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The Workshop

All Virtue Is Relative: A Response to Prior

SETH K. GOLDMAN, DIANA C. MUTZ, and SUSANNA DILLIPLANE

In “The Challenge of Measuring Media Exposure: Reply to Dilliplane, Goldman, and
Mutz,” Markus Prior suggests that scholars should avoid using a new method of mea-
suring exposure to political television that we evaluated in a recent article published in
the American Journal of Political Science. We respond to each of his criticisms, con-
cluding that although no measurement approach is without its flaws, scholars should
always use the best approach that is available at any given point in time.

Keywords media exposure, measurement

Virtue is relative to the actions and ages of each of us in all that we do.
—Plato

In “Reply to Dilliplane, Goldman, and Mutz,” Markus Prior suggests that a proposed new
method of measuring exposure to political television, the program list technique, is ill
advised on the grounds of construct validity, convergent validity, predictive validity, and
reliability. We respond to each of these arguments in turn, highlighting technical as well as
conceptual misunderstandings. Many of Prior’s criticisms are directed at traditional survey
measures of media exposure, not at the measures we propose in our article that appeared in
the American Journal of Political Science (Dilliplane, Goldman, & Mutz, 2013). Given that
few people defend traditional media exposure measures, and this problem has been much
lamented elsewhere, we see little disagreement in this regard. Our goal was to improve
upon the approach most widely used today, a goal we think we have achieved.

However, in addition to clarifying and correcting some of Prior’s assertions about the
measures we develop, we wish to highlight why adhering to a rigid conception of what
scholars really want from media exposure measures may ultimately hamper the progress of
research in this area. At the end of the day, assessment of any measurement technique is a
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636 Seth K. Goldman et al.

matter of whether it is the best that one can possibly do at any given time and place. Given
our available options, we suggest that the new approach is a substantial improvement.

Construct Validity

Prior’s critique suggests that the construct validity of our measure is low “because it does
not attempt to measure the amount of exposure, only the number of different programs
a respondent watches over the course of a month.” In making this assertion, he confuses
traditional operationalizations of media exposure with the underlying theoretical construct
of interest. In order to understand how best to measure any construct, it is important to
consider what it is we would ideally like to measure for purposes of testing a given theory.
The study of political media effects centers on the extent to which content in the media
influences political attitudes/behaviors or levels of political knowledge. Even studies that
focus on hypotheses such as priming or framing are ultimately interested in effects of media
content on one of these two kinds of outcomes.

Prior suggests that “amount of exposure” requires tapping frequency of viewing as has
been done with the traditional “how many days per week” questions that have long been in
use, or possibly in terms of the minutes per day or week that respondents use a medium.
As has been amply demonstrated elsewhere, asking people about their amount of news
exposure is fraught with difficulties. Disagreement over what counts as “news” is only the
beginning of the problems posed by such measures. Both approaches—days per week and
minutes—have been tried and been found wanting (see Althaus & Tewksbury, 2007).

But more importantly, conceptualizing frequency as the only legitimate way to tap
exposure represents rigid adherence to an interpretation of exposure that is outdated. There
is nothing inherently appropriate or ideal about the number of minutes per week or any
frequency metric for purposes of tapping media exposure. To illustrate why this is the case,
it is useful to conduct a thought experiment and ask what scholars would use to test their
hypotheses in an ideal world, one without practical constraints. Assuming that people were
capable of reporting the exact number of minutes per week that they watched programs
that a given researcher considered political, is this what a scholar would ideally use to test a
hypothesis about the effects of media content on political opinions or political knowledge?

We suspect not. To test a persuasive hypothesis, for example, what one would really
want to know is how many unique favorable or unfavorable arguments people had been
exposed to while viewing media content. Frequency of viewing would not tell us this. If the
study were about opinions toward the economy, we would want to quantify the amount
of positive and negative economic coverage to which a person was exposed. Frequency of
viewing would not tell us this. To predict knowledge gain, we would want to know how
much novel information was conveyed in each of the programs they watched. Total amount
of exposure, whether in minutes, days per week, or some other metric, is not the actual
construct of interest in our theories. It is instead a crude surrogate for what we actually
would like to measure: exposure to particular media content.

Is frequency of total viewing time a better measure of this than the number of programs
watched? The answer depends upon how much these measures tell us about the content of
what was watched. In tapping political television, sheer amount of exposure made some
sense back in the days when viewers had very few news programs from which to choose,
and among those limited choices, one 30-minute newscast carried pretty much the same
information as another. But in the contemporary media environment, days per week watch-
ing news is an arbitrary metric that tells us next to nothing about the content that was
consumed; knowing the programs that a viewer watched at least gets us closer to ascer-
taining the kind of content to which a person was exposed. By knowing which programs
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Response to Prior 637

are watched, we can attempt to capture variations in the content of media exposure in a
way that traditional measures of sheer frequency made impossible. This opens the door to
testing a much greater range of theories and hypotheses.

Given that we cannot easily measure the actual independent variable of interest, we
naturally want the best possible surrogate. Just as Webb, Campbell, Schwartz, and Sechrest
(1966) found that fingerprints and nose smudges on museum exhibit glass were the best
operationalizations of the popularity of an exhibit, scholars need to be open to the best way
to get at the underlying construct within the limitations of their study design. No one would
argue that smudges are popularity ratings, but if they tap how much time people spend
engrossed with each exhibit, then they are tapping the right construct. What ultimately
matters with any operational measure is if it taps the right construct with a strong ratio of
signal to noise.

As explained in greater detail below, the media measures that are currently on offer
have not demonstrated strengths in either predictive validity or true-score reliability. In con-
trast, our operationalization has demonstrated both. Moreover, as an empirical matter, a
study cited in Prior’s critique directly contradicts his claim that it is implausible for a
measure of the number of programs viewed regularly to proxy for the extent of exposure.
Wonneberger, Schoenbach, and van Meurs (2012) used Dutch people-meter data (a source
that Prior considers credible) to create measures paralleling the usual survey questions
assessing the total duration of news viewing and the number of news programs viewed.
Their results indicate that these two measures tap the same construct:

The number of news programs viewed . . . and the duration of news view-
ing showed very high intercorrelations . . . with duration and the number of
programs nearly perfectly related. (Wonneberger et al., 2012, p. 9, emphasis
added)

Thus, amount of exposure (what Prior claims should be of interest) and the number of pro-
grams watched (what the program list technique assesses) are virtually indistinguishable
based on Prior’s own standard, which is people-meter data. This evidence strongly contra-
dicts his dismissive claim that we “end up measuring a concept that is of little theoretical
relevance.”

Prior also questions construct validity on the grounds that we limit the content of
interest to coverage of the presidential campaign by using a filter question asking whether
respondents have heard anything about the campaign on TV. Given that this was an omnibus
study of opinions toward the presidential candidates and knowledge of their issue posi-
tions, our focus on the campaign is appropriate; studies interested in political coverage
beyond campaigns would naturally not use the same filter. Far from introducing system-
atic measurement error as he suggests, the filter question eliminates people who never
watch political television, and thus shortens the survey interview for some. In this par-
ticular case, however, it made little difference because nearly everyone said they had heard
something about the presidential campaign on television (between 89.1% and 91.2% of the
sample in each wave). Thus, this filter did little to alter our measures. Prior also cites studies
suggesting that “decomposition tends to increase reported frequencies without increasing
their accuracy” and uses the Pew Media Consumption Survey to illustrate this problem.
However, given that we did not ask people questions about how frequently they viewed each
specific program, and we did not combine any frequency measures to create a summary
estimate, this work seems of questionable relevance to the program list technique.

Prior also argues that the program list technique introduces a “considerable cognitive
burden” for respondents, suggesting that they “can only answer the question accurately
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638 Seth K. Goldman et al.

if they recognize the names of the programs they watch.” Here he overlooks several key
features of this approach. First, as is well known, recognition is a far easier task than recall.
Relative to traditional survey questions about media use that serve as our basis for compar-
ison, the cognitive burden of the program list measure is greatly reduced. Asking people to
mentally calculate how much news they watch in an average week or how many total pro-
grams they have viewed requires lengthy recall and mathematical calculation on the spot.
Recognizing regularly watched programs from a list does not require a multi-step mental
calculation process.

Second, we ask specifically about programs watched regularly. Given the impossibility
of knowing the exact content of each individual program watched by a respondent, we ask
about programs viewed regularly because these are the programs with the greatest proba-
bility of affecting the viewer’s knowledge and attitudes. We are not attempting to capture
the kind of incidental or fleeting exposure that occurs while changing channels. Moreover,
in order to watch a program regularly, a person would need to know what the program was;
otherwise, how could one become a regular viewer? If one watches the same program reg-
ularly, one is very likely to be able to recognize the name of the program on a list, even if
one could not recall the name of it in an open-ended format.

Finally, and perhaps most importantly when considering cognitive burden, it is worth
noting that the program list technique made its debut as a means of allowing first- and third-
grade children to reliably self-report their exposure to television programs (see Huesmann,
Moise-Titus, Podolski, & Eron, 2003). The high true-score reliability of program-level self-
reports—even at the level of individual programs (see Appendix A in our original article)—
suggests a substantially lower cognitive burden than traditional measures.

Prior also suggests that scale construction is problematic because the cutoff we use
for defining “regular” exposure is different from what has been used in traditional mea-
sures. As he suggests, “for individual programs, the measure does not distinguish different
amounts of exposure.” This is true, but the value of more fine-grained assessments of
amount of exposure is debatable; more detailed estimates of minutes per day or week
have been found to add no explanatory power to the traditional “days per week” mea-
sure (Althaus & Tewksbury, 2007). Given that there must be some unit of quantification,
we see nothing inherently preferable about day as a unit of analysis relative to program.
Few hypotheses are about particular days, whereas knowing the specific political programs
a person watches and their unique content (partisan or not, talk shows versus news, and so
forth) presents opportunities for scholars to test additional hypotheses. Moreover, both the
Wonneberger et al. (2012) analyses already mentioned and the LaCour and Vavreck (2013)
study described below in our discussion of convergent validity demonstrate that the number
of programs viewed and the total amount of exposure tap the very same construct.

Prior further criticizes the program list approach because it “asks respondents to report
program exposure regardless of whether they encountered political content or ‘anything
about the presidential campaign’ while watching the program.” Thus, he argues, “a respon-
dent who watches Oprah, Ellen, or The View would receive a higher exposure score even
if these programs did not cover politics.” Further, he criticizes the measures for not taking
into account the length of each of the programs or how often they are aired. Here Prior
appears to overlook the part of the article where we experimented with measures that take
into account the frequency with which a program is aired and the length of the program,
as well as our coding for whether the program emphasizes presidential politics regularly,
occasionally, or only rarely. As we demonstrate in the article, the optimal scale for pur-
poses of predicting knowledge gain appears to be the one that takes the degree of political
emphasis of specific programs into account.
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Response to Prior 639

Moreover, an additional benefit of the program list technique is that one can group the
program items into categories that best fit specific hypotheses. If a scholar is interested in
effects of partisan content, he or she can construct measures of left- and right-leaning pro-
grams (e.g., Dilliplane, 2011, in press). If the theory is instead about exposure to economic
news, then the measures can be weighted by how much each program covers this topic. The
flexibility of these items extends well beyond that of traditional exposure measures, thus
offering many potential applications (see, e.g., Dilliplane, in press; Goldman, 2012).

Prior further argues that because there are no frequency of viewing estimates for each
regularly viewed program, “neither would it be possible to determine the relative impact of
two different programs.” It is worth noting that the television exposure measures currently
available in surveys do not allow this either; thus, this is not a disadvantage of our particular
approach, so much as a limitation common to all available approaches. In a survey of suf-
ficient length, it would certainly be possible to ask about the frequency of viewing for each
program that a respondent reports watching regularly, and this additional information might
ultimately produce more precise estimates of exposure to various kinds of content. Because
of survey length constraints, the program list measures on the National Annenberg Election
Survey (NAES) Panel Study did not do this. Thus, we must leave it to future researchers to
explore and validate these possibilities.

Convergent Validity

Prior’s claim that the program list technique lacks convergent validity relies on two main
arguments: (a) that the program list measure produces overreporting relative to other
exposure measures, namely Nielsen’s people meters and Integrated Media Measurement
Incorporated (IMMI) media use tracking technology, and (b) that the program list mea-
sure fails to show the increase in levels of exposure that would be expected to occur over
the course of a presidential campaign. We find no evidence that either of these issues is
problematic for the proposed purpose of studying media effects.

In order to support the argument of overreporting, Prior relies primarily on Nielsen esti-
mates, which is problematic for several reasons. First, it is not possible to directly compare
the program list estimates and Nielsen estimates, in part because of the limited availability
of Nielsen data (as Prior acknowledges), but also because the two measures do not assess
exposure at the same unit of analysis. The Nielsen ratings capture program or channel
viewing on a given evening, whereas the program list measure taps program exposure that
occurs “at least once a month.” And whereas the Nielsen ratings primarily capture view-
ing that occurs on a conventional television set, the program list measure captures viewing
that occurs on a television as well as through other media, whether computer, smart phone,
tablet, broadband devices, or the like.

But more importantly, Prior’s focus on Nielsen estimates makes the questionable
assumption that Nielsen data are the appropriate standard for measuring levels of expo-
sure. Nielsen’s lack of transparency makes it unsuitable for use as a validation criterion in
scholarly research. There has been no scholarly assessment of the reliability and validity
of Nielsen’s people-meter data, and studies that have attempted to assess the quality of
Nielsen’s people-meter system find “severe faults” (Milavsky, 1992, p. 114) and “high lev-
els of uncertainty regarding the degree to which measured audiences provide an accurate
and reliable reflection of actual audiences” (Napoli, 2003, p. 81). For example, ques-
tions have been raised about the Nielsen sample’s representativeness (Milavsky, 1992) and
the reliability of Nielsen data for programs with small audiences, which are increasingly
common in the highly fragmented high-choice media environment (Napoli, 2003).
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640 Seth K. Goldman et al.

Moreover, contrary to what is widely assumed, Nielsen is not a completely passive
indicator of exposure, but rather requires substantial input from household members in
the form of button pushing. Fatigue leads to steadily declining compliance with even this
minimal input; as time wears on, people increasingly fail to push the buttons on the device
used to capture viewing behavior (Milavsky, 1992). Prior suggests that the compliance
problem is resolved in single-member households. But even in these homes, after watching
television for 70 minutes, the viewer must hit a button on the set-top box indicating that
he or she is still viewing or else the system no longer considers that person to be a viewer,
and thus potentially underestimates actual viewing in the home. People must also indicate
when they leave the room in order to avoid overestimates.

Even more problematic in this particular case, Nielsen’s shortcomings have been sug-
gested to lead to consistent underreporting of exposure, especially among lower-income
and less educated segments of the population. Nielsen people meters do not capture out-of-
home viewing (Napoli, 2003), therefore missing the many instances of TV exposure that
occur at friends’ or relatives’ homes, at work, or in public places. Nor do Nielsen estimates
currently capture the growing amount of viewing that occurs online or on a mobile device
such as a smart phone or tablet.1 By incorporating the multiple modes of viewing currently
possible, the program list measure purposely captures additional instances of exposure that
Nielsen ratings do not.

Within the television industry, Nielsen is no longer perceived as a reliable source of
viewership estimates because their techniques are old-fashioned. As a recent article in The
Economist (“Counting Couch Potatoes,” 2013) echoed, “Consumers’ media viewing habits
have changed too fast for Nielsen to keep up.” A network executive concurred, “Everyone
is unhappy.” Media firms “say privately they would welcome new competitors to wake
Nielsen up. But Nielsen retains a near-monopoly.” The review of Nielsen’s problems con-
cludes by noting, “For TV firms, which earn a living by promising specific numbers of
eyeballs to advertisers, such wild uncertainty is alarming. A happy ending—in the form of
a reliable measurement standard—seems years away” (“Counting Couch Potatoes,” 2013).
If a solution is years away for reliable aggregate estimates that can be used by media indus-
tries, it is much farther away for academic researchers who want individual-level estimates
of viewing behavior that can be combined with attitudinal measures, all at an affordable
cost.

Finally, even if one accepts Nielsen as the appropriate benchmark against which to
compare the program list technique, the two aggregate estimates differ very little. For exam-
ple, according to Prior’s analysis, the percentage who checked off the “Fox News” item on
the program list was 34 in Wave 2, 35 in Wave 4, and 35 in Wave 5 of the NAES panel,
while the Nielsen estimates of Fox News Channel viewers for the corresponding time peri-
ods were 26%, 30%, and 29%, respectively.2 Slightly higher estimates would be expected
given the broader range of viewing contexts captured by the program list measure, as well
as the fact that respondents may have interpreted the “Fox News” item as including local
news, not just national news. Moreover, because the NAES panel data and the Nielsen data
are both based on samples rather than a census, these estimates should be interpreted as
bounded by confidence intervals. We know what those intervals are for NAES data, but
the lack of information available from Nielsen about their sample and confidence inter-
vals makes it impossible to know if there is, in fact, any significant difference between the
estimates.

Our own analyses, reported in our original article in the American Journal of Political
Science, provide additional evidence that the Nielsen estimates generally correspond with
the program list estimates. By rank-ordering the programs by their popularity, we found that
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Response to Prior 641

the program list estimates highly correlate with Nielsen estimates.3 Thus, regardless of any
overall inflation, the rank order of program viewing yielded by the program list technique
is consistent with Nielsen’s estimates.

Beyond Nielsen comparisons, we find additional evidence for the convergent validity
of the program list technique based on a comparison with estimates using a new technology
that passively tracks the audio portion of media via cell phones (collected by IMMI). In his
critique, Prior argues that studies (Jackman, LaCour, Lewis, & Vavreck, 2012; LaCour,
2012) comparing the IMMI measures to traditional self-report measures (which did not
appear on the NAES panel survey) provide evidence of overreporting in the program list
measure. However, given that the studies he cites compare the new technology to tradi-
tional self-report measures of exposure—not the program list technique that was designed
to improve upon these measures—these comparisons cannot tell us about the extent of
overreporting by the program list measure.4

More importantly, a recent study directly comparing the number of programs watched
to the amount of time watched using the passive IMMI tracking technology that Prior advo-
cates provides strong evidence of convergent validity (LaCour & Vavreck, 2013). Time
spent watching news programs (measured with the IMMI tracking technology) and the
number of programs those same people watched were found to be very strongly corre-
lated. This evidence corroborates findings from the Netherlands with people-meter data
(Wonneberger et al., 2012) while using a U.S. sample and an entirely different passive
measurement technology. Thus, it appears that the total number of programs watched is
indeed a very good surrogate for the total number of minutes watched.

To be clear, we would not be surprised to find that people overreport some kinds of
media exposure. Past analyses of traditional self-reports of media exposure have suggested
that people tend to overreport exposure to network news (e.g., Price & Zaller, 1990) but to
underreport viewing of entertainment programs. Dutch people-meter studies suggest that
people overreport their frequency of news viewing while underreporting the duration of
their viewing (Wonneberger et al., 2012). But whatever the category of programming that
is of interest, neither systematic underreporting nor overreporting are particularly prob-
lematic for purposes of testing most media hypotheses, so long as a measure rank orders
individuals properly. In other words, if a measure accurately differentiates lighter view-
ers from heavier viewers while also capturing changes over time as the exposure levels
of these viewers increase and decrease, our statistical tests should still give us the correct
answers.

Prior’s second main argument for why the program list technique lacks convergent
validity is that it “barely picks up” the increase in exposure levels that one would expect
to occur during a presidential campaign. His evidence does not warrant this conclusion.
For example, Prior states that “the average primetime audience for FNC nearly doubled
between the first quarter and October 2008, according to Nielsen”—an increase that he
argues the program list measure failed to capture. However, we do not see any evidence of
this increase in the Nielsen data he provided.

In fact, based on the Nielsen data that Prior provided to us, the two measures actu-
ally provide similarly modest estimates of change over time. Using our program list
data, the monthly program list estimates of the Fox News audience are 31% (January),
34% (February), 36% (March), 31% (September), 33% (October), and 33% (November)
of the sample. When Nielsen’s monthly estimates for FNC are translated into the same
metric, percentage of the voting-age population, the changes over time are relatively
modest, just as they are in the program list estimates: 24% (January), 25% (February),
25% (March), 30% (September), 27% (October), and 33% (November).5 According to
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642 Seth K. Goldman et al.

Nielsen, there is only a 3-percentage-point difference between viewing estimates during
the early primary period of January and at the height of the general election campaign in
October.

In addition, the Nielsen data from Prior show that exposure to FNC actually decreased
between September and October, contrary to Prior’s suggestion that exposure should
increase as the election drew closer. The Nielsen estimates for FNC then increased to their
highest average level in November. Given that election day was November 4, it seems odd
that exposure should jump to its very highest average levels during the month after the
election ended. A few days of high viewership in early November should not outweigh a
whole month of high viewership in October.

More importantly for our purposes, there is clear evidence that the program list mea-
sure registers sensible changes in exposure levels over time. Given that the date of interview
within waves was randomized in our sample, the best test of the measure’s ability to capture
change over time is to plot weekly estimates, as shown in Figure 1. As the figure illustrates,
the total number of political programs watched increased over the course of the general
election campaign, just as one would expect. The peak levels in mid-November make sense
given that respondents were asked about their exposure during the past month. In addi-
tion, Figure 1 shows the kind of post-election changes that one would reasonably expect.
Exposure levels started to drop during the post-election lull, then ramped back up prior to
Obama’s inauguration.

Further, in follow-up interviews conducted in the fall of 2010, we find additional evi-
dence that the program list measure captures sensible patterns in exposure over time. The
mean number of political programs viewed declined significantly after coverage of the cam-
paign and Obama’s inauguration died down.6 Indeed, as shown in Figure 2, this decline in
program exposure occurring between the high-profile campaign and inauguration periods
(Waves 4 and 5) and the 2010 follow-up (Wave 6) was observed across different gen-
res of programming, from political talk shows and newscasts to TV newsmagazines. The
only type of programming that did not show a significant drop in mean exposure levels
was political satire. In short, the program list measure reflected the over-time trends in
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Figure 1. Mean number of political TV programs watched during the 2008 general election
campaign and pre-inaugural period. The figure shows 7-day moving averages. Total number of
political TV programs is the same indicator used in the reliability and validity analyses reported
in our original article in the American Journal of Political Science (color figure available online).
Source: 2008 NAES Internet Panel.
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Wave 4 (2008 fall campaign)
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Figure 2. Mean number of political TV programs watched during pre- and post-election periods, by
program genre. The figure presents the mean number of programs watched in each wave. Because
the 2010 follow-up panel only included non-Hispanic Whites, the figure is limited to this subset of
the population (N = 3,263). Wave 4 interviews were conducted from August 29 to November 4,
2008; Wave 5 interviews were conducted from November 5, 2008 to January 31, 2009; and Wave 6
interviews were conducted from September 21 to October 6, 2010. With the exception of political
satire, the mean number of each type of program watched was significantly lower in Wave 6 compared
to Wave 5.

exposure one would expect: Once the suspense of the election and the excitement of a
historic inauguration was over, Americans watched less political TV. Contrary to Prior’s
argument, the available evidence supports the program list technique’s convergent validity
rather than calling it into question.

Predictive Validity

Prior critiques our evidence of predictive validity on several grounds. First, he argues that
political knowledge gain is not an appropriate validation criterion. In fact, he questions
whether there is any relationship between political knowledge and political television expo-
sure, suggesting that because “the true individual-level relationship between news exposure
and knowledge is . . . fairly uncertain, it cannot serve as a reliable benchmark for predic-
tive validation.” Prior admits, however, that “experimental studies do show that exposure
to television news has a positive average treatment effect on political knowledge (e.g.,
Neuman, Just, & Crigler, 1992).” Many other experimental studies also demonstrate that
news exposure produces political learning (e.g., Norris & Sanders, 2003; Tewksbury &
Althaus, 2000).

Nonetheless, Prior suggests that any knowledge gained from exposure is likely to be
quickly forgotten, and thus there is no empirical basis for expecting exposure to increase
levels of knowledge over successive panel waves. Yet observational data show accumulat-
ing knowledge of candidate issue positions over time at the aggregate level (e.g., Johnston,
Hagen, & Jamieson, 2004), and one experimental study found no decay from exposure
over a 2.5-week period (Norris & Sanders, 2003). Even if the effects of a single exposure

D
ow

nl
oa

de
d 

by
 [

. D
ia

na
 M

ut
z]

 a
t 1

0:
17

 2
5 

O
ct

ob
er

 2
01

3 



644 Seth K. Goldman et al.

do fade, our measure taps regular viewing, allowing us to assess the effects of repeated
exposure.

Field experiments and observational studies that do not rely on survey self-reports or
laboratory manipulations point to the same conclusion: Political media exposure produces
gains in political knowledge (Barabas & Jerit, 2009; Jerit, Barabas, & Bolsen, 2006; Milner,
2002). When so many different research designs converge on a similar finding, it should add
to our collective confidence about any causal relationship. Thus, knowledge gain remains
the best criterion for predictive validity, the “gold standard” designated by many scholars
before us (e.g., Norris, 2000).

In contrast, Prior argues that “if there is a ‘gold standard’ for validation, it is convergent
validity, not predictive validity” and suggests discarding “a measure with high predictive
validity but low convergent validity.” We address the convergent validity of the program
list technique in a prior section of this response, but we would add that assessing the utility
of a new measure should include multiple tests of validity whenever possible. Relying on
convergent validity as the one and only test of a measure’s utility has little theoretical or
empirical basis, and is particularly problematic for assessing a measure of media exposure
given the lack of solid data on media use.

In his final argument against using political knowledge gain as a validation criterion,
Prior suggests that “the predictive validity test incorrectly assumes that television news
exposure is necessary and sufficient for political learning. . . . Someone can learn about
the candidates without watching television news and watch television news without learn-
ing about the candidates.” We make no such assumptions about the relationship between
exposure to television news and political knowledge; the idea that television news exposure
causes increased knowledge does not require that exposure be either necessary or sufficient.

Overall, this discussion belies the usual social scientific understanding of probabilis-
tic causation. Smoking is neither necessary nor sufficient for getting lung cancer; many
smokers never get lung cancer, and some people get lung cancer who have never smoked.
Nevertheless, smoking is unquestionably an important cause of lung cancer. It increases
people’s probability of getting lung cancer just as watching political television increases
their probability of knowing candidates’ issue positions. Any measure of how much people
smoke that is unrelated to their long-term probability of lung cancer would be suspect and
rightly discarded, just as any measure of political television exposure that is unrelated to
gains in political knowledge would also be suspect. In short, we need make no assumption
that television news exposure is either necessary or sufficient for political learning in order
to use knowledge gain for purposes of assessing predictive validity.

To support his argument, Prior attempts to draw a parallel between Boudreau and Lupia
(2011), who argue that political interest is not a suitable surrogate measure of political
knowledge because it is neither necessary nor sufficient for knowledge, and our analysis
of predictive validity. Importantly, we do not advocate using the program list measure as
a surrogate for political knowledge. Instead, we merely suggest that exposure to political
programs is a source of knowledge gain. As a result, this comparison does not make a good
case for requiring that exposure be a necessary or sufficient condition for learning.

Oddly, even as Prior argues that political knowledge gain is not an acceptable standard
for assessing predictive validity, he simultaneously argues that “many of the traditional
news exposure measures that Dilliplane, Goldman, and Mutz dismiss do in fact exhibit
high predictive validity.” Prior then cites several cross-sectional studies that found positive
associations between self-reported news exposure and political knowledge. But as we point
out in our original article, cross-sectional analyses cannot capture over-time changes in
knowledge. Even when cross-sectional analyses include a variety of control variables, they
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Response to Prior 645

remain vulnerable to spuriousness from unmeasured and/or unobservable confounders, not
to mention reverse causality. Simply put, evaluation of how well exposure measures predict
knowledge gain requires panel data.

Prior points to only one study that employs panel data to address the relationship
between self-reported exposure and knowledge. And although Chaffee and Schleuder
(1986) had panel data from a small sample of Wisconsin parents and adolescents, they
collapsed their measures of media exposure over all waves into a single index, and there-
fore did not analyze the effects of change. Other studies have also used panel data without
examining the effects of change (e.g., Eveland, Hayes, Shah, & Kwak, 2005; McLeod et al.,
1996). To date we are not aware of an analysis that tests the ability of change in self-reported
exposure to predict change in knowledge.

In our study, we demonstrate that change in exposure causes change in knowledge by
employing three waves of panel data and fixed effects models of within-person change.
Prior suggests that fixed effects regression has only limited utility—that we only “guard
against the simplest version of omitted variable bias, the spurious effect of stable predictors
of knowledge.” In fact, fixed effects regression represents a huge improvement over other
observational designs, including other panel models (Allison, 2009). With fixed effects,
each individual is compared to himself or herself at an earlier point in time, so all dif-
ferences between individuals drop out of the equation. By contrast, “in individual-level
cross-sectional studies, differences in opinions between those exposed to the media and
those who remain unexposed may simply reflect preexisting differences between the two
groups in political attitudes or characteristics” (Bartels, 1993, p. 267). Fixed effects regres-
sion discards all between-person variance, and instead uses only within-person variance that
occurs over time. Stable factors such as education, income, age, ongoing political interest,
and party identification drop out of the model, as do all other variables (whether observable
or unobservable) that are constant over time.7 Scholars using cross-sectional measures try
to measure and control for the most likely spurious confounders, but what we should really
be worried about is all of the other variables that we are unaware of or cannot measure (i.e.,
“unobserved heterogeneity bias”). This is the single greatest threat to interpreting relation-
ships as causal in observational research, and fixed effects regression solves it (Allison,
2009; Hallaby, 2004).

Importantly, fixed effects regression does a “superior job” of controlling for stable con-
founders compared to traditional panel analyses using lagged dependent variable models or,
by extension, cross-lagged models (England, Allison, & Wu, 2007, p. 1245; Hallaby, 2004).
Although scholars often refer to lagged dependent variable models as if they assess change
at the individual level, this is misleading because these models still rely on between-person
variance and only assess change in the limited sense of differences over time in the rank
order of individuals. Further, due to measurement error alone, the measure of the lagged
dependent variable provides imperfect control for preexisting differences (Allison, 1990).8

Fixed effects regression, on the other hand, perfectly controls for preexisting differences by
only comparing each individual to him- or herself at an earlier point in time.

In fixed effects regression, only variables that change over time can produce spurious
associations. Fortunately, spuriousness arising from time-varying factors in fixed effects
models is far less likely than spuriousness arising from individual differences in between-
person models. With fixed effects, a confounding variable would have to (a) change over
time, (b) explain change over time in the independent variable, and (c) explain change over
time in the dependent variable. Especially in the relatively short time span of a presiden-
tial campaign, very few potential confounders meet these requirements. Moreover, as we
explain in our original article, by including a dummy variable for survey wave in each
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646 Seth K. Goldman et al.

equation, we efficiently capture the average total effects of all other time-varying influ-
ences (Hallaby, 2004). For example, to the extent that political interest rises across the
board during the campaign, the effects of the wave variable capture this change.

Nonetheless, as our extensive appendices to the original article demonstrate, we also
controlled for a variety of time-varying factors. Consistent with the idea that the wave
variable already captures these influences, including numerous other controls had no impact
on the estimates of media influence. Prior suggests that we do not appropriately control for
several factors, including change in exposure to other media. This should be understood not
as a threat to predictive validity—given that these variables merely represent other forms
of media influence—but rather as relevant to discriminant validity, that is, how well the
effects of television exposure can be distinguished from effects of other closely related
political media.

Second, Prior claims that “some of these controls have little variance (e.g., dummy
variables measuring exposure to the presidential campaign in newsmagazines and on the
Internet),” implying that all of the controls are dummy variables. On the contrary, only
two variables are dummies, while the number of hours of TV watched the previous night
has six values, exposure to newspapers has three values, and exposure to political radio
has 15 values. Yet, including all five controls simultaneously barely reduces the size of the
political TV coefficient (from .54 to .47).

Prior also argues that we “omit several other time-varying predictors of knowledge,
including exposure to political advertising, the party conventions, and the presidential
debates.” Notably, these are not sources of potentially spurious relationships. The extent
of overall political television viewing should capture exposure to advertising, the conven-
tions, and the debates. However, the program list technique was not designed to allow for
fine-grained distinctions between the effects of particular campaign events and other cam-
paign content. Any influence not captured by the program list measure—such as through
special one-time programs that were not asked about—should be captured by the number
of hours of television watched the previous night.

Finally, Prior claims that “heavily covered issues may lead to better performance
on knowledge questions not because more people watch the coverage, but because they
generate more interpersonal discussion, command greater attention, or are more easily
remembered.” It is not at all clear to us how media coverage of political issues can “com-
mand greater attention” or be “more easily remembered” without exposure to coverage.
Similarly, interpersonal discussion is not a spurious influence, but rather a mediator of
mass media influence. For example, the two-step flow of communication posits that some
people are exposed to political media and that these “opinion leaders” spread the message
to many other people, leading to substantial indirect effects of media exposure (Katz &
Lazarsfeld, 1955). With respect to political media, however, the two-step flow has received
no empirical support to date (Bennett & Manheim, 2006; Chaffee & Hochheimer, 1985;
Gitlin, 1978).9 Nonetheless, we replicated our analyses controlling for the time-varying
impact of interpersonal discussion and changes over time in political interest and found
no change in our original findings. Given that exposure to political television is a cause
of increased discussion and interest during a campaign, these are extremely stringent
tests.

Reliability

As we point out in our original article, the true-score reliability of the program list tech-
nique is quite high relative to traditional measures of political television exposure (.84).
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Response to Prior 647

However, Prior’s reply indicates some confusion regarding terminology. As explained by
Zaller (2002, p. 315):

Use of the term “reliability” needs to be clarified, as it is deployed in two differ-
ent ways in the research literature. The most common usage is that of Carmines
and Zeller (1979) (p. 11–13): “reliability concerns the extent to which an exper-
iment, test, or any measuring procedure yields the same results on repeated
trials.” They distinguish reliability from validity, which is the extent to which
a measure “measures what it purports to measure.” They add: “just because a
measure is quite reliable, this does not mean that it is also relatively valid.”
Thus, over-reporting of media exposure could, in their senses of the terms,
make a media exposure variable more reliable but less valid. Lord and Novick’s
(Lord and Novick, 1968) classic treatment offers a different conception of reli-
ability: “The reliability of a test is defined as the squared correlation, ρXT

2,
between observed score and true score” (p. 61). In this usage, the distinction
between reliability and validity does not exist.

Thus, Zaller distinguishes between test-retest reliability and true-score reliability. To clarify
further, he uses the term “validity” here for the extent of alignment of an imperfect opera-
tional measure of a variable with the true value of the variable. This is to be distinguished
from “construct validity,” which is alignment of the operational measure with the theo-
retical concept it purports to proxy. For a measure to adequately capture a concept, both
notions of validity are required; that is, the measure must adequately represent the true
value of the variable, and the variable must fit the theoretical concept. Because we have
already discussed construct validity, we focus the discussion here on Zaller’s discussion of
reliability.

Cronbach’s alpha is a measure of test-retest reliability that relies on correlations among
multiple measures all purporting to assess the same concept. Measuring true-score reliabil-
ity is preferable to Cronbach’s alpha because it is a higher standard. But there is a hitch:
The definition would seem to require the true score, which is precisely what we do not
know. In the case of multi-wave panel data, under the assumption of uncorrelated error,
Heise (1969) discovered a way to infer the squared correlation between observed and true
score without directly observing the true score. Thus, with three or more waves of panel
data, and only in this case, can one indeed measure true-score reliability.

Prior dismisses the high true-score reliability of the program list measure because he
says high reliability does not matter when a measure is not valid. Like most scholars, we
think reliability and validity are both relevant criteria for good measurement. Moreover,
we use a far more exacting standard for reliability than previous studies because we have
the advantage of multi-wave panel data. Reliability, combined with predictive validity,
convergent validity, and construct validity, would seem to produce a powerful combination.

The potentially exaggerated reliabilities that Prior cites from Zaller (2002) are exam-
ples where Zaller expresses doubt about the measures because they correlate weakly with
political knowledge. As Zaller puts it, “I find it difficult to take seriously a measure of news
exposure that has so weak an association with what ought to be the effect of news expo-
sure” (Zaller, 2002, p. 310). Zaller suggests that the high reliabilities despite low predictive
validity could be due to overreporting. For the program list measures, by contrast, we find
evidence of high reliability and high predictive validity.

Importantly, the reliabilities Zaller is referring to are based on Cronbach’s alpha. While
useful for some purposes, Cronbach’s alphas merely reflect the average intercorrelations
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648 Seth K. Goldman et al.

among survey items. This is not the same conception of reliability as a true-score reliabil-
ity; the two are simply not comparable. Moreover, even the one panel study that Prior cites
(Chaffee & Schleuder, 1986) does not report a true-score reliability for television exposure.
Instead, they collapsed measures from across their panel waves into a single indicator and
report a Cronbach’s alpha. As we point out in our original article, we have found only one
other reported true-score reliability for a political television measure administered to the
U.S. population (Bartels, 1993), and ours is substantially higher. There simply is no liter-
ature documenting true-score reliabilities from previous attempts to measure Americans’
political television exposure.

Prior correctly notes that all reliability estimates can be affected by correlated errors;
to the extent that respondents consistently overreport (that is, the same person by similar
factors in repeated waves), correlated errors could result in inflated reliability estimates. He
therefore suggests that high reliabilities are really not a good sign. It is certainly correct that
even with true-score reliabilities, correlated errors can inflate the estimates. Nonetheless,
they are still the best possible measures of reliability that are independent of stability.
A high true-score reliability could mean either a very reliable measure or that individu-
als systematically overreport. Interestingly, neither case is particularly problematic for our
purposes.

For the sake of argument, let us take the worst case scenario and imagine that we
have evidence that the latter is most definitely the case: That is, individuals are system-
atically overreporting. The estimation technique used in our panel analyses makes any
consistent overreporting of exposure completely unproblematic to our results. The fixed
effects panel model that we use already assumes correlated errors over time. To the extent
that a person consistently overreports, an analysis of individual-level change over time will
be unaffected. Whatever inflation factor exists for a given person drops out of the model
altogether. This makes consistent overreporting a non-issue when analyzing panel data in
this fashion. It renders individual differences in overreporting unimportant because each
person is only being compared to him- or herself, not to others who might inflate by differ-
ent factors. Previous analyses have not had this advantage because none of them—including
the Chaffee and Schleuder (1986) panel study cited by Prior—used fixed effects models of
within-person change in their analyses.10 In short, when using differences over time as
predictors, a within-person constant displacement is irrelevant.

Another problem might be if different people overreported by different amounts at
different times. How can we be certain that this is not occurring? What if a person inflates
his or her estimate by one factor at Time 1 and a different factor at Time 2? If this were the
case, it would have devastating effects on the true-score reliabilities of our measure. Given
the high true-score reliabilities that were obtained, we have convincing evidence that this is
not occurring.

A third potentially problematic scenario is if, at different points in time, everyone in a
study inflates their viewing more or less simultaneously. Fortunately, the analysis approach
used in our study also accounts for this potential problem. All of the fixed effects analyses
presented in our article include variables representing wave of interview in the models,
that is, the component of change that is common across all respondents from one wave
to the next (Hallaby, 2004). Thus, any simultaneous inflation effects of this kind (due, for
instance, to overall increases in political interest at a given point in time) would be removed
from the analyses by the wave variables.

Could these same measures be problematic if a researcher attempts to make a case for
media effects using cross-sectional data? Absolutely, but the legions of problems involved
in using cross-sectional data to establish media effects go far beyond problems with the
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reliability of exposure measures. In cross-sectional data, high levels of political knowl-
edge may go along with high levels of political news exposure for many spurious reasons
that have nothing to do with television’s ability to increase levels of political knowledge.
Convincing observational accounts of media effects inevitably must involve observation of
change in the dependent variable at the very least; otherwise, stable individual differences
are hopelessly conflated with the outcome of interest.

Conclusion: What Do Scholars Really Want?

Prior provides a litany of criticisms of our alternative approach to measuring political tele-
vision exposure. He admonishes scholars against making use of these measures in their
future research using the American National Election Studies or NAES panel surveys.
Unfortunately, he does not offer any better alternatives. Virtue is, indeed, relative; we would
certainly not claim our approach to be without its faults, but we think it is a substantial
improvement over what scholars have used for many decades. And while the approach we
offer is not perfect for all purposes, it has clear virtues that current approaches lack.

The appropriate standards for measurement are reliability and validity. On these two
dimensions, the virtues offered by our approach are many. They include (a) confirmed con-
struct validity based on the strong relationship between number of programs viewed and
total extent of viewing as documented by multiple studies (see LaCour & Vavreck, 2013;
Wonneberger et al., 2012), (b) high true-score reliability based on panel data, (c) convergent
validity with Nielsen estimates and with the logical points in time when exposure should
increase and decrease, and (d) strong predictive validity in models predicting change over
time in knowledge with change over time in exposure. If, as Prior suggests, we are “reli-
ably measuring something other than the thing we want to measure,” then it is incumbent
upon him to explain why change in this measure predicts change over time in candidate
knowledge so consistently. Indeed, ours is the first evidence from a representative panel
sample demonstrating that changes in television exposure correspond to changes in political
knowledge over time. Many experiments have shown this, and some previous panel studies
have suggested it, but without actually measuring change over time or using a statistical
model that eliminates the impact of stable individual characteristics that could confound
the results.

While we, like many others, find that television viewing is mostly habitual (e.g.,
Adams, 2000; Wood, Quinn, & Kashy, 2002), the measures of exposure to all kinds of polit-
ical programs—including standard newscasts, talk shows, and newsmagazines—all showed
declines after the election, just as one would predict. Prior suggests that the program list
measure registers “barely any increase in news exposure as the 2008 presidential election
approached,” and yet the increase in Figure 1 seems quite apparent—and quite similar to
the modest increases recorded by Nielsen. Moreover, if exposure were completely stable in
our estimates as Prior suggests, there would be no conceivable way for change in exposure
to predict change in knowledge.

Finally, with respect to construct validity, we think our measure offers scholars more
of what they really want from exposure measures than what is offered by our current fre-
quency of exposure measures. What scholars really want is to know the kind of political
television content to which people are exposed, including content on programs that have not
traditionally been included in exposure measures, and including content that is not viewed
in real time or even necessarily on television sets. Because our measures allow scholars to
match the content of programs to the people who watch them regularly, this opens scholar-
ship up to far more interesting hypotheses than previous measures of television exposure.
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650 Seth K. Goldman et al.

If there are other feasible approaches to measurement that have already surpassed the pro-
gram list technique when using these same stringent tests of validity and reliability, we are
unaware of them.

The research that Prior cites on passive measurement techniques offers aggregate
comparisons to some traditional media exposure self-reports, but not to the program list
technique, so a direct comparison of these two approaches is impossible for the moment.
Using a small sample from a single Designated Market Area collected by IMMI, LaCour
(2012) looks at exposure to television programs, and Jackman and colleagues (2012) exam-
ine advertising exposure. While both studies suggest that their results are promising, their
validation analyses do not include evaluation of the extent to which exposure was under-
estimated (i.e., individuals were exposed to content, but the audio was not registered by
their cell phones and/or the matching technology) or overestimated (individuals were not
actually exposed, but their cell phones and the associated technology registered exposure).
LaCour (2012) compares his aggregated results to Nielsen’s aggregated results, but is not
able to provide individual-level validation.

Aggregate comparisons of people exposed to political ads or to whole networks of pro-
grams cannot speak to issues of reliability and validity for individual-level measurements
of program exposure. One would assume that passive measures would include less error,
but technologies, as well as humans, are prone to errors, especially when humans must
cooperate to activate these technologies (see Jackman et al., 2012, for a discussion). The
early studies suggest that these approaches are not completely without their own problems
and inconsistencies. For example, Jackman and colleagues (2012) suggest that these esti-
mates underreport viewing relative to Nielsen estimates, that time-shifted viewing can be
problematic to capture, and that compliance in using the technology (keeping the battery
charged and the cell phone on the body at all times) is less than 100%, even among a non-
probability sample. We assume that passive approaches will still experience fewer problems
than have been encountered with self-reports, but it is simply too early to tell when such
technology will be available.

Although Prior is strongly opposed to the use of the measures we have developed,
his only suggestion for the moment is to use “technologies developed by audience mea-
surement companies” that collect data passively. What he does not mention is that, at least
within the United States, there is no such company at present. Even if a researcher had
unlimited resources, as most of us do not, as of this writing no such opportunity exists.
The company responsible for the small-scale study of passive measurement that he men-
tions (IMMI) is no longer in business. Curiously, in addition to the studies using IMMI data,
Prior also cites approvingly the data used in Gentzkow and Shapiro (2011). However, for the
extent of people’s exposure to television, newspapers, and newsmagazines, these authors
use survey-based self-reports of precisely the kind that have been roundly denounced.

All measurement consists of the best one can do at any given point in history; we must
make do with what is on offer. Audience measurement companies currently provide purely
aggregate data on samples of unknown and unknowable quality. At least for now, these
data cannot facilitate academic research on media effects that combines survey reports on
attitudes and behaviors with media exposure measures. Prior’s central concern about self-
reports appears to be systematic overreporting, and yet panel data combined with fixed
effects regression models make such concerns irrelevant.

Because virtue is indeed relative to a given time and place, we look forward to a future
when demonstrably better measures will be both available and affordable in the United
States. For now, however, the only publicly available observational data on individual
media exposure—particularly measures that allow scholars to marry exposure to measures

D
ow

nl
oa

de
d 

by
 [

. D
ia

na
 M

ut
z]

 a
t 1

0:
17

 2
5 

O
ct

ob
er

 2
01

3 



Response to Prior 651

of opinion and knowledge—are from surveys. Given that survey-based exposure measures
remain essential to the field at this point in time, it is incumbent upon political communi-
cation scholars to do our best to improve them as much as possible. Granted, our existing
exposure measures make an easier target to improve upon than some as yet unknown and
unvalidated future technique. But the alternative—to cease everything except experimental
political communication research for the time being—would be unfortunate indeed.

Notes

1. Nielsen has recently announced plans to start incorporating into its ratings Internet streaming
to TV sets as well as viewing occurring on broadband and mobile devices, but a number of these
changes are still only in the early stages of planning (Bauder, 2013).

2. In addition to listing specific Fox News Channel programs, the program list on the NAES
survey instrument included an item labeled “Fox News.” This is the item Prior uses in his comparison
of Nielsen estimates and the program list estimates.

3. Using program as the unit of analysis, we created a variable representing the percentage of
the NAES sample viewing each program, and another variable representing the Nielsen rating (from
September 2007, when the panel began) for each program that could be matched to it. The Pearson
correlation between these two variables was .86 (p < .001). We also ranked the Nielsen ratings of
programs from high to low and ranked the programs based on survey percentage viewing. Spearman’s
rho was .76 (p < .001) for this rank-ordered association.

4. Prior also cites his analysis of rolling cross-sectional survey data, which yielded evidence
that self-reports of exposure to a single presidential debate lacked validity. As that analysis did not
actually provide a test of the convergent validity of the program list measure, it seems at best only
tangentially related.

5. These percentages are based on Nielsen’s monthly estimates of the number of people watching
Fox News Channel for 6 minutes or more: 56 million (January), 58 million (February), 58 million
(March), 69 million (September), 63 million (October), and 75 million (November)

6. The 2010 interviews were limited to a random subsample of non-Hispanic White respondents
from the 2008 NAES panel, as the primary purpose of the follow-up panel was to assess post-election
changes in racial attitudes among Whites.

7. More specifically, fixed effects regression controls for the constant effects of individual char-
acteristics, so we also controlled for the time-varying impact of individual characteristics by including
interactions between the wave variable and education, age, gender, income, race, strength of ideology,
strength of party identification, and political interest.

8. Even after adjusting for measurement error, “the use of Y1 as a regressor variable seems to
underadjust for prior differences” (Allison, 1990, p. 99).

9. Recent extensions of this idea under the heading of the communication mediation model also
posit that interpersonal influence mediates the effects of media exposure on political knowledge and
participation, though the hypothesized process differs from the two-step flow (e.g., Cho et al., 2009;
Shah et al., 2007). Notably, however, these studies show significant direct effects of media exposure
on knowledge even after controlling for interpersonal discussion. At the same time, these studies
rely on cross-sectional analyses and so provide weak causal evidence with regard to both media and
interpersonal influence.

10. Chaffee and Schleuder (1986) instead use a lagged dependent variable approach with con-
stant measures of exposure. This approach is not the same because lagged dependent variable models
do not directly address individual-level change over time, and are known to produce biased and
inconsistent estimates (see, e.g., Allison, 1990, 2009).
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