or bilayer graphene with hBN, followed

by a set of pre-trimmed graphite contacts. The stacked structure is then placed on a SiO2/Si

substrate, or a prepared hBN/graphite stack, in the case of samples with graphite substrate gate,

to form the bottom structure of the sample. Starting with another large bilayer graphene flake

trimmed into two separate sections by lithography and O2 plasma etching, another hBN is used

to sequentially picked up the two sections, with a rotation of a small, controlled angle between

the two pick-ups, to form the TDBG. The TDBG is then placed on the bottom structure, and a

graphite top-gate is place on the TDBG. The structure is then trimmed into a Hall-bar shaped

channel using CHF3 and O2 plasma etching, which also creates exposed one-dimensional edges

of the TDBG and the graphite contacts to the back-gate. Metal (Cr/Pd/Au) edge contacts are

evaporated to finalize the sample.

Measurement Setup

The samples are measured in a variable-temperature liquid 4He cryostat with a base tempera-

ture of 1.5 K. Three- and four-point resistance measurements low-frequency (7 – 13 Hz) lock-in

techniques are performed on the TDBG and GrBG layers. Source currents of different frequen-

cies are used on TDBG and GrBG layers, to avoid cross-talk. A radio-frequency transformer is
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used to flow an AC current in the GrBG layer while applying a DC bias VBG.

Supplementary Information

A Magnetotransport Measurements and Hofstadter Butter-
fly

Magnetotransport measurements are performed for the TDBG samples in perpendicular mag-

netic field up to B = 14 T. In Fig. S1a and Fig. S2a, we show Rxx vs. n/ns and B,

with right axis as φ/φ0, measured in the θ = 0.97◦ and 181.10◦ samples at constant E-fields

E = 0.1 V/nm and E = 0 V/nm, respectively. Here, φ is the magnetic flux per moiré unit

cell, φ = BA, A is the moiré unit cell area A = 4/ns, and φ0 is the magnetic flux quanta

h/e. The sample is kept at a fixed E-field during the measurement by sweeping the top and

back-gate biases simultaneously, while keeping VTG/VBG = CBG/CTG. The ratio CBG/CTG is

determined by the slope of the charge neutrality line from the contour of Rxx vs. VTG and VBG.

For both θ = 0.97◦ and 181.10◦ samples, a fractal Hofstadter butterfly spectrum is observed.

The Hofstadter butterfly consists of trajectories of Landau level gaps in energy spectrum devel-

oped under a periodic potential and perpendicular magnetic field, and can be characterized by

the Diophantine relation
n

ns

=
ν

4

φ

φ0

+ s, (4)

ν and s are integers associated with Landau level and moiré subband fillings, respectively,

and index the QHSs. By fitting the fractal Hofstadter butterfly with Eq. 4, we are able to

determine the carrier densities at each (VTG, VBG) point, and confirm the capacitances of the

top and bottom gates. In the θ = 0.97◦ sample, the capacitances are extracted to be CTG =

88.72 nF/cm2 and CBG = 64.76 nF/cm2. We summarize the QHSs observed in Fig. S1a (Fig.

S2a) and show them in Fig. S1b (Fig. S2b). The QHS fans originated from ν = 0, ±1, ±2 and
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Figure S1: Hofstadter butterfly measured in the θ = 0.97◦ TDBG. a, Contour plot of Rxx

vs. n (bottom axis), n/ns (top axis) and B; the right axis shows φ/φ0. The data were measured
at a fixed E = 0.1 V/nm. b, QHSs observed in panel a. The fans originating from n/ns =
0,±1,±2,±3 are shown in red, green, blue, and orange, respectively. c, Rxx vs. n measured at
B = 7.5 T, dashed lines denote s and ν for each resistance minimum; the s indices are labeled
with colors corresponding to the fans in panel b.
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±3 are observed. The QSHs with ν = 0, namely at densities with integer n/ns = s, are marked

with vertical lines in Fig. S1b and Fig. S2b. The vertical lines at integer n/ns interrupted by

QHSs originated from a different s-index are marked in Fig. S1b and Fig. S2b, as a signature

of nontrivial topology31.

Figure S1c shows Rxx as a function of n taken at B = 7.5 T, which shows oscillations

associated with well-developed QHSs. We show the s and ν indices for the resistance minima

observed, and note the presence of ν indices not a multiply of 4 suggests the lifting of spin and

valley symmetry. The observation of plethora of the QHSs testifies to the high quality of our

samples.

B Chemical Potential Extraction

The chemical potentials of TDBG and GrBG can be written in terms of gate biases and ca-

pacitances of the heterostructure. We begin by analyzing the band diagram in Fig. S3, where

Vε,T, Vε,B, and Vε,s are the changes in electrostatic potential across the top, back, and substrate

dielectrics, respectively. ns is the carrier densities in the substrate gate, and µBG is the chemi-

cal potential of the GrBG. An applied VTG is the sum of the potential drop across the top-gate

dielectric and the chemical potential of the TDBG:

eVTG = eVε,T + µ, (5)

where e is the electron charge. Similarly, VBG and Vs can also be written as:

eVBG = eVε,B + µ− µBG, (6)

eVs = eVBG + eVε,s + µBG, (7)
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Figure S3: Band diagram of the TDBG heterostructure. The TDBG is kept at the ground
potential (black dashed line). The green and orange dashed lines mark the charge neutrality of
TDBG and GrBG, respectively.

while the potential drops across the dielectrics can be written as

CTGVε,T = e(n+ nBG + ns), (8)

CBGVε,B = −e(nBG + ns), (9)

CsVε,s = −ens, (10)

here, CTG, CBG, and Cs are the gate capacitances of the top, back and substrate gates, respec-

tively. Note that during all the measurements, the potential of the TDBG is always kept at

ground. Combining the six equations above, the following relations can be obtained:
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CTGVTG = e(n+ nBG) + Cs(VBG − Vs) +
µBGCs

e
+
µCTG

e
, (11)

CBGVBG = −enBG − Cs(VBG − Vs)−
µBGCs

e
+

(µ− µBG)CBG

e
. (12)

At GrBG charge neutrality, nBG = 0 and µBG = 0 are satisfied, the relations above become:

CTGVTG = en+ Cs(VBG − Vs) +
µCTG

e
, (13)

CBGVBG = −Cs(VBG − Vs) +
µCBG

e
, (14)

we then obtain the chemical potential of TDBG in terms of (VBG, Vs, CBG, Cs) at GrBG charge

neutrality,

µ = eVBG

(
1 +

Cs

CBG

)
− eVs

Cs

CBG

. (15)

We note that, according to Eq. 15, the resolution of the chemical potential measurement is

limited by the accuracy in determining the back-gate charge neutrality as a function of VBG,

δµ = (1 + Cs/CBG)δVBG.
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C Additional Data
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Figure S4: Rxx vs. E at charge neutrality measured in TDBG samples with θ = 0.97◦, 1.01◦,
1.60◦, 181.1◦ and 181.9◦, and Bernal stacked bilayer graphene19.

Figure S4 shows charge neutrality resistance (Rxx) vs. E-field data measured in TDBGs with

θ = 0.97◦, 1.01◦, 1.60◦, 181.1◦ and 181.9◦. The data shows that the charge neutrality resistance

in the TDBGs with θ ≈ 180◦ increases with the E-field and reaches values larger than h/e2,

supporting the findings that the TDBG with a twist angle θ ≈ 180◦ is a band insulator at charge

neutrality at finite E-field, in contrast with the TDBG with θ ≈ 0◦. For comparison, Rxx vs. E

data for a Bernal stacked bilayer graphene is included.
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D Theoretical Calculation of the Topological Phase Diagram

In this Appendix, we briefly describe the band structure calculations and determination of the

phase diagrams, giving the Chern number and gap as a function of θ and E. Our starting point

is the Bistritzer-MacDonald Hamiltonian considered in Ref.20. To summarize, the TDBG band

structure is computed across a moiré Brillouin Zone on the scale of kM = 8π
3
a−1 sin θ

2
where

θ is the moiré twist angle and a = 2.46 Å is the graphene lattice constant. The Bistritzer-

MacDonald Hamiltonian, per spin per valley, is written as a honeycomb continuum model in

momentum space by plane-wave expansions which we truncate to five shells of moiré reciprocal

lattice vectors. We do not employ the particle-hole symmetric approximation in order to uncover

finer details of the phase diagram.

The band gaps shown in Figs. 4a-c are determined by computing the band structure on

a fine mesh of angle θ (from 0.8◦ to 1.8◦), and inter-layer potential V (from 0 to 20 meV).

We note that the conversion between E and V , V = seEd depends on a phenomenological

screening parameter s. Here, e is the electron charge and d = 3.4 Å is the inter-layer distance.

A quantitative understanding of screening in TDBG is beyond the scope of the study.

As shown in Fig. 1f, the low energy bands are labeled in a convention where valence bands

at charge neutrality are indexed with negative numbers, e.g. band (−2) is the second band below

charge neutrality, and the conduction bands are indexed with a positive number, e.g. band (1)

is the upper flat band just above charge neutrality. To compute the Chern number over a single

band (or set of bands), we use the formula32

C(n) =
3
√

3

2
× i

2πε2N

∑
kx,ky

Tr P(kx, ky)[P(kx + ε, ky)− P(kx, ky),P(kx, ky + ε)− P(kx, ky)]

(16)

where P(kx, ky) = U(kx, ky)U
†(kx, ky) is the projection matrix on the band n, i.e. U(kx, ky)

is the eigenvector of band n, (kx, ky) are the coordinates of the moiré Brillouin zone which has
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area 3
√

3
2
k2
M , ε = 10−4 approximates the numerical derivative, and N = 16899 is the number

of points in hexagonal moiré BZ making up the momentum sum. Eq. (16) is written in terms

of projectors and hence is manifestly gauge-invariant. We take N to be large so that very good

quantization is observed in the calculated Chern numbers. To calculate the Chern number of

a connected set of bands, U(kx, ky) should be understood as a matrix whose columns are the

eigenvectors of the bands under consideration, thereby generalizing the one band example. By

computing the Chern numbers of the occupied bands at a giving filling, we determine the total

Chern number in the K valley by

CK =
∑

n occupied

C(n)

(17)

and, by time-reversal symmetry CK′ = −CK , so finally

CV =
CK − CK′

2
. (18)

We now discuss the phase diagrams obtained in this manner in Figs. 4a-c. At charge neu-

trality (Fig. 4a) we find that for small V there is a gapped region where the system is a trivial

insulator with CV = 0. While the experimental results do not show a gap at E = 0, its theoreti-

cal value is below the resolution limit of our thermodynamic chemical potential measurements.

A line of gap closings (dashed in blue in Fig. 4a) separates this region from the nontrivial

phase of interest in this work where CV = 2. We note that the bands which carry the nontrivial

Chern numbers change within this region, which we show with green dashed lines in Figs. 4b-c.

For larger angles, the highest valence band (−1) carries C(−1) = 2, whereas for smaller angles,

a band-touching transition within the occupied manifold separates a region where C(−1) = 1

and C(−2,−3) = 1, so the Chern number is split over the highest three valence bands. At charge

neutrality, there is no difference between these phases, but when both (n/ns = +1) or neither

(n/ns = −1) of the flat bands are filled, this transition changes the observable valley Chern

number. Let us first discuss Fig. 4b where the upper flat band is occupied (n/ns = +1). The
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shaded region in this plot highlights a gapped phase where the valley Chern number CV = 2

of the bands below charge neutrality is partially canceled by the Chern number C(1)
K = −1 of

the upper flat band, leading to CV = 2 − 1 = 1. At larger angles where C(1)
K = −2, there is

a complete cancellation and CV = 0. The analogous situation appears for filling n/ns = −1

shown in Fig. 4c where for small angles C(−2,−3)
K = 1 and hence CV = 1. For larger angles,

C
(−2,−3)
K = 0 and the occupied band is trivial. However, the shaded region in this case is

interrupted by a gap closing due to the small particle-hole symmetry breaking.
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Figure S5: a, Band structure of TDBG at 181.10◦.We highlight the pair of flat bands near the
Fermi level and the pair of passive bands with large dispersion, as is also seen in TDBG near
1◦. The bands are numbered as in Fig. 1f. b, The valley Chern number CV and indirect gap ∆0

as a function of twist angle θ and layer potential difference V . ∆0 is the gap between the lowest
conduction band and highest valence band, the blue dashed line marks where the direct gap at
charge neutrality closes.

We now discuss the band structure and topology of the 181.10◦ TDBG device, which is

AB-BA stacked due to the additional 180◦ rotation. The details of the system can be found

in Ref.8 and Ref.9, as well as a discussion of the topology. The salient features for this work
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are (1) the moiré band structure is very similar to small-angle TDBG, featuring two nearly flat

bands at charge neutrality and a pair of energetically connected passive bands below and above

shown in Fig. S5a, and (2) the topology of the 180◦ system is very different, providing a strong

point of comparison. We show the full phase diagram in Fig. S5b calculated using Eq. 16.

The most important property of the system is its behavior in large applied E-field at charge

neutrality where the system is a trivial insulator with CV = 0. This is in stark contrast to

the phase diagram of 1.60◦ TDBG, shown in Fig. 4a, where the system is a nontrivial valley

Chern insulator in large E field. An experimental comparison of these systems shows different

transport behavior, which we associate with the differences in band topology.

E Landauer-Büttiker Formalism

In this Appendix, we review the Landauer-Büttiker formalism and highlight how the charge

conservation and gauge invariance are taken into account. We then present our exact inverse

which relates measured resistances to the transmission matrix that quantitatively describes the

edge states for an arbitrary number of terminals. We also define the conductance order parame-

ter σ and discuss its properties. This analysis is general and can be directly applied to nonlocal

transport measurements in any system. Finally, we describe the analysis of the nonlocal mea-

surements in our TDBG samples and give quantitative evidence for topologically protected edge

states.

E.1 Introduction

We consider a system of N electrodes which may be connected to conventional electronic

voltage Vi or current Ii leads, as depicted in Fig. S6. In the Landauer-Büttiker (LB) formal-

ism25,26,28, the measured current and voltage are related by the transmission probabilities Tij ,
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Figure S6: An example of a device with N = 6. We show the current in red with I1 = −I4

and all other components of Ii = 0. We depict two voltage measurements V35 = V5 − V3 and
V23 = V3 − V2.

where Tij is the probability of transport from i← j, in the form

Ii =
N e2

h

N∑
j=1

(TjiVi − TijVj) (19)

where N is the number of edge states of a given chirality. For the case of a valley Chern

insulator with spin degeneracy, we have N = 2CV . In experiments, the current is injected

into one terminal and exits through another, so the vector Ii is nonzero and opposite for two

entries. Using a voltimeter, differences in the entries of Vi can be measured between any pair of

terminals.

The LB equation Eq. 19 is essentially Ohm’s law on the edge, saying that the current is

proportional to the voltage drops weighted by the transmission probabilities. As an example,

consider a perfectly clean quantum hall system with C = 1, yielding a single chiral edge state.

Because the state is chiral, electrons are only transported in one direction around the sample,

and they are dissipationless. Hence Tij = δi,j+1 where i, j are taken mod n to be periodic

around the sample. In this case, Eq. 19 gives

Ii =
e2

h

N∑
j=1

(δj+1,iVi − δi,j+1Vj) =
e2

h
(Vi − Vi−1) (20)

28



From Ohm’s law, ∆V = IR, we find a resistance of R = h/e2 = 25.81 kΩ.

E.2 Gauge Invariance and Current Conservation

The LB equation is subject to current conservation and gauge invariance. Current conservation

means that the physical currents I must satisfy
∑N

j=1 Ij = 0, and gauge invariance means that

the LB equation must be invariant under Vj → Vj + const. Current conservation means that

physical currents I occupy an n − 1 dimensional subspace of Rn subject to
∑N

j=1 Ij = 0,

and gauge invariance gives an equivalence relation Vi → Vi + const. that reduces physically

distinct voltage configurations to an n − 1 dimensional subspace of RN . Consider Eq. 19 for

Vi = v = const. which corresponds to every terminal being at the same voltage, so no current

flows and Ii = 0. Eq. 19 then reads

0 =
N∑
j=1

(Tji − Tij)v (21)

so the ith row sum is equal to the ith column sum. Eq. 21 ensures that Vi and Vi + v are

physically indistinguishable, which is a requirement of gauge invariance. We now show that for

the LB equation to be consistent, there is gauge invariance if there is current conservation. We

can rewrite the LB equation in matrix notation as

I =
2CV e

2

h
SV (22)

where Sij = δij
∑N

k=1 Tik − Tij . Note that the sum of the elements of each row of S is equal

to zero. Hence, S has a nontrivial nullspace which is one-dimensional and is spanned by the

vector µT = (1, 1, . . . , 1). This is due to gauge invariance SV = S(V + µ), which reads

Sµ = 0 . (23)

Note that current conservation may be written as µT I = 0, which is consistent with the LB

equation because

µT I ∝ µTSV = 0 . (24)
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Here we have used that

µTS =
N∑
i=1

µiSij =
N∑
i=1

(Tji − Tij) = 0 (25)

so µ is in the left and right nullspaces. Note that time reversal symmetry (TRS) is sufficient

to show that the left and right nullspaces are equal because TRS implies Tij = Tji, and hence

S = ST . We will assume TRS holds in our application to TDBG at charge neutrality.

Finally, we discuss the diagonal entries of Tij , which correspond to on-site transmissions.

We will show that these are not physically meaningful quantities, as is perhaps intuitive. To do

so, we study the LB equation under the transformation Tij → Tij + tiδij

Ii =
2CV e

2

h

N∑
j=1

(TjiVi − TijVj)→
2CV e

2

h

N∑
j=1

(TjiVi − TijVj) +
2CV e

2

h

N∑
j=1

(tjδjiVi − δijtiVj)

=
2CV e

2

h

N∑
j=1

(TjiVi − TijVj) +
2CV e

2

h
(tiVi − tiVi)

= Ii
(26)

finding that the physical object – the current – is invariant. Hence the diagonal terms of Tij are

also unobservable.

To summarize, we have found imposing the physical constraints of gauge invariance and

current conservation are equivalent to linear algebraic conditions on the S matrix nullspace

which will be crucial to performing the inverse, as we now discuss.

E.3 Four Terminal Resistances

In experiments, a current flows between two terminals, corresponding to Ii being nonzero and

opposite in two of its entries and zero otherwise. By placing voltage probes on other pairs

of terminals, we can measure four-terminal resistances. It is possible to use the T matrix to

calculate voltages in other current configurations as well. Let us describe these measurements
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in terms of our formalism, assuming T is known. In the next section, we will solve the inverse

problem: how one determines T through resistance measurements.

If T and I are known, we simply need to compute V to determine the resistances. However,

because Sµ = 0, S−1 does not exist. Instead, we can use the pseudo-inverse, or Moore-Penrose

inverse33, S+ to get solutions for V up to a gauge choice. As a brief reminder, S+ can be

straightforwardly computed from the singular value decomposition S = UDV where U, V are

N ×N orthogonal matrices and D is a diagonal matrix with rank(S) = N − 1 nonzero positive

entries known as the singular values. Define the diagonal matrix D+ by D+
ii = 1/Dii if Dii 6= 0

and D+
ii = 0 otherwise. Then S+ = V TD+UT .

Recall that S+S is a projector onto the orthogonal complement of the nullspace of S, i.e. it

projects out µ. Hence, if we choose a gauge where µTV = 0, i.e. V is not in the nullspace, then

S+I =
2CV e

2

h
S+SV =

2CV e
2

h
V . (27)

Note that this gauge choice is always possible. For generic V we can make the gauge transfor-

mation V → V − µTV
N
µ which satisfies µTV = 0 by construction.

The four terminal measurement Rij,kl corresponds to driving a current I into terminal i and

out of terminal j, and measuring the voltage Vk − Vl. We write this as Im = Ieijm where eij is a

vector whose mth component is eijm = (δim − δjm) and I is the magnitude of the current. (Note

that raised and lowered indices are equivalent here.) As an example in the six terminal system

of Fig. S6, e14 = (1, 0, 0,−1, 0, 0).

Using the pseudo-inverse, we find

2CV e
2

h
(Vk − Vl) = I(S+eij)k − I(S+eij)l

Rij,kl =
(

(S+eij)k − (S+eij)l

) h

2CV e2
.

(28)

We remark that T and S are unitless, and Rij,kl as written is proportional to the von Klitzing
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constant h/e2.

Note that Rij,kl is gauge-invariant under Vi → Vi + const, as it must be because it is an

observable. From this equation, the anti-symmetries implyRij,kl = −Rji,kl = −Rij,lk. Because

Rij,kl is linear, it has simple composition properties:

Rij′,kl +Rj′j,kl = Rij,kl

Rij,kl′ +Rij,l′l = Rij,kl .
(29)

These correspond to Kirchoff’s rules. This means there are only (n− 1)2 independent compo-

nents of Rij,kl. This is because the gauge invariant part of S is an (N − 1) × (N − 1) matrix

corresponding to the column and row space, e.g. neglecting the one-dimensional nullspace. We

can also do this counting for Tij . There areN2 components, but theN diagonal components are

unobservable, and there are N − 1 row/column sum constraints. Indeed, N2 −N − (N − 1) =

(N − 1)2.

We return to the six terminal quantum Hall example briefly to illustrate this formalism. The

conductance matrix is given by

S =


1 0 0 0 0 −1
−1 1 0 0 0 0
0 −1 1 0 0 0
0 0 −1 1 0 0
0 0 0 −1 1 0
0 0 0 0 −1 1

 . (30)

S+ can be computed with a standard software package such as MATLAB or Mathematica. In

fact, S is diagonalizable, so the singular value decomposition is merely an eigenvalue decom-

position and can be computed analytically. We obtain

S+ =
1

12


5 −5 −3 −1 1 3
3 5 −5 −3 −1 1
1 3 5 −5 −3 −1
−1 1 3 5 −5 −3
−3 −1 1 3 5 −5
−5 −3 −1 1 3 5

 (31)
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so recalling that S+I = e2/hV , we can compute the voltages. For concreteness, consider the

case in Fig. S6 where current is injected across the sample, i.e. I = (1, 0, 0,−1, 0, 0) = e14.

Then V = h
e2

(1, 1, 1,−1,−1,−1)/2, and the 4 terminal resistance R14,kl is nonzero, taking

value h/e2 only if k ∈ {1, 2, 3} and l ∈ {4, 5, 6} which corresponds to taking measurements

between the current leads. Any measurement between the current leads will yield the same

quantized value h/e2.

More generally, it is trivial for a computer to calculate Rij,kl for any given Tij using Eq.

28. However, in experiments we are faced with the opposite problem. We need to determine

an unknown T from a number of Rij,kl measurements. Büttiker solved this problem in the case

of four terminals, and we will generalize his result to a device of any number of terminals.

Notably, this allows us to place very stringent constraints on the edge physics without making

any assumptions on the form of Tij , as is often done.

E.4 Algorithm for the Determination of Tij

We now want to design an efficient and exact inverse algorithm that returns the T matrix from

the measured four-terminal resistances. To start, we observe that in terms of the four-terminal

resistance, Eq. 28 may be written as

Rij,kl = eTklS
+eij ×

2CV e
2

h
. (32)

Physically, S+ is an undetermined matrix corresponding to the inverse conductance, and our

measurements Rij,kl correspond to certain overlaps of this matrix given by vectors eij and ekl.

We now describe a procedure of choosing these vectors that allows us to determine S+. In prac-

tice, we absorb the coefficient 2CV into the T matrix so that it may be determined empirically

from the column sums. Hence our method makes no assumptions on the form of the T matrix

and is entirely empirical so no optimization or regression is required.
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We now choose a basis of RN for the currents and voltages. A simple basis is, for instance,

{e12, e23, . . . , eN−1,N , µ} where the first N − 1 vectors correspond to physical measurements,

and the last vector µ spans the nullspace and by definition S+µ = 0. In experiments, it is helpful

to choose a different basis with a minimal number of three terminal measurements, i.e. where

the current probes and voltage probes touch the same terminal. This is because three terminal

measurements also pick up contact resistance, which can be estimated but does introduce some

error. In practice, we find that the contact resistances can be estimated to acceptable tolerances.

In our nine-terminal device at θ = 1.60◦, we choose a current basis that corresponds to in-

jecting current across the sample (in a bulk conductor, this would lead to the deepest penetration

of current into the material) and a voltage basis consisting of neighboring voltage drops. These

choices are arbitrary, but are physically motivated and convenient. Explicitly, the current basis

BI and voltage basis BV read

BI =



1 0 0 0 0 −1 0 0 1
0 1 0 0 0 0 −1 0 1
0 0 1 0 0 0 0 −1 1
0 0 0 1 0 0 0 0 1
−1 0 0 0 1 0 0 0 1
0 −1 0 0 0 1 0 0 1
0 0 −1 0 0 0 1 0 1
0 0 0 −1 0 0 0 1 1
0 0 0 0 −1 0 0 0 1


,

BV =



1 0 0 0 0 0 0 0 1
−1 1 0 0 0 0 0 0 1
0 −1 1 0 0 0 0 0 1
0 0 −1 1 0 0 0 0 1
0 0 0 −1 1 0 0 0 1
0 0 0 0 −1 1 0 0 1
0 0 0 0 0 −1 1 0 1
0 0 0 0 0 0 −1 1 1
0 0 0 0 0 0 0 −1 1


.

(33)

Note that both bases include µ as their last vector. The first n − 1 column vectors in each

basis matrix correspond to four (or three) terminal measurements of the resistance, and the last
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column is µ, the vector spanning the nullspace. Let us define an n× n matrixR corresponding

to the measured resistances where

Rij =

{
R[BI ]j ,[BV ]i

h
2CV e2

, i, j ∈ {1, . . . , N − 1}
0, i or j = N

, (34)

in other words,Rij is the non-dimensionalized measured resistance corresponding to the current

configuration in the jth column of BI and the voltage configuration of the ith column of BV for

i, j = 1, . . . N − 1, and Rij is equal to zero in the last column and last row. In terms of the

unknown conductance matrix S, this yields

BTV S+BI = R (35)

and thus we can determine S+ from the known resistances via

S+ = B−1
V

TRB−1
I . (36)

Recalling that S++
= S, we find that the conductance matrix S is fully determined by the

experimental measurements by applying the pseduo-inverse

S =
(
B−1
V

TRB−1
I

)+

. (37)

Recalling from Eq. 22 that Sij = δij
∑

k Tik−Tij , we see that once S is known, the off-diagonal

elements of T are known:

Tij = −Sij, for i 6= j . (38)

The off-diagonals of T are sufficient because we showed in Supplementary Information section

E.2 that the diagonal elements are not physically meaningful. For ease, we simply set the full

diagonal equal to zero. It is convenient at this stage to impose TRS by symmetrizing the T

matrix. We expect TRS to be preserved in our TDBG system, but due to noise in the data, the

T matrix inverted from the measurements is not guaranteed to be symmetric. This is remedied
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by defining T (TRS)
ij = 1/2Tij + 1/2Tji. We compare the TRS-breaking T matrix with T TRS in

Fig. S7 and find that there is little difference in the gapped regions. Henceforth, we will drop

the TRS label and simply refer to the symmetrized matrix as T .

E.5 Consistency Checks

We have shown that (n − 1)2 resistance measurements are sufficient to exactly determine the

observable (off-diagonal) entries of Tij via the formula in Eq. 36. This formula makes no

assumptions on the form of T so it is an exact description of the data, e.g. it is not a best-fit

model. In our nine-terminal sample, we performed the 64 resistance measurements at each E

to determine Tij(E). Then, to check the consistency of the LB equation, we took 43 subsequent

measurements (abbreviated Rexp) with different current/voltage configurations and compared

the resistances to those predicted from T (abbreviated Rpredicted). We compute the error

∆R =

√√√√ 1

43

43∑
m=1

(Rexp
m −Rpredicted

m )2 (39)

at each E and plot the results in Fig. S7a. We find that, almost everywhere, the TRS and no

TRS T matrices perform similarly, achieving an error of ∆R ≈ 3 kΩ. The spikes in the TRS

error occur exactly at the bulk gap closings where the bulk conductivity becomes nonzero. Note

that ∆R takes into account all measured resistances, which range between 0 and 30 kΩ, at a

given E. We define the percent error at a given E as ∆R/Rmax. This translates to an error of

between 5% and 10% (see Fig. S7b). This fairly high accuracy confirms the validity of the LB

equation and is an important consistency check on our formalism.

E.6 Topological Edge States

One advantage of our exact solution of the LB equation is that it makes no assumptions on the

form of the T matrix, and hence our experimentally determined T matrix is an exact repre-

sentation of the data. Furthermore, T performs very well when predicting the values of other
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a b

Figure S7: a, We compare the resistance errors between the predicted R values from the T
matrix and their measured counterparts. Away from the gap closing transition which divides the
shaded and unshaded regions, T and T (TRS) perform similarly well. b, We plot the resistance
errors normalized by the largest measured resistance among the 43 data points at each E, and
report the ratio as a percent error. The red dashed line highlights 5% error.

resistances. For these reasons, the full T matrix serves as an accurate and complete description

of the edge physics of the TDBG sample.

We would now like to use our T matrix to show that the edge states of gapped TDBG at

large enough E have the properties we associate with topological phases. Firstly, we expect an

insensitivity to impurities, defects of the edge, or more generally any change of parameter that

does not change the bulk mirror Chern number. In our experiment, the transverse electric field

E is an excellent candidate. Once the gap is opened at E = 0.33 V/nm, increasing the field

further does not change the Chern number although it does have a strong effect on the band

structure. A signature of the topological origin of the edge states is their insensitivity to E in

the gapped regime. A simple but powerful way to show this is to study how the whole matrix

T (E) changes with E. We consider the following quantity

||∆T (E)|| ≡ 4e2

h
× 1

N(N − 1)

√√√√ N∑
i,j=1

(Tij(E)− Tij(0.7 V/nm))2, (40)

which compares T (E) to T (0.7 V/nm) by averaging the squared difference of every entry of

the two matrices. This is related to the Frobenius norm, but divided by the number of off-
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diagonal entries N(N − 1) so ||∆T (E)|| does not scale with the number of terminals. We

chose 0.7 V/nm as the E field for comparison because it is the furthest into the gapped phase.

We plot ||∆T || as a function of E in Fig. 4f of the Main Text. We find that once the gap is

open (> 0.33 V/nm), ∆T decays quickly and remains close to zero. This shows that the entire

matrix, which fully characterizes the edge states, is essentially constant in the gapped phase

and is thus insensitive to the transverse E field. We contrast this case with non-topological

edge states, like those on the zigzag edge of Bernal bilayer graphene which are gapped out

by edge disorder or very large E fields. We find the opposite behavior in our samples, which

suggests nontrivial topology. Another strong comparison is to TDBG at E < 0.33V/nm where

the system is a bulk conductor. We see strong variation in ||∆T ||, signaling high sensitivity to

E. This contrasts the topological insulator phase.

We now discuss another measure of the edge states to assess the topology which generalizes

the total conduction (σ) discussed by Büttiker25,26. We define this order parameter (as in Eq. 3)

by

σ(E) =
2Cve

2

h
× 1

2N

N∑
i 6=j

Tij(E) (41)

which is a sum over all the off-diagonal elements of T . Intuitively, this corresponds to the total

edge-to-edge transmission. In a topologically trivial insulator, edge states — if they exist —

are not protected, and σ will be a small, non-quantized number which is sensitive to disorder,

applied fields, and edge perturbations. In Fig. 4, we see that σ ≈ e2/h in the topological phase.

This robust, nonzero value provides plausiblility of the survival of topological edge states, but

fewer than would be expected from the bulk valley Chern number CV = 4 (including spin).

Hence, σ quantitatively diagnoses the topology of the edge and shows that the bulk-boundary

correspondence remains partially intact despite the edge symmetry-breaking. Another striking

feature of Fig. 4f is the divergence in σ(E) as E → 0.33V/nm where the gap closes. Because σ

is a 1D (edge) conductivity, the closing of the gap creates a finite 2D (bulk) conductivity which
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sends σ → ∞. Mathematically, this arises in our formalism due to the pseudo-inverse of the

resistance matrix. A bulk conductor reduces the resistance, leading to some singular values of

R approaching zero. This creates a divergence in the pseudo-inverse.

In topological insulators, we expect σ to have a robust, nonzero value. To illustrate this,

let us consider the case of a perfectly clean QSH insulator with mirror Chern number CM =

(C↑ − C↓)/2 = 1, meaning that there is one chiral edge state for each spin, and they propagate

with opposite chiralities. These states are topologically protected from scattering, so weak

disorder will not affect them. This system is described by

TQSHij = δi,j+1 + δi+1,j (42)

which describes perfect transmission between neighboring terminals in both directions. Note

that i, j should be understood mod N . Concretely, for N = 5, T takes the form

TQSH =


0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0

 . (43)

We emphasize that because there are two edge states (CM = 1 corresponds to a pair of counter-

propagating edge states, e.g. one chiral state and one anti-chiral state), the columns of TQSH

sum to 2. Hence for a probabilistic interpretation of T as a scattering matrix, we must divide it

by 2CM . To compute σ, we use the fact that all column sums are equal to 2, so

σ(QSH) =
CMe

2

h
× 1

2N

N∑
i 6=j

T
(QSH)
ij = CM

e2

h
(44)

which explains the 1/(2N) normalization we have chosen in Eq. 3. Note that in this case, σ is

quantized in multiples of the conductance quantum. In a more realistic sample, there may be

weak transmission across more distant terminals, but the columns sums of T will still be equal

to the number of edge states, up to uncertainties in measurements. (Column sums of less than
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the number of edge states implies scattering.) Similarly, topological edge states are protected

from weak disorder and back-scattering. Thus, although T is generically less structured than

Eq. 42, σ is still expected to be fairly well quantized.

However, in TDBG, the situation is more complicated because the valley symmetry pro-

tecting the topological index is expected to be broken on the edge because it arises from the

geometric moiré pattern. This differs from the QSH model where spin conservation protects the

mirror Chern number and is not broken on the edge. As such, some back-scattering is expected,

and indeed it is a priori not at all clear that any edge states would survive. However, we find in

our experiments that σ(E) reaches a finite, nonzero value in the gapped phase of approximately

one quarter of the 4e2/h conductance we would expect from a CV = 2 with a spin degeneracy,

as shown in Fig. 4f of the Main Text.

Lastly, we will show that σ is a natural observable in the LB formalism because it is an

invariant under a discrete gauge symmetry corresponding to the arbitrary labeling of terminals

i = 1, . . . , N which amounts to a permutation symmetry of the LB equation. Under a rela-

beling of the terminals i → πi where π is a permutation of the numbers 1, . . . , N , there is a

corresponding transformation of the conductance matrix: S → PSP T where Pij = δi,πj , and

similarly T → PTP T . We remark that permutation transforms of this type simply permute

the diagonal elements of T among themselves. This is consistent with all diagonal elements

being unobservable. Because the physics of the edge is invariant under this relabeling, any

well-defined order parameter of T must be invariant under T → PTP T . We now show that

σ satisfies this requirement. One simple way is to rewrite σ using the vector µ with all entries

equal to 1. We find

σ =
2Cve

2

h
× 1

2N

(
µTTµ− Tr T

)
. (45)

The trace term is invariant under T → PTP T using the cyclicity property, and the fact that P

is orthogonal. The first term µTTµ is invariant because Pµ = µ, i.e. µ is an eigenvector of all
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permutations matrices because all its entries are the same. Note that the diagonal entries of T

cancel from Eq. 45.

F A Comparative Analysis of Bernal Bilayer Graphene

In this Appendix, we briefly introduce Bernal bilayer graphene29,30,34 from the perspective of

valleytronics35. We emphasize that there is no bulk valley symmetry in Bernal graphene, and

hence there is not a bulk valley Chern number to protect edge states. Hence it is important to

distinguish TDBG as a topologically protected state, whereas Bernal graphene is not. Indeed,

Fig. 3b of the Main Text shows a monotonic increase in the longitudinal resistance as a function

of E, indicating a trivial insulator.

However, Bernal graphene does have strongly peaked Berry curvature with opposite sign

in the K and K ′ valleys. The cancellation of the Berry curvature causes the global Chern

number to vanish, but there are still non-topological edge states that appear because the Berry

curvature in each valley is large. For an armchair termination on cylinder boundary conditions,

no edge states appear because the valleys are projected onto each other and cancel, but on

zigzag terminations which do not project the valleys onto each other, edge states do appear in

the spectrum34. However, these edge states are not topological and can be removed by edge

perturbations.

We can also understand the local lack of stability of the Bernal edge states by calculating

their characteristic localization length ξ. Recall that the low energy behavior of Bernal graphene

is a quadratic band touching29 with a Berry phase of 2π. When applied electric fields open a gap

of V ∼ 0.1 eV, as is reachable by experiment, we can estimate the spread of the Berry curvature

from the quadratic band touching using ~2v2
Fk

2/t = V where vF = (610 meV · nm)/~ is the

Fermi velocity of graphene and t = 3.1 eV is the hopping parameter. This gives an estimate of

the characteristic momentum scale k ≈ 0.9 nm−1, or a real space length of ξ ≈ 1 nm. Edge
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Figure S8: We show the Berry curvature F (k) normalized such that
∑

k F (k) = 2, the Chern
number of the TDBG Hamiltonian in the K valley. We see strong peaks in F (k) at the ΓM
and KM points which are of the same sign. The area of these peaks (defined by F (k) > 10) is
approximately 1.4% of the moiré Brillouin zone, leading to a characteristic momentum scale of
0.1kM .

roughness on this order will gap the non-topological edge states.

In comparison, we now calculate the Berry curvature F (k) of TDBG in the topological

phase at θ = 1.60◦ using Eq. 16 (see Fig. S8). We find that the characteristic momentum

scale of the Berry curvature is k ∼ 0.1kM , giving a real space length scale of approximately 10

moiré periods. At θ = 1.60◦, this is approximately 100 nm. The increased delocalization of the

edge states in TDBG explains their survival in our samples, despite the breakdown of the valley

symmetry on the edge. Because the edge states are extended over many moiré periods, they

are less sensitive to the edge termination, and retain the global symmetry-enforced topological

protection of the bulk valley Chern number. Our calculations of ξ agree at orders of magnitude

with other heuristics of edge states localization, such as band flatness: ξ/a =
√

W
∆

where W is

the bandwidth, ∆ is the band gap, and a is the characteristic length scale. For Bernal stacked

graphene, a = 2.46 Å, W ∼ 1 eV, and ∆ ∼ 10− 100 meV lead to ξ ∼ 1 nm.
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