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A Comparison of Methods for Centering Covariates in

Cross-Classified Random Effects Models

Young Ri Lee

The University of Texas at Austin

Supervisors: S. Natasha Beretvas and James E. Pustejovsky

The cross-classified random-effects model (CCREM) is used to handle cross-
classified data in which units are nested within multiple higher-level dimensions that
are not clustered within each other. The focus of interest in this study is the exo-
geneity assumption in CCREM, which refers to the assumed independence between
covariates and random effects at level-2. If the exogeneity assumption is violated, it
affects the robustness of the statistical inferences made when estimating the CCREM.
Certain methods for centering a covariate can reduce the impact of violating exogene-
ity. For unbalanced cross-classified data, Raudenbush (2009) proposed the general
model of the adaptive centering approach using cluster-mean centering. However,
there are several alternatives in addition to this model, including the correlated ran-
dom effects (RE) model, cell-mean centering, fixed effects (FE) using cluster robust
variance estimation (CRVE), and the FE-RE hybrid model. The correlated RE model
explicitly models between-cluster variability of the level-1 covariate as level-2 predic-
tors, simultaneously estimating both within- and between-cluster effects. Another
approach called cell-mean centering centers covariates around the cell mean instead
of the cluster mean and considers the interaction between the two dimensions of the
data. If a researcher is interested primarily in level-1 covariates, the FE approach
has often been used for handling violations of exogeneity (Wooldridge, 2010). The
FE model can be used along with two-way CRVE, an extension of one-way CRVE



that accounts for the dependence of errors within clusters (Cameron et al., 2011).
The final alternative is an FE-RE hybrid model, which incorporates the FE and RE
approaches by modeling one dimension as fixed effects and the other dimension as
random effects. This approach requires fewer assumptions while benefiting from the
use of the RE model for the selected dimension. However, covariate-centering strate-
gies have only been examined for the hierarchical linear model, not for the CCREM.
Thus, extended research on CCREM is needed to demonstrate and evaluate the im-
pact of centering options on the model’s performance and statistical inferences. In
this dissertation, I first reviewed the current practice of centering with the CCREM
and described the benefits and limitations of covariate centering methods with the
CCREM. Next, I presented the results of two empirical applications comparing the
use of different centering alternatives. Then, I conducted a systematic review ex-
amining how assumptions were tested and how centering was used when estimating
the CCREM in applied education and social science research. Finally, I performed a
simulation study to compare the performance of alternative centering approaches in

scenarios in which the exogeneity assumption is violated.
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Chapter 1

Introduction

In the fields of educational and behavioral science, hierarchical data are a
frequently encountered data structure in which lower-level units belong to higher-
level clusters. In cross-sectional data, for example, students nested in schools create
two-level hierarchical data. Longitudinal data through repeatedly measured scores
nested within participants offer another example of hierarchical data. In hierarchi-
cal data, the level-1 observations within the same cluster correlate with each other.
Educational researchers typically use a hierarchical linear model (HLM) to analyze
hierarchical data to account for these dependencies between observations within a
cluster (Raudenbush & Bryk, 2002).

As a generalization of hierarchical data, cross-classified data entail data in
which the lower-level units are simultaneously nested within two or more clusters
although the higher level clustering units are not nested within each other. For
example, students are often nested within schools and neighborhoods simultaneously
(e.g., Abdel Magid et al., 2021; Nufio and Katz, 2019; Pedersen et al., 2018). In this
case, students who live in the same neighborhoods go to different schools although
it is not the case that a unique set of neighborhoods feed into each school nor that
a unique set of schools draw students from a single neighborhood. Instead, students
are clustered within schools and within neighborhoods but schools are not clustered
within neighborhoods nor vice-versa. Students can then be considered cross-classified
by school and neighborhood. Other examples include cross-classified data structures
for psychological response process data, where response times can be nested within
both respondents and items simultaneously (Pae et al., 2020; Rios & Soland, 2022).
In social psychology data, such as the social relations model, interpersonal perception
is nested within two individuals called the target and perceiver (Schmidt et al., 2021).

If the HLM is used to analyze cross-classified data, one of the cluster dimen-
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sions of the cross-classified data is inevitably ignored because the HLM considers only
one clustering dimension. As a result, use of the HLM with cross-classified data can
yield underestimated standard error (SE) estimates for level-2 predictors and overesti-
mated random effects variance components when ignoring the cross-classified nature
of the data (Fielding & Goldstein, 2006; Gilbert et al., 2016; Luo & Kwok, 20009,
2012; Meyers & Beretvas, 2006; Park et al., 2017; Raudenbush & Bryk, 2002). Thus,
cross-classified data can be analyzed using cross-classified random effects modeling
(CCREM), an extension of the HLM (Goldstein & Sammons, 1997; Raudenbush,
1993; Van den Noortgate et al., 2003). The CCREM is designed to recognize the
multiple cross-classified factor dimensions by modeling the associated random effects
and can be used to include the cross-classified cluster-level covariates in the model
(Raudenbush & Bryk, 2002).

The HLM and CCREM are both considered random effects (RE) models,
which are premised on several strong assumptions. One of the assumptions in the RE
model is that all covariates in the model are independent of the random effects, called
the exogeneity assumption. If the covariates are correlated with any of the random
effects, the RE models may provide inconsistent estimates (Greene, 2018).

In the HLM, cluster-mean centering has been developed to reduce the influence
of violations of the exogeneity assumption. Under cluster-mean centering, the cluster-
mean-centered covariate is included in the model instead of the uncentered covariate.
The centered covariate no longer correlates with level-2 random effects in this case.
Thus, cluster-mean centering handles violation of the exogeneity assumption (Enders
& Tofighi, 2007; Kreft et al., 1995). The coefficient estimate of the cluster-mean-
centered covariate represents the within-cluster effect of the covariate, which is the
association between the covariate and the outcome at level-1 (Bell & Jones, 2015).
In this sense, cluster-mean centering is also referred to as the within-RE model (Bell
& Jones, 2015).

Another alternative is a hybrid model illustrated in Allison (2009) and Hamaker

15



and Muthén (2020). Similar to the within-RE model, the hybrid model includes the
cluster-mean-centered covariate but also includes the cluster mean as a level-2 predic-
tor in the model. In the hybrid model, the coefficient estimate for the cluster-mean-
centered covariate offers the within-cluster effect, whereas the coefficient estimate of
the cluster mean predictor provides the between-cluster effect of the covariate. Also,
the hybrid model captures the potential correlation between the random effects and
the covariate by including the cluster mean predictor, thereby handling the violation
of the exogeneity assumption. Thus, econometricians refer to the hybrid model as
the correlated RE (CRE) model (Wooldridge, 2013, Chapter 14.3).

Using the reparameterization, the CRE model performs the same with the
uncentered covariate and cluster-mean (Mundlak, 1978). Despite the lack of cluster-
mean centering, the coefficient of the uncentered covariate still corresponds to the
within-cluster effect of the covariate. The coefficient of the cluster mean predic-
tor corresponds to the contextual effect, which indicates the difference between the
within- and between-cluster effects (Bell & Jones, 2015; Kreft et al., 1995).

The centering alternatives described above are described in many textbooks on
multilevel modeling (Hox and Roberts, 2011, Chapter 15; Hox et al., 2017, Chapter 4;
Raudenbush and Bryk, 2002, Chapter 5; Snijders and Bosker, 2012, Chapter 4) and
have been discussed extensively in the literature (Bell & Jones, 2015; Feaster et al.,
2011; Hamaker & Muthén, 2020; Hoffman, 2019; Paccagnella, 2006; Raudenbush,
1989). However, these works almost exclusively deal with hierarchical data. Very few
studies have proposed methods for handling potential endogeneity in cross-classified
data. One exception is Raudenbush (2009), who proposed a general adaptive cen-
tering estimator for analyzing unbalanced cross-classified data. Like cluster-mean
centering in HLM, the adaptive centering approach estimates within-cluster effects of
the covariate. However, centering alternatives for cross-classified data warrant further
investigation in the following two respects.

First, compared to the numerous centering alternatives for HLM (i.e., the

16



within-RE and CRE models), the current alternatives for the CCREM only include
cluster-mean centering through the general adaptive centering model (i.e., within-RE
model). In other words, the researcher can only obtain the within-cluster effects of the
covariates in CCREM. However, depending on the topic of the study, the between-
cluster or contextual effects of the covariates in CCREM might offer researchers richer
information about the association between the covariates and the outcome. A cross-
classified version of the CRE model would enable in-depth exploration of covariates’
between-cluster or contextual effects, but has not yet been demonstrated or evaluated.

Second, the cell interaction between clustering dimensions has not been fully
considered in the context of cross-classified data. With cross-classified data, the cell
refers to the combination of values for both clustering dimensions, such as the set of
students who live in the same neighborhood and attend the same school. Shi et al.
(2010) recommended including the random interaction effect between cross-classified
factors when modeling random effects in the CCREM. In this vein, it might be rea-
sonable to assume that covariates in cross-classified data also have a cell interaction
effect between clustering dimensions in addition to the main clustering dimension ef-
fects. Therefore, I introduce the idea of cell-mean centering, which uses the cell mean
rather than the cluster mean as the reference value for the centering and considers the
interaction effects between clustering dimensions of the covariate. To our knowledge,
no previous study has evaluated the benefits and limitations that cell-mean centering
entails.

Other fields, such as econometrics and politics, have widely used the fixed
effects (FE) model over the RE model (McNeish & Kelley, 2019; McNeish & Sta-
pleton, 2016). When Petersen (2009) surveyed more than 200 economic studies, the
studies were found to use the FE model (29%) more frequently than the RE model
(less than 3%). The FE model controls the unobserved effects of clusters by including
dummy coded fixed effect indicators for each cluster in the model and does not require

the exogeneity assumption (Wooldridge, 2013). In balanced data and even in unbal-

17



anced data, inferences about a level-1 covariate under the FE model are equivalent to
those made based on the within-RE model and the CRE model (Raudenbush, 2009;
Wooldridge, 2013, Chapter 14.3). Even with cross-classified data, the FE model can
account for the clusters’ multiple dimensions by including cluster indicators for each
cross-classified dimension, as well as interaction indicators between dimensions.

The cluster indicators in the FE model might not capture all the dependencies
within clusters. In that case, cluster-robust variance estimation (CRVE) can be used
to estimate the FE model, which statistically corrects the SEs of the coefficient for the
covariate based on the residuals in the working model. Assuming a large number of
clusters, CRVE produces asymptotically consistent SEs for the coefficients (McNeish
et al., 2017; White, 1984). As a generalization of the one-way CRVE, Cameron et al.
(2011) and Thompson (2011) proposed the two-way CRVE for cross-classified data.
The two-way FE-CRVE eliminates the correlation between the covariates and the
level-2 random effects and reduces the negative impact of endogeneity while providing
consistent covariate coefficient SEs. However, the FE model does not provide random
effects variance component estimates nor appropriately estimate the level-2 covariate
coefficient provided in RE models.

Further, it is possible to utilize a hybrid or intermediate model, which combines
both FE and RE, to analyze data with two cross-classified dimensions. This FE-RE
hybrid model models clusters as FEs for one dimension of the cross-classified data and
uses the RE model for the other dimension’s clusters. This allows the estimation of
the cluster-level covariate’s coefficient or random effects for the RE-treated dimension
while maintaining control over both dimensions. The FE-RE hybrid model requires
fewer assumptions than the CCREM with an uncentered or grand-mean-centered
covariate, because the hybrid model uses the RE model for only one of the two
dimensions.

In this study, I explored the performance of several strategies for centering

individual-level (i.e., level-1) covariates, including not centering the covariate, grand-
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mean centering, cluster-mean centering, cell-mean centering, use of FE-CRVE, and
the FE-RE hybrid model on reducing the impact of violating the exogeneity assump-
tion when estimating the within- and between-cluster effect of a level-1 covariate in
two-level cross-classified data. I focused on unbalanced cross-sectional data widely
seen in educational and behavioral science research. The study did not consider lon-
gitudinal data because longitudinal data typically offer close to balanced data, and
the level-1 (e.g., time-level) covariate in longitudinal data is often centered around
a certain fixed time point (c.f. Biesanz et al., 2004; Singer & Willett, 2003). Future
research might consider how best to center covariates in cross-classified longitudinal
data.

In the following sections, I first review and discuss alternatives for handling en-
dogeneity in cross-classified data. Here I propose methods that extend the previously
suggested centering choices for cross-classified data. These methods offer between-
cluster or contextual effects of covariates and take into account the cluster-interaction
effects of the covariates using cell-mean centering. I use empirical data to illustrate
the types of information each approach provides and the different coefficients and
SEs that they can yield. Next, I conduct a systematic review to demonstrate how
the violation of the endogeneity assumption has been addressed and how centering
has been used in applied CCREM analyses. Finally, I conduct a Monte Carlo simula-
tion study to compare the performance of each method under various conditions for
cross-classified data. Through this research, I intend to help applied researchers work-
ing with cross-classified data by describing and assessing a broad range of possible

covariate-centering approaches for handling endogeneity:.
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Chapter 2

Literature Review

This section describes approaches to controlling potential endogeneity prob-
lems when analyzing cross-classified data. First, I review the CCREM and explain the
endogeneity problem that can be encountered. I then describe alternative approaches
for handling endogeneity, including the centering approaches in CCREM, the use of
the FE model paired with CRVE, and the hybrid approach to use both FE and RE.
For ease of explanation, I first explain the methods for hierarchical data and extend

them to methods using cross-classified data.

2.1 Random Effects Models

2.1.1 Hierarchical Linear Model
Unconditional HLM

I begin by describing a two-level unconditional random intercept HLM that
models the intercept as varying across clusters. For an illustration of a hierarchical
data structure, I use an example of students clustered within schools. Suppose a
hierarchical data structure where students ¢ € 1,2,...,n; are nested within schools
7 €1,2,...,J. The total number of students is N = Z}]=1 n;. Following the notation
in Raudenbush and Bryk (2002), the level-1 equation for HLM is

Yi; = Bo; + eij, (2.1)

where Y;; is the outcome for student ¢ in school j, fy; is the average student outcome
for the school j, and the error term e;; is the level-1 error of student 7 in school j.
The error terms are assumed to be independent of each other and to follow a normal

distribution with a mean of zero and a constant variance of 2.
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At level-2, the random intercept HLM models the average outcome [y; to vary

across schools using random effects:

Boj = Yoo + oy, (2.2)

where 7y is the overall average of the student outcome across schools and uy; is the
level-2 random effect independent of each other and independent from level-1 error,
eij- The level-2 random effect is normally distributed with a mean of zero and a

variance of 799. The combined models 2.1 and 2.2 provide the full model:
Yij = Yoo + wo; + €45 (2.3)

Using the variance components of level-1 and level-2 errors, the proportion of the
total variance in the outcome that is accounted for by variability between clusters

can be calculated using the intra-class correlation coefficient (ICC):

T00
= —7. 2.4
Picc 0 + 02 (2.4)

The value of the ICC captures the correlation between two randomly selected indi-
viduals from a single cluster.

HLMs are typically estimated using maximum likelihood (ML) or restricted
maximum likelihood (REML) estimators. The ML estimator is a unique, minimum-
variance, and unbiased estimator for fixed effects (Raudenbush & Bryk, 2002, Chap-
ter 3). Given a large number of clusters, the ML estimator yields consistent and
asymptotically efficient variance component estimates (Goldstein, 1986; Longford,
1987; Raudenbush & Bryk, 2002). However, with a small number of clusters, REML
produces more accurate random effects variance component estimates by considering
the sampling variation of the fixed effects estimator (Goldstein, 2011; Mason et al.,

1983; Raudenbush & Bryk, 1986; Snijders & Bosker, 2012, Chapter 4.7). Specifically,
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REML incorporates the loss in the degree of freedom due to estimating fixed effects
estimates for the covariates and provides an adjusted variance component estimate.
Thus, when the number of covariates is small, the difference between ML and REML
is small, but the difference between ML and REML increases as the number of co-
variates increases (Snijders and Bosker, 2012, Chapter 4.7; Raudenbush and Bryk,
2002, Chapter 3).

Conditional HLM

Based on the research questions, the conditional HLM includes covariates at
the corresponding level of the model. For example, in the previous hierarchical data
structure where students are nested within schools, the level-1 covariates can be
student characteristics, such as gender or age. The level-2 covariates might be cluster
characteristics, such as school resources or school type. Considering the random
intercept model of HLM with a level-1 covariate X;;, the level-1 equation of the
conditional model is

Yij = Boj + B Xij + eij, (2.5)

where [y; is the conditional intercept for school j, 1; is the slope coefficient for the
covariate Xj;;, and e;; is a level-1 error. The level-1 errors are also assumed mutu-
ally independent and normally distributed with a mean of zero and a homogeneous
conditional variance of o2.

In a conditional HLM, both the conditional intercept 3y; and slope f3;; for the
covariate can be modeled as varying across level-2 clusters. As the simplest form,
however, I assume only the intercept fy; to be varying across schools. The remaining
slope (31; is assumed to be fixed across schools. When the level-2 covariate W is

modeled as a predictor of the schools’ intercept, the level-2 model is

Boj = Yoo + o1 W + oy,
j j j (2.6)

ﬁlj = 710,
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where 7 is the overall mean of the outcomes across the clusters, ~y; is the regression
coefficient for the level-2 covariate W;, and ug; indicates the level-2 random effect,
assumed to follow a normal distribution with a mean of zero and a conditional homo-
geneous variance of 7py. The level-2 random effects are also assumed to be mutually
independent and independent of the level-1 errors. Further, the level-2 random effects
and the level-1 error are not correlated with any of the newly included covariates, X;;
or W; (i.e., the exogeneity assumption). In this model, the slope coefficient 7 for
the covariate X;; is held constant across schools. The combined equation for the

conditional model becomes

Yi; = Y00 + 710X45 + v01 W + ug; + €5 (2.7)

For the conditional model, the conditional ICC is calculated using Equation 2.4 where
0% and 799 now provide the respective variances of conditional level-1 errors and
conditional level-2 random effects.

In educational research, the presence of clustered data, which includes schools,
teachers, and districts, is quite common. Consequently, it becomes crucial to address
the inherent dependencies within such data. HLM offers one approach to handle these
dependencies. Additionally, HLM allows researchers to estimate the impact of level-2

covariates on the outcome variable and explore random effects at the cluster level,

representing unexplained variance between clusters.

2.1.2 Cross-Classified Random Effects Model
Unconditional CCREM

CCREM extends HLM to model randomly varying intercepts for each of two
or more cross-classified clustering factors. I use two clustering dimensions in the
illustrations (e.g., schools and neighborhoods) and review the two-level unconditional

random intercept CCREM before including any covariates in the model. Given a
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cross-classified data structure where individuals ¢ € 1,2,...,n; within cell j& are
cross-classified by schools 7 € 1,2, ...,.J and neighborhood k£ € 1,2, ..., K, the level-1
equation of the CCREM is

Yigiky = Bogr) + €iginy (2.8)

where Yj(;x) indicates the outcome variable for student ¢ within school j and neigh-
borhood k, By;r) indicates the average outcome for those who attending school j and
living in neighborhood k. The last term e;(;;) denotes the level-1 errors, which are
assumed to be normally distributed with a mean of zero and constant variance of
o?. The indices for two cross-classified clustering dimensions (e.g., jk) are shown as
subscripts in parentheses. The shared parentheses are used to symbolically represent
that neither cluster is nested within the other.

The CCREM allows the intercept [(y(;x) to vary across the two cross-classified

clustering dimensions. The level-2 equation of the unconditional CCREM is

Bogik) = Yooo + bojo + coor + doji, (2.9)

where vpoo is the overall average of the outcome variable across all schools and neigh-
borhoods. The terms byjo and cgor indicate the random effects for each clustering
dimension (e.g., schools and neighborhoods). These random effects are assumed to
be normally distributed with a mean of zeros and variances of 7jp0 and 7400. The
last random effect dyjr ~ N (0, 7(jk)0) is the random interaction effect between the
two cross-classified clustering dimensions, indicating the deviation from the cell mean
calculated by the two cluster means from each dimension and the grand mean (Rau-
denbush & Bryk, 2002). If this random interaction effect is omitted, the level-2
variance components of the random effects can be inflated, whereas the coefficient
estimators for the predictors remain unbiased (Shi et al., 2010).

Combining the level-1 and level-2 equations, the full unconditional CCREM
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is
Yi(ixy = Yooo + bojo + coor + doji + €ijk)- (2.10)

As in HLM, the level-2 errors bgjo, coox, and doj, and the level-1 error e are
assumed to be mutually independent. Instead of the HLM’s ICC, there is an intra-
unit correlation coefficient (IUCC) for CCREM that captures the degree of clustering.

For example, the intra-school correlation coefficient is estimated using:

T500
)
Tj00 + Troo + T(jkyoo + 02

prucc; = (2.11)

indicating the correlation between outcome variables from two students within the
same school but who live in different neighborhoods. In the case of calculating an
intra-neighborhood or intra-interaction correlation coefficient, the numerator in Equa-

tion 2.11 is Troo OF T(jx)00 instead of 7jo.

Conditional CCREM

In the conditional CCREM, level-1 and level-2 covariates are included. Using
the same notation from the unconditional CCREM, the level-1 CCREM, including

the level-1 covariate Xj(;r), is:

Yigiry = Bogik) + Briw Xik) + €igr), (2.12)

where fy(jx) is the conditional average of the outcome for students in school j and
neighborhood k, and (311 is the slope for Xj(;x, the covariate values for a student i
nested within school j and neighborhood k. The level-1 errors e; ;1) are assumed to
follow a normal distribution, with a mean of zero and constant variance of o2, and
are mutually independent.

The level-2 CCREM allows modeling of school and neighborhood covariates
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(W; and Zj, respectively) as explaining variability in the intercept and the slopes:

Bogiry = Yooo + Yo10Wj + Vo022 + bojo + coor + doji, (2.13)

Bl(jk) = 7100,

where g0 is the conditional intercept across all schools and neighborhoods controlling
for the covariates included, 7919 is the coefficient for the school covariate W;, and ~ygo2
is the coefficient for the neighborhood covariate Z;. The level-2 random effects, byjo
for schools, cyor for neighborhoods, and dy;, for the interaction between schools and
neighborhoods, are mutually independent and assumed to be normally distributed
with a mean of zeros and conditional variance Tjo9, koo, and 7(jr)o0, respectively. I
modeled the slope ;i) to be constant across the level-2 units for simplicity. In other
words, the 709 represents the fixed slope for the level-1 covariate Xj(;).

Combining level-1 and level-2, the full conditional CCREM is

Yigiry = Y000 + 7100 Xi(ik) + Yo10Wj + Y0022k + bojo + Coor + dojk + €igjk)- (2.14)

The level-1 errors and the level-2 random effects are uncorrelated with any of the
included covariates (i.e., the exogeneity assumption). The IUCC is calculated by
the level-1 and level-2 random effects using Equation 2.11, indicating the conditional
IUCC.

The CCREM provides valuable insight into each clustering dimension that
researchers might need to recognize in their data. Cluster-level covariates describ-
ing any clustering dimension can be included in the model. Covariates pertaining
to school characteristics or neighborhood characteristics can be included in a single
model, even though the covariates describe different clustering dimensions. More-
over, CCREM is beneficial in estimating the distribution of random effects for each
clustering dimension. The variance of these random effects represents the variability

between each clustering dimension (Raudenbush & Bryk, 2002, Chapter 12). In other
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words, the variance of these random effects describes the variation of the true clus-
tering means for each clustering dimension around the grand mean. Finally, CCREM
enables flexible modeling and provides more efficient estimates when all assumptions
are met compared to the other methods, such as the FE model (Wooldridge, 2003,
Chapter 14.3).

2.2 Endogeneity Problem

Despite their potential for providing rich descriptions of data, these RE models
require more strict assumptions than the FE model. In particular, for the two-level
HLM, the exogeneity assumption requires that the level-1 error and level-2 random
effects are uncorrelated with any of the covariates. In this work, I focus only on
endogeneity bias caused by the correlation between the level-1 covariate and the
level-2 random effects because the independence of the level-1 covariates and error is
also required with the FE model. The level-1 error endogeneity is beyond the scope
of this study.

The exogeneity assumption can be violated primarily when the covariate is
correlated with the level-2 random effects due to omitted variables or unobserved
heterogeneity (Antonakis et al., 2021; Bell & Jones, 2015; Raudenbush & Bryk, 2002).
Consider an example involving a hierarchical data structure, where students are nested
within schools. When the outcome variable is student achievement, and the predictors
are the quality of tutoring students receive (level-1) and school resources (level-2),

the HLM equation is:

Achievement;; = oo + 10l utoring;; + o1 School Resource; + ug; + €5,  (2.15)

where Achievement,; is the outcome score of student 7 in school j, Tutoring;; is the
tutoring quality that student ¢ at school j receives, and School Resource; indicates

the resource in school j. When schools with higher resources may encourage students
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to receive better tutoring by connecting them with higher-quality teachers, the school
resources can correlate with tutoring quality. In other words, school resources influ-
ence students’ achievement and tutoring quality simultaneously. In this instance, if
researchers fail to measure school resources and do not include them in HLM as a
level-2 predictor, the unexplained school variance due to the school resources would

be absorbed into the level-2 random effects:

Achievement;; = oo + 0T utoring;; + vo; + €55, (2.16)

where vp; is a new random effect at level-2 that absorbs the effect of the school
resource variable. Thus, the exogeneity assumption is violated because the level-2
random effect vy; is correlated with the level-1 covariate, the tutoring quality.

The exogeneity assumption in HLM has often been tested through the Haus-
man test, which was widely used in other fields, such as econometrics (Hausman,
1978). The Hausman test examines whether the efficient estimator from RE and
consistent estimator from FE are estimating the same parameter value. If the null
hypothesis is rejected, the RE and FE estimators have different biases (i.e., they are
not estimating the same quantity), and the consistent FE estimator is recommended.
On the other hand, when the null hypothesis is failed to reject, it suggests that the
efficient RE estimator is very close to the consistent FE estimator.

However, the Hausman test has limitations when applied to test the exogeneity
assumption of the RE model because comparing the RE and FE estimators does
not directly evaluate the exogeneity assumption. It only tests the null hypothesis
that RE and FE estimators are sufficiently close (Wooldridge, 2013, Chapter 14.2).
The Hausman test also strictly assumes normality and homoscedasticity of errors in
the two compared models, but these assumptions can be addressed using a robust
Hausman test (Hausman, 1978; Wooldridge, 2010, Chapter 10.7.3).

If the exogeneity assumption is not met, the accuracy of estimates in the

HLM is expected to be reduced (McNeish & Kelley, 2019; Petersen, 2009). Param-
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eter estimates of the predictor’s coefficients (fixed effects) are no longer statistically
consistent and will be biased (Antonakis et al., 2021; Greene, 2018, Chapter 11.8;
Kennedy, 2008, Chapter 18.3; Wooldridge, 2010, Chapter 9.4, 10.2). The SE of the
coefficients also can be biased (LeBeau, 2013; McNeish et al., 2017; Schielzeth et al.,
2020). Darandari (2004) and Maeda (2007) have demonstrated that mis-specification
of an HLM due to omitted covariates yields biased parameter and random effects
variance component estimates.

Compared to a two-level HLM, a two-level CCREM includes more clustering
dimensions, requiring exogeneity assumptions on the random effects for both cross-
classified clustering dimensions and their interaction (byjo, coor and dy;x), respectively.
Consider a cross-classified data example where students are nested within schools and
neighborhoods simultaneously. Suppose the quality of tutoring students receive (level-
1) is a function of school resources and neighborhood-level educational climate in this

cross-classified data (both at level-2), CCREM equation is:

Achievement;jry = “ooo + Yi00Tutoring iy + yoroResource; + v Climatey,

+ bojo + coor + dojr + €y,
(2.17)

where Achievement;;i is the outcome score of student 4 in school j and neighborhood
k, Tutoring, ;i) is tutoring quality that student i receives in school j and neighborhood
k, Resource; is the school resource in school j, and Climatey, is the education climate
in neighborhood k.

If the school resource or neighborhood educational climate variable is omitted
from the CCREM, the variability of the corresponding cluster-level variable explain-
ing the tutoring quality is absorbed into the random effects. For example, if the
neighborhood educational climate is omitted, the variability of the neighborhood’s

educational climate explaining the tutoring quality could partly be absorbed in the
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neighborhood random effects:

Achievement;jry = ~ooo + YiooTutoring(r) + YoroRlesource; ( )
2.18

+ bojo + Yook + dojk + €igjk),

where vgor is a new level-2 random effect that absorbs the effect of the neighbor-
hood education climate variable. Thus, the related random effects become correlated
with the level-1 covariate, violating the exogeneity assumption. However, given that
CCREM has multiple dimensions, there is no guarantee that the variability in the
omitted neighborhood-level covariates is incorporated into the neighborhood random
effects alone. In the previous example, I intended to demonstrate conceptually how
the exogeneity assumption can be violated.

Considering violations of the exogeneity assumption in HLM affect the statisti-
cal inference of the results, it is plausible that violations of the exogeneity assumption
in CCREM could have a comparable effect on the estimation results. For example,
parameter estimates of the covariates’ coefficients are no longer consistent and may
be biased. The standard error of the parameter estimate may also be biased (LeBeau,
2013; McNeish et al., 2017; Schielzeth et al., 2020).

Several alternatives have been proposed for handling the risk of endogeneity
in the RE model. A primary alternative discussed for the HLM involves centering
covariates. For the HLM, centering is classified into grand-mean centering and cluster-
mean centering, but only cluster-mean centering reduces the impact of endogeneity.

Another alternative for handling endogeneity in the hierarchical data involves
use of the FE model, which does not require the exogeneity assumption for the re-
lationship between random effects and covariates. The FE model is commonly used
in economics and political science research, where the estimation of level-1 covariate
effects is of primary focus over the effects of cluster-level covariates or of random
effects. In addition, CRVE can be used to estimate the FE model to control for

within-cluster dependencies that have not been handled.
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The following sections describe alternatives that can reduce endogeneity is-
sues in hierarchical data, including several types of centering methods in HLM that
offer different decomposition of covariate effects and one-way FE CRVE with CRVE.
Then, I discuss results from previous systematic reviews examining how endogeneity

problems were handled in previous applied HLM research.

2.3 Alternatives in Hierarchical Data

This section reviews and compares a two-level HLM with uncentered covari-
ates, a model with grand-mean centering, and cluster-mean centering. In particular, I
describe the within-RE model and CRE model that uses cluster-mean centering as al-
ternatives for handling endogeneity. Note that throughout, I am focused on two-level
models.

Use of uncentered covariates means that the original values for the continuous
or categorical covariates are included in the model. For example, in a two-level
conditional HLM,

Yij = Y00 + 710Xij + 101 W + uo; + €45, (2.19)

the level-1 covariate X;; and level-2 covariate I¥/; are uncentered covariates that were
not transformed before being included as covariates in the model. In a model with
uncentered covariates, the intercept is interpreted as the predicted value for a case
with truly zero values on the covariates. In other words, the intercept vy in which
achievement is the outcome variable would be the grand-mean achievement score for
all students across schools with zeroes on both X;; and W;.

Suppose Xj;; is the student’s age and is the only covariate in the model. The
intercept vyo then represents the expected student achievement score for a student at
zero years old, which is clearly not a meaningful parameter. In such a case, the uncen-
tered level-1 covariate is not appropriate, and centering methods are recommended

to provide a meaningful intercept.

31



The uncentered level-1 covariate is also problematic in that it can cause a
violation of the exogeneity assumption. In hierarchical data structures, the slope
estimate indicates the pooled effects of within-cluster effect 4,, and between-cluster
effect 43, of X;; on the outcome. Here, the within-cluster effect refers to how one-unit
differences in the level-1 (here, student) covariate are associated with a predicted
difference in the outcome within that cluster and between-cluster effect refers to how
one-unit differences in the mean predictor between the clusters are associated with the
difference in mean outcome at the cluster level (Raudenbush & Bryk, 2002, Chapter
6).

In a typical HLM with uncentered covariates, vy estimators are generalized least
squares estimators (Raudenbush & Bryk, 2002, Chapter 9), and the slope parameter
assumes equal within- and between-cluster effects (Bartels, 2008; Snijders & Bosker,
2012). If the within- and between-cluster effects are truly equal, the slope estimate
becomes the most efficient and unbiased estimate (Raudenbush & Bryk, 2002, Chapter

5). The slope estimate is calculated using
'3/10 = /?pooled = (1 - 7’]2)/3/10 + 772’3/11’ (220)

where n? is the proportion of variance in X;; explained by the difference between
clusters (Kreft et al., 1995). Consequently, the slope estimate will be the same as
within- or between-cluster effects (910 = 4. = ), given that the within- and between-
cluster effects are equal.

However, previous research has indicated that there may be differences be-
tween the within- and between-cluster effect. For example, Palta and Seplaki (2002)
used hierarchical data from the health panel survey to show that the within- and
between-cluster effects were different for the effects of age and self-reported health
on hospitalization. If the within- and between-cluster effects of the covariate are not
equal, the slope estimates for the corresponding covariate will not fully account for

either of them. The remaining variance is absorbed into the error terms, which be-
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comes correlated with the covariate and violates the exogeneity assumption (Bell &
Jones, 2015; Palta & Seplaki, 2002). In that case, the slope parameter estimates are
no longer efficient and become an uninterpretable weighted average of within- and
between-cluster effects (Bell & Jones, 2015; Raudenbush & Bryk, 2002).

The variance not accounted for in estimating the coefficient uniquely for the
covariate at two levels produces a bias in the variance of level-2 random effects and
level-1 errors (Grilli & Rampichini, 2011). Therefore, using appropriate centering in
HLM is essential for reducing the influence of endogeneity and for obtaining consistent
parameter estimates, including both fixed effects and the variance of the random

effects (Enders & Tofighi, 2007).

2.3.1 Grand-Mean Centering

Grand-mean centering refers to including a covariate in a model after trans-
forming its values to entail the deviation from the individual’s raw score from the
mean on the covariate. The covariate value’s transformation can vary depending on
the research questions. Researchers may use a median or other specific value as the
centering constant instead of the grand mean (Hoffman, 2019; Lin et al., 2016). If the
covariates are dummy variables such as gender, the total proportion of women can
be the centering constant (Raudenbush & Bryk, 2002). And for longitudinal models,
researchers commonly center a time variable around a certain point in time. However,
in this study, I focus only on the general case where the continuous covariates are
centered around the sample’s grand mean.

If the level-1 covariate X;; and level-2 covariate W; are both grand-mean-

centered, it can be represented as

Yii =70 + m0(Xij — X) + 01 (W; — W) + wg; + €35, (2.21)

where X indicates the overall means of the level-1 covariate X;; and W is the overall
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mean of the cluster-level covariate W; across the clusters. The intercept g is then the
expected outcome for those who have X;; equal to the grand mean X and W; equal
to the grand mean W (Raudenbush & Bryk, 2002, Chapter 2). As such, grand-mean
centering can offer a more meaningful interpretation of the model’s intercept than
the model with an uncentered covariate (Hox et al., 2017, Chapter 4). For example,
if X;; is the student’s age and W; is a measure of school resources, the intercept oo
indicates the expected achievement scores for a student in the average age within a
school with average school resources.

Grand-mean centering offers a reparameterization of the corresponding model
with an uncentered covariate (Kreft et al., 1995; Raudenbush & Bryk, 2002, Chapter
2). Comparing a model with uncentered covariates and grand-mean centering reveals
that the new intercept calculated under grand-mean centering (e.g., Yoo grand) is the

intercept of the uncentered model (e.g., Yoo,uncentered) adjusted by X and W:

700,grand = 7Y00,uncentered + ’YIOX + o1 W (222>

On the other hand, the slope coefficients ;9 and 7y, are equivalent to the
slopes in the uncentered model, and the within- and between-cluster effects of the
covariates remain confounded. The variance of the random effects u;, 70, remains
unchanged when the grand-mean centering is used in the model with a fixed slope.
However, if the random slope is employed, the variance of the random effects may be
different (Enders & Tofighi, 2007).

In short, grand-mean centering helps the interpretation of the intercept co-
efficient to be meaningful. However, grand-mean centering does not solve the en-
dogeneity problem. Similar to the uncentered model, the coefficient estimates in
grand-mean-centered models may be biased if covariates and cluster-level random

effects are correlated.
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2.3.2 Cluster-Mean Centering

Cluster-mean centering (i.e., adaptive centering) is an alternative that over-
comes the endogeneity problem for the HLM. Cluster-mean centering involves the use
of covariates that are centered around the cluster mean X ; to which each individual
belongs. I describe two cluster-mean centering approaches for estimating different
covariate effects: namely, the within-RE and CRE models.

In illustrating these models, I focus on the level-1 covariate and omit an addi-
tional level-2 covariate W,. The covariates at the highest level (e.g., level-2) can only
be treated as uncentered or grand-mean-centered and provide the same coefficient
estimates regardless of the centering type, as long as cluster-mean centering is used

for level-1 covariates.

Within-Random Effects Model

The within-RE model estimates the within-cluster effects of the covariate using
the cluster-mean-centered covariate. For an HLM with a level-1 covariate, the within-

RE model is

Yij = Y00 + 710(Xij — Xj) + uoj + ey, (2.23)

where (X;; — X;) indicates the cluster-mean-centered covariate that subtracts the rel-
evant cluster mean X; from the individual’s value on the covariate X;;. By centering
around the cluster mean, the within-RE model eliminates between-cluster variation
from the total variation in the covariate. The within-cluster variation remains in the
covariate, and the slope estimate, 419, becomes the within-cluster effect. Suppose
the level-1 covariate is the student’s reading ability, and the outcome variable is the
student’s academic achievement. Then, the within-cluster effect of the student’s read-
ing ability is interpreted as the predicted difference in academic achievement for two
students in the same school whose reading ability differs by one.

Because cluster-mean centering modifies the mean and correlation structure

of covariates, other parameter estimates differ from their estimates when using the
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corresponding uncentered or grand-mean-centered models (Enders & Tofighi, 2007).
The intercept 7o is the expected outcome Y;; while controlling for the cluster-mean-
centered level-1 covariate (X;; — X;). Because the covariate is scaled differently, the
intercept in the cluster-mean centering is not equivalent to those in the uncentered
model or grand-mean centering. Also, the intercept random effects’ variance compo-
nents under cluster-mean centering are different from the uncentered or grand-mean
centering model because the scale of the intercept becomes different (Kreft et al.,
1995).

The within-RE model has the benefit of estimating the within-cluster effect
while removing the correlation between the covariates and the random effects (Hof-
mann & Gavin, 1998). However, the drawback of this model is that it does not reveal
the impact of the between-cluster variability of the covariate. If the researchers are
interested in capturing the between-cluster or contextual effects of the covariate, the
within-RE model might not be appropriate. Considering that the covariate in hierar-
chical data can sometimes include both within- and between-cluster effects, a model

incorporating both effects would offer an attractive alternative.

Correlated Random Effects Model

The CRE model is another alternative that allows the covariates and random
effects to be correlated (Allison, 2009; Bell & Jones, 2015; Enders & Tofighi, 2007;
Hamaker & Muthén, 2020; Wooldridge, 2013, Chapter 14.3). The CRE model simul-
taneously provides the within- and between-cluster effects because it is derived by
combining the equations for the within- and the between-cluster relationship of the
covariate and the outcome variables in HLM (Raudenbush & Bryk, 2002, Chapter
5). In the two-level HLM, the within-cluster relationship of the covariate X;; and the

outcome Y;; for a student ¢ in school j is

Yij = Y; = yu(Xij — X;) + ey, (2.24)
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where 7, is the within-cluster effect of the covariate. Likewise, the between-cluster

relationship of the covariate X;; and the outcome Y;; is

Y; = 00 + ’Yb)_(j + uoj, (2.25)

where 7, indicates the between-cluster effect of the covariate. Combining Equations

2.24 and 2.25 then yields the CRE model,

Yij = (Yoo + 1X; + toz) + 10 (Xij — Xj) + ey, (2.26)

Yij = 700 + %(Xij — Xj) + wXj + uoj + €45,

which provides both the within-cluster effect, ~,,, and between-cluster effects, s,
of the covariate, X;;. Using the example as in the within-cluster effect above, the
between-cluster effect of the covariate (i.e., student’s reading ability) indicates the
predicted difference in a school’s average academic achievement associated with the
one-unit difference in the school’s average reading.

Another way of expressing the CRE model is called the Mundlak model:
}/ij = Yoo + /Vsz'j + 'Ych + uo; + €4, (227)

where X;; is the uncentered covariate and 7, is the contextual effect that captures
the difference between the within- and between-cluster effects (7. = v, — Yw; Bell
and Jones, 2015; Kreft et al., 1995; Mundlak, 1978). This contextual effect is also
referred to as the compositional effect (Raudenbush & Bryk, 2002) or the incre-
mental between-person effect (Hoffman, 2019). Considering the previous example,
the contextual effect represents the predicted difference in the academic achievement
outcome between two students who have the same reading ability score but are nested
within schools where their schools’ average reading ability score differs by one unit
(Raudenbush & Bryk, 2002, Chapter 5).

Rearranging Equation 2.27 proves that it is identical to Equation 2.26 when
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the slope parameter is modeled as fixed at cluster-level (Kreft et al., 1995):

Yii =700 + Y Xij + (0 X; — 7X;) + ug; + €45,
Yij = 700 + (Y Xij — % X;) + 1 X; + uo; + €55, (2.28)
Yij = 700 + 7(Xij — X;) + 1 X; + uoj + €.

However, when modeling a random slope for the level-1 covariate, the random slope
variance of the two models is different because the level-1 predictors to which the
random slope is applied are different (Hoffman, 2019; Kreft et al., 1995).

Compared to the within-RE model, the CRE model directly estimates the
between-cluster or contextual effects of a covariate on the outcome. If a researcher
wishes to examine how the effects of a covariate affect the outcome variable differs
at the individual and cluster levels, the ability to estimate the between-cluster or
contextual effect would be essential. Also, a test of statistical significance can be per-
formed for the between-cluster or contextual effects in the CRE model. Specifically,
the testing for the contextual effects functions exactly the same as the Hausman test
(Snijders & Bosker, 2012, Chapter 4.6). Moreover, the CRE model provides different
random effects variance components compared to the within-RE model, as the cluster
means serve as additional control variables (Kreft et al., 1995).

Overall, cluster-mean centering approaches, including the within-RE model
and CRE model, have several important benefits (Enders & Tofighi, 2007). First,
cluster-mean centering removes the dependence between cluster random effects and
the covariate. In other words, cluster-mean centering helps address endogeneity with
respect to the relevant covariate and offers the added benefit of estimating the coef-
ficients for level-2 covariates and the random effects variance component. However,
since the effect of centering is only for the centered variables, this advantage assumes
there is no endogeneity problem for the other variables.

Also, within- and between-cluster effects need not be assumed to be the same

when using cluster-mean centering because these effects are estimated separately. Not
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centering or grand-mean centering provides an efficient estimator when the two effects
are the same in actual data. However, when the two effects are different, cluster-mean
centering provides a less biased within-cluster effect than a model with an uncentered

or grand-mean-centered covariate (Raudenbush & Bryk, 2002, Chapter 5).

2.3.3 One-Way FE-CRVE

As an alternative approach to centering, the FE model offers another option for
analyzing hierarchical data (Allison, 2005, 2009). The FE model provides consistent
and unbiased parameter estimates for the within-cluster effect while avoiding the
exogeneity assumption. For example, in the hierarchical data where students ¢ €

1,2,...,n; are nested within schools j € 1,2, ..., J, the FE model with a covariate is

J
Yij = moXi; + Z YopDp + €ij, (2.29)
p=1
where 7o is the regression coefficient for the covariate X;;, and 7o, is a cluster-level
intercept for the dummy variable D, representing each cluster indicator. The term e;;
is a random error for an individual 7 in a cluster 7. The FE model can be estimated
using OLS estimation.

Note that vy, estimated in the FE model is fixed effects, not random effects,
as in HLM. In other words, the FE model assumes clusters are not randomly sampled
from the population and models cluster effects as fixed effects. In this vein, the FE
model has often been used by applied researchers who want to estimate the impact
of specific clusters, such as countries or companies.

However, if the number of clusters is large, it might be infeasible to estimate the
corresponding coefficients for all cluster-specific indicators. To avoid such unnecessary
calculations, the FE model uses fixed effects estimator or within estimator, which
is a pooled OLS that removes cluster-level variability and avoids the estimation of

all cluster indicators (Greene, 2018, Chapter 11.4; Wooldridge, 2013, Chapter 14.1).
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Using the FE estimator, all the cluster-level variability is removed from the FE model:

Yij = 70Xy + éij, (2.30)

where Y; = Y;;—Y;, X;; = X;;— X, and é;; = e;; —¢;. If Equation 2.30 is represented

in matrix form, it can be written as ¥ = X ~ + e. Then, the FE estimator for -y is

J -1 J
. co ) e o s/ es 1 oo | oo 1 ee | oo
j=1 j=1

where the term N represents the total number of students (or level-1 units). The
coeflicient estimate 4 for the covariate in the FE model is the within-cluster effect,
which is identical to that for the cluster-mean centering approaches (Wooldridge,

2013, Chapter 14.3):

Yre = Yo (2'32)
Further, the pooled OLS variance for the FE estimator is

1
Var(App) = WBMB, (2.33)

where B = (5 E‘;Zl X’/X)_l and the central matrix M is
1 I, .
j=1

where n = %Z}le n; is the average number of level-1 unit per cluster, and J is the
number of clusters. The term ; = E [eje;\X ;] is the n; X n; covariance matrix of
errors in cluster j.

In the FE model, CRVE can be used to obtain an asymptotically consistent
estimator of the variance. CRVE controls the dependency that might remain in the
hierarchical data even after taking account of cluster dependence by using the FE

estimator (Cameron et al., 2011; Cameron & Miller, 2015). For example, suppose
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hierarchical data where students are nested within classes, and the classes are again
nested within schools. When the FE model takes account of school clustering effects,
the CRVE can control the remaining dependency among classes (within schools). As
a result, CRVE corrects the underestimated SE in the FE model when a source of
potential clustering is ignored (McNeish et al., 2017).

When CRVE is implemented, €2; in the Equation 2.34 is estimated by using

éjé;, where €; = YJ — Xjﬁ/FE. Thus, the variance estimator with CRVE is

1 ~
Var®(§pg) = EBMCRBy (2.35)

where the estimated central matrix is
~ CR 1 . .
M= N XX, (2.36)

As the number of clusters, J, increases to infinity, the estimated central matrix of
CRVE, M CR, converges to the true M and provides a consistent estimate of the
covariance matrix for the OLS estimator (Cameron et al., 2011). Also, note that
CRVE does not affect the coefficient estimates of the covariates but only adjusts the
SE estimates of the coefficients.

The FE model using CRVE (FE-CRVE) provides researchers several benefits.
First, because between-cluster effects are eliminated by FE estimators, the FE model
removes the correlation between the covariates at any level and the random effects.
In other words, the FE model does not require the exogeneity assumption for wu;
and requires fewer assumptions than when estimating the HLM. If the covariate and
random effects are correlated in hierarchical data, the FE model offers a more effi-
cient estimator than HLM. Specifically, the FE estimator provides more unbiased and
consistent coefficient estimates for the level-1 covariate compared to HLM with un-
centered or grand-mean centered covariates (Wooldridge, 2002, Chapter 10.5; Greene,

2018, Chapter 11.4; Gardiner et al., 2009; Kennedy, 2008, Chapter 18.3).
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Next, similar to the cluster-mean centering, FE-CRVE provides the within-
cluster effect, 7, of the level-1 covariate X;; (Allison, 2009; Hamaker & Muthén, 2020;
Wooldridge, 2013, Chapter 14.3). In this case, the benefit to using the FE model is
that it estimates the same within-cluster effect of the covariates while offering a more
simple model that focuses only on level-1 covariates. Using the FE model, researchers
do not need to be concerned about the level-2 variance component and covariates.
Finally, the CRVE can be easily implemented within the FE model using R packages,
such as the lfe (Gaure, 2013a; Gaure, 2014) and the fixest packages (Bergé, 2018),
which provide researchers with feasible options for handling hierarchical data.

However, the FE model has a few drawbacks as compared to HLM. First,
the FE model does not allow the modeling of cluster-level covariates because the
FE estimator specifically removes cluster variability. Cluster-level covariates such as
W; (e.g., school resources) cannot be included in the FE model. Second, the level-2
variance component is not estimated in the FE model. Third, if there is no correlation
between covariates and random effects (i.e., when the exogeneity assumption is met),
the FE model provides a less efficient coefficient estimator than HLM (Antonakis et
al., 2021; Wooldridge, 2013, Chapter 14.3). Because the FE estimator is the same as
the within-cluster effect in the cluster-mean centering (i.e., ¥pp = 9,,), it indicates
the estimator from the FE model and cluster-mean centering is less efficient than
the estimator from the uncentered or grand-mean-centered HLM model when the
exogeneity assumption is met. For more information about the difference between
HLM and FE models, see Bell and Jones (2015), McNeish and Stapleton (2016), and
Wooldridge (2013, Chapter 14.2).

2.3.4 Previous Research

Several studies suggested alternatives for handling endogeneity in hierarchical
data. Allison (2009), McNeish and Kelley (2019), and Raudenbush and Bryk (2002)

discussed the cluster-mean centering approach, including the within-RE model and
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the CRE model, that provides the same within-cluster effects to the FE estimates.
They emphasized that the cluster-mean centering approach retains the benefits of
HLM, such as estimating the level-2 random effects variance component and incorpo-
rating the level-2 predictor in the model while obtaining the estimates from the FE
estimate.

Hamaker and Muthén (2020) examined different centering methods in HLM.
Based on the simulated data, they demonstrated that different slope estimates are
provided depending on whether the cluster-mean centering method is used. Hamaker
and Muthén (2020) also revealed that in longitudinal data, the coverage rate for
the within-cluster effect of the covariate was inflated when there were only a small
number of level-1 units per cluster (in this case, time points per sample), such as
4. In contrast, the coverage rate for the between-cluster effects of the covariate was
lower when the number of time points per sample was 40 compared to when it was
4, while keeping the total sample size fixed at 100 persons.

Antonakis et al. (2021) conducted a Monte Carlo simulation study and showed
the performance of several estimation methods, including the FE model using gener-
alized linear squares (GLS) estimation, RE models using grand-mean centering and
cluster-mean centering (within-RE model), and CRE models, which were estimated
with ML and GLS, respectively. Their study concluded that when the exogeneity
assumption does not hold, the RE model with grand-mean centering showed biased
and inconsistent coefficient estimates of level-1 covariates. They also examined the
performance of the level-2 covariates’ coefficient estimates in RE and CRE models
and recommended the CRE approaches to obtain a consistent estimate. However,
Antonakis et al. (2021) only focused on the models that handle purely hierarchical
data, not extended to complex nested data structures like cross-classified data.

Previous systematic reviews have examined how the endogeneity problem has
been implemented in applied educational research. Dedrick et al. (2009) and Luo

et al. (2021) summarised the practice of centering and testing assumptions in HLM
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across a twenty-year timeframe. Dedrick et al. (2009) provided a systematic review
of HLM applications in education and related fields between 1992 and 2002. In their
result, both grand-mean and cluster-mean centering were not commonly used in the
literature. Only 22 studies (22%) used grand-mean centering, and 11 studies (11%)
used cluster-mean centering for their level-1 covariates. Regarding testing assump-
tions, Dedrick et al. (2009) found that HLM assumptions were rarely mentioned, and
the tenability of assumptions was seldom evaluated. The exogeneity assumptions
were not examined.

Luo et al. (2021) reviewed HLM practices over the next decade, published
between 2009 and 2018, using the same research journals as Dedrick et al. (2009).
In the results of the comparison of trends over time, Luo et al. (2021) showed im-
provement in terms of the use of centering. The percentage of studies using centering
increased for both grand-mean centering (34%) and cluster-mean centering (28.4%)
for the level-1 covariates. However, although the overall trend improved, studies often
did not discuss how centering was handled. Further, the authors found that HLM
assumptions were still rarely discussed. They pointed out that testing assumptions
was often an omitted step in HLM applications.

Focusing on the trends of exogeneity assumption testing in HLM, Antonakis
et al. (2021) conducted a systematic review using research in the management and
applied psychology fields. The authors used seven journals published between 2016
and 2017 and selected a sample of 204 articles. They found that 8 articles (4%)
appropriately tested whether the exogeneity assumption held. In the rest of the
studies, 98 articles (48%) used the approach that did not require this assumption
(cluster-mean centering or FE estimator), and 96 articles (47%) made this assumption
but did not test it in the study. However, the authors did not explicitly specify
whether the selected studies used cluster-mean centering or the FE model estimator.
While these two estimators are theoretically equivalent, it remains uncertain which

approach the researchers preferred to use to address the endogeneity issue.
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According to the three systematic reviews examined, the exogeneity assump-
tion was not typically tested nor well handled in the applied HLM literature. Even
when the exogeneity assumption does not hold, researchers do not appear to have
applied centering effectively (Antonakis et al., 2021). Also, the proportion of applied
studies that reported using cluster-mean centering has increased in the last decade
although testing of exogeneity is insufficient. However, it is unclear why researchers
chose the relevant centering method. For example, even if the researchers properly
tested the exogeneity assumption, they may have used centering solely to make it
easier to interpret the coefficients. In other words, the model assumption and choice
of centering method as a solution seem at best to be weakly connected in applied

HLM studies.

2.4 Alternatives in Cross-Classified Data

Endogeneity problems are not limited to hierarchical data. In cross-classified
data, covariates can also be correlated with random effects, as in purely hierarchical
data. As alternatives to solving the endogeneity problem of cross-classified data, this
section describes centering methods in CCREM and two-way FE-CRVE.

I first review CCREM with not centering and grand-mean centering. Then, I
discuss cluster-mean centering, which is most closely related to exogeneity assump-
tions. In CCREM, only a within-RE model for estimating within-cluster effects has
been proposed in terms of centering options. Therefore, I propose the CRE model
that provides within- and between-cluster or contextual effects for the level-1 covari-
ate in a two-level CCREM. T also suggest cell-mean centering that takes account of
interaction effects between the dimension within a covariate. Further, the FE ap-
proach can be applied to cross-classified data. I outline two-way FE-CRVE and also
propose an FE-RE hybrid model, which uses fixed effects and random effects for each
of the clustering dimensions, respectively. Lastly, I describe previous research that

addressed potential violations of the exogeneity assumption through the use of level-1
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covariate centering approaches.
CCREM with an uncentered level-1 covariate uses the raw value of the co-
variates without any modification. According to Raudenbush (2009), the CCREM

equation can be represented in matrix form as follows:

Y =140+ Xv+ Rb+ Cc+e,
(2.37)

b~ N(0,7j00I), ¢~ N(0,7400I), e~ N(0,0°I),

where Y is a N x 1 vector of observed outcomes, 1 is a N x 1 column vector with
all elements equal to 1, and vggo is a fixed intercept. X is a N x ¢ known design
matrix where ¢ is the number of covariates, and = represents ¢ x 1 vector of unknown
regression coefficients. R is a N x J known design matrix that includes indicators
that assign b to the appropriate row, and C is a N x K known design matrix that
assigns ¢ to the appropriate columns, where b and ¢ are J x 1 and K x 1 vectors
of unknown random effects from each dimension, respectively. The random effects b
and c are assumed to follow normal distributions with means of 0 and variances of
Tjoo and Tyoo. Finally, the term e is a NV x 1 vector of unknown random effects, which
is assumed to follow a normal distribution with a mean of 0 and variance of o1I.

An interaction term, dy;;, (in matrix form, d), as depicted in Equation 2.13,
can be included in the model to capture the interaction effects between dimensions.
However, to maintain consistency with Raudenbush (2009)’s notation and highlight
the conceptual difference with the later introduced cell-mean centering approach, I
initially focus on equations where the interaction term is omitted and assumed to be
zero. In a subsequent section, the concept of cell-mean centering will be explored,
which takes into account the interaction effects between clustering dimensions as well
as the random interaction effect.

The intercept of CCREM with uncentered covariates is interpreted as the
expected outcome value in a case where the values of each covariate are zero. However,

when the zero values of the covariate are not reasonable, the interpretation of the
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intercept would not be meaningful. For example, if the covariate is a student’s age
and there are no other covariates, the intercept of the CCREM is interpreted as the
expected academic achievement of a zero-year-old student. This interpretation is
unrealistic and demonstrates the need for different types of centering.

The analysis of cross-classified data using CCREM involves considering mul-
tiple sources of effect for a covariate. Suppose a student is cross-classified by school
and neighborhood. When a researcher analyzes the impact of a student’s reading
ability (i.e., level-1 covariate) on academic achievement in cross-classified data using
CCREM, the resulting estimate of the covariate effect combines multiple main sources
of effect other than the within-cluster effect: the between-school effect, the between-
neighborhood effect, and the school by neighborhood (interaction) effect (Raudenbush
& Bryk, 2002, Chapter 12).

The between-school effect indicates the expected difference in average aca-
demic achievement between two schools that differ by one unit in average reading
ability. In other words, the effect is the difference in the predicted academic achieve-
ment of students from the same neighborhood but schools with different average read-
ing abilities. Similarly, the between-neighborhood effect indicates the extent of the
difference in the predicted average academic achievement between students attending
the same school but living in neighborhoods with different average reading ability.
For example, if this effect is positive, students living in a neighborhood with higher
average reading ability may have higher average achievement scores than students
at the same school but who come from a neighborhood with lower average reading
ability.

The last type of effect refers to a potential interaction effect between schools
and neighborhoods. When there is an interaction effect, the average effect of, say,
school average reading ability on student academic achievement depends on neighbor-
hood average reading ability. In this example then, the association between school

average reading ability and achievement for students from a neighborhood with a
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certain average reading ability would be predicted to be a different value (given an
interaction effect) should the students from that school be from a neighborhood with
a different average reading ability. However, this last source of variability in the
relationship between the level-1 covariate, here reading ability, and the outcome,
academic achievement has received little attention in previous literature (e.g., Rau-
denbush, 2009).

According to the HLM literature, the most efficient estimates of the slope
parameter for a covariate are obtained when the within- and between-cluster effects
are assumed equal (Raudenbush & Bryk, 2002, Chapter 5). However, in empirical
hierarchical data, previous literature reported that within- and between-cluster effects
might not be identical (Palta & Seplaki, 2002). As such, when the within- and
between-cluster effects are different in cross-classified data, it can be speculated that
any of the covariate effects that are not considered in the estimating model may be
captured in the relevant random effects. In that case, the corresponding covariate
effects are correlated to random effects, and the CCREM exogeneity assumption
would not be met, as in the case of hierarchical data (e.g., Bell & Jones, 2015; Palta
& Seplaki, 2002). Thus, considering the consequences of the uncentered covariates in
hierarchical data, the CCREM with uncentered covariates might also leave negative
consequences that can result from the violation of the exogeneity assumption and can

provide inefficient estimators.

2.4.1 Grand-Mean Centering

The use of grand-mean centering for covariates with cross-classified data con-

text has not been explicitly discussed in the literature. However, the logic of grand-

mean centering in CCREM should be similar to its use in HLM. As with the HLM,
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grand-mean centering in the CCREM is:

Y = 17000 + X granay + RO+ Cc + e,
(2.38)

b~ N(O,TjooI), C ~ N(O,TkooI), e ~ N(O,O'2I),

where X ;44 is calculated by subtracting the overall mean of the covariate across all
observations from each relevant covariate in X. As mentioned, the random interaction
effect dy;i, (or in matrix form, d) can be included in the grand-mean centering method
but omitted here to align with the uncentered CCREM.

Using grand-mean centering, only the intercept’s estimate (and its standard
error) will change because grand-mean centering is a simple linear transformation
of the uncentered level-1 covariate. The intercept 7999 now represents the expected
academic achievement score for those at the mean on each covariate in X ,4nq. For
example, if the covariate in X is the students’ age, v900 represents the overall average
academic achievement for students at the grand mean age. Thus, grand-mean cen-
tering provides a meaningful intercept to interpret, compared to the model with an
uncentered level-1 covariate.

However, with grand-mean centering, the slope parameter(s), the SE of the
intercept, and the SE of the slope parameter estimate(s) are the same as they would be
for the model with an uncentered covariate (Kreft et al., 1995). The slope coefficient
estimate of the grand-mean-centered covariate still represents the pooled effect of the
covariate and cannot be interpreted as within- and between-cluster effects separately.
It is important to note that grand-mean centering does not solve endogeneity problems
that result from a correlation between covariates and random effects. Therefore,

cluster-mean centering in CCREM could be used to solve endogeneity issues, as in

the HLM.
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2.4.2 Cluster-Mean Centering

The cluster-mean centering approaches used with the CCREM can be catego-
rized into the within-RE model and the CRE model, depending on the effect to be
estimated. I again omitted random interaction effects in these approaches to align
cluster-mean centering with Raudenbush (2009)’s notation and the uncentered and
grand-mean-centered CCREM. The random interaction effects will be discussed in

the cell-mean centering section.

Within-Random Effects Model

Raudenbush (2009) proposed a general model of adaptive centering that is

applicable to unbalanced, cross-classified designs. The within-RE model is

Y = 1’)/000 —+ Xcluster’y + Rb -+ Ce -+ e, (239)

b~ N(O,TjooI), C ~ N(O,TkooI), e ~ N(O,UzI), (240)

where the design matrix of cluster-mean-centered covariates is calculated as

X uster = X — A[A' (P 1) AT A (0*T) 1 X,

(2.41)
=X -AAA)TAX,
when A = (R C). Rearranging Equation 2.41 shows that it requires
X::lusterA = 07 (242)
(X/clusterR X/clusterc) = 07 (24?))

to implement cluster-mean-centered covariates. Specifically, by assuming a homoscedas-
tic variance, o?I, X can be regressed on C and R using OLS, and the resulting
residuals can then be used as the cluster-mean-centered covariate X .y ster-

This technique of adaptive centering is based on the Frisch-Waugh-Lovell
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(FWL) theorem, which allows for estimating the relevant regression coefficient in
a model with multiple covariates when the focus is only on ~ of the specific covariate
(Lovell, 2008; Davidson & MacKinnon, 2004, Chapter 4.2). Consider X, R, and C
are the independent variables in a multiple regression model with a dependent vari-
able, Y. When the focus is on the coefficient of X, the FWL theorem calculates the
regression coefficients using the following steps. First, regress Y on R and C, and
obtain the residuals from this regression. Then, regress X on R and C, and obtain
the residuals from this second regression. Finally, regress the residualized Y from the
first regression on the residualized X values from the second regression. The resulting
OLS estimator gives the coefficient estimate of X. Alternatively, when focusing on
estimating the regression coeflicient, one can first regress X on R and C and then
regress Y on the resulting residualized X without using the residualized Y. The
result is equivalent to estimating the entire model using ordinary least squares.
Similarly, the adaptive centering for the within-RE model involves taking the
residuals from a regression of the covariate on a set of indicators for the cluster. This
technique makes the covariate orthogonal and independent of the full set of cluster
indicators, ensuring no correlation can exist between the covariate and the random
effects (Raudenbush, 2009). Given inclusion of cluster-mean-centered covariates, the

ML estimator for ~ is

’AY = [ . (O-QI)_IXcluster]_l-Xl (021)_1Y

cluster cluster (244)
~1
= ( /clusterXClUSter) /clusterY7
and the corresponding variance estimator is
Var(”y) - [ /cluster(O-QI)_IXCZUStET]_I7 (245>

where the conditional expectation of the estimator is equal to the true value of the

population parameter of the coefficient, E(%|X quster) = 7y, €ven when the exogeneity
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assumption is violated. In other words, the within-RE model for CCREM effectively
handles the correlation between the random effects and the covariates by reducing
cluster variability in either dimension from the covariates. Further, this ML estimator
for ~ is exactly equivalent to the FE estimator (Raudenbush, 2009). However, the
estimated coefficient from the adaptive centering may be less efficient (i.e., less precise)
than the CCREM with uncentered or grand-mean-centered covariates when all the
CCREM assumptions, including the exogeneity assumption, are satisfied.

Compared to the pooled effects of the covariate estimated without any cluster-
mean centering or grand-mean centering, the estimator 4 in the within-RE model
captures the within-cluster effects. Directly obtaining within-cluster effects of the co-
variate is useful in distinguishing the individual-level effects from the overall influence
of the covariate. Other parameters, such as the intercept and variance components
of the within-RE model, differ from those for a model with an uncentered or grand-
mean-centered level-1 covariate. The new intercept is an intercept controlling for the
cluster-mean-centered covariate. In addition, the variance components are computed

by considering the removed between-cluster variances.

Correlated Random Effects model

A potential limitation of the within-RE model is that it does not provide infor-
mation about between-cluster or contextual effects. Such effects are worth estimating
if researchers are interested in how much each cluster dimension effect is associated
with the relationship between a student’s predictor and outcome. For example, Ped-
ersen et al. (2018) investigated the influence of school and neighborhood clustering
dimensions on alcohol consumption in urban adolescents, respectively. The models
estimated included uncentered predictors of parents’ and friends’ use of alcohol. In
this case, researchers might produce more nuanced results for the study if they had ex-
amined the between-cluster or contextual effects of school or neighborhood clustering

on the relationship between parental or peer alcohol use and alcohol use.
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In this section, I propose the CRE model for the CCREM by extending the
within-RE model in CCREM. Compared to the within-RE model, the CRE model
includes each dimension’s cluster means as well as the cluster-mean-centered covariate

and thus provides estimates of the within- and between-cluster effects:

Y = 17000 + X ctuster Yo + X Y5 + XYy + Rb+ Ce + e, (2.46)

b~ N(0,7j00l), ¢~ N(0,7h00I), e~ N(0,0%I),

where X 50 contains the cluster-mean-centered covariates using adaptive centering
as in the within-RE model, X ; and Xy are design matrix of cluster means for
each dimension, and 7, ; and 7,  are the vectors of unknown regression coefficients
indicating between-cluster effects for each dimension directly. Of the between-cluster
effects, the vector of coefficients =, ; represents the predicted difference between two
schools’ average academic achievement whose average reading scores differ by one
while controlling for the neighborhoods in which associated students live. Conversely,
the coefficient in the vector 7y, j is the predicted difference in the average academic
attainment between two neighborhoods whose average reading scores differ by 1 unit
while controlling for schools attended by students in the different neighborhoods.

The variance components of the CRE model differ from the within-RE model
due to the inclusion of the additional covariates, the cluster means. Specifically, the
variance components in the CRE models may be smaller than those in the within-
RE model because the cluster means explain the between-cluster variability for each
clustering dimension in the model.

Researchers may be more interested in the contextual effects that reflect the
association between higher-level cluster effects of the covariate and level-1 unit (e.g.,
student) outcomes. Contextual effects in HLM can be explicitly estimated through
models that include uncentered covariates and cluster means. While the coefficient
for the uncentered covariates indicates the within-cluster effect, the coefficient of the

cluster means indicates the contextual effect of the covariates.
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Similarly, when the cluster means per each clustering dimension are included
in the CCREM with the uncentered covariates, the coefficient estimates of the cluster
means indicates the contextual effects of the covariates. The CCREM’s contextual
effect differs from that in the HLM in that it is the contextual effect for the unique
clustering dimension. For example, the contextual effect of the school dimension
captures the predicted difference in the academic achievement of two students from
a school whose average reading scores differ by one unit while controlling for the
neighborhood dimension (v, ; = 7, ; —7,). On the other hand, the contextual effect
for the neighborhood dimension indicates the difference in academic achievement for
two students who go to the same school but from different neighborhoods where the

average reading scores for the neighborhoods differ by one unit (v, x = v, x — Yu)-

Latent Mean Centering

It is worth noting that the cluster-mean centering discussed in this study uses
the observed cluster means, which have a certain limitation. The observed cluster
mean is calculated by averaging the covariate values of individuals sampled from the
population within a cluster. Unless the entire population of the cluster is used, the
observed cluster mean is an approximation of the true cluster mean. Thus, when the
sampling ratio, the proportion of sampled individuals (level-1) within a cluster, is
small, the observed cluster means may have a bias due to measurement error and be
an unreliable estimate (O’Brien, 1990; Raudenbush et al., 1991). In such cases, the
contextual effect may be underestimated, and the level-2 variance component may
be inflated while the within-cluster effect remains an unbiased estimator (Grilli &
Rampichini, 2011; Liidtke et al., 2008; Shin & Raudenbush, 2010). This issue could
also be relevant in unbalanced cross-classified data because fewer individuals in some
clusters per dimension can lead to inconsistent estimates of the true mean.

In previous literature, researchers have proposed latent mean centering as a

potential solution to address the limitations associated with using observed cluster
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means in cluster-mean centering (Asparouhov & Muthén, 2019; Croon & van Veld-
hoven, 2007; Preacher et al., 2010). Regarding the aggregating type of the covariate,
latent mean centering is particularly suitable for reflective indicators that measure
latent constructs, such as school climate, as assessed through students’ evaluations
(Grilli & Rampichini, 2011; Liidtke et al., 2008). For a formative indicator, such as an
average of students’ test scores within a school, latent mean centering is still appropri-
ate when the number of units within a cluster is infinite. On the other hand, observed
mean centering is recommended for the formative indicator where the population is
known and there are a finite number of units per cluster.

Liidtke et al. (2008) primarily focused on comparing latent mean centering and
observed mean centering in the random intercept model, and Asparouhov and Muthén
(2019) further extended this argument to the random slope model using Bayesian es-
timation. Asparouhov and Muthén (2019) and Liidtke et al. (2008) demonstrated
that latent mean centering provides a relatively unbiased estimator compared to the
observed mean centering, specifically when the sampling ratio is insufficient as 20%.
Also, latent mean centering provides an asymptotically consistent estimator of con-
textual effects when there is a large number of clusters. The number of units per
cluster and ICC are other factors that affect the performance of latent mean center-
ing (Asparouhov & Muthén, 2019). For example, in practical settings with a small
sampling ratio or small ICC, the latent mean centering exhibits substantial sampling
variability. Thus, latent mean centering was clearly recommended for specific condi-
tions, such as when the sampling ratio was small, and the number of clusters and the
ICC were sufficiently large.

Considering the characteristics of latent mean centering, however, this study
focused on observed mean centering instead of latent mean centering for several rea-
sons. Firstly, latent mean centering outperforms observed mean centering in terms
of an estimator of contextual (or between-cluster) effects. However, for the within-

cluster effects, both approaches are known to provide unbiased, similar estimates.
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Considering this study focuses on the performance of within-cluster and between-
cluster effects, comparing the two approaches on the within-cluster effect would not
be meaningful. Thus, further research with a particular focus on contextual effects
is needed to investigate the comparison between latent mean centering and observed
mean centering.

Moreover, though latent mean centering would provide an unbiased estimator
of the contextual effect, its sampling variability largely depended on the data con-
stellation (e.g., sampling ratio, the number of clusters, and ICC). The diverse data
conditions that influence the performance of latent mean centering can complicate
the interpretation of simulation study results. For example, including latent mean
centering might require a separate topic concerning the sampling ratio. Lastly, la-
tent mean centering on cross-classified data requires further research to implement in
practice. While latent mean centering for hierarchical data has been extensively dis-
cussed, its applicability and implementation in cross-classified data settings have not
been explored yet. Additionally, since observed mean centering is not widely used in
CCREM, this study primarily focused on evaluating the performance of alternative
methods in addressing the endogeneity problem utilizing observed mean centering.
Future studies can explore and compare latent mean clustering and observed mean

centering within the context of cross-classified data structures.

2.4.3 Cell-Mean Centering
Within-Cell Random Effects Model

Previous research suggested modeling random interaction effects for the cross-
classified dimensions in CCREM estimation, which is a distinguishing characteristic
of cross-classified data (Raudenbush & Bryk, 2002; Shi et al., 2010). In the same
context as interaction effects between random effects, cell-interaction effects may also
arise between the cluster effects of covariates. However, the cluster-mean centering

approaches in the literature so far have not accounted for these interaction effects.
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To address this, it would be useful to incorporate the cell-interaction effects of the
covariate when employing cluster-mean centering. This approach satisfies the exo-
geneity assumption while considering the covariate’s cell-interaction effects. In this
section, I introduce the concept of cell-mean centering and its application.
Cell-mean centering uses a cell-mean-centered covariate, which is calculated
by subtracting the mean of cells where each dimension of the cross-classified data

intersects from the covariate,

Xeell = Xz(]k) - Xjk7 (247>

where X, represents the mean of the combination cell jk of school j and neighborhood
k. This cell-mean-centered covariate accounts for the cell-interaction effects of a
covariate inside the model (see the detail in the Appendix 6.1).

Similar to cluster-mean centering, adaptive centering can also be used to per-
form cell-mean centering on unbalanced data. In this instance, a general model of

the within-cell RE model using adaptive centering is:

Y = 17000+X56117+Rb+CC+Td+6,

(2.48)
b~ N(O,TjOQI), C ~ N(O,TkooI), d -~ N(O;T(jk)OOI)y e ~ N(O,O'QI)
where the design matrix of cell-mean-centered covariate is
X=X —-T[T (1) 'T)'T'(* 1) ' X,
(2.49)

=X -T[T'T|'T'X,

where T is an N x L known design matrix with the indicators that assign an L x 1
vector of random interaction effects, d, to the appropriate cells. Here, L is the number
of unique interactions that is less than or equal to the total number of possible com-
binations (i.e., L < J x K') because not all combinations of school and neighborhood

might be observed in unbalanced design data. Cell-mean centering uses T' that takes
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into account all between-cluster effects and cell-interactions effect for calculating the
cell-mean-centered covariate as (R C') are a linear combination of the interactions
T.

Similar to conducting cluster-mean centering in the within-RE model, rear-

ranging Equation 2.49 requires

X/cellT =0, (2.50)

which shows how to implement cell-mean centering using the FWL theorem. Specif-
ically, X should be first regressed on T', while assuming the homoscedastic variance,
o%I. Then, the extracted residual from the regression can be incorporated into the
model as a cell-mean-centered covariate, X ..;. This cell-mean-centered covariate is
equivalent to subtracting the cell mean from the original covariate, as demonstrated
in Equation 2.47.

The within-cell RE model is expected to be robust to violation of the ex-
ogeneity assumption, similar to what is accomplished using cluster-mean centering
by eliminating between-cluster variability. Compared to cluster-mean centering, the
within-cluster effect in cell-mean centering can differ from that in cluster-mean cen-
tering because it additionally controls the cell-interaction variability. In this sense,
the within-cluster effect in this model can be interpreted as the predicted difference in
student academic achievement for two students with a one-unit difference in reading
ability who share the same neighborhood and school. However, it has yet to be stud-
ied how the coefficients estimated when using cell-mean centering differ from those

when using cluster-mean centering.

Correlated-Cell Random Effects model

Similar to the CRE model with cluster-mean centering, the cluster mean per

clustering dimension and the cell mean can be included in the correlated-cell RE
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model as control variables. The correlated-cell RE model is

Y =19000 + XceuYw + XJ’Yb,J + XK’Yb,K + XJK’Yb,JK +Rb+Cc+Td + e,

bNN<O,Tj00I), CNN(O,TkooI), dNN(O,T(jk)QoI), BNN(O,O'zI),
(2.51)

where X .. is the adaptive cell-mean-centered covariate using Equation 2.49 as in
the within-cell RE model, X ;, and X x are the design matrices of cluster-means per
dimension and =, ;, and 7, ;; are the corresponding vectors of the between-cluster
effects. Likewise, X jx is the design matrix of adaptively centered cell means for the
vector of the cell-interaction effect, v, ;5. Using the FWL theorem, the adaptively
centered cell mean is obtained by extracting the residuals of regressing the cell mean
on (R C). Using this method, multicollinearity that may arise between the two
cluster means and cell means can be solved.

The correlated-cell RE model estimates identical within-cluster effects to those
estimated using the within-cell RE model. Further, this model includes cell means
as well as cluster means, allowing for the estimation of the between-cluster and cell-
interaction effects. The between-cluster and cell-interaction effects are orthogonal
to the estimated within-cluster effect because the adaptive centering approach was
used to partial out between-cluster effects and the cell-interaction effect from the
covariate variance. In terms of interpretation, the between-cluster effect represents
the predicted difference in average academic achievement between two clusters with a
one-unit difference in average reading scores while controlling for the cell-interaction
effect. Similarly, the cell-interaction effect indicates the predicted difference in average
academic achievement between two cells with a one-unit difference in average reading
scores while controlling for school and neighborhood effects. However, the included
cell means are likely to be used as an additional control variable rather than as the

main focus of the study.
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2.4.4 Two-Way FE-CRVE

In the way that the one-way FE-CRVE has been an option for handling en-
dogeneity in purely hierarchical data, the two-way FE model using CRVE offers an
alternative for handling endogeneity in cross-classified data. Considering the same
cross-classified data structure as in CCREM, where individuals ¢ € 1,2,...,n; are
within schools 7 € 1,2,...,J and neighborhoods k € 1,2,...., K, the two-way FE

model with one covariate is

J K
Yigr) = Y100Xigr) + Z Yopo Dp + Z YoogDg + €ijky, (2.52)

p=1 g=1
where 7199 is the coefficient estimate for the covariate Xj(x), Yopo is a school-level
intercept for the school indicator D, and vy, is a neighborhood-level intercept for
the neighborhood indicator D, as a dummy variable. The term e;;;) is a random error
for a student i nested within school j and neighborhood k. The random errors for
student i(jk) are assumed to be independent of random errors for students belonging
to different schools and neighborhoods (i.e., m(gh)).

Alternatively, the matrix form of the two-way FE model can be expressed as:
Y = Xv+ Ry; +Cv; +e, (2.53)

where 7y, is a J X 1 vector of school-level intercepts associated with an N x J known
design matrix, R, that contains the indicators for each of the j clusters in the cluster-
ing dimension J, and -, is a K x 1 vector of neighborhood-level intercepts associated
with C, an N x K known design matrix with the neighborhood indicators.
However, when the number of clusters is large for either dimension, it is possi-
ble to apply a generalization of the FE estimator known as the Method of Alternating
Projections and avoid estimating a fixed effect for each cluster (Gaure, 2013b). This
method projects two-dimensional fixed effects on outcome variables and covariates

and derives the model’s coefficient estimates without requiring complicated fixed-
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effects calculations. That is, it is possible to estimate coefficients efficiently even if
each dimension contains numerous clusters. Consequently, the two-way FE estimator
removes cluster-level variability and accounts for the correlation between cluster-level
random effects and covariates for both dimensions.

Using CRVE, the FE model can manage dependencies among clusters that
have not been explicitly specified. Cameron et al. (2011) and Cameron and Miller
(2015) extended the one-way CRVE and suggested the two-way CRVE that can ac-
count for any dependence that remains in the errors within any cluster dimensions.
The authors demonstrated that the FE model using two-way CRVE performs well
for balanced cross-classified data and yields an acceptable Type I error rate for a
covariate’s coefficient estimate. Thompson (2011) also indicated that the FE model
(panel regression) using two-way CRVE provided more accurate inferences than from
use of the one-way CRVE with cross-classified data.

Given that the variance estimator of the two-way FE model is

1

where B = + Z}]:1 (X ‘X )~! and X is the adaptively cluster-mean-centered covariate
using FWL theorem, the central matrix M is

N
1 Ny
M=~ DN Xign X gny X Cov(€igry, €man)): (2.55)

i=1 m=1

where N is the total number of students.

In two-way CRVE, the covariance between errors is estimated using the prod-
ucts of residuals for pairs of observations (students) who share one or both dimensions
(same school or same neighborhood). Thus, the estimated central matrix for the vari-

ance estimator with two-way CRVE is

. 1 .. .
“r_ +X'(ee' 057X, (2.56)
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where the notation o denotes element-wise multiplication, and S7% is an N x N
matrix in which only the entry that shares a cluster in one or both dimensions are
equal to 1 and 0 otherwise. M on is an asymptotically consistent estimator of M,
meaning that as the number of clusters in both dimensions approaches infinity, M con

converges to M. Then, the two-way CRVE can be written as

N 1 ~
v = NBMCRB. (2.57)

The substantial benefit of two-way FE-CRVE is that it handles endogeneity by
eliminating the between-cluster variability in cross-classified data. Therefore, when
there is a correlation between the covariate and level-2 random effects for either di-
mension, the two-way FE-CRVE provides a less biased and more consistent estimator
than the CCREM without centering or with grand-mean centering of the level-1 co-
variate. In addition, the two-way FE-CRVE estimates the within-cluster effects of
the level-1 covariate without requiring the specification of a complex random effects
model. Thus, the two-way FE-CRVE offers a useful alternative if the researcher is
focused on the within-cluster effect of the level-1 covariate coefficient and if there is
a possibility of endogeneity.

Note that the coefficient for the level-1 covariate in two-way FE-CRVE is the
same as that in the within-RE and the CRE models in CCREM, although the SE
might not be identical (Greene, 2018, Chapter 11.5.7). These results would be the
same even if the exogeneity assumption is violated because all three models eliminate
between-cluster variability in the level-1 covariate that might cause the endogeneity
problem. In this sense, the two-way FE-CRVE has the limitation of an inability to
estimate the effect of cluster-level covariates or of variance components compared
to the other two models with cluster-mean centering. In contrast, the CRE models

permit the estimation of both elements.
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2.4.5 FE-RE Hybrid Model

I suggest another alternative model, the FE-RE hybrid model, that uses the
fixed effect and random effect simultaneously. This approach is similar to the CCREM
except for the way in which one of the dimensions is treated. Specifically, one of
the clustering dimensions is translated into fixed effects and the other dimension is
captured as random effects in the FE-RE hybrid model. For example, the model that

treats the school dimension as FE and the neighborhood dimension as RE is

Y = 1yp00 + Xv + Rvy; + Cc + e,
(2.58)

¢~ N(0,mho0l), e~ N(0,0°I),

where X is the design matrix of uncentered covariates, R is a N x J design matrix of
dummy-coded school indicator variables and «; is a J x 1 vector of the corresponding
school-specific intercepts. C'is an N x K matrix that contains indicators to assign the
random effects ¢ to the correct neighborhood for each individual student. Because
between-cluster variability is captured for the two dimensions, = is the within-cluster
effect. The level-1 error e is an N x 1 vector with assumed homoscedastic variance,
o*I.

The decision to treat certain dimensions as fixed or random effects may vary de-
pending on the research question being addressed. For example, contrary to Equation
2.58, the neighborhood dimension can be modeled as FE, and the school dimension
can be treated as RE:

Y =170 + X7+ Cv,+ Rb te,
(2.59)

b~ N(0,7j00), e~ N(0,06°I),

where C' is a N x K design matrix of dummy-coded neighborhood indicators for
the neighborhood dimension and 7, is K X 1 vector of the neighborhood-specific

intercepts. R is a N x J design matrix of indicators to assign a J x 1 vector of school
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random effects b.

The FE-RE hybrid model has the benefit of the FE and the RE models simul-
taneously. One advantage is that it allows for estimating both cluster-level covariate
effects and random effects for the selected clustering dimension. Also, the FE-RE
hybrid model requires fewer assumptions than CCREM with an uncentered or grand-
mean-centered covariate. For the clustering dimension treated as FE, independence
between the covariates and the random effects is not required. In other words, even
when the covariates are correlated with the random effects of the FE dimension, the
use of the FE coding provides robust coefficient estimates for that dimension’s level-1
covariate.

However, considering that the exogeneity assumption is still required for the
dimension treated with RE, modeling FE for one dimension does not guarantee the
complete elimination of the endogeneity problem. In other words, due to the clustering
dimension treated with RE, the validity of inferences associated with the use of the
FE-RE hybrid model is founded on more assumptions than when using the CCREM
with adaptively centered covariates. Thus, with the FE-RE hybrid model, when the
covariates are correlated with the random effects for the dimension treated as RE,
the estimated within-cluster effect might be biased. In this instance, performing
the FE-RE hybrid model in both ways might shed light on which dimensions have
endogeneity. Further, as long as the two dimensions are correlated, it is necessary to

explore whether this approach fully resolves all endogeneity problems.

2.4.6 Previous Research

Compared to the number of studies involved with hierarchical data, substan-
tially fewer studies have been conducted on methods for handling endogeneity for
cross-classified data. Except for Raudenbush (2009) who suggested two-way cluster-
mean centering, extending the CCREM to obtain the between-cluster or contextual

effects has not been discussed. Considering that the CRE model in HLM exhibited
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benefits for handling cluster-level covariates and including random effects compared
to the FE model, it seems critical to examine the performance of the within-cluster,
between-cluster, or contextual effect estimates when using various cluster-mean cen-
tering methods in CCREM. Moreover, given the possibility of endogeneity in the
CCREM, it may be necessary to provide alternatives for cluster-mean-centered mod-
els to handle potential endogeneity.

While two decades of systematic reviews have assessed the applied HLM lit-
erature, only one systematic review has been conducted on cross-classified data re-
search. Barker et al. (2020) investigated a total of 118 empirical CCREM studies
with health outcomes published between 1994 and 2018, focusing on the rationale for
using CCREM. However, their review did not focus on whether the CCREM assump-
tions were appropriately evaluated or whether the cluster-mean centering approach
was used to adjust for the endogeneity. Also, their study only included studies with
health outcomes.

Therefore, as conducted by Dedrick et al. (2009) and Luo et al. (2021), a
systematic review is needed to examine how the assumption of exogeneity is typically
addressed in CCREM research. It is also necessary to determine whether centering
is used in CCREM and what type of centering is typically used. Given the lack of
demonstration for how to use cluster-mean centering with the CCREM, the frequency

of use of cluster-mean centering with CCREMSs is expected to be lower than with the

HLM.

2.5 Empirical Examples

As an illustration of the centering methods in CCREM, I used two empirical
datasets from Raudenbush and Bryk (2002) and Paterson (1991). The purpose of
these examples is not to investigate the impact of the variables on the outcome (ed-
ucation attainment) but to illustrate the results of CCREM using various centering

methods, two-way FE-CRVE, and the FE-RE hybrid model. I analyzed both empir-
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ical datasets using R 4.2.1 (R Core Team, 2022). The centering methods and the
FE-RE hybrid models used the lmer() function of the lme4 package (Bates et al.,
2015). The two-way FE-CRVE model was analyzed using the felm() function of the
lfe package (Gaure, 2013a).

2.5.1 Example 1

The data from Raudenbush and Bryk (2002) include 2,310 students from 17
schools living in 524 neighborhoods in Scotland. Table 2.1 presents the descriptive
statistics for the data structure and variable information. On average, a school has
around 136 students from an average of 46 different neighborhoods. The sparsity
of the unbalanced dataset was 0.088, indicating the ratio of cells filled with students
among all the neighborhood and school combinations.! T used education attainment as
an outcome variable, a composite score based on two national examinations that stu-
dents took during their secondary school. This outcome variable was log-transformed
to follow a normal distribution and multiplied by 10 to increase the variance of the
scale. I used the primary seventh-grade reading variable for the level-1 predictor. The
reading variable was a standardized score measured before students started secondary
school. In Raudenbush and Bryk (2002), CCREM was applied without centering on
exploring the impact of a number of covariates, including verbal reasoning scores and
demographic variables. In this empirical example, however, I used only reading scores
as the level-1 covariate to focus on a comparison of each coefficient based on different
alternatives.

Table 2.2 displays the coefficient for the covariates and their corresponding SEs

from various level-1 covariate centering methods, including CCREM without center-

'In an unbalanced cross-classified data structure, students typically only exist in some combi-
nations between two clustering dimensions. For example, suppose there are J x K combinations
between schools 1 through J and neighborhoods 1 through K. The number of combinations filled
with students might be less than J x K (i.e., L < J x K). Thus, the number of combinations
where students are cross-classified within schools and neighborhoods would be a fraction of the total
number of combinations: L/(J x K), called sparsity.
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Table 2.1

Descriptive Statistics of Garner and Raudenbush (1991) Data

Variable Mean SD Min Q1 Q2 Q3 Max
Students per school 136 550 22 102 136 155 286
Students per neighborhood 4 3 1 2 4 6 16
Neighborhoods per school 46 17 11 40 43 52 92
Education Attainment 0.93 10.02 -13.28 -5.81 1.58 7.35 24.15

Primary 7th-Grade Reading -0.04 13.89 -31.87 -9.87 -0.87 9.13 28.13

ing, grand-mean centering, the within-RE model, CRE model using cluster-mean

centering and cell-mean centering, two-way FE-CRVE, and FE-RE hybrid model.
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Table 2.2

Comparison of Centering using Empirical Example Data 1: Raudenbush € Bryk (2002)

Not Grand-Mean Cluster-Mean Cell-Mean FE FE-RE
Centering Centering Centering Centering CRVE Hybrid
Model & ®) 3) () (5) © (8) 9)
Within-RE CRE  Within-RE CRE S-FE/N-RE S-RE/N-FE
Fixed Effects
Intercept 0.978 0.957 0.699 0.998 0.701 0.986 1.574 1.992
(0.310) (0.310) (0.736) (0.278) (0.742) (0.276) (0.683) (3.231)
Vpooled 0.475 0.475
(0.011) (0.011)
Yo 0.440 0.440 0.434 0.434 0.440 0.471 0.441
(0.013) (0.013) (0.014) (0.014) (0.013) (0.011) (0.013)
Vb,J 0.136 0.127
(0.066) (0.066)
Vo, K 0.553 0.553
(0.022) (0.022)
Yo, JK 0.478
(0.036)
Random Effects (SD)
School Effects 1.036 1.036 2.807 0.886 2.828 0.871 0.984
Neighborhood Effects 1.796 1.796 4.675 1.589 2.864 0.004 1.815
Interaction Effects 4.358 1.882
Residual 7.044 7.044 7.055 7.083 7.047 7.014 7.038 6.987

Note. The value in the parentheses indicates the standard errors of the coefficients. The predictor included is the primary
Tth-grade reading score. - ; indicates the between-cluster effect for the school dimension, «, x indicates the between-
cluster effect for the neighborhood dimension, and v, sk indicates the cell-interaction effect. When the random-intercept
model was conducted with the primary 7th-grade reading score as the outcome and no covariate, the IUCC for the school

dimension was 9.15%, for the neighborhood dimension was 6.12%, and the cell ITUCC was 3.5%.



The first two columns show the results of the uncentered covariate (Model
1) and the grand-mean-centered covariate (Model 2). The coefficient of the reading
score when uncentered and grand-mean-centered was identical, as expected, (Ypooted =
0.475, SE = 0.011), which may be interpreted as the expected difference in attainment
scores between two students with reading scores that differ by one. This coefficient
represents the pooled effects of the within- and between-cluster effects, and these two
effects cannot be distinguished.

The intercept was different between the model with and without grand-mean
centering. In the model with not centering, the intercept of 0.978 (SE = 0.310) reflects
the expected attainment score when all other covariates (in this case, reading score)
are zero. In contrast, grand-mean centering yields a different intercept, 0.957 (SE
= 0.310), which indicates the expected attainment score for those with the grand-
mean reading score (-0.04, Table 2.1). However, neither model is robust when the
exogeneity assumption is violated.

Cluster-mean centering resulted in different results compared to estimates from
the uncentered and grand-mean-centered covariate models. First, in the within-RE
model using cluster-mean centering (Model 3), the reading variable’s coefficient was
0.440 (SE = 0.013), indicating the predicted difference in the students’ attainment
score for two students whose reading scores differ by 1 unit within the same cluster
of either school or neighborhood. The coefficient of the within-RE model was smaller
than the model estimates with the uncentered and grand-mean-centered covariate
because it is a within-cluster effect. The intercept, coefficients for the covariates, and
the random effects variance components were not as close in value to those from the
uncentered and grand-mean-centered covariate models.

Next, the CRE model using cluster-mean centering (Model 4) provided the
same within-cluster effect of 0.440 (SE = 0.013) for the reading variable as the within-
cluster effect estimated by the within-RE model. Further, the CRE model estimates

the between-cluster effects directly by incorporating the cluster means in the model.
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The between-school and between-neighborhood effects were 0.136 (SE = 0.066) and
0.553 (SE = 0.022), respectively. For instance, the predicted difference between two
schools’ average attainment scores, whose students’ average reading scores differ by
1, was 0.136 while controlling for neighborhoods. Also, the predicted difference in
average attainment score between neighborhoods where students’ average reading
scores differ by 1 was 0.553, while controlling for schools.

In the CRE model, the contextual effects can be calculated by subtracting the
within-cluster effect from the between-cluster effect for each dimension, respectively
(Note this comparison just involves an explanation of the values and is not a test of
statistical significance of the difference in the values). Specifically, the value of the
between-school effect was notably distinct from the within-cluster effect, particularly
when compared to the between-neighborhood effect. As a result, the contextual effect
on the school exhibited a greater magnitude compared to the contextual effect on the
neighborhood dimension. This implies that when controlling for neighborhoods, the
predicted difference in attainment scores between two students from different schools,
whose average reading scores differ by one unit, becomes substantial (0.136 - 0.440 =
-0.304).

I also used the cell-mean centering methods that account for the model’s cell-
interaction effects. In the within-cell RE model (Model 5), the within-cluster effect
was 0.434 (SE = 0.014). This effect represents the predicted difference in the attain-
ment scores between two students from the same combination of school and neighbor-
hood whose reading scores differ by 1 unit. Because the covariates were adaptively
centered by cell means, the covariance matrices of the data structures differed from
that in the cluster-mean centering, resulting in different variance components.

The correlated-cell RE model (Model 6) calculates the within-cluster effect as
well as the between-cluster effect and the cell-interaction effect. After including the
cluster means and adaptively centered cell mean as additional covariates, the within-

cluster effect was 0.434 (SE = 0.014), which was identical to the within-cluster effect
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in that in the within-cell RE model.

The coefficients for the cluster means were 0.127 (SE = 0.066) for the between-
school effect and 0.553 (SE = 0.022) for the between-neighborhood effect. Since the
cell means are adaptively centered and orthogonal to the cluster means for schools and
neighborhoods, the between-cluster effects of these two clustering dimensions should
be the same as in the CRE model. However, the correlated-cell RE model appears
to have introduced some coefficient differences because random interaction effects
are included in the model compared to the CRE model.?2 Thus, the between-school
effect differed slightly from the results in cluster-mean centering approaches. The cell-
interaction effect was 0.478 (SE = 0.036), which reflects the predicted difference in
the average attainment scores of two school-neighborhood combinations (cell), where
the average reading scores differ by 1 unit. The cell-interaction effect was greater
than the between-school effects but smaller than the between-neighborhood effects.

The coefficient estimated using the two-way FE-CRVE (Model 7) was 0.440,
showing the within-cluster effects using the FE estimator. This coefficient estimate
of 0.440 was the same as the within-cluster effects in the cluster-mean centering.
However, the two-way FE-CRVE did not estimate the variance components of the
random effects as in CCREM.

Finally, I conducted two FE-RE hybrid models. When modeling the school
as FE and the neighborhood as RE (Model 8), the within-cluster effect estimate
was 0.470 (SE = 0.011), which was larger than the results obtained by the other
approaches. Given that the hybrid model only handles endogeneity in the dimension
specified as FE, this difference might indicate that there is a correlation between the
covariate and the neighborhood random effects. When modeling the school dimension
as RE and the neighborhood as FE (Model 9), the within-cluster effect estimate was
0.441, which was still slightly greater than the within-cluster effects from the other

approaches. However, the pattern of results may be idiosyncratic to this particular

2When the correlated cell RE model was performed without random interaction effects, the
between-cluster effects of the covariates were exactly the same as in the CRE model.
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dataset. Thus, I illustrated the results of the same methods using another example,

the empirical data from Paterson (1991).

2.5.2 Example 2

The data analyzed by Paterson (1991) consist of 3,435 children attending 148
primary and 19 secondary schools in Scotland. I present the descriptive statistics for
the data in Table 2.3. In this dataset, the average number of students per primary
school was approximately 23, and the average number of students per secondary
school was around 181. The number of students who enter a secondary school from
the same primary school was 16 on average. The sparsity of the data design was
calculated as 0.108. Here, education attainment was the outcome variable, and the
verbal reasoning score was used as the level-1 predictor. The verbal reasoning score
was obtained from a test given to students when they entered secondary school. As
in the first example, the outcome variable was multiplied by 10 to increase the scale
of variance.

Table 2.3

Descriptive Statistics of Patterson (1991) Data

Variable Mean SD Min Q1 Q2 Q3 Max
Students per Primary School 23 17 1 8 21 36 72
Students per Secondary School 181 62 92 124 175 2,346 290
Primary per Secondary School 16 6 7T 13 14 18 32
Attainment 56.79 30.69 10 30 50 90 100
Verbal Reasoning -2.20 13.29 -30 -11 -2 7 40

Table 2.4 presents the results of alternative models estimated using the empir-
ical dataset. The first two models, not centering (Model 1) and grand-mean centering
(Model 2), both resulted in the same coefficient of 1.6 for the level-1 predictor (SE
= 0.028), indicating the pooled effect of the within- and between-cluster effect of the
covariate. However, these models do not take into account the potential correlation

between the covariate and the random effects, which can lead to invalid statistical
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inferences if the exogeneity assumption is violated in the data.

To address this issue, I used the cluster-mean centering approaches (Models
3 and 4). With these models, the within-cluster effect estimates for the level-1 pre-
dictor were identical with a value of 1.560 (SE = 0.029). The CRE model (Model 4)
additionally provides estimates of the between-cluster effects for the primary school
dimension (1.932, SE = 0.122) and the secondary school dimension (1.111, SE =
0.291).

The cell-mean centering approaches (Models 5 and 6) extend the cluster-mean
centering models by incorporating the cell-interaction effect and the random interac-
tion effect. The within-cluster estimate under the within-cell RE model (Model 5)
was 1.560 (SE = 0.030), which was identical to the estimate under the within-cell RE
model, which was also 1.560 (SE = 0.029). The correlated-cell RE model (Model 6)
further provided estimates of the between-cluster effects for both dimensions and the
cell-interaction effect: the between-primary-school effect was 1.928 (SE = 0.121), and
the between-secondary-school effect was 1.058 (SE = 0.285). These two effects were
similar values to those in the CRE model (Model 4). As in the previous dataset, one
of the between-cluster effects (here, the between-neighborhood effect) showed a slight
difference compared to the between-cluster effects obtained from the CRE model us-
ing the cluster-mean centering. This difference is likely due to the adaptive centering
of cell-mean-covariate and additional consideration of the cell-interaction and random
interaction effects in the models. Finally, the cell-interaction effect was 1.551 (SE =

0.130).
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Table 2.4

Comparison of Centering using Empirical Example Data: Patterson (1991)

Not Grand-Mean Cluster-Mean Cell-Mean FE FE-RE
Centering Centering Centering Centering CRVE Hybrid
Model (1) (2) (3) (4) (5) © (8) (9)
Within-RE CRE  Within-RE  CRE P-FE/S-RE P-RE/S-FE
Fixed Effects
Intercept 59.78 56.265 54.490 62.835 54.146 62.704 61.171 61.214
(0.670) (0.667) (1.967) (1.065) (1.840) (1.028) (3.776) (2.296)
Ypooled 1.600 1.600
(0.028) (0.028)
Yo 1.560 1.560 1.560 1.560 1.560 1.565 1.588
(0.029) (0.029) (0.030) (0.030)  (0.029) (0.028) (0.028)
Vo.1 1.932 1.928
(0.122) (0.121)
Yo, K 1.111 1.058
(0.291) (0.285)
Vo,JK 1.551
(0.130)
Random Effects (SD)
Primary School Effects 5.241 5.241 12.306 5.126 8.895 4.644 5.389
Secondary School Effects 1.199 1.199 6.894 2.411 6.218 2.231 3.533
Interaction Effects 9.755 2.307
Residual 20.627 20.627 20.619 20.722 20.811 20.713 20.560 20.613

Note. The value in the parentheses indicates the standard errors of the coefficients. The predictor included is the verbal
reasoning score. 7, ; indicates the between-cluster effect for the primary school dimension, 73 x indicates the between-
cluster effect for the secondary school dimension, and 7, jx indicates the cell-interaction effect. When the random-intercept
model was conducted with the verbal reasoning score as the outcome and no covariate, the IUCC for the primary school
dimension was 4.89%, for the secondary school dimension was 3.17%, and the cell IUCC was 3.88%.



The two-way FE-CRVE (Model 7) estimates the within-cluster effect using
the FE estimator for both dimensions. This model estimated the within-cluster effect
as 1.560 (SE = 0.029) while controlling for potential dependencies using CRVE. As
expected, the within-cluster effect from the two-way FE-CRVE is the same as the
results when using cluster-mean centering.

Under the first hybrid model (Model 8), the primary school dimension was
specified as FE and the secondary school dimension as RE. This model estimated
the within-cluster effect as 1.565 (SE = 0.028), which was slightly larger than the
estimates from the other models. This suggests that the FE-RE hybrid model can
provide similar estimates for the level-1 predictor’s within-cluster effect under certain
conditions, such as the exogeneity assumption being met in the dimensions where it
was modeled as RE.

However, when the primary school dimension was modeled as RE and the
secondary school dimension as FE (Model 9), the within-cluster effect was estimated
at 1.588 (SE = 0.028). This discrepancy may be due to the fact that the secondary
school dimension was not controlled as FE and was instead modeled as RE, which
requires meeting the exogeneity assumption. This assumption may not hold if the
covariates are correlated with the random effects of the secondary school dimension.

Overall, the results of the alternative approaches vary based on the data char-
acteristics. It is uncertain to what extent the coefficients of the covariates vary across
different data conditions. Thus, simulation studies are necessary to examine the

performance of these alternatives under various data conditions.

2.6 Purpose of Study

Use of both HLM and CCREM involves stringent assumptions about exogene-
ity, meaning that there is no correlation between covariates and random effects. To
avoid this assumption, cluster-mean centering has been developed for purely hierar-

chical data (Allison, 2009; Hamaker & Muthén, 2020). Previous studies on cluster-
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mean centering have thoroughly examined the characteristics and differences between
within-RE and CRE models.

A two-decade systematic review conducted over two studies has shown that
cluster-mean centering became more widespread in the 2010s compared to the 2000s
(Dedrick et al., 2009; Luo et al., 2021). However, because there were substan-
tially fewer cases of HLM testing exogeneity assumptions, it remains unclear whether
cluster-mean centering has been employed to resolve the endogeneity problem (An-
tonakis et al., 2021). In contrast to the HLM, it is unknown how CCREM research
has dealt with endogeneity thus far. Only one study has investigated trends in the
formulation of the CCREM, focusing on examining the rationale behind use of the
CCREM for handling cross-classified data (Barker et al., 2020).

Also, approaches for minimizing the impact of the exogeneity assumptions
have not been well developed for the CCREM, particularly for cluster-mean centering.
Only the two-way adaptive centering developed by Raudenbush (2009) provides an
option to estimate a within-RE model in CCREM. Furthermore, the interaction of
two dimensions cannot be ignored due to the nature of CCREM dealing with two
cross-classified cluster dimensions (Shi et al., 2010). The interaction between two
dimensions of the covariates might appear in cross-classified data, which might need
to be considered in cluster-mean centering. In this instance, cluster-mean centering
employing the cell means, a combination of two clusters from different dimensions,
could be used to allow the interaction effects between two dimensions.

Lastly, FE approaches need to be examined further. Two-way FE using CRVE
suggests alternatives to handle the correlation between the covariate and the random
effects using FE while adjusting the remaining dependence in the errors within poten-
tial cluster dimensions (Cameron et al., 2011; Cameron & Miller, 2015). In addition,
the FE-RE hybrid model that treats each dimension of cross-classified data as FE
and RE is a potential alternative that has never been explored.

Thus, there remains a need to investigate how the performance of centering
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methods, two-way FE-CRVE, and the FE-RE hybrid model differ from each other. It
should be determined whether the estimated values of the pooled effect, within-cluster
effect, and between-cluster effect accurately represent their true values when the co-
variates are correlated with the random effects. It is anticipated that the covariate
coefficient performance at each level will vary according to the characteristics of the
data. To my knowledge, however, there has been no research on these alternatives.

Therefore, the purpose of this study is as follows:

1. Through a systematic review, I examine how empirical studies using CCREM
have addressed exogeneity assumptions. I summarize the extent to which pre-
vious studies have employed centering approaches and what type of centering
has typically been used. I also use the systematic review to help gather typical
characteristics of applied CCREM studies to inform the design of the simulation
study I conduct.

2. Using a Monte Carlo simulation study, I examine the performance of CCREM
models, including the grand-mean centering, cluster-mean centering, and cell-
mean centering, and compare these to the performance of the two-way FE-
CRVE and the FE-RE hybrid model. I particularly investigate the performance
of pooled effect, within- and between-cluster effect estimates for each method
(for the pooled and between-cluster effect, only in the applicable models). Per-
formance criteria include relative parameter bias, absolute parameter bias, root
mean square error (RMSE), and relative bias of SE. I also examine how the per-
formance of these methods varies under diverse data generation conditions. The

benefits and drawbacks of each model are assessed, compared, and discussed.
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Chapter 3

Systematic Review

3.1 Methods

In the systematic review, I explored how the empirical literature using the
CCREM has evaluated model estimation assumptions and employed alternatives to
handle potential assumption violations. This systematic review followed the HLM-
focused criteria used in Dedrick et al. (2009) and Luo et al. (2021)’s systematic re-
views. In contrast to the two studies that have covered numerous aspects of HLM, I
primarily focused on the recognition of the data characteristics, the CCREM assump-
tions, and the use of the centering approaches. In the data characteristics, I reviewed
the cross-classified data structure and the CCREM specification in the literature to
serve as the rationale for the conditions in the simulation study I conducted. All
systematic review processes and presentation of results were based on the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses 2020 (PRISMA; Page
et al., 2021).

3.1.1 Inclusion and Exclusion Criteria

I included research that employed CCREM in their data analyses.! Studies
published during the last decade, 2013 and 2022, were included in the synthesis
to capture the most recent trends in applied researchers’ use of the CCREM (last
searched date: December 31, 2022). The studies included were limited to English-
language publications. If CCREM were used as part of a methodological investigation,

those were included only when the methodological research illustrated an example of

f the study used the multiple-membership random effects models (MMREM), which differs
from the CCREM, it was excluded. Unlike CCREM, MMREM handles complex hierarchical data
structures in which lower (e.g., level-1) units (e.g., students) belong to multiple higher-level units
(e.g., multiple schools).
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CCREM using empirical data. Further, I excluded the applied studies that used the
CCREM for SEM, meta-analysis, or item response theory (IRT) models.

3.1.2 Search Strategy and Screening

Considering the limited number of CCREM studies compared to HLM, it
may be insufficient to examine only 19 journals, as Dedrick et al. (2009) and Luo
et al. (2021) did in their review. Thus, I broadened the search scope and focused
on four data sources related to education and psychology: APA PsyArticles, APA
PsycInfo, Education Source, and Education Resources Information Center (ERIC).
The keywords included “cross-classified,” “cross-classified multilevel model,” or “cross-
classified random.” The screening procedure is described below.

First, I identified studies using the noted keyword search for the four data
sources. I removed any duplicate studies and reported the number of remaining stud-
ies. Next, I screened the title and abstract of the studies. Based on the inclusion and
exclusion criteria, I filtered out studies that used CCREM only for methodological
evaluations without demonstration application, used the cross-classified SEM, and
used CCREM for meta-analysis or IRT models. If the title and abstract were insuf-
ficient to assess their suitability, I conducted a full-text review. Finally, all search
and screening processes were presented using the PRISMA flow diagram using the
PRISMA _ flowdiagram() in PRISMA2020 package (Haddaway et al., 2022; Page et
al., 2021).

3.1.3 Coding Procedure

I coded articles using the following general dimensions: (1) study characteris-
tics, (2) model assumptions, (3) model specifications, and (4) computational issues.
The complete coding manual is listed in Table 3.1. The characteristics listed in the
coding manual were selected based on the previous HLM systematic reviews and

adjusted for the CCREM (Antonakis et al., 2021; Dedrick et al., 2009; Luo et al.,
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2021).

Table 3.1

Coding Manual

Characteristics

(1) Study Characteristics

Data type

Number of Level-1 units per cluster
Number of Level-2 clusters per dimension
Data structure

Model structure

Clustering data structure

Clustering model structure

Rationale provided for using CCREM

Type of the outcome variable

Cross-sectional data,
Longitudinal data

Numeric

Numeric

Two-level, Three-level, Four-level

Two-level, Three-level, Four-level

Two-way, Three-way, Four-way or more

Two-way, Three-way, Four-way or more

Yes, No

Continuous, Binary, Ordinal

(2) Data consideration

Exogeneity assumption

Homoscedasticity assumption

Normality assumption

Assumption mentioned

Assumption tested

Response to the violation
Consequences considered
Corrective action taken

Not discussed

Not applicable

Assumption mentioned

Assumption tested

Response to the violation
Consequences considered
Corrective action taken

Not discussed

Not applicable

Assumption mentioned

Assumption tested

Response to the violation
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Table 3.1

(continued)

Characteristics

Consequences considered
Corrective action taken
Not discussed

Not applicable

(3) Model Specification

Centering at lower levels

Centering at the highest levels

Interaction between covariates examined

Random interaction effects examined

Random slope examined

Not centering

Grand-mean Centering
Cluster-mean Centering

Not discussed

Not applicable

Not centering

Grand-mean Centering

Not discussed

Not applicable

Level-1

Level-2

Cross-level

No interaction

Not applicable

Random interaction effects examined
No random interaction effects
Random slope examined

No random slope

Not applicable

(4) Computational issues

Software

HLM
MLwiN
Mplus

SAS
SPSS
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Table 3.1

(continued)
Characteristics
Stata
Other
Not reported
Estimation Method ML

REML

Bayesian approach
Other

Not reported

Study Characteristics

The study characteristic factors focused on the cross-classified data structure,
including whether the data is cross-sectional or longitudinal, the number of clusters
for each dimension, and the number of level-1 units per cluster. I also recorded the
levels of the data structure and the level of the actual model applied separately for
instances where researchers might have reflected the real-world data structure in their
models differently. For example, if the data structure consists of three levels, such as
students nested within classrooms and classrooms nested within schools, researchers
might model the data using a simplified two-level structure and exclude the school or
the classroom level.

I further reported the number of cross-classified dimensions. The cluster di-
mensions represent the dimensions that are cross-classified at the same level. In cases
where the clustering structure involves three or more dimensions, researchers might
have omitted one or two dimensions which are assumed to have a negligible impact,
resulting in a two-way clustering model. To account for this, I recorded the observed
clustering data structure and the clustering model structure implemented by the re-
searcher separately. Finally, I coded whether the rationale for employing the CCREM

has been stated and the scale of the outcome variables.
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Model Assumptions

In the model assumptions section, I coded whether the studies tested the
CCREM assumptions, including exogeneity, homoscedasticity, and normality. Studies
that mention the assumptions still might not test the assumptions. I thus specified
whether the researchers actually tested the assumptions and how. Moreover, I detailed

how the studies responded to potential violations of the assumptions.

Model Specification

In the model specification, I coded whether centering was used with each
covariate at each level and captured the type of centering used in a study. Some
studies might have employed standardization of the covariates in the model. In that
case, I considered standardization a form of grand-mean centering (Hox et al., 2017).
I also coded which fixed effects parameters were modeled as random (intercept and/or
slopes) and whether random interaction effects were examined in the CCREM that

was tested.

Computational Issues

Regarding computational issues, 1 reported which software the researchers
used because defaults for estimation may vary depending on the software used. Also,

I coded the type of estimation method used. The author conducted all coding.

3.2 Results

The systematic review collected CCREM studies published over ten years and
explored the characteristics of CCREM studies. Figure 3.1 illustrates the PRISMA
flowchart of the systematic review process. In the initial search from the data sources,
I first identified a total of 337 CCREM studies. After removing 25 duplicates, 314

studies were identified. Next, I conducted the abstract screening and excluded three

83



non-English studies, leaving 311 studies. These 311 studies were all eligible for inclu-
sion and assessed via full-text screening. Of these, 93 studies were excluded for not
meeting the inclusion criteria. The details of the exclusion are illustrated in Figure
3.1. For example, studies not specifically focused on CCREM, studies that aimed
to provide instruction on CCREM methodology, and simulation studies without em-
pirical data illustration were excluded. The final 218 studies were included in the

systematic review.

Identification of new studies via databases and registers

C
i)
E Records identified from: Records removed before screening:
= Databases (n = 337) Duplicate records (n = 25)
3
Y
Records screened Records excluded
(n = 314) (n=3)
£ Reports sought for retrieval Reports not retrieved
i (n=311) (n=0)
]
Reports excluded (total n = 93):
Y IRT (n = 13)
Reports assessed for eligibility Meta-analysis (n = 1)
(n = 311) Multiple-membership (n = 4)
SEM (n = 16)
Guideline articles (n = 7)
Simulation studies (n = 15)
Other (n = 37)
- Y
2 Reports of new included studies
TE (n = 218)

Figure 3.1. PRISMA Flow Diagram Example

The selected studies were published in a total of 140 journals. Social Science

and Medicine published the most CCREM studies (IV = 9), followed by Health and
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Place (N = 6), Journal of Adolescent Health and Social Indicators Research (N =
5), and Contemporary Educational Psychology, Frontiers in Psychology, Journal of
Educational Psychology, Teachers College Record, and The International Journal of
Behavioral Nutrition and Physical Activity (N = 4, each). T also plotted the number
of CCREM studies published each year in Figure 3.2. The distribution of 218 studies
shows that CCREM studies have been published consistently over the past decade,

with an average of 21.8 studies per year.
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Figure 3.2. Study Distribution by Publication Year

3.2.1 Study Characteristics

Table 3.2 shows study characteristics for the included studies. Among the
selected studies, cross-sectional data (N = 167, 77%) were more common than lon-
gitudinal data (N = 51, 23%). The example of cross-sectional data included cases
where individuals were nested in different types of clustering dimensions (e.g., school,
region, or rater) or where observed measures were cross-classified into different types
of higher-level clusters (e.g., individual, item, or region).

I also investigated the size of the cross-classified datasets by examining the
number of level-1 units per cluster and the number of clusters in each dimension. To
account for outliers and the non-normal distribution of the study size, I calculated the

first quartile (Q1), second quartile (Q2), and third quartile (Q3) for each level and

85



Table 3.2

Study Characteristics

Characteristics
Data type:
Cross-sectional data 167 (77%)
Longitudinal data 51 (23%)
Ql Q2 Q3
Number of level-1 units per cluster 18 95 436
Number of level-2 clusters per dimension
Smaller cluster size 21 52 158
Larger cluster size 80 303 1,418
Two-level Three-level Four-level
Multilevel Data structure 185 (85%) 23 (11%) 10 (5%)
Multilevel Model structure 187 (86%) 24 (11%) 7 (3%)
Two-way  Three-way Multi-way
Clustering data structure 176 (81%) 37 (17%) 5 (2%)
Clustering model structure 190 (87%) 23 (11%) 5 (2%)
Type of the outcome variable
Continuous 150 (69%)
Binary 66 (30%)
Ordinal 7 (3%)
The rationale provided for using CCREM
Yes 218
No 0

dimension (see Table 3.2). Regarding the number of level-1 units per cluster in the
smaller dimension, the interquartile range (Q3 - Q1) was 418. The range of level-1
units per cluster spanned from 2 to 4,022,312, with an average of 25,749.

The number of clusters per dimension was collected as the smaller dimension
and larger dimension separately, considering the unequal size of each dimension. In
the smaller clustering dimension, the interquartile range was 137, with the minimum
and maximum numbers being 2 and 12,686, respectively. The average number of
level-2 clusters in this smaller dimension was 448. In the larger clustering dimension,
the interquartile range was 1,338. The minimum and maximum were 6 and 636,202,

respectively, with an average of 7,764.98.
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The results indicate that the number of clusters varies widely, which may be
due to the diverse types of clusters. For example, Kendler et al. (2015) used data
that incorporated ten distinct Swedish nationwide registries and healthcare data using
unique individual IDs. The study focused on individuals born in Sweden between 1975
and 1990 who were residing in Sweden at the end of 1990, and the individuals were
nested within communities and households. This study, with its large national data
set, reported the largest number of clusters among the selected studies, which was
636,202 households.

And a common type of cluster dimension was often the individual. For exam-
ple, in Patchan et al. (2016), the data consisted of peer feedback on students’ papers,
which were nested within the reviewers and authors. In Thornton III et al. (2019),
the dataset included assessments on promotion exams, which were nested within the
assessees and assessors. Weiser (2013) examined individuals with reading disabilities
who were nested within the intervention teachers and classroom teachers.

I recorded the number of levels in each study’s cross-classified data structure
and noted the corresponding levels specified in the model. Two-level data was ob-
served most frequently, accounting for 85% (N = 185) of the studies. Three-level data
followed with 11% (N = 23) of the data structures, and four-level data accounted for
5% (N = 10). To illustrate, Gilbert et al. (2016) had a four-level data structure where
time points (level-1) were nested within students (level-2) who were cross-classified
in second-grade and third-grade classrooms (level-3), which were again nested within
schools (level-4).

In some cases, when certain levels exhibit low variance (i.e., low ICC values),
researchers may choose to exclude those levels from their data structure and specify
modified versions of CCREM. To account for this, I provided separate reporting of
the model structure levels. Among data structures with two and three levels, no
studies excluded any levels. However, in the case of four-level data structures, three

studies employed CCREM with fewer levels than the original four-level. For instance,
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Dronkers et al. (2014) analyzed four-level data using a three-level CCREM. Also,
Cafri et al. (2015) and Groenewegen et al. (2018) utilized a two-level CCREM on
four-level cross-classified data. As a result, the model structure results revealed 187
two-level CCREMs (86%) and 24 three-level CCREMs (11%).

Further, the number of cluster dimensions in the analyzed data was reported.
Among the included studies, the majority of studies had two-way cluster dimensions
(81%, N = 176), followed by three-way (17%, N = 37) and four-way dimensions (2%,
N =5). However, not all cluster dimensions were modeled in the analyzed data. Of
studies with three-way clustering dimensions, for example, 14 studies decided to omit
one of the clustering dimensions and ended up with two-way dimensional CCREM.

Specifically, the age-period-cohort (APC) analysis was a common type of three-
way cluster dimension where individuals are nested within age, period, and cohort.
However, considering the strong dependence between age and cohort with a period,
many studies analyzed these data using a two-way model (e.g., Attell, 2020; Beck et
al., 2014; Hayward & Krause, 2015; Lin et al., 2014; Zhang, 2017), as recommended
by Yang and Land (2008). For four-way clustering dimensions and above, there was
no case for excluding clustering dimensions. As a result, the number of two-way
dimensional CCREMs was 190 (87%), while the number of three-way CCREMs was
23 (11%). The number of four-way or above (i.e., multiway) remained at 4 studies
(2%)

In terms of the type of dependent variable, the majority used in CCREM re-
search were continuous variables (N = 150), which accounted for 69% of the total
number of studies. The remaining studies utilized categorical outcome variables, with
66 studies (30%) using dichotomous variables and seven studies (3%) employing ordi-
nal variables. For the analysis of these categorical variables, corresponding methods
such as the cross-classified multilevel logistic model or the cross-classified multilevel
ordered logit model were employed instead of linear CCREMs. Finally, all studies
clearly stated their reasons for using the CCREM (218, 100%).
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3.2.2 Model Assumptions

Table 3.3 presents the extent to which CCREM assumptions were considered in
the studies analyzed. Of the three assumptions examined (exogeneity, heterogeneity,
and normality), the exogeneity assumption was the least mentioned (N = 9, 4%) and
never tested (N = 0). Only a few studies considered or corrected their results due to
potential violation of the exogeneity assumption (N = 3, less than 2%).

For example, Silber et al. (2021) was the only study that considered the conse-
quence of the violation, highlighting the possibility of endogeneity in certain variables
and conducting a sensitivity analysis to evaluate the robustness of their results. Two
other studies implemented corrections for the endogeneity issue: Nisic and Melzer
(2016) used the Mundlak model, a variation of the CRE model, and Fleischmann
et al. (2022) used cluster-mean centering (within-RE model). However, most studies
did not discuss the exogeneity assumption (N = 202, 93%). Three studies were not
applicable for evaluating the exogeneity assumption because they did not include any
variables in the model (N = 4, 2%). These studies only examined the variance of the
random effects.

Table 3.3

Model Assumptions

Characteristics
Exogeneity Homoscedasticity Normality
Assumption mentioned 9 (4%) 49 (22%) 58 (27%)
Assumption tested 0 (0%) 9 (4%) 18 (8%)
Response to the violation:
Consequences considered 1 (0.5%) 0 (0%) 0 (0%)
Corrective action taken 2 (1%) 1 (0.5%) 10 (5%)
Not discussed 202 (93%) 159 (73%) 132 (61%)
Not applicable 4 (2%) 0 (0%) 0 (0%)

The homoscedasticity and normality assumptions were mentioned more fre-
quently than the exogeneity assumption in CCREM studies. Two assumptions are

often mentioned when describing a level-2 random effect or level-1 residual, typically
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stating that the random effects and residuals are assumed to follow a normal distri-
bution with a mean and variance of a certain value (e.g., Castellaneta & Gottschalg,
2016; Lei et al., 2018). Specifically, the homoscedasticity and the normality assump-
tions were reported in 49 studies (22%) and 58 studies (27%), respectively. In addi-
tion, 9 studies (4%) tested for heterogeneity, and 18 studies (8%) assessed normality.
These assumptions were evaluated using various methods, such as residual plots or
Q-Q plots at each level (e.g., Dunn et al., 2015; Goodale et al., 2019; van Berkel et
al., 2022). Bayer-Oglesby et al. (2022) used the modified Breusch-Pagan test (Abdul-
Hameed & Matanmi, 2021; Breusch & Pagan, 1979) to test heterogeneity of residual
variance. Although some studies did not specify the test method, I considered the
assumption to be tested when the authors mentioned that it was tested (e.g., Kim &
Sax, 2014).

Violation of the normality assumption was handled more often (N = 10, 5%)
than the homoscedasticity assumption (N = 1, 0.5%) when there was a violation of
these assumptions. The violation of the homoscedasticity assumption was corrected
only in Patton (2019) by excluding existing outliers. The normality assumption was
corrected in several studies by removing outliers (e.g., Baird et al., 2017; Bauer et al.,
2021; D’Haese et al., 2014; Thrash et al., 2017) and using a log transformation for
the outcome (e.g., Morton et al., 2016; Patton, 2019). One study employed sensi-
tivity analyses to address normality violations (e.g., Allensworth & Luppescu, 2018).
However, a considerable number of studies did not report on these assumptions. The
heterogeneity assumption was not discussed in 159 studies (73%), and the normality

assumption was not discussed in 132 studies (61%).

3.2.3 Model Specification

In the model specification (see Table 3.4), I examined how studies using the
CCREM specified their models in terms of centering methods, interaction effects

between covariates, random interaction effects, and random slope. 1 first explored how
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centering methods were included in the model at the lowest level, level-1, and at higher
levels depending on the levels included in the model. Not centering category indicates
that the authors considered centering but ultimately did not center covariates in their
models. The number of cases when covariates were not centered was small for every
level. Six studies (3%) used the raw predictor at level-1, and 13 studies (6%) used
the raw predictor without centering at higher levels.

Grand-mean centering was the most commonly used method regardless of the
level at which the covariate was included. At level-1, grand-mean centering was used
in 54 studies (25%), of which 34 studies effectively used grand-mean centering through
the use of a standardized variable. Grand-mean centering was more commonly used
at higher levels than at level-1, with 65 studies (30%) utilizing this method. Of those,
23 studies used standardization as grand-mean centering.

Table 3.4

Model Specification

Characteristics
Centering at Level-1 Highest level
Not centering 6 (3%) 12 (6%)
Grand-mean Centering 54 (25%) 65 (30%)
Cluster-mean Centering 19 (9%) NA
Not discussed 117 (54%) 125 (57%)
Not applicable 26 (12%) 16 (7%)
Interaction between covariates examined
Level-1 22 (10%)
Level-2 or higher 49 (22%)
Cross-level 55 (25%)
No interaction 104 (48%)
Not applicable 4 (2%)
Random interaction effects examined
Random interaction effects examined 11 (5%)
No random interaction effects 205 (94%)
Random slope examined
Random slope examined 41 (19%)
No random slope 175 (80%)
Not applicable 2 (1%)

At level-1, cluster-mean centering was used in 19 studies (9%). Cluster-mean
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centering was applied in various ways, including centering around a specific time
point (e.g., Dagli & Jones, 2013; Francis et al., 2018) or using the cluster-median
instead of the cluster-mean (e.g., Beck et al., 2014; Lin et al., 2016). Some studies
also standardized covariates by cluster (e.g., Evans & Fite, 2019) or presented results
using both cluster-mean and grand-mean centering (e.g., Fleischmann et al., 2022;
Vagi et al., 2017).

It is unexpected that the cluster-mean centering in these studies was not im-
plemented by centering on multiple dimensions. These studies calculated the cluster-
mean-centered covariate based on one dimension, and the remaining clustering di-
mension was not accounted for in the cluster-mean centering. Pedersen et al. (2018)
and Sharp et al. (2015) were the only studies that considered multiple clustering di-
mensions by using the CRE model as the cluster-mean centering. These two studies
conducted the CRE model by including multiple cluster means in the model while
using the raw covariate. Cluster-mean centering is not applicable at the highest level,
and thus it was only reported in lower levels that nested within a cluster.

More than half of the studies did not consider any centering method. Specif-
ically, 117 studies (54%) did not mention any centering at level-1, and 125 studies
(57%), which had the option to use grand-mean centering at level-2 or higher, also
did not mention centering. 26 studies at level-1 (12%) and 16 studies at higher levels
(7%) were classified as “Not applicable” because they had no covariates included in
the higher level of the model.

Regarding the estimation of interaction effects, approximately half of the stud-
ies included interaction terms between variables. Specifically, 22 studies (10%) esti-
mated interaction terms at level-1, while 49 studies (22%) estimated interaction terms
between covariates of different dimensions at level-2 or higher. 54 studies (25%) ex-
amined cross-level interaction terms. However, 104 (48%) studies did not use any
interaction term.

In addition to interaction effects between fixed effects, it is also possible to

92



include interaction terms between cross-classified dimensions’ random effects (i.e.,
random interaction effects). Only 11 studies (5%) specified a random interaction
term. Two of these studies included a random interaction term to measure dyadic
variance between individuals (e.g., Kim et al., 2015; van Braak et al., 2021). The
remaining studies mentioned that the interaction was included for estimating the
interaction between two clustering dimensions, such as teachers and students (e.g.,
Feistauer & Richter, 2017, 2018) or perceiver and target (e.g., Hehman & Sutherland,
2017; Xie et al., 2019). However, random interaction effects are still uncommon, and
most studies (N = 205, 94%) did not discuss nor model them.

Lastly, I investigated whether the studies included a random slope in their
models. Of the total, 41 studies (19%) included random slopes, allowing the slope to
vary across clusters. However, the majority of the studies (N = 175, 80%) utilized
the random intercept model instead. Two studies with unconditional CCREM were

reported as not applicable (1%).

3.2.4 Computational Issues

In the computational issues section, I examined the software and estimation
methods in selected studies (see Table 3.5). If multiple software programs were men-
tioned and the researcher did not specify which software was used in the CCREM
analysis, all software was recorded. Thus, the sum of the number of software pro-
grams used may exceed the number of studies. The results indicated a diverse range
of software employed for CCREM analyses. In the selected studies, MLwiN and R
account for approximately 40% of the software used. Specifically, 47 studies (22%)
used MLwiN, with 11 studies using MLwiN via Stata and one study using MLwiN
via R.

R was used in 42 studies (19%), with 31 studies using the lImer4 package (Bates
et al., 2015), two studies with the MCMCglmm package (Hadfield, 2010) and one

study using the Stan package (Stan Development Team, 2023). Two studies classified
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Table 3.5

Computational Issues

Characteristics

Software
HLM 14 (6%)
MLwiN AT (22%)
Mplus 7 (3%)
R 42 (19%)
SAS 22 (10%)
SPSS 10 (5%)
Stata 24 (11%)
Other 2 (1%)
Not reported 55 (25%)

Estimation Method
ML 22 (10%)
REML 20 (9%)
Bayesian approach 55 (25%)
Other 1 (0.5%)
Not reported 120 (55%)

as “Other” used Stat-JR and WinBUGS. However, a significant proportion of studies
(55, 25%) did not report which software they used.

To explore possible trends in software usage, I examined the frequency of
software usage by year. Table 3.6 displays the most commonly used software, listed
in order of frequency. Although the trend is unclear, there has been a slight decline
in the use of MLwiN throughout the 2020s, while the number of papers using R has
slightly increased. Stata and SAS showed a consistent level of use over time.

Finally, I examined the estimation methods used in CCREM studies. The
three most common estimation methods used were Maximum Likelihood (ML; N =
22, 10%), Restricted Maximum Likelihood (REML; N = 20, 9%), and Bayesian
approaches, with the latter being the most widely used (N = 54, 25%). The choice of
estimation method may be related to the software utilized in the study. For instance,
39 out of the 47 studies that used MLwiN as their software reported adopting a
Bayesian approach using Markov Chain Monte Carlo (MCMC) estimation procedures.
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Table 3.6

Frequency of Software Usage by Year
Software 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 Total

MLwiN 3 8 4 7 7 3 7 4 1 3 47
R 2 2 1 4 4 7 4 8 2 8 42
Stata 1 5 4 3 1 4 1 1 3 1 24
SAS 3 1 2 2 3 3 1 3 2 2 22
HLM 3 2 0 3 1 0 3 1 0 1 14
SPSS 0 1 1 0 2 1 1 0 2 2 10
Mplus 0 0 0 0 1 1 2 2 0 1 7

However, the most common estimation method in other software packages was not
apparent. A single study that reported using penalized quasi-likelihood (PQL) for
handling binary outcomes was classified as “Other.” However, over half of the studies
(N =120, 55%) did not report the estimation method.

These systematic review results highlighted the methodological characteristics
of CCREM in various research fields and shed light on the assumptions and centering
use in CCREM analyses. However, little attention has been given to the exogeneity
assumption underlying CCREM, which is critical for obtaining unbiased and consis-
tent estimates. Further, the cluster-mean centering approach to address endogeneity
seems not implemented correctly in CCREM. Therefore, in the next section, I describe
the simulation study results conducted to compare alternative modeling approaches
that can relax the exogeneity assumption and provide more robust estimates in the

presence of endogeneity.
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Chapter 4

Simulation Study

4.1 Methods

In the Monte Carlo simulation study, I compared the estimation of pooled,
within- and between-cluster effects of level-1 covariates for alternatives designed to
handle endogeneity using various centering methods. I examined nine approaches for
the model and level-1 covariate centering paired with estimating a CCREM include:
(1) not centering, (2) grand-mean centering, (3) the within-RE model, (4) the CRE
model, (5) the within-cell RE model, (6) the correlated-cell RE model, (7) the two-way
FE-CRVE with an uncentered covariate, (8) the FE-RE hybrid approach using the
school dimension as the fixed effect and the neighborhood dimension as the random
effect, and (9) the FE-RE hybrid approach using the school dimension as the random
effect and the neighborhood dimension as the fixed effect. Both hybrid models used
an uncentered covariate.

I specifically focused on cross-sectional cross-classified data assuming an un-
balanced design, in which the number of units nested within a cluster often differs
within each cross-classified dimension. A balanced design, such as panel data, may
produce more optimal results than the analysis of unbalanced data. However, I aimed
to derive more generalizable and practical conclusions by generating unbalanced, more
challenging, realistic data. The CCREMSs used to generate the data and to estimate
the models were random intercept models.

The primary focus of the simulation study was on the performance of within-
cluster effect coefficients for level-1 covariates estimated using alternative approaches
(3) to (9). For the model with the (1) uncentered covariate and (2) grand-mean-
centered covariate, the performance of the pooled effect of the level-1 covariate was

evaluated. The between-cluster effects were estimated only using (4) the CRE and
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(6) the correlated-cell RE models.

The performance of cell-interaction effects estimated only from the correlated-
cell RE model was not evaluated. Including the cell means in the model serves a more
important role as additional covariates rather than being a primary research interest.
The level-2 covariate was also not a focus and was not included in this simulation
study. In two-level CCREM, only not centering or grand-mean centering can be
used for level-2 covariates; cluster-mean centering and cell-mean centering cannot be

employed.

4.1.1 Data Generation

Based on the characteristics of the empirical data, I generated two-level cross-
classified data mimicking students cross-classified by schools and neighborhoods. 1
first generated student IDs (i = 1,2, ...,n;) for each school (j = 1,2,...,J). Then, I
assigned students from each school to the neighborhoods according to the following
equation,

by = i)+ (4.1)
where £;; is the neighborhood ID that student 7 attending school j is assigned. I
used ?, the ratio of the total number of schools J and neighborhoods K, so that
students in a school can be distributed to the neighborhood IDs proportional to the
school ID value. The term x represents a random number generated from a uniform
distribution of the interval [1, sparsity x K], allowing students in one school to be
distributed evenly in a few neighborhoods, not concentrated in one neighborhood.

According to Raudenbush and Bryk (2002) and Paterson (1991)’s cross-classified
data structure, I adopted the degree of 10% as the sparsity used for data generation
in my study. For example, when the number of schools and neighborhoods are 30 and
60, respectively, students in school ID = 1 are randomly assigned to neighborhood
IDs between 3 and 8 (c.f., ki = 1(32) + @, where 2 ~ [1,0.1 x 60]), and students in

school ID = 2 are randomly assigned to neighborhood IDs between 5 and 10 (c.f.,
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kij = 2(8) 4 @, where z ~ [1,0.1 x 60]).!

Next, I generated values for the level-1 covariate. In cross-classified data,
different sources affect the level-1 covariate: within-cluster effects, two between-cluster
effects, and the interaction effects between clusters from each dimension. Using the
empirical examples, I examined the variability of each effect using a random intercept
model with the predictor variable as an outcome (see footnotes on Tables 2.2 and
2.4), and found that the IUCC of the interaction effects was not always smaller than
the ITUCC of the clustering dimensions. In order to reflect these variabilities within
the level-1 covariate, I arbitrarily selected the generating values so that the variances
for sources underlying values on the covariate totals 100: i.e., the within-cluster
variability X,, ~ N(0,25), each of the between-cluster variances X, ; and X5 ~
N(0,25), respectively, and the cell-interaction effects’ variability X, ~ N(0,25).
I manipulated the proportion of variance assigned to the clustering dimensions and
their interaction in the covariate equal to the variance in within-cluster variability to
simplify the proportion of each effect. Finally, I summed the effects from four sources
to generate values on the level-1 covariate.

Then, I generated level-2 random effects, including random effects for the
school and neighborhood dimensions, random interaction effects between school and
neighborhood dimensions, and level-1 errors. Under the scenarios where the exo-
geneity assumption was met, all random effects were independently sampled from a
normal distribution and uncorrelated with covariates. In other words, random school
and neighborhood effects were sampled from independent normal distributions with
means of 0 and variances of 7oy and 7x9, respectively. The random interaction effect
was generated to follow a normal distribution with a mean of 0 and a variance a
T(jkyoo- The level-1 errors were sampled from a normal distribution with a mean of 0

and a variance of o2.

'If the school ID is 30, the potential neighborhood IDs range from 61 to 66, which exceeds
neighborhood ID = 60. Therefore, if the generated neighborhood ID is greater than K = 60, I
subtracted 60 from the ID value so that the possible neighborhood ID range is between 1 and 6.
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Under conditions in which the exogeneity assumption is violated, I generated
the random neighborhood effect cogr to be correlated with the neighborhood source

of values for the level 1 covariate X :

pm
Cook =T X 4/ s—go X Xpk + Vook, (4.2)

where 7 is the correlation between the random neighborhood effects and the neigh-
borhood components of the level-1 covariates, and vgg, follows a normal distribution
with a mean of zero and variance of (1 —72)7400. The endogeneity may also be present
in one or both cross-classified factors or interaction terms. However, in this simula-
tion study, endogeneity was introduced only into the neighborhood dimension as a
starting point for this line of research.

After generating all the components, I calculated the outcome variable Yj;
based on the correlated-cell RE model with a random intercept and a level-1 covariate.
In a scalar form, the correlated-cell RE model in Equation 2.51 can be represented

by
Yigky = YuXw + 1, X0 + VokXok + V56X + bojo + ook + doji + €igry,  (4.3)

with the fixed effect intercept value generated to be zero. The correlated-cell RE
model was chosen so that the within-cluster, between-cluster, and cell-interaction

effects of the covariate can be generated, respectively.

4.1.2 Conditions

Table 4.1 lists the experimental factors manipulated in the simulation study.
Taking into account the data structure in the empirical example, the systematic re-
view, and conditions employed in related previous CCREM-focused simulation stud-
ies, I selected experimental factors anticipated to influence the performance of the

models and centering methods. The experimental factors included: (1) CCREM as-
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sumptions, (2) coefficient size for within-cluster, between-cluster, and cell-interaction
effects, (3) the number of clusters per dimension, (4) the number of level-1 students
nested within level-2 schools, (5) the IUCC for the between neighborhoods and cell-
interaction effects.

Table 4.1

Simulation Conditions

Experimental Factors Levels
CCREM assumptions All assumptions met
Exogeneity assumption violated
Coefficients size .01 (small), .02 (medium), or .04 (large)
Number of level-2 clusters, 2070 (small), 70x245 (medium), or 150x525 (large)

schools J x neighborhoods K

Number of level-1 students per school n; 30 (small) or 100 (large)

Neighborhood TUCC .05 (small), .15 (medium), or .25 (large)
Cell-interaction TUCC .00 (small), .05 (medium), or .15 (large)

Note. The ratio between level-2 clustering dimensions is 3.5:1. School IUCC is set to .05. The total
number of conditions is 2 x 3 X 3 X 2 x 3 x 3 = 324.

CCREM Assumptions

The first experimental factor is whether exogeneity can be assumed in the
CCREM. I generated conditions where the exogeneity assumption is met along with
other CCREM assumptions and other conditions in which the exogeneity assump-
tion is violated. For scenarios in which the exogeneity assumption is not violated, I
generated a random intercept CCREM in which the random effects are independent
of the covariate in the model. For conditions in which exogeneity is violated, data
was generated to fit an identical CCREM, except that one of the dimension’s (the
neighborhood’s) random effects was sampled as correlated with the level-1 covariate
(see Equation 4.2).

In the empirical data of Raudenbush and Bryk (2002), the correlation between
the covariates and the random neighborhood effects was between 0.056 and 0.078. In
Paterson (1991) data, the correlation was between 0.143 and 0.165. A larger correla-

tion value was investigated in previous simulation studies focused on the exogeneity
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assumption in multilevel models. For example, Castellano et al. (2014) used cor-
relation values of 0.2, 0.4, and 0.6 when they examined alternatives for handling
endogeneity in hierarchical data analyses. Their condition values were based on the
correlation between the school random effects and the socioeconomic status found in
the 1982 High School and Beyond survey data, which was 0.36. Thus, considering
these previous studies, I used a value of 0.4 to generate the correlation between the

random effects and the covariates.

Coefficient Size

In Lee and Pustejovsky (2023), the impact of the value of the coefficient for the
level-1 covariate on the model’s performance was negligible. However, the coefficients
examined in the previous study were the pooled effects of the covariates. The value
of each effect composing the pooled effect, i.e., within-cluster effects, between-cluster
effects, and cell-interaction effects, could still impact the model’s performance. Thus,
I manipulated the coefficient size and confirmed that the corresponding correlations

are reasonable. The value of the within-cluster effect can be calculated as ES =

sd(X;(5k))

Yo X Vi) For example, when the target coefficient value is 0.01, the within-cluster
v

dXign) 0.01 x 1% = 0.1. This effect size represents the

effect size would be ~,, x SAVr) 1

correlation between the within-cluster portion of the covariates and the corresponding
level-1 error components.

However, the calculation of between-cluster effects is more complicated in
CCREM. HLM calculates the between-cluster effect based on the within-cluster ef-
fect and the constraint of level-1 and level-2 correlation (Raudenbush & Bryk, 2002,
Chapter 3). To my knowledge, however, no previous study has demonstrated how
to calculate between-cluster effects in CCREM. Therefore, I examined the empirical
effect size for between-cluster and cell-interaction effects through simulated data to
determine whether these are plausible values under the manipulated conditions.

In the simulation study, I set the target coefficient value as 0.01, 0.02, and 0.04.
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The within-cluster, between-cluster, and cell-interaction coefficients were generated as
equal values to ensure stability in the coefficients. I fixed the number of clusters at 200
and set the number of replications to 10,000 to generate a sufficiently large population
of cross-classified data. The empirical correlations between the covariates and the
corresponding errors were calculated at each cluster and cell level. Figure 4.1 shows
the results of the empirical correlation and its estimate. This graph includes only those
simulation conditions that affected the correlation based on the ANOVA: Coefficient
v, Neighborhood IUCC, and Cell-Interaction IUCC. The empirical correlations were
all less than one and had the same order of magnitude as the ES parameter. Thus, I

concluded the effect size of 0.1, 0.2, and 0.4 would be plausible.

ICC(N) = 0.05| ICC(N) = 0.05 [CC(N) = 0.05| [CC(N) = 0.15 [CC(N) = 0.15| [CC(N) = 0.15| ICC(N) = 0.25| [CC(N) = 0.25] ICC(N) = 0.25
ICC(C)=0 | [cC(C) = 0.05 [CC(C) =0.15| | ICC(C)=0 | ICC(C) = 0.05| [CC(C) = 0.15] | ICC(C)=0 | [CC(C) = 0.05| [CC(C) = 0.15
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Figure 4.1. Correlation Parameter and Estimates for School, Neighborhood, and
Cell-Interaction Dimension.

Note. In the columns, ICC(N) and ICC(C) denote the IUCC conditions for
neighborhood and cell-interaction clustering dimensions, respectively. Columns 1, 4,
and 7 of the third line are blank because the empirical effect size for the cell
interaction effect was not calculated when the cell [IUCC was zero.
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Number of Level-2 Clusters

In an unbalanced cross-classified dataset, the number of clusters in each dimen-
sion often varies. For example, in Raudenbush and Bryk (2002)’s empirical example,
the number of schools was 17, whereas the number of neighborhoods was 524. In Pa-
terson (1991), the number of primary schools was 148, and the number of secondary
schools was 19. Thus, in determining the number of schools, I referred to the dimen-
sion with the smaller number of clusters based on the data collected in the systematic
review.

Using the results of my systematic review, I calculated the first, second, and
third quantiles of the smaller number of clusters for the school dimensions (21, 52,
and 158) and the larger number of clusters for the neighborhood dimensions (80, 303,
and 1,418). Each quantile represents a small, medium, and large condition for the
number of schools, respectively. Also, I considered the average ratio of 3.4 between
the two clustering dimensions to determine the number of clusters for the dimension
of the larger number of clusters proportional to the smaller number of clustering
dimensions. Considering these values, I used the condition of the smaller cluster as
20, 70, and 150 and calculated the larger number of clusters (e.g., neighborhoods) by
multiplying the number of schools by 3.5 (i.e., 70, 245, and 525) to set the conditions

closest to the empirical data conditions.

Number of Level-1 Students per School

In the systematic review, the first, second, and third quantiles of level-1 units
per cluster were 18, 95, and 436, respectively. On the other hand, the simulation
condition of the number of level-1 units per cluster in prior simulation studies has
typically been 20 and 40 (Meyers & Beretvas, 2006) or even as low as 10 (Luo & Kwok,
2009). Considering both empirical and simulation study values with an unbalanced
cross-classified design, I used two values for the number of level-1 units per school:

30 and 100.

103



The number of individuals per cluster is likely unbalanced in real world data.
In order to reflect the unequal cluster sizes in real data, [ sampled the sample size per
cluster from a normal distribution, with an average of the determined value and the
standard deviation of the value multiplied by 0.3. For example, if the condition was
30, then I generated the actual sample size per cluster by sampling from the normal
distribution with a mean of 30 and a standard deviation of 30 x 0.3 = 9. This allowed

the sample size per cluster to vary, creating an unbalanced cluster size design.

Neighborhood and Cell-Interaction IUCC

Based on empirical applications and multilevel modeling textbooks, IUCC
values for CCREM ranged from .01 to .24 (Meyers & Beretvas, 2006). Previous
simulation studies by Beretvas and Murphy (2013) and Meyers and Beretvas (2006)
investigated conditional ITUCC values of 0.05, 0.15, or 0.3. Further, IUCC was often
different per clustering dimension. In order to reflect the wide range of [IUCC values
in empirical studies and the unbalanced IUCC per dimension, I fixed a school IUCC
generating value of 0.05 and varied only the neighborhood IUCC and cell-interaction
[UCC values based on the condition. I used three conditional ITUCC generating values
of 0.05, 0.15, and 0.25 for the neighborhood dimension.

In the empirical applications in the previous section, the [UCC for the random
interaction effect varied between 0.08 to 0.25 and was not always smaller than the
school or neighborhood IUCC (see Tables 2.2 and 2.4). Therefore, for the IUCC
condition generating values for the cell-interaction IUCC, I used 0.05 and 0.15 as in
the neighborhood dimension and added a condition of zero to examine a case in which

there is no cell-interaction effect.

Distribution of the Number of Students in Cells

The generated cells formed based on the above conditions, i.e., the combina-

tions between the school and neighborhood clustering dimensions, should contain at
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least one level-1 student. An empty cell indicates that the corresponding combination
was not generated correctly. In the data generation process, I examined the distribu-
tion of the number of students present in the generated cells, as shown in Figure 4.2

and Table 4.2.
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Figure 4.2. Distribution of the Number of Students in Cells by the Number of Schools
and Number of Students per School

Table 4.2

Distribution of the Number of Students in Cells by the Number of Schools and Number
of Students per School

School ~ Students/School Min Q1 Q2 Q3 Max Mean SD

20 30 1 295 4.07 5.65 19 435 2.04
20 100 1 112 140 17.1 43 14.3  4.47
70 30 1 1 147 2 12 1.76 0.939
70 100 1 298 4.00 5.62 22 425 210
150 30 1 1 1 194 9 1.32  0.588
150 100 1 1 2 3 15 228 1.27

Figure 4.2 and Table 4.2 illustrate that each cell contains at least one level-1

student. However, when the number of level-1 students was small and the number of
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clusters was large, the number of students within the cell tended to be low as one.
The presence of only one student in a cell can lead to convergence issues, particularly
when employing cell-mean centering. In such cases, these cells with a single student
may result in zero variance after subtracting the cell mean from the covariate value.

I discussed the model convergence issue in more detail in the results section.

4.1.3 Performance Criteria

I evaluated the relative performance of CCREM centering methods, the two-
way FE-CRVE model, and the FE-RE hybrid model with an uncentered covariate
estimating level-1 coefficients using the following performance criteria: (1) relative
and absolute parameter bias, (2) root mean square error (RMSE), and (3) relative
bias of SE (Morris et al., 2019). First, relative parameter bias measures the relative

difference in the value of an estimate (T") relative to the true value (),

e (4.4)

where the acceptable cut-off value was suggested to be +0.05 (Hoogland & Boomsma,
1998).

Next, absolute parameter bias was calculated to compare the bias of each
model directly. Contrary to the relative parameter bias that calculates the propor-
tion of the estimate from the true value, the absolute parameter bias calculates the

difference between the two values,

T -9 (4.5)

Absolute parameter bias does not have a suggested criterion. However, a model with
smaller values is regarded as having better performance.
The RMSE of the coefficient estimator describes the overall accuracy of estima-

tion that accounts for both bias and the variance of the actual parameter estimates:
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1 Nsim

(T; = 0)2, (4.6)

Msim 2
where ng;,, is the number of replications. RMSE can describe the SE of the simula-
tion estimates at the same scale as the parameter estimates. Smaller RMSE values
represent greater accuracy, i.e., less bias and better precision (Burton et al., 2006;
Morris et al., 2019).

Finally, the relative bias of SE quantifies the difference in SE estimates from
the true (empirical) standard error relative to the scale of the true parameter,

SEp — Sr

— (4.7)

where SEp is the average of SE estimates across the replications, and Sp is the
population standard error for estimates of the true parameter. However, because
the true standard error is unknown, the empirical standard error from replications
calculated as the standard deviation of the parameter estimates is used instead. I used
the cut-off value of £0.1 for the acceptable relative bias of SE, based on Hoogland
and Boomsma (1998).

4.1.4 Analysis

I generated data for each condition using 1,000 replications. The performance
of each approach was evaluated using the criteria listed. I tracked the convergence
rates for each approach and performed additional replications so that the simula-
tion results could be calculated based on 1,000 converged replications per condition
and model. Monte Carlo standard errors (MCSE) per performance criterion were
calculated. Given the finite number of replications, MCSE describes the simulation
uncertainty using the SE estimates of the estimated performance (Morris et al., 2019).
Specifically, the MCSE of RMSE was calculated using the jack-knife technique (Efron
& Stein, 1981).
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I employed ANOVA to assess the degree to which coefficient estimates of each
method differed from others and determine to what extent each condition affected
the performance of each model. I reported the partial eta-squared (772) effect size
associated with the relevant condition being manipulated for each analysis to provide
a measure of the practical significance of effects. Based on the ANOVA results,
the simulation results were visualized graphically using box plots. The box plots
show the median and range of overall performance, including conditions not directly
represented in the graph. I used the X-axis as the main condition and the Y-axis as
the performance criterion and partitioned the panels by other conditions.

All simulations were performed on R 4.2.1 (R Core Team, 2022). I simulated
cross-classified data using custom-written R code, and estimated CCREM models
and the hybrid models using the lmer() function of the lme4 package, which employs
constrained optimization of a profiled log-restricted likelihood for REML estimator
(Bates et al., 2015). The two-way FE-CRVE model was estimated using the felm()

function of the lfe package (Gaure, 2013a).

4.2 Results

4.2.1 Preliminary Analysis

As a preliminary analysis, I calculated the convergence rates of each method
and presented its descriptive statistics in Table 4.3. Most methods have convergence
rates close to 1, but the within-cell RE and correlated-cell RE models using the cell-
mean centering had considerably lower convergence rates. The ANOVA examining
the effect of simulation factors on the convergence rates showed that the method and
cell IUCC have a particularly large effect size of 0.828 and 0.693, respectively (see
Table 6.1 in Appendix). I presented the convergence rates by methods and cell TUCC
in Figure 4.3, which demonstrates that the cell-mean centering methods exhibit the

lowest average convergence rate, especially when the cell [IUCC is 0. In other words,
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the low convergence rate observed in the cell-mean centering can be attributed to the

challenge of estimating the random effects caused by the low cell IUCC.

Table 4.3

Rate of Convergence of the Coefficient Estimates by Methods

Methods (%) Min. Q1 Mean Median Q3 Max
Uncentering 93.0 995 99.6 100.0 100.0 100.0
Grand-mean centering 93.0 99.5 99.6 100.0 100.0 100.0
Within-RE Model 95.6 99.6  99.8 100.0 100.0 100.0
CRE Model 92.8 99.50  99.6 100.0 100.0 100.0
Within-cell RE Model 31.6 80.7  87.7 949 98.7 100.0
Correlated-cell RE Model 226 526 779 89.7 97.05 100.0
FE-CRVE 100.0 100.0  100.0 100.0  100.0 100.0

Hybrid (School FE/ Neighbor RE)  95.2 100.0 100.0 99.9 100.0 100.0
Hybrid (School RE/ Neighbor FE)  92.8 100.0 99.45 100.0 100.0 100.0
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Figure 4.3. Rate of Convergence of the Coefficient Estimates by Methods and Cell
[uCcC

Further, when there is only one student in a cell, implementing cell-mean
centering may fail to converge because subtracting the average of the cell from the
raw covariates would result in zero variance. As previously shown in Figure 4.2, the

cells with only one student were often observed when the number of clusters condition
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was large as 70 or 150. However, considering that the effect size of the number of
clusters on the convergence rates was relatively small compared to the cell ITUCC
(77}% = 0.02, Table 6.1 in Appendix), the low number of students in a cell may have a
small impact on the low convergence rate.

Another potential factor contributing to low convergence rates, particularly in
the correlated-cell RE model, might be the presence of multicollinearity between the
cluster mean and cell mean. Since cells represent a combination of clustering dimen-
sions, there can be a high correlation between the cluster and cell means. I examined
the correlation between the cell mean and the school mean as well as the neighbor-
hood mean in the generated data (Table 4.4). Both dimensions exhibited a substantial
Table 4.4

Correlation between Cluster Mean and Cell Mean

Clustering Dimension Min. 1Q Mean Median 3Q Max
School 0.29 0.55  0.57 0.59 0.61 0.86
Neighborhood 0.54 0.62 0.66 0.70 0.79 0.95

correlation, with the cell mean demonstrating a slightly stronger correlation with the
neighborhood dimension, which suggests a higher chance of multicollinearity. This
correlation was influenced by the number of clusters with large effect size: 775 = 0.355
for the correlation between school mean and cell mean, and 77;% = 0.917 for the cor-
relation between neighborhood mean and cell mean (see Table 6.2 in the Appendix).
However, to take this into account, the correlated-cell RE model in the simulation
study utilized the adaptively centered cell mean, which is orthogonal to the two clus-
ter means. Thus, the effect of multicollinearity between the cluster means and the
cell means on the convergence rate was expected to be minimal. For methods with
an insufficient number of replications, additional replications were conducted to reach
1,000.

I also confirmed whether the number of neighborhoods was generated accu-

rately under the simulation conditions. To this end, I calculated the ratio of the
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average number of neighborhoods generated to the target number of neighborhoods
specified in the conditions (i.e., the average number of neighborhoods is obtained by
multiplying the number of schools by 3.5). Based on the results, there were no issues
with generating neighborhoods, as the lowest proportion was over 99%. (see Figure

6.1 in the Appendix).

4.2.2 Within-Cluster Effect

When illustrating the simulation results, I first conducted an ANOVA and
plotted the results on the box plots for conditions with the largest effect sizes on the
X-axis, rows, and columns. In the graph, several pairs of methods that produced the
same value of the within-cluster effect were combined: not centering and grand-mean
centering, the within-RE model and CRE model using cluster-mean centering, and
the within-cell RE model and correlated-cell RE model using cell-mean centering were

combined to simplify the graphs.

Parameter Bias

Table 4.5 reports the ANOVA results of relative and absolute parameter bias,
indicating that the method had the largest effect size (0.613) on the relative parameter
bias, followed by the assumption (0.423) and the coefficient size (0.183). The number
of students per school had a medium effect size (0.084). Similarly, the effect size
of the method (0.811), assumptions (0.672), and the number of students per school
(0.202) were substantial for absolute parameter bias. Thus, Figure 4.4 illustrates the
relative and absolute parameter bias as a function of the number of students per
school (X-axis), the assumption (columns), and the coefficient size (rows).

The methods that lie between the two dashed lines represent acceptable rela-
tive parameter bias (see Figure 4.4A). When all the CCREM assumptions were met,
almost all methods exhibited acceptable relative parameter bias. Only cell-mean cen-

tering showed a relative parameter bias outside of the acceptable range when the
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coefficient condition was 0.01, mainly when the number of students per school was as
low as 30. The unacceptable relative parameter bias associated with cell-mean cen-
tering could potentially be attributed to the MCSE of bias. However, the maximum

MCSE was as low as 0.029. Otherwise, the performance of cell-mean centering was

relatively decent.

Table 4.5

ANOVA Results on Relative and Absolute Parameter Bias of the Within-Cluster Ef-

fects for the Level-1 Covariate

Experimental Factors

Relative PB

Absolute PB

1

1y

Method 0.613 (large) 0.811 (large)
CCREM Assumption 0.423 (large) 0.672 (large)
Coefficient 0.183 (large) 0.001
Number of level-2 clusters (schools) 0.002 0.004
Number of level-1 students per school 0.084 (medium) 0.202 (large)
Neighborhood ITUCC 0.002 0.008
Cell IUCC 0.004 0.013 (small)

Note. PB indicates parameter bias; Small = .01, medium = .06, and large = .14;
ANOVA was conducted in a two-way factorial, but only the main effects are shown
in the table.

When the exogeneity assumption was violated, the performance of not cen-
tering, grand-mean centering, and the hybrid model handling schools as FE and
neighborhoods as RE was unacceptable. Only cluster-mean centering, cell-mean cen-
tering, FE-CRVE, and the hybrid model treating schools as RE and neighborhoods
as FE controlled the effects of the exogeneity assumption being violated. Given that
the exogeneity assumption was violated in the neighborhood clustering dimension,
the latter hybrid model seems to have avoided the correlation between covariates and
random effects because of the neighborhood dimension treating the neighborhood

dimension with FE.
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A. Relative Parameter Bias
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Figure 4.4. Relative and Absolute Parameter Bias of the Within-Cluster Effects for
the Level-1 Covariate.

Note. The maximum MCSE for relative and absolute parameter bias was 0.029 and
0.0003, respectively. Endogenous N. indicates the exogeneity assumption was
violated in neighborhood random effects.
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As shown in Figure 4.4B, the absolute parameter bias was close to zero when all
the assumptions of CCREM were satisfied. However, when the exogeneity assumption
was violated, the bias was pronounced for not centering, grand-mean centering, and
for the hybrid model, where schools were modeled as FE and neighborhoods as RE.
Specifically, the magnitude of the bias was always slightly larger for the hybrid model
than for not centering or grand-mean centering.

The number of students per school substantially affected the bias, with the
overall bias approximately ranging from 0.004 to 0.005 when the number of students
per school was as small as 30 and about 0.002 when the number of students per school
was 100. Also, it is worth noting that the magnitude of the absolute parameter bias
remained similar regardless of the coefficient’s size, unlike the relative parameter bias.

This implies that the bias observed is additive rather than multiplicative.

Root Mean Squared Error

In Table 4.6, the ANOVA results for RMSE shows that the simulation con-
ditions with the largest effect sizes for RMSE were the number of schools (0.938)
and the number of students per school (0.913). Although the effect sizes are rela-
tively small, method (0.727), assumption (0.440), and neighborhood IUCC (0.165)
also had large effect sizes. Figure 4.5 plots the RMSE using the number of students
per school (X-axis), the exogeneity assumption condition (rows), and the number of
schools (columns). A lower RMSE is interpreted as better performance.

In Figure 4.5, when the exogeneity assumption was satisfied, use of an un-
centered or grand-mean centered covariate in the CCREM had the lowest RMSE,
followed by hybrid approaches, cluster-mean centering, and FE-CRVE. The cluster-
mean centering and FE-CRVE had identical RMSEs. Cell-mean centering had the
highest RMSE compared to other methods, indicating that it loses efficiency com-
pared to the other methods.

When the exogeneity assumption was violated, the unbiased estimators, in-

114



Table 4.6

ANOVA Results on Root Mean Square Error of the Within-Cluster Effects for the
Level-1 Covariate

Experimental Factors 17]%

Method 0.727 (large)
CCREM Assumption 0.440 (large)
Coeflicient 0.003

Number of level-2 clusters (schools) 0.938 (large)
Number of level-1 students per school 0.913 (large)
Neighborhood TUCC 0.165 (large)
Cell IUCC 0.002

Note. Small = .01, medium = .06, and large = .14; ANOVA was conducted in a
two-way factorial, but only the main effects are shown in the table.

cluding cluster-mean centering, FE-CRVE, and a hybrid model that treats schools as
RE and neighborhoods as FE, had a lower RMSE than the other methods and ap-
peared to control for endogeneity well. This hybrid model showed slightly better (i.e.,
lower RMSE) performance among these methods. On the other hand, not centering,
grand-mean centering, cell-mean centering, and the hybrid model with the school
dimension as FE and neighborhood dimension as RE had relatively higher RMSEs
than the first group of methods.

Considering both bias and RMSE results, cell-mean centering specifically had
a trade-off that provided a similar degree of inefficiency as the use of the uncentered
CCREM but exhibited less bias for the assumption violation.

As expected, all methods generally had lower RMSEs as the number of clusters
increased. The number of students per cluster also had an overall positive impact
on performance. In other words, the RMSE tended to decrease as the number of
students per cluster increased, with the lowest RMSEs observed when the number of

students per cluster was around 100.
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Figure 4.5. Root Mean Square Error of the Within-Cluster Effects for the Level-1
Covariate.

Note. The maximum MCSE was 0.0003. Endogenous N. indicates the exogeneity
assumption was violated in neighborhood random effects.

Relative Bias of Standard Error

In Table 4.7, T investigated the influence of simulation conditions on the relative
SE bias using ANOVA. The results revealed that cell IUCC (0.278) and the number
of clusters (0.181) had the most substantial effect sizes, followed by method (0.132)
and the number of students per school (0.088). The violation of the assumption did
not have any substantial effect on the relative bias of SE (0.006). Thus, in Figure
4.6, the X-axis shows the number of students per school, while rows and columns
correspond to the cell [IUCC and the number of schools. The dashed lines at 0.9 and

1.1 indicate the acceptable range of relative bias of SE.
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Regarding the relative SE bias, only cell-mean centering consistently provided
valid inferences. The performance of other methods primarily depended on the cell
IUCC. The performance of all methods was acceptable when cell [IUCC was 0. How-
ever, when the cell IUCC value increased, other models except the cell-mean centering
did not capture the additional dependence of the two dimensions and showed unac-
ceptable performance. Even FE-CRVE, which captures the cell-interaction errors,

did not perform well when the cell [IUCC became large as 0.15.
Table 4.7

ANOVA Results on Relative Bias of Standard Error of the Within-Cluster Effects for
the Level-1 Covariate

Experimental Factors 7]}%

Method 0.132 (medium)
CCREM Assumption 0.006
Coefficient 0.007

Number of level-2 clusters (schools) 0.181 (large)
Number of level-1 students per school 0.088 (medium)
Neighborhood TUCC 0.002

Cell IUCC 0.278 (large)

Note. Small = .01, medium = .06, and large = .14; ANOVA was conducted in a
two-way factorial, but only the main effects are shown in the table.

Further, the impact of cell [IUCC on the performance of methods also depended
on the number of schools when the cell [TUCC is greater than 0.05. For example, when
the number of schools was 20, all methods except cell-mean centering estimated SEs
within the cut-off value. When the number of schools was large as 150, all methods
again performed acceptably, even when cell [UCC remained at 0.05. On the other
hand, methods other than cell-mean centering tended to produce underestimated SEs
when the number of students per school increased. For example, for larger cell ITUCC
of 0.15, all methods except cell-mean centering provided underestimated SE when the

number of students per school was 100 rather than 30.
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Figure 4.6. Relative Bias of Standard Error of the Within-Cluster Effects for the
Level-1 Covariate.

Note. The maximum MCSE was 0.071.

4.2.3 Between-Cluster Effect

Parameter Bias

For between-cluster effects, I considered only the CRE model and the correlated-
cell RE model that provide between-cluster effects of level-1 covariates. Table 4.8 dis-
plays the ANOVA results of parameter bias for school and neighborhood dimensions.
For the school dimension, the methods showed a medium effect on both relative and
absolute parameter bias. All simulation factors except cell IUCC exhibited large ef-
fect sizes. The number of schools has the greatest impact on the relative (0.891) and

absolute parameter bias (0.941). However, the order of effect size was different for
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the rest of the conditions by relative and absolute parameter bias. For the relative
parameter bias, it was followed by the assumption violation (0.611), the number of
students per school (0.488), neighborhood IUCC (0.310), and coefficient size (0.303).
For the absolute parameter bias, coefficient size (0.903) had the second most sub-
stantial effect size, followed by students per school (0.660), assumption (0.651), and
neighborhood IUCC (0.504).

Table 4.8

ANOVA Results on Relative and Absolute Parameter Bias of the Between-Cluster
Effects for the Level-1 Covariate

School Neighborhood
Experimental Factors (72)  Relative PB Absolute PB Relative PB Absolute PB
Method 0.071 (medium) 0.138 (medium) 0.000 0.004
CCREM Assumption 0.611 (large) 0.651 (large) 0.959 (large) 0.993 (large)
Coefficient 0.303 (large) 0.903 (large) 0.868 (large) 0.811 (large)
Number of schools 0.891 (large) 0.941 (large) 0.560 (large) 0.902 (large)
Number of students/school  0.488 (large) 0.660 (large) 0.169 (large) 0.579 (large)
Neighborhood TUCC 0.310 (large) 0.504 (large) 0.643 (large) 0.910 (large)
Cell IUCC 0.007 0.008 0.003 0.005

Note. Small = .01, medium = .06, and large = .14; ANOVA was conducted in a
two-way factorial, but only the main effects are shown in the table.

Regarding the neighborhood dimension, the largest effect was shown for the
exogeneity assumption (0.959 for relative bias and 0.933 for absolute bias), possibly
due to the dimension’s endogeneity. The coefficient size also has a substantial ef-
fect size (0.868), followed by the neighborhood IUCC (0.643), the number of schools
(0.560), and the number of students per school (0.169) for the relative parameter bias.
Further, for the absolute parameter bias, neighborhood IUCC (0.910) had the next
largest effect sizes for the neighborhood dimension, followed by the number of schools
(0.902), coefficient size (0.811), and the number of students per school (0.579). Con-
sidering the ANOVA results, I drew Figures 4.7 and 4.8 with the number of students
per cluster on the X-axis and the exogeneity assumption condition, and the number

of schools on the rows and columns.
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In Figure 4.7, the between-cluster effects for the school dimension exhibited
poor relative and absolute parameter bias overall. Only a few cases appeared to
fall within an acceptable range, depending on the number of students per school.
This parameter bias could be attenuation bias due to using observed mean centering
instead of latent mean centering. In other words, the bias in the observed cluster
mean due to the insufficient number of students per cluster compared to the cluster
population means could have led to the larger attenuation bias.

When the exogeneity assumption was met, the correlated-cell RE model per-
formed a little worse than the CRE model when the number of schools was small.
Otherwise, the differences between the CRE and correlated-cell RE models was min-
imal. The school dimension showed partially acceptable performance only when the
number of students per school was large as 100. When the exogeneity assumption was
violated, the relative and absolute parameter bias of the school dimensions showed
a very slight decrease. This may be because the endogeneity in the neighborhood
dimension did not largely affect the between-cluster effect in the school dimension.
Further, the relative parameter bias in the school dimension became unacceptable in
cases where the number of students per school was 100 and the number of schools
was 70.

Figure 4.8 depicts the same plot for the neighborhood dimension. When the
exogeneity assumption was met, the neighborhood dimension showed comparable
relative and absolute parameter bias to the school dimension’s performance. In other
words, the parameter bias observed in between-cluster effects in the neighborhood
dimensions could also be attributed to attenuation bias, similar to the between-cluster
effects in the school dimension. The difference in the CRE and correlated-cell RE
models was noticeable only when the number of schools was small. In all other cases,

the two models demonstrated similar levels of parameter bias.
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A. School: Relative Parameter Bias
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Figure 4.7. Relative and Absolute Parameter Bias of the Between-School Effects for

the Level-1 Covariate.

Note. The maximum MCSE for relative parameter bias in the school dimension was

Number of Students per School

CRE [1 Correlated-cell RE

0.049, while the maximum MCSE for absolute parameter bias was 0.001.
Endogenous N. indicates the exogeneity assumption was violated in neighborhood
random effects.
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A. Neighborhood: Relative Parameter Bias
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Figure 4.8. Relative and Absolute Parameter Bias of the Between-Neighborhood
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Effects for the Level-1 Covariate.

Note. The maximum MCSE for relative parameter bias in the neighborhood
dimension was 0.036, while the maximum MCSE for absolute parameter bias was
0.0004. Endogenous N. indicates the exogeneity assumption was violated in

neighborhood random effects.
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When the endogeneity was introduced into the neighborhood effect, substan-
tial overestimation was observed for the between-cluster effect in the neighborhood
dimension, unlike that in the school dimension. This overestimation was unique in
the neighborhood dimension, which could be seen as an additive bias in addition to
the attenuation bias for the neighborhood coefficients. This tendency was seen across
conditions with endogenous neighborhood effects.

Also, as the ANOVA results demonstrated, the number of students per cluster
and the number of schools substantially impacted the parameter bias of the between-
cluster effect. Specifically, when the number of students per school reached 100 while
the number of schools was 150, the relative parameter bias was marginally, but not
perfectly, within the acceptable range, except for the neighborhood dimension when
the assumption was violated. On the other hand, when the number of students per
school was as small as 30, the relative parameter bias exceeded or was below the
cut-off criteria.

To explore the results further, I plotted additional simulation conditions with
substantial effect sizes. Figures 6.2 and 6.3 (see the Appendix) show the results for
the school and neighborhood dimensions, respectively, with neighborhood ITUCC plot-
ted in the column instead of the number of schools. Higher ITUCCs were associated
with more acceptable performance in the school dimension in all conditions. In con-
trast, higher ITUCCs were associated with more overestimation in the neighborhood
dimension when the exogeneity assumption was violated.

Moreover, when the exogeneity assumption was not satisfied, the magnitude of
the parameter bias in the neighborhood dimension seems substantially affected by the
coefficient size (Figures 6.4 and 6.5 in Appendix). Considering the relative parameter
bias, the magnitude of this bias decreased as the coefficient size increased. However,

the parameter bias of the between-neighborhood effect remained unacceptable.
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Root Mean Squared Error

The ANOVA results in Table 4.9 reveal simulation factors that affected the
RMSE. All simulation conditions showed a substantial impact on the school dimen-
sion. The most considerable effects were observed for the number of schools and
coefficient size, with effect sizes of 0.987 and 0.849, respectively. The simulation fac-
tors with the following large effect sizes were students per school (0.722), exogeneity
assumption (0.445), and neighborhood IUCC (.316), in order. In the neighborhood
dimension, the number of schools had a relatively minor impact (0.007). Instead, the
conditions with a substantial impact on the neighborhood dimension were assumption
violation (0.962), followed by neighborhood IUCC (0. 894), and students per school
(0.169).

Table 4.9

ANOVA Results on Root Mean Squared Error of the Between-Cluster Effects for the
Level-1 Covariate

School Neighborhood
Experimental Factors np 771%
Method 0.046 (small) 0.000
CCREM Assumption 0.445 (large)  0.962 (large)
Coeflicient 0.849 (large) 0.036 (small)

Number of level-1 students per school 0.722 (large) 0.169 (large)
Neighborhood ITUCC 0.316 (large) 0.894 (large)

(
(large)
(large)
Number of level-2 clusters (schools) 0.987 (large) 0.007
(large)
(large)
Cell IUCC 0.150 (large) 0.029 (small)

Note. Small = .01, medium = .06, and large = .14; ANOVA was conducted in a
two-way factorial, but only the main effects are shown in the table.

In Figure 4.9, 1 present the RMSE, with the number of students per school
on the X-axis and the assumption in the rows. In the columns, the coeflicients were
drawn for the school dimension depending on the factors that influenced their RMSE
(Figure 4.9A), while the neighborhood IUCC condition was placed instead of the

coefficient size in the neighborhood dimension (Figure 4.9B).
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On the school dimension, the CRE and correlated-cell RE models yielded com-
parable results in all conditions (see Figure 4.9A). Similar to the results of parameter
bias, the violation of the exogeneity assumption did not significantly affect the school
dimension. However, the RMSE appeared to decrease as the number of students per
school increased. This is likely due to the larger number of students per school, re-
sulting in the model’s cluster mean being calculated closer to the population mean.
The number of schools also positively impacted RMSE, with increasing school sizes
leading to decreased RMSE (see Figure 6.6 in Appendix). However, the effect of the
coefficient size was the opposite: as the coefficient size increased, the RMSE also
increased, indicating less accuracy.

In the neighborhood dimension, both the CRE and correlated-cell RE models
showed similar RMSE (see Figure 4.9B). If all the assumptions were met, the RMSE
was slightly lower when the number of students per school was 100 compared to when
it was 30, as in the school dimension. However, when the exogeneity assumption was
violated, the RMSE became much higher, with great variation across conditions. The
impact of the number of students per school reversed, with higher RMSE observed
when the number of students per school was as large as 100. Even though the in-
creased number of students per school enables calculating a more accurate cluster
mean, it harms the accuracy of the between-cluster effect when the exogeneity as-

sumption is violated. Moreover, as in the school dimension, higher ITUCC increased

the RMSE.
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Figure 4.9. Root Mean Squared Error of the Between-Cluster Effects for the Level-1

Covariate.

Note. The maximum MCSE was 0.001 for the school dimension and 0.0004 for the
neighborhood dimension. In the neighborhood dimension (B), the IUCC condition
in columns indicates neighborhood IUCC. Endogenous N. indicates the exogeneity

assumption was violated in neighborhooc} 2r§mdom effects.



Relative Bias of Standard Error

Table 4.10 presents the ANOVA results for the relative bias of SE. Unlike the
parameter bias and RMSE, the relative bias of SE did not appear to be substantially
affected by the simulation conditions. For the school dimension, the effect sizes of the
number of schools (0.027), the coefficient size (0.036), and the number of students
per school (0.015) were very small. The exogeneity assumption had a small effect on
the neighborhood dimension (0.049), along with the coefficient size (0.072), number

of schools (0.050), and number of students per school (0.013), in effect size order.
Table 4.10

ANOVA Results on Relative Bias of Standard Error of the Between-Cluster Effects
for the Level-1 Covariate

School Neighborhood

Experimental Factors 7712) 771%

Method 0.003 0.006
CCREM Assumption 0.002 0.049 (small)
Coeflicient 0.036 (small) 0.072 (small)
Number of level-2 clusters (schools) 0.027 (small) 0.050 (small)
Number of level-1 students per school 0.015 (small) 0.013 (small)
Neighborhood TUCC 0.005 0.005

Cell IUCC 0.000 0.004

Note. Small = .01, medium = .06, and large = .14; ANOVA was conducted in a
two-way factorial, but only the main effects are shown in the table.

In Figure 4.10, I plotted the number of schools on the X-axis. The exogeneity
assumption and coefficient sizes were plotted in the rows and the columns, respec-
tively. Overall, the relative bias of SEs was within an acceptable range, except for a
few instances. In the school dimension in Figure 4.10A, the CRE model performed
well when the exogeneity assumption was met, except for cases where the number
of schools was as small as 20, and the coeflicient size was larger than 0.02. The
performance of the correlated-cell RE model was relatively decent regardless of the

number of schools. The violation of the exogeneity assumption had little impact on
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the performance of the school dimension’s between-cluster effect. Although some of
the CRE model results showed an unacceptably underestimated SE when the number
of schools was as small as 20, the rest demonstrated an acceptable bias of SE.

In the neighborhood dimension (see Figure 4.10B), the relative bias of SE was
acceptable depending on the coefficient size. When the coefficient sizes were 0.01
and 0.02, violation of the assumption had little effect on the results, and most of the
results fell within an acceptable range. However, when the coefficient size was 0.04
and the exogeneity assumption was met, the relative bias of SE in the correlated-cell
RE model was overestimated and not acceptable. Conversely, when the coefficient
size was 0.04 and the exogeneity assumption was violated, more cases showed an
underestimated SE, especially when the cluster size was less than 70. The number of
schools also influenced the relative bias of SE. When the exogeneity assumption was
met, a greater number of schools resulted in an unacceptable bias of SE. On the other

hand, a smaller number of schools showed the biased SE below the cut-off value.
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Figure 4.10. Relative Bias of Standard Error of the Between-Cluster Effects for the
Level-1 Covariate.

Note. The maximum MCSE was 0.066 for the school dimension and 0.063 for the
neighborhood dimension. Endogenous N. indicates the exogeneity assumption was
violated in neighborhood random effects.
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Chapter 5

Discussion

The CCREM has been used to analyze cross-classified data. However, research
has not assessed the robustness of results when the exogeneity assumption is violated.
In this study, I focused on the exogeneity assumption. Using a systematic review,
I examined how this assumption has been addressed in previous studies using the
CCREM. Specifically, I examined ten years of CCREM studies outlining the model’s
characteristics, including the testing of the exogeneity assumption and the use of
covariate centering. This study is the first systematic review of the methodology
used in applied CCREM research based on analogous work in previous systematic
reviews of HLM research (Antonakis et al., 2021; Dedrick et al., 2009; Luo et al.,
2021).

I also conducted a simulation study to provide researchers with alternatives
that account for the possibility of violating the exogeneity assumption. I first pre-
sented the adaptive centering method proposed in Raudenbush (2009) and extended
it to the CRE model, enabling the estimation of both within- and between-cluster
effects of the covariate. Then, considering that interactions between dimensions can
occur for cross-classified data (Shi et al., 2010), I proposed a cell-mean centering
approach, including the within-cell RE and correlated-cell RE model.

FE approaches can provide alternative methods for handling endogeneity in
cross-classified data. Cameron et al. (2011) proposed two-way FE-CRVE providing
robust estimators when focusing on the within-cluster effects of level-1 covariates.
Lee and Pustejovsky (2023) have shown that FE-CRVE outperforms CCREM using
the raw value of the covariates when the exogeneity assumption is violated. In this
paper, I adopted CCREM with adaptive centering, an equivalent estimator to the
FE-CRVE. Finally, I proposed a hybrid method that models the cross-classified data

using FE in one dimension and RE in one dimension.
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My simulation study centered on a comparative evaluation of the above meth-
ods under conditions with imbalanced cross-sectional data. I focused on the within-
and between-cluster effect coefficients of level 1 covariates. This section will sum-
marize the study’s findings and discuss the limitations and potential extensions for
future research. Additionally, I will discuss the implications of data analyses by ap-

plied researchers.

5.1 Summary of Findings

5.1.1 Systematic Review

In the systematic review, I examined how exogeneity assumptions have been
addressed in previously published CCREM studies and whether the corresponding
alternatives (e.g., cluster-mean centering) have been selected accordingly. Considering
study characteristics, CCREM was more frequently used in cross-sectional studies
where individuals are included in multiple clusters rather than in longitudinal studies.
The size of the cross-classified datasets varied widely, ranging from fewer than 20
clusters in the smallest study to nearly 1400 clusters in the largest study.

The multilevel structure of the cross-classified data was typically reflected in
the model, although some simplifications were often made. For example, when the
cross-classified data had more than three levels, researchers sometimes omitted one
of the higher levels at their discretion, resulting in a model with fewer levels. A
systematic review of HLM has also reported similar scenarios (Luo et al., 2021). Sim-
ple two-way models were most often used when there were more than two clustering
dimensions in HLM data (e.g., age, period, and cohort).

The assumptions underlying CCREM have not been adequately assessed in
practice. Particularly, the exogeneity assumption appeared to be neglected in the
CCREM literature. Very few studies mentioned this assumption or considered the

consequences if it was violated. Furthermore, fewer than 2% of CCREM studies at-
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tempted to address or mitigate the impact of endogeneity using sensitivity analyses or
centering techniques. This tendency was comparable to results found in the system-
atic review of HLM, where only 4% of studies evaluated the exogeneity assumption
(Antonakis et al., 2021). Compared to the normality and homoscedasticity assump-
tions, the low percentage of studies considering the exogeneity assumption may be
due to a lack of clear methods for evaluating this assumption with the CCREM.
Also, as with other kinds of models, it can be challenging for researchers to identify
the potentially omitted variables. These findings imply that a substantial number of
studies may have overlooked the potential consequences of violating the exogeneity
assumption.

In terms of centering, 36% of the CCREM studies were found to use grand-
mean centering for level-1 or higher level covariates. However, grand-mean centering
alone is insufficient for remedying violations of the exogeneity assumption. The per-
centage of studies implementing cluster-mean centering, which reduces the impact of
this assumption violation, was 10%, less common than grand-mean centering. Com-
pared to HLM studies that used cluster-mean centering in 28% of selected studies
(Luo et al., 2021), a smaller percentage of CCREM studies have utilized cluster-mean
centering.

It was surprising that none of the CCREM studies that used the within-RE
model and cluster-mean centering correctly centered their data on multiple cross-
classified dimensions. Calculating cluster-mean-centered covariates has often consid-
ered only one clustering dimension. Such cluster-mean centering can pose problems
in CCREM as it fails to account for potential endogeneity in the other clustering
dimension. If the remaining clustering dimension has endogeneity, it can lead to a
violation of the exogeneity assumption and undermine the robustness of the results.

Regarding the software used in the literature, CCREM studies used more di-
verse software than HLM literature (Luo et al., 2021). HLM software was found to

be used in about half of applied HLM studies, whereas MLwiN and R were most
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commonly used in about 40 percent of the applied CCREM studies that were re-
viewed. Further, the most frequent estimation method use in CCREM studies was
the Bayesian approach, which provides more reasonable results with the high com-
plexity of the variance structure of the model (Baldwin & Fellingham, 2012), followed
by ML and REML.

In conclusion, the systematic review revealed that the assessment and han-
dling of assumptions in CCREM studies, particularly the exogeneity assumption, was
lacking. Only a very small proportion of studies considered the consequences of vi-
olating this assumption and employed techniques to address it. Although centering
techniques like cluster-mean centering were used in a few studies, the practice of
centering covariates on multiple cross-classified dimensions was surprisingly absent.
This practice of cluster-mean centering could be due to the lack of clear guidelines
within the context of CCREM. Also, this oversight can lead to inadequate handling
of potential endogeneity in cross-classified data, compromising the robustness of the
results. Thus, this study emphasized bridging this gap by proposing alternative ap-
proaches that provide more accurate statistical inferences when confronted with the

potential violation of the exogeneity assumptions.

5.1.2 Simulation Study

Considering the issues in the systematic review, the simulation study evaluated
various proposed techniques for managing violations of the exogeneity assumption
in cross-classified data. I generated unbalanced cross-classified data and compared
the performance of different methods, including not centering, grand-mean center-
ing, cluster-mean centering, cell-mean centering, FE-CRVE, and two hybrid models

incorporating FE and RE on each clustering dimension, respectively.
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Within-Cluster Effect

The simulation study results demonstrated that the best method for estimating
the within-cluster effects for the level-1 covariates depended on whether the exogene-
ity assumption was met. When the exogeneity assumption was met, all the methods
showed acceptable levels of relative parameter bias and negligible absolute parame-
ter bias with a decent relative SE bias. In RMSE, however, there was a disparity
observed across the methods. Uncentered CCREM and grand-mean centering consis-
tently demonstrated the best performance, followed by hybrid models, cluster-mean
centering, and FE-CRVE with small differences. As expected, the performance of
cluster-mean centering and FE-CRVE was the same. On the other hand, cell-mean
centering showed the highest RMSE, indicating the lowest accuracy even when the
exogeneity assumption was met. Specifically, the performance of cell-mean centering
was worse when the number of schools and students per school was lower.

When the exogeneity assumption was violated, there was a noticeable decline
in the performance of not centering, grand-mean centering, and the hybrid model
treating the school clustering dimension as FE and the neighborhood dimension as
RE, in addition to the cell-mean centering. In particular, CCREM with uncentered
and grand-mean-centered covariates resulted in unacceptably biased coefficient esti-
mates because these approaches provided the pooled effect of the covariates. The
pooled effect is likely to be biased due to the bias in the between-cluster effect when
the exogeneity assumption was not met.

The hybrid model, which specified the school dimension as FE and the neigh-
borhood dimension as RE, also produced unacceptable parameter estimates. By
specifying neighborhood dimensions as RE without controlling for its potential en-
dogeneity, the between-cluster effects in the neighborhood dimension may have been
confounded with the within-cluster effects. As a result, the estimated coefficient for
within-cluster effects might have been overestimated compared to other methods.

Even though the exogeneity assumption was violated, cluster-mean centering,
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FE-CRVE, and the hybrid model, where the school dimension was treated as RE
and the neighborhood dimension was treated as FE, consistently performed well as
measured using the RMSE, particularly when the number of clusters exceeded 70.
Among these methods, the hybrid model provided a slightly more accurate estimator
than FE-CRVE and cluster-mean centering, with the latter two methods exhibiting
the same RMSE. These findings suggest that when the hybrid model addresses the
endogeneity in the correct clustering dimension through FE, the accuracy of the
methods improves compared to the FE-CRVE and cluster-mean centering, even when
the remaining clustering dimension was modeled with RE.

Cell-mean centering consistently exhibited poor performance in terms of RMSE
when the exogeneity assumption was violated. The low accuracy in cell-mean center-
ing can be attributed to its higher variance in the estimator, although the estimator
was unbiased. Not centering, grand-mean centering, and the hybrid model that used
FE on the school dimension and RE on the neighborhood dimension additionally
showed higher RMSE when the endogeneity was introduced in the neighborhood
dimension. This implies that uncontrolled endogeneity in neighborhood dimension
diminishes the accuracy of the estimator in these methods.

Lastly, the performance of the relative SE bias was not strongly related to the
violation of the exogeneity assumption. Instead, the relative SE bias varied as a func-
tion of the cell IUCC, the number of schools, and the number of students per school.
When the cell [IUCC was zero, indicating no cell-interaction random effect, all models
demonstrated a favorable relative SE bias. However, when the cell IUCC increased
to 0.15, only cell-mean centering consistently estimated an acceptable SE under all
conditions. When the number of schools was small and the number of students per
school was large, all models except for cell-mean centering showed unacceptably low
SEs. It is worth noting that despite accounting for the cell-interaction random ef-
fect, FE-CRVE also exhibited underestimated SEs, similar to other models. In other

words, the performance of FE-CRVE and cell-mean centering may differ in estimating
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SE, even when they account for cell-interaction random effects.

Between-Cluster Effect

The between-cluster effect was available only in the CRE and correlated-cell
RE models. Although the CRE model consistently provided slightly better rela-
tive and absolute parameter bias than the correlated-cell RE model, the difference
between the two centering methods was minimal when the exogeneity assumption
was met. However, when the exogeneity assumption was violated, the parameter
estimates of the CRE and correlated-cell RE model were found to be slightly more
downward biased for school clustering dimensions. In contrast, in the neighborhood
clustering dimension, the CRE and correlated-cell RE models exhibited substantially
overestimated parameter estimates when endogeneity was present.

The number of students per school greatly affected the relative and absolute
parameter bias for between-cluster effects. Specifically, in the school dimension, the
between-cluster effects in the two methods performed better as the number of students
per school increased. This impact was also seen in the neighborhood dimension when
the exogeneity assumption was met. Considering that the greater number of students
per school can result in cluster sample mean values closer to the population mean,
this effect seems reasonable. In other words, there could be an attenuation bias in
the observed parameter bias based on the number of students sampled per school.
Thus, in the data condition with a small number of students per school, an alternative
approach, such as latent-mean centering, has been suggested to reduce the attenuation
bias in estimating between-cluster effects.

However, unlike the scenario in which increasing the number of students per
school had mitigated bias from other conditions, the increased number of students per
school did not improve the parameter bias when endogeneity existed in the neighbor-
hood dimension. This indicates that the bias due to endogeneity may have been larger

than the attenuation bias when the endogeneity was presented in the neighborhood
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dimension.

Regarding RMSE, both methods demonstrated similar performance, although
the CRE model often showed slightly better RMSE. The impact of the number of
students per school on the RMSE was similar to that on the parameter bias. In the
school dimensions, or when the exogeneity assumption was met in the neighborhood
dimension, a larger number of students per school resulted in a more accurate pa-
rameter estimate. However, when the exogeneity assumption was violated, a greater
number of students per school led to higher RMSE, indicating lower accuracy. The
neighborhood IUCC was another critical factor negatively associated with the RMSE
in the neighborhood dimension. In cases where endogeneity was present, lower [UCC
provided a better RMSE for the parameter estimate.

For the relative bias of SE, both the CRE and correlated-cell RE models gen-
erally showed acceptable performance. However, when the exogeneity assumption
was violated, the relative bias of SE was found to be unacceptable in the neighbor-
hood dimension when the number of schools was less than 70. This tendency was

particularly noticeable when the coefficient size was large as 0.04.

5.2 Limitations and Future Directions

Several limitations of this simulation study should be noted for future research.
First, I primarily focused on cases where the exogeneity assumption is violated for a
specific clustering dimension. However, as briefly mentioned in the Data Generation
section, there is no guarantee that the exogeneity assumption is violated in only one
clustering dimension. Instead, it can be violated in multiple clustering dimensions or
even in interaction terms between the clustering dimensions. In particular, the viola-
tion of the exogeneity assumption in interaction terms is a unique scenario that can
only occur in cross-classified data. In such cases, cell-mean centering can offer a more
robust performance than cluster-mean centering by simultaneously accommodating

endogeneity in multiple clustering dimensions and interaction terms. On the other
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hand, the cluster-mean centering recommended in this study is limited to addressing
endogeneity only within the clustering dimension that includes the cluster-mean-
centered covariate. Thus, to assess the impact of endogeneity when the exogeneity
assumption is not limited to a single clustering dimension, further simulation studies
on an extended range of the exogeneity assumption are needed.

Further, this study did not address the other assumptions in CCREM, namely
the homogeneity assumption, the linearity assumption, and the normality assumption.
In the case of the normality assumption, the HLM, especially the random intercept
model, is robust to the non-normal random effects (McCulloch & Neuhaus, 2011).
For the homogeneity assumption, Hedeker et al. (2008) and Lee and Nelder (2006)
proposed a mixed-effects location-scale model that relaxes the homogeneity assump-
tion by modeling variance differences (for applications, see Leckie et al., 2014; Rast et
al., 2012). In a mixed-effects location-scale model, the homoscedasticity assumption
posed at level-1 was relaxed by modeling it as a log-linear function of the level-1 and
level-2 covariates and associated level-2 random effects. Brunton-Smith et al. (2012)
later extended this model and showed how it could be used for cross-classified data.

To the best of my knowledge, however, the performance of mixed-effects lo-
cation scale models on cross-classified data has not been compared to other models
suggested in this study. For example, the alternatives of using OLS or FE using
CRVE also avoid the homogeneity assumption when analyzing cross-classified data.
Future research could compare two-way mixed-effects location-scale models to other
CRVE methods to determine their differences and trade-offs. Also, a future study
can further examine whether CCREM can simultaneously avoid the exogeneity and
homogeneity assumptions by incorporating covariate centering into these models.

Second, the CRE and correlated-cell RE models employed an observed mean
centering approach to calculate the cluster means. As discussed earlier, the simulation
results demonstrated that increasing the number of students per school reduced bias

when estimating between-cluster effects, suggesting that this bias may be attenuation
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bias. Unless all students in the school are sampled, the observed mean introduces
measurement error in the calculating sample cluster means, even with a large number
of students per school. In such cases where the number of sampled units from the true
population is insufficient (i.e., sampling ratio), the latent mean centering approach was
recommended as it accounted for measurement error while estimating the contextual
effects (Liidtke et al., 2008). The effectiveness of latent mean centering in hierarchical
data also depended on the aggregation process (Grilli & Rampichini, 2011; Liidtke
et al., 2008).

The sampling ratio may vary across clustering dimensions in cross-classified
data, potentially resulting in an increased discrepancy between the observed mean
and latent mean centering. In future studies exploring latent mean centering, incor-
porating the sampling ratio as a simulation condition might be essential. This can be
achieved by generating a finite number of units in each clustering dimension and then
manipulating the sampling ratio to determine the number of students per school. In
this case, it would be critical to manipulate the sampling ratio on multiple cluster
dimensions at the same time to consider a cross-classified data structure. Moreover,
adaptive centering using the FWL theorem used in this study also has never been
compared to latent mean centering. The adaptive centering technique accommodates
imbalanced data and can provide a consistent estimate that takes into account the
small number of samples present in each cell. Thus, future research may compare and
evaluate the performance of latent mean centering and adaptive centering considering
different sampling ratios of clusters.

Third, the simulation study used a large enough number of cluster conditions
to obtain acceptable performance, similar to the approach in large-scale survey data.
In other words, this simulation study did not have to consider small sample correc-
tions. However, it is typical for researchers to have financial constraints and practical
limitations in collecting a sufficient number of clusters (Maas & Hox, 2005). For

example, in the results of the systematic review, the Q1 of the number of clusters
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recorded with the smaller of the two clustering dimensions was 21 (see Table 3.2).

However, as shown in the simulation results, the number of clusters substan-
tially impacted the performance, including the parameter bias of the between-cluster
effect, RMSE, and the relative SE bias for both within- and between-cluster effect
estimates. In this sense, exploring the robustness of CCREM studies with fewer
clusters would be necessary. For example, future studies can address small-sample
corrections, such as the Kenward-Roger correction, proposed for linear mixed models
(Kenward & Roger, 1997). Investigating the impact of small-sample corrections on
the performance of CCREM estimates could provide practical solutions for applied
researchers.

Fourth, the random intercept model, the simplest form of CCREM, was used
to generate data and estimate the CCREM in the simulation study. The systematic
review results indicated that more than 80 percent of recent CCREM studies used
the random intercept model. Thus, the random intercept model might be a good
starting point for comparing alternatives when the exogeneity assumption is violated.
In practice, however, the CCREM can be more complex. For instance, modeling a
random slope for a covariate allows researchers to test the assumption that the slope
varies between clusters.

Further, the performance of a random intercept model and a random slope
model of CCREM may not be comparable. Lee and Pustejovsky (2023) revealed that
performance becomes worse when random slopes are misspecified in CCREM than
when random slopes are correctly modeled, even when all other assumptions are met.
In light of this, even when cluster-mean centering is employed, if the random slope
is not correctly modeled, it may not perform as well as other alternatives, such as
FE-CRVE. Thus, future research should investigate the strengths and limitations of
available centering methods when more diverse random effect structures are utilized.

Another aspect that this simulation study did not consider was the estimation

of the variance component. Instead, this study mainly focused on covariates’ coef-
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ficient estimates (i.e., fixed effects) to assess the performance of different centering
methods. However, in the context of RE models, including CCREM, the variance
component is an essential indicator to be reported. Specifically, the variance com-
ponent is used to calculate the [TUCC (ICC in HLM), which provides information on
the degree of clustering in each dimension. If the variance component is biased (e.g.,
overestimated) in specific clustering dimensions due to the endogeneity, for example,
the results of IUCC might not be accurate. In particular, considering the variance
components in the empirical examples I have described above, the value of the vari-
ance component varied depending on different centering approaches, the inclusion of
cluster means, or random interaction effects in the RE models. Therefore, evaluat-
ing the unbiased estimation of the variance component in each model and different
conditions might be as critical as assessing the bias of the coefficient estimates.

Fifth, when specifying the hybrid model in the simulation study, I used an un-
centered covariate instead of employing centering methods. The uncentered covariate
was used to examine the performance degradation of the coefficient of the within-
and between-cluster effect when the endogeneity was not properly handled in one
clustering dimension. However, the cluster-mean-centered covariate could be used
instead of the raw covariate in the hybrid model to handle the potential endogeneity.
Using a cluster-mean-centered covariate in the hybrid model is expected to eliminate
potential correlations between the covariate and the random effects that cannot be
accounted for with fixed effects for one dimension alone. Although this approach
would have added complexity to the model, using cluster-mean centering would en-
able the hybrid model to address the endogeneity issue in the dimension specified
with RE while providing coefficients comparable to those obtained in an FE model.
Future research should include these extensions of the hybrid model to evaluate the
performance compared to different alternatives.

Finally, the number of students per cell should be considered as an additional

condition in future simulation studies. While the number of students per school is
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a typical indicator of the size of the level-1 unit in hierarchical data, cross-classified
data requires considering both the number of students per cluster and the number of
students per cell as relevant conditions. In this study, I addressed the potential effect
of the number of students per cell in Appendix 6.3. The ANOVA results demonstrated
that the number of students per cell exhibits some impact on the performance of the
within and between-cluster effects. However, the simulation conditions were not fully
exhaustive because the number of students per cell was an ad-hoc calculation based on
the existing other conditions (i.e., the number of clusters and the number of students
per school). A more systematic approach is required to obtain a comprehensive
understanding of how the number of students per cell influences the performance of
within and between-cluster effects. For example, in cases where the number of schools
is 20 and the number of students per school is 30, it would be essential to incorporate
conditions representing small and large numbers of students per cell, respectively, to

obtain accurate insights into the impact of this variable.

5.3 Implications for Data-Analysis Practice

Based on the findings of this study, several suggestions for future research can
be made. First, it is essential to improve researchers’ awareness of the exogeneity
assumption, the impact of ignoring it and how best to handle it. The exogeneity
assumption has a substantial impact on the performance of the within- and between-
cluster coefficient estimation in CCREM and should be considered and handled with
the same level of priority as other assumptions, such as normality, linearity, and
homoscedasticity.

To address this issue of exogeneity assumptions not being considered, I suggest
a sensitivity analysis involving multiple models discussed in the simulation study
to the same cross-classified data to assess how the coefficients’ values might vary.
The sensitivity analysis requires two models: one that provides consistent within-

cluster effects (e.g., cluster-mean centering or cell-mean centering, or FE-CRVE) and
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a pair of hybrid models that alternately assumes RE and FE for each cross-classified
dimension. The within-cluster effects reported by the aforementioned models will
serve as a benchmark for evaluating the endogeneity assumption. If RE is applied to
the dimension where the exogeneity assumption holds, the hybrid model will provide
comparable values to the within-cluster effects obtained using the model with within-
cluster effects. However, if RE is applied to the dimension where endogeneity is
present, the hybrid model will likely provide different within-cluster effect estimate
values. By comparing these coefficients from hybrid models to one of the models
above, researchers can determine whether the exogeneity assumption is met and which
dimensions may violate the exogeneity assumption.

The key distinction of this sensitivity analysis from the Hausman test is that
it can reveal the specific clustering dimension exhibiting endogeneity. Although the
Hausman test provides a general assessment of endogeneity, it does not identify the
specific clustering dimension(s) that involves endogeneity. Further, by comparing the
differences in the baseline within-cluster effects across dimensions, researchers can
determine and compare the extent of endogeneity in each dimension. This enables
researchers to better understand the source of endogeneity and effectively choose
methods to address the endogeneity within specific clustering dimensions.

Upon confirming the presence of endogeneity in the analysis, I suggest that
researchers use the methods proposed in this study. I have included the code for each
method in the Appendix to facilitate the implementation of the proposed methods
by applied researchers. Specifically, employing cluster-mean centering and FE-CRVE
is recommended. In cases where the dimension with endogeneity is identified, I rec-
ommend using a hybrid model specifying FE on that dimension. Simulation results
demonstrated that the cluster-mean centering and FE-CRVE clearly offer more robust
and reliable within-cluster effects. The hybrid model provided an unbiased estimator
only when the FE was applied to the clustering dimension where the endogeneity

existed. These models generate unbiased within-cluster effects and exhibit decent
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RMSEs irrespective of whether the exogeneity assumption is violated. For cases
where the number of students per cluster is large or the cell IUCC is higher than
0.05, I advise researchers to interpret significance test results with caution, as the SE
is underestimated in all models except those employing cell-mean centering.

The performance of the between-cluster effects is comparatively poor in both
the CRE model and the correlated-cell RE model, in contrast to the within-cluster
effects. The between-cluster effects can introduce a substantial bias, regardless of
whether the exogeneity assumption is violated. Unbiased between-cluster effects can
only be partially obtained in ideal scenarios where the number of schools and the
number of students per school are large when the exogeneity assumption is not vi-
olated. Thus, I suggest considering between-cluster effects only under such a data
constellation. If the data fail to meet these conditions (a large number of clusters
and level-1 units per cluster), it would be preferable to report an estimate of the
between-cluster effect while acknowledging its potential bias.

However, it is worth noting that these results are unique to the cross-classified
data generated under the assumption of the presence of cell-interaction effects and the
cases where the applied centering methods are based on a random-intercept CCREM.
Also, the endogeneity was generated only in one specific clustering dimension (here,
neighborhood). In other words, the performance of the methods discussed above can-
not be perfectly generalized to all CCREM scenarios. Particularly when dealing with
situations where cell-interaction effects are truly negligible or when estimating more
complex CCREMs that incorporate random slopes, the performance of the methods
may change. When the endogeneity is placed in multiple clustering dimensions or even
the interaction terms of the clustering dimensions, the performance of the methods
might differ. For example, cell-mean centering might perform better than presented
in this simulation study. Moreover, the contextual effect was not directly evaluated
in this simulation study. However, considering contextual effects represent the dif-

ference between within- and between-cluster effects, the performance in estimating
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contextual effects is expected to align with that of between-cluster effect estimation.
I hope that researchers recognize the importance of the exogeneity assumptions in
analyzing cross-classified data and consider the suggestions above to widen the range

of alternatives they can employ.
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Chapter 6

Appendix

6.1 Cell-Mean-Centered Covariate Considering Cell-Interaction

Effect

Considering balanced cross-classified data as a two-way factorial design, a
population cell-interaction effect, ¢, is an effect that cannot be accounted for by the
overall effect, p, and main effects for factors, (p; — p) and (p, — p):

Gjr = (pjr — p) — (g — p1) — (. — ) (6.1

= Hjk — fbj — Mk + [

where p;; is the cell population mean for the combination of students in school j and
neighborhood k (Stevens, 2007, Ch. 4). The estimated cell-interaction effect qgjk is

expressed as

Sk = (Xj — X) — (X; - X) — (X4 — X) 62)

=X —X; — Xp + X,
where X ;i indicates the cell sample mean. Rearranging Equation 6.2, the cell mean

in the balanced design implies

Thus, the cell-mean-centered covariate is calculated as

(6.4)

In balanced cross-classified data, considering that the cluster-mean-centered
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covariate was calculated as Xqyser = Xi(n) — X; — Xx + X (Raudenbush, 2009),
Equation 6.4 further incorporates the cell-interaction effects, (;Aﬁjk, of a covariate within
the model. In other words, using cell-mean centering has implications for considering
cell-interaction effects, g%j <k, When calculating specific covariate effects. However, this

interpretation is only valid for data in a balanced design.

6.2 Simulation Study Results

Table 6.1
ANOVA Results on Rate of Convergence by Methods

Experimental Factors 77;

Method 0.828 (large)
CCREM Assumption 0.000
Coeflicient 0.013 (small)

Number of level-2 clusters (schools) 0.020 (small)
Number of level-1 students per school 0.000
Neighborhood TUCC 0.001
Cell IUCC 0.693 (large)

Note. Small = .01, medium = .06, and large = .14; ANOVA was conducted in a

two-way factorial, but only the main effects are shown in the table.
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Table 6.2

ANOVA Results on Correlation between Cluster Mean and Cell Mean

School Neighborhood
Experimental Factors 772 772%
Method 0.000 0.000
CCREM Assumption 0.000 0.000
Coefficient 0.355 (large) 0.917 (large)
Number of level-2 clusters (schools) 0.005 0.081 (medium)
Number of level-1 students per school 0.000 0.000
Neighborhood TUCC 0.000 0.000
Cell IUCC 0.000 0.000

Note. Small = .01, medium = .06, and large = .14; ANOVA was conducted in a

two-way factorial, but only the main effects are shown in the table.
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Figure 6.1. Neighborhood Generation Success Rates.

Note. Based on ANOVA analysis, the number of school clusters (1, = 0.832) and
the number of students per school (7]3, = 0.859) had a large effect size on the success
rate.
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A. School: Relative Parameter Bias
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Figure 6.2. Relative and Absolute Parameter Bias by IUCC of the Between-School
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Effects for the Level-1 Covariate.

Note. The maximum MCSE for relative parameter bias in the school dimension was
0.049, while the maximum MCSE for absolute parameter bias was 0.001. I[UCC in

the columns indicates the neighborhood IUCC. Endogenous N. indicates the
exogeneity assumption was violated in neighborhood random effects.
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A. Neighborhood: Relative Parameter Bias

Neighborhood Effects for the Level-1 Covariate.

Note. The maximum MCSE for relative parameter bias in the neighborhood
dimension was 0.036, while the maximum MCSE for absolute parameter bias was

0.0004. TUCC in the columns indicates the neighborhood TUCC. Endogenous N.
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Figure 6.3. Relative and Absolute Parameter Bias by IUCC of the Between-

indicates the exogeneity assumption was violated in neighborhood random effects.
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A. School: Relative Parameter Bias
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School Effects for the Level-1 Covariate.

Note. The maximum MCSE for relative parameter bias in the school dimension was

0.049, while the maximum MCSE for absolute parameter bias was 0.001.
Endogenous N. indicates the exogeneity assumption was violated in neighborhood
random effects.
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Figure 6.5. Relative and Absolute Parameter Bias by Coefficient Size of the Between-
Neighborhood Effects for the Level-1 Covariate.

Note. The maximum MCSE for relative parameter bias in the neighborhood
dimension was 0.036, while the maximum MCSE for absolute parameter bias was
0.0004. Endogenous N. indicates the exogeneity assumption was violated in
neighborhood random effects.
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Figure 6.6. Root Mean Squared Error by the Number of Schools of the Between-
Cluster Effects for the Level-1 Covariate.

Note. The maximum MCSE was 0.001 for the school dimension and 0.0004 for the
neighborhood dimension. In the neighborhood dimension (B), the IUCC condition
in columns indicates neighborhood ITUCC. Endogenous N. indicates the exogeneity
assumption was violated in neighborhooc} 51r?<;mdom effects.



6.3 The Number of Students per Cell

Though the number of students per cell was not included as one of the sim-
ulation conditions in this study, the number of students per cell can be calculated
and included in ANOVA as a potential future simulation condition. The number of
students per cell is calculated by the total number of students divided by the number

of cells filled:
J x TL]'

Neell = m; (6-5)

where J is the number of schools, n; is the number of students per school, 0.1 is the
degree of sparsity, and K = 3.5 x J is the number of neighborhoods. Table 6.3 shows

the calculated number of students per cell.
Table 6.3

Calculation of the Number of Students per Cell

Number of School 20 20 70 70 150 150
Number of Students per School 30 100 30 100 30 100
Number of Students per Cell 4 14 1 4 1 2

The results of incorporating the calculated number of students per cell into
ANOVA are shown in Tables 6.4, 6.5, and 6.6. While the number of students per
cell showed a negligible or small effect size for the parameter bias (7]2 = 0.002) and
the relative bias of SE (17 = 0.037), respectively, the RMSE results revealed that the
number of students per cell had a substantial effect size (17]% = 0.441). Based on these
ANOVA results, I plotted the relationship between the calculated number of students
per cell and RMSE in Figure 6.7 to examine the impact of the number of students per
cell on RMSE. In Figure 6.7, the number of level-1 students per cell did not exhibit
a consistent direction of the effects on RMSE, indicating that additional simulation

conditions should be considered along with the number of students per cell.
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Table 6.4

ANOVA Results on Relative and Absolute Parameter Bias of the Within-Cluster Ef-
fects for the Level-1 Covariate, including the Number of Level-1 Students per Cell

Experimental Factors

Relative PB

Absolute PB

m

U

Method 0.615 (large) 0.813 (large)
CCREM Assumption 0.425 (large) 0.675 (large)
Coefficient 0.184 (large) 0.001
Number of level-2 clusters (schools) 0.002 0.004
Number of level-1 students per school 0.084 (medium) 0.204 (large)
Neighborhood IUCC 0.002 0.008
Cell IUCC 0.004 0.014 (small)
Number of level-1 students per cell 0.002 0.002

Note. PB indicates parameter bias; Small = .01, medium = .06, and large = .14;
ANOVA was conducted in a two-way factorial, but only the main effects are shown
in the table.

Table 6.5

ANOVA Results on Root Mean Square Error of the Within-Cluster Effects for the
Level-1 Covariate, including the Number of Level-1 Students per Cell

Experimental Factors 7);27

Method 0.764 (large)
CCREM Assumption 0.489 (large)
Coefficient 0.003
Number of level-2 clusters (schools) 0.948 (large)
Number of level-1 students per school 0.928 (large)
Neighborhood IUCC 0.194 (large)
Cell IUCC 0.002
Number of level-1 students per cell 0.441 (large)

Note. Small = .01, medium = .06, and large = .14; ANOVA was conducted in a
two-way factorial, but only the main effects are shown in the table.

In Figure 6.8, I plotted the number of students per cell in conjunction with the
number of schools and students per school. Figure 6.8 has some blank spots because

the number of students per cell was not a pre-existing condition and thus not perfectly
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Table 6.6

ANOVA Results on Relative Bias of Standard Error of the Within-Cluster Effects for
the Level-1 Covariate, including the Number of Level-1 Students per Cell

Experimental Factors 7712)

Method 0.139 (medium)
CCREM Assumption 0.006
Coeflicient 0.007

Number of level-2 clusters (schools) 0.190 (large)
Number of level-1 students per school 0.093 (medium)
Neighborhood ITUCC 0.002

Cell IUCC 0.290 (large)
Number of level-1 students per cell 0.037 (small)

Note. Small = .01, medium = .06, and large = .14; ANOVA was conducted in a
two-way factorial, but only the main effects are shown in the table.

matched with the other conditions. The graph shows that the number of schools and
students per school had a more substantial influence than the number of students per
cell. For example, when the number of students per school was constant, the RMSE
was smaller (i.e., better performance) when the number of schools increased despite
fewer students per cell. Also, when the number of schools remained constant and the
number of students per school increased, the RMSE decreased with a greater number
of students per cell. However, since the number of students per school influences
the number of students per cell, it is challenging to determine the individual effect
of students per cell. In summary, while the number of students per cell exhibited a
substantial effect size, its magnitude remained smaller than the impact of the number
of schools or students per school. Still, the effect of the number of students per cell

should be investigated in future studies as an initially manipulated condition.

156



Assumptions met Endogenous N.
0.0100
0.0075 | 7
L
(é) 0.0050 N | HE
a | . Eml™
0.0025 \ | F M R
! =] =
0.0000
1 2 4 14 1 2 4 14

=

Number of Students per Cell

Uncentered/Grand-mean [ Cell-mean [ | Hybrid (School FE/ Neighbor RE)
Cluster-mean [ FE-CRVE Hybrid (School RE/ Neighbor FE)

Figure 6.7. Root Mean Square Error of the Within-Cluster Effects for the Level-1
Covariate by the Number of Level-1 Students per Cell.

stud./sch. = 30 | | stud./sch. = 30 | | stud./sch. = 30 | |stud./sch. = 100| |stud./sch. = 100| |stud./sch. = 100
0.0100 Schools = 20 Schools = 70 Schools = 150 Schools = 20 Schools =70 Schools = 150
’ >
H 7]
0.0075 ﬁ i
: i 3
0.0050 i | =
; (o)
ah Ly >
0.0025 % T . 4
» Cry o L] 3
Ll i [0}
) 0.0000
= 0.0100
(n'd i m
0.0075 i 2
iy o
i «Q
0.0050 - i " o
" Ll o
0.0025 T 2! of *
z
00000 T T T T T T T T T T T T T T T T T T T T T T T T
1 2 4 14 1 2 4 14 1 2 4 14 1 2 4 14 1 2 4 14 1 2 4 14
Number of Students per Cell
Uncentered/Grand-mean [ Cell-mean Hybrid (School FE/ Neighbor RE)
| Cluster-mean 1 FE-CRVE Hybrid (School RE/ Neighbor FE)

Figure 6.8. Root Mean Square Error of the Within-Cluster Effects for the Level-1
Covariate by the Number of Level-1 Students per Cell, the Number of Schools, and
the Number of Level-1 Students per School.
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Additionally, I presented the ANOVA results for the between-cluster effects,
including the number of students per cell (see Tables 6.7). There is a slight variation,
but the effect sizes of the number of students per cell were substantial in the parameter
bias of the neighborhood clustering dimension and RMSE. The impact on the relative
bias of SE was minimal. I omitted the graph for the between-cluster effect due to the

combined impact of the number of students in the cell and other conditions.

Table 6.7

ANOVA Results on Relative and Absolute Parameter Bias of the Between-Cluster
Effects for the Level-1 Covariate, including the Number of Level-1 Students per Cell

School Neighborhood

Experimental Factors (12)  Relative PB Absolute PB  Relative PB Absolute PB
Method 0.075 (medium) 0.152 (large) 0.001 0.006

CCREM Assumption 0.627 (large) 0.676 (large) 0.961 (large) 0.995 (large)
Coefficient 0.317 (large) 0.912 (large) 0.873 (large) 0.853 (large)
Number of schools 0.897 (large) 0.947 (large)  0.570 (large) 0.925 (large)
Number of students/school  0.504 (large) 0.685 (large)  0.175 (large) 0.649 (large)
Neighborhood TUCC 0.324 (large) 0.532 (large) 0.653 (large) 0.932 (large)
Cell IUCC 0.008 0.009 0.003 0.007

Number of students/cell 0.009 0.018 (small) 0.063 (medium) 0.412 (large)

Note. Small = .01, medium = .06, and large = .14; ANOVA was conducted in a

two-way factorial, but only the main effects are shown in the table.
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Table 6.8

ANOVA Results on Root Mean Squared Error of the Between-Cluster Effects for the

Level-1 Covariate, including the Number of Level-1 Students per Cell

School Neighborhood
Experimental Factors n n
Method 0.052 (small) 0.000

CCREM Assumption

Coeflicient

Number of level-2 clusters (schools)
Number of level-1 students per school
Neighborhood TUCC

Cell IUCC

Number of level-1 students per cell

(

0.478 (large)
(large)
(large)

0.748 (large)
(large)
(large)
(large)

0.151 (large

0.972 (large)
0.049 (small)
0.009

0.220 (large)
0.922
0.040
0.250 (large)

large)

small)

(
(
(
(

Note.

Small = .01, medium = .06, and large = .14; ANOVA was conducted in a

two-way factorial, but only the main effects are shown in the table.

Table 6.9

ANOVA Results on Relative Bias of Standard FError of the Between-Cluster Effects
for the Level-1 Covariate, including the Number of Level-1 Students per Cell

School Neighborhood
Experimental Factors 772 77%
Method 0.003 0.006
CCREM Assumption 0.002 0.050 (small)
Coefficient 0.037 (small) 0.074 (medium)

Number of level-2 clusters (schools)
Number of level-1 students per school
Neighborhood TUCC

Cell IUCC

Number of level-1 students per school

0.028 (small)
0.015 (small)
0.005
0.000
0.003

(

(
0.052 (small)
0.013 (small)
0.005
0.004
0.018 (small)

Note.

Small = .01, medium = .06, and large = .14; ANOVA was conducted in a

two-way factorial, but only the main effects are shown in the table.
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