
University of Massachusetts Amherst University of Massachusetts Amherst 

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst 

Stockbridge Faculty Publication Series Stockbridge School of Agriculture 

2023 

Development potential of nanoenabled agriculture projected using Development potential of nanoenabled agriculture projected using 

machine learning machine learning 

Peng Deng 

Yiming Gao 

Li Mu 

Xiangang Hu 

Fubo Yu 

See next page for additional authors 

Follow this and additional works at: https://scholarworks.umass.edu/stockbridge_faculty_pubs 

Deng, Peng; Gao, Yiming; Mu, Li; Hu, Xiangang; Yu, Fubo; Jia, Yuying; Wang, Zhenyu; and Xing, Baoshan, 
"Development potential of nanoenabled agriculture projected using machine learning" (2023). 
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA. 47. 
Retrieved from https://scholarworks.umass.edu/stockbridge_faculty_pubs/47 

This Article is brought to you for free and open access by the Stockbridge School of Agriculture at 
ScholarWorks@UMass Amherst. It has been accepted for inclusion in Stockbridge Faculty Publication Series by an 
authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact 
scholarworks@library.umass.edu. 

https://scholarworks.umass.edu/
https://scholarworks.umass.edu/stockbridge_faculty_pubs
https://scholarworks.umass.edu/stockbridge
https://scholarworks.umass.edu/stockbridge_faculty_pubs?utm_source=scholarworks.umass.edu%2Fstockbridge_faculty_pubs%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/stockbridge_faculty_pubs/47?utm_source=scholarworks.umass.edu%2Fstockbridge_faculty_pubs%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu


Authors Authors 
Peng Deng, Yiming Gao, Li Mu, Xiangang Hu, Fubo Yu, Yuying Jia, Zhenyu Wang, and Baoshan Xing 

This article is available at ScholarWorks@UMass Amherst: https://scholarworks.umass.edu/
stockbridge_faculty_pubs/47 

https://scholarworks.umass.edu/stockbridge_faculty_pubs/47
https://scholarworks.umass.edu/stockbridge_faculty_pubs/47


PNAS  2023  Vol. 120  No. 25  e2301885120� https://doi.org/10.1073/pnas.2301885120   1 of 11

RESEARCH ARTICLE | 

Significance

The development of 
nanotechnology has enabled 
precision and sustainable 
agriculture. The controllability 
and targeting of nanoparticles 
(NPs) will accelerate the 
development of modern 
agriculture. However, the 
development potential of 
nanoenabled agriculture remains 
unknown. Here, we built models 
of plant responses and uptake/
transport of NPs using machine 
learning. Feature interaction and 
covariance analysis provide ideas 
for the design of environmentally 
friendly nanoenabled pesticides 
and fertilizers. The models 
quantify the synergistic effects 
among the surface charge, size, 
temperature, and NP exposure 
dose on plant growth and NP 
uptake. According to the 
prediction, Africa is a suitable 
area for nanoenabled 
agriculture, where a moderate 
temperature increase 
(approximately 6.0°) in the future 
may reduce the oxidative stress 
of bean induced by NPs.
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The controllability and targeting of nanoparticles (NPs) offer solutions for precise and 
sustainable agriculture. However, the development potential of nanoenabled agriculture 
remains unknown. Here, we build an NP-plant database containing 1,174 datasets 
and predict (R2 higher than 0.8 for 13 random forest models) the response and uptake/
transport of various NPs by plants using a machine learning approach. Multiway feature 
importance analysis quantitatively shows that plant responses are driven by the total NP 
exposure dose and duration and plant age at exposure, as well as the NP size and zeta 
potential. Feature interaction and covariance analysis further improve the interpretability 
of the model and reveal hidden interaction factors (e.g., NP size and zeta potential). 
Integration of the model, laboratory, and field data suggests that Fe2O3 NP application 
may inhibit bean growth in Europe due to low night temperatures. In contrast, the risks 
of oxidative stress are low in Africa because of high night temperatures. According to the 
prediction, Africa is a suitable area for nanoenabled agriculture. The regional differences 
and temperature changes make nanoenabled agriculture complicated. In the future, 
the temperature increase may reduce the oxidative stress in African bean and European 
maize induced by NPs. This study projects the development potential of nanoenabled 
agriculture using machine learning, although many more field studies are needed to 
address the differences at the country and continental scales.

machine learning | nanoparticle | artificial intelligence | risk | nanoenabled agriculture

Nanoparticles (NPs) or nanomaterials are incorporated into a wide range of agricultural 
fields because of their extraordinary nanoscale properties (e.g., high reactivity, mobility, 
and biocompatibility) (1, 2). For example, nanotechnology is applied to enhance soil 
fertility by supplying nutrients (nanofertilizers), controlling weeds and pests (nanoherbi-
cides and nanopesticides), and remediating and improving soil properties and plant char-
acteristics (3–6). Nanotechnology for agricultural applications is undergoing increasing 
development and application (7), but development is still at an early stage (1). However, 
there is substantial uncertainty regarding nanoenabled agriculture, such as the adverse 
effects of NPs, the cost and the development potential at the global scale (2, 8). This 
uncertainty is affected by the types of NPs, plant species, and environmental and climate 
conditions (3). With the increasing global population and food security issues, it is urgent 
to develop smart methods to assess the above uncertainty, promote nanoenabled agricul-
tural development and reduce risks to plant growth (9, 10).

Previous studies focused on experiments that evaluated the effect of NPs on plant 
growth, toxicity, translocation, and accumulation, and these studies were expensive and 
time-consuming and had low reproducibility (2, 11). According to the physicochemical 
properties of NPs and the plant growth environment, the rapid and accurate prediction 
of their growth, responses, translocation, and accumulation in plants is urgently necessary 
for the development of nanoenabled agriculture (12, 13). Traditional methods [e.g., quan-
titative structure-activity relationship (QSARs) and molecular dynamics simulations] are 
conducted at the atomic level, and it is difficult to accurately predict the systemic toxicity 
response and translocation and accumulation of NPs in fields and at a large scale (14, 15). 
As data-driven approaches, machine learning models present a robust ability to reveal 
complex relationships and project future trends (16, 17). Currently, quantitative predic-
tions of the fate of NPs in plants under environment-related and large-scale conditions 
remain inaccessible (18). The lack of high-quality datasets affects the effective training, 
testing, and verification of models for the interactions between NPs and plants. To address 
these problems, we built a database containing 1,174 datasets on NP-plant responses and 
uptake/transport from different countries or regions. To further screen the key factors 
driving the interactions between NPs and plants, we improved machine learning models 
to overcome the challenges of the high dimensionality and heterogeneity of data through 
the visualization of factor covariance.
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Although the potential of nanotechnology in agriculture has 
been discussed for more than a decade, it has not been very rapidly 
implemented in practical use (19). Assessments of plant responses 
and the uptake of specific NPs at multiple geographic sites in 
actual soil and climatic environments are critical for the develop-
ment of nanopesticides and fertilizers at local and global scales. 
Here, we compiled high-spatial-resolution laboratory and field 
data on soils (acidic, neutral, and alkaline), climate (daytime and 
night temperatures, illumination intensity, and relative humidity) 
and local crop planting dates and predicted crop growth, oxidative 
stress, photosynthesis, and the uptake of NPs, illustrating the 
development potential of nanoenabled agriculture on different 
continents and in different countries (Fig. 1 and SI Appendix, 
Fig. S1). Quantitative analysis of variable covariance and predic-
tion at the local and global scales using machine learning and the 
integration of laboratory and field data will boost the development 
of precision and sustainable nanoenabled agriculture.

Results and Discussion

Heterogeneity Challenge Analysis of NP–Plant Interactions. 
Current studies on the effects of NPs on plants are incomplete and 
have been carried out under specific conditions (e.g., one type of 
NP with one exposure pathway to expose one specific plant growth 
condition). A systematic database of various NPs acting on different 
plants is lacking, preventing a global examination of NP–plant 
interactions. There is an urgent need to use machine learning to 
extract and mine hidden response relationships of plants to NPs to 
provide technical support for nanoenabled agriculture. To reduce 
the data bias caused by different study conditions and ensure the 
quality of the data and the reliability of the results (20, 21), strict 
standards were adopted in literature extraction and data mining 
(described in the Methods). A total of 1,174 datasets related to the 
various NPs in plants from different countries or regions were mined 
and analyzed (SI Appendix, Fig. S2). The multidimensional factor 
distribution of the datasets is shown in Fig. 2 and SI Appendix, 
Table S1. The 17 unique NPs included metallic (e.g., Ag, CuO, 
and ZnO), carbonaceous (graphene and multiwalled carbon 
nanotubes), nonmetallic (SiO2), and macromolecular polystyrene 

NPs. The quantitative factors represented highly heterogeneous 
(e.g., 2.5 to 2,000.0 nm for NP size measured by transmission 
electron microscopy [sizeTEM] and 0 to 3,000 mg for NP exposure 
doses) and complex (e.g., relationships between 20 input factors and 
13 output labels) conditions for the prediction of the interactions 
between NPs and plants.

Data complexity (e.g., high heterogeneity) was the main chal-
lenge in accurately predicting these interactions using traditional 
statistical methods (e.g., multiple linear regressions) and machine 
learning models (22). We used the similarity network based on 
proximity matrixes from random forest (RF) models to visualize 
the heterogeneous distribution of NP types and shapes, as shown 
in SI Appendix, Fig. S3. The high homogeneity of the tight-knit 
clusters revealed similar factor-response relationships hidden in 
the RF models. In various NP types (SI Appendix, Fig. S3 A–D), 
tight connections are present in the clusters of ZnO, Ag, CuO, 
and carbon-based NPs. More connected nodes indicate NPs that 
share more similar factor-response dependence or NP–plant act-
ing patterns, and vice versa. The dissolution of metal-oxide NPs 
in plants (depending on the specific metal properties) plays an 
important role in their biological impact, while carbon-based NPs 
are prone to oxidative degradation by hydroxyl radicals, leading 
to different clustering compared with metal NPs (8, 23). In addi-
tion, clear tight connections are present in the clusters of NP 
shapes (SI Appendix, Fig. S3 E–H). The above similarity network 
identified data homogeneity and heterogeneity and supported the 
subsequent processing of data heterogeneity for the same NPs 
rather than different NPs with similar effects. Given the sharp 
increase in the dimensionality and data heterogeneity resulting 
from the type and shape of the NPs in the RF model, we used 
two coding methods (NP type and shape) to represent these two 
features of NPs (shown in the Methods). This approach reduces 
the complexity of the data and enhances the generalization ability 
of the model.

Model Optimizations for NP–Plant Interactions. As shown in 
SI Appendix, Fig. S4, most of the multiple linear regressions had 
low correlation coefficients [coefficient of determination (R2), 0.56 
± 0.15] and high rms errors (5.37 ± 5.76). In contrast, robust 
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machine learning methods such as RF, extreme gradient boosting 
(XGB), support vector machines (SVMs), and artificial neural 
networks (ANNs) can handle complex and heterogeneous data 
(22). To eliminate dimensional effects and balance the weights 
of features, z score normalization and encoding of the character 
variables were applied prior to model training (details are provided 
in Methods). The distribution ranges of the label data were very 
wide [e.g., ascorbate peroxidase ranged from 5.30 to 941.58% 
(control group set to 100%)], and a considerable number of 
outliers were present. Therefore, the label values were normalized 
to improve the accuracy of the models. To avoid overfitting and to 
credibly evaluate the prediction accuracy, the model performance 
was estimated by 10-fold cross-validation (21). The R2 of the 
regression (SI Appendix, Fig. S5) shows that for the test set, the 
performance of the RF model (average of all models, 0.82 ± 0.14) 
was better than that of XGB (average of all models, 0.80 ± 0.18), 
ANN (average of all models, 0.71 ± 0.17) and SVM (average of all 
models, 0.69 ± 0.18). SI Appendix, Fig. S6 and Table S2 list the RF 
regression results. The R2 values of the test set of most RF models 
were greater than 0.75, where the R2 values for length, root-shoot 
ratio (RS ratio), and uptake were >0.85, and the maximum value 
reached 0.88. Sequential backward selection (SBS, described in 
Methods) was used to remove redundant features and simplify the 
models. SI Appendix, Fig. S5E shows that no evident improvement 
in the model performance was obtained through feature selection 
by the SBS algorithm, and the SBS algorithm ignored some NP 
properties. Therefore, we chose the full features to build RF models 
for the subsequent analysis.

 SI Appendix, Fig. S7 shows that most of the features had low 
linear correlations, indicating that the features obtained via the 
literature and generated through coding may not have caused 
overfitting due to multicollinearity. The biological interaction of 
NPs in plants is complex and unclear, and a single factor cannot 
provide sufficient information for the response and uptake/trans-
port (3). Moreover, we performed permutation tests, and the 
intercepts of the cross-validation coefficients (Q2) on the Y axis 
were all less than 0.05, indicating that the models did not overfit 
(SI Appendix, Fig. S8) (17). Furthermore, we performed feature 
value shuffling. The predictive performance was abrogated after 
feature value shuffling (SI Appendix, Fig. S9), ensuring that the 
features contributed valid information to the models.

Screening Drivers and Covariance Analysis of NP-Enabled 
Agriculture.   SI  Appendix, Fig.  S10 shows the importance of 
features based on the mean square error (MSE) increase and 
node purity increase (22). Fig. 3 A–C show the top five important 
features of each plant label measured by the MSE increase. The 
total NP exposure dose was the priority driver of the plant response 
and NP uptake/transport. Multiway feature importance analysis 
was used to screen other important drivers. The total NP exposure 
dose, daytime temperature, and duration were identified as the 
most important factors that affected the plant dry weight (Fig. 3 
D and E). Multiway feature importance analysis avoided the bias 
of a single indicator (Fig. 3 D and E). Notably, the plant length 
was mainly driven by the NP properties (e.g., zeta potential, 
sizeTEM, and purity), as shown in SI Appendix, Fig. S11. Based 
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on the oxidative stress response, plant age should be considered 
a priority factor for NP exposure (SI Appendix, Figs. S12–S15). 
Partial dependence analysis (SI Appendix, Fig. S16B) showed that 
oxidative stress decreased with increasing duration, and NPs tended 
to induce short-term acute oxidative stress in plants (e.g., tomato 
and wheat). The oxidative stress indicators increased rapidly in the 
initial exposure stage. Within approximately 20 d after exposure, 
hydrogen peroxide activity decreased from 133.3 to 114.5% of 
that in the control group (corresponding to the normalized values 
of 0.250 and 0.127, respectively, in SI  Appendix, Fig.  S16B). 
Plants’ exposure at approximately 25 d (the transition stage from 
the seedling to vegetative phase) caused malondialdehyde to 
increase rapidly. Hence, the increased oxidative stress in the initial 
exposure stage deserves attention for the applications of NPs. The 
decrease in night temperature (< 15 °C) inhibited photosynthesis, 
as shown in SI Appendix, Fig. S16C. According to the RF models, 
exposure to 60 mg of the 17 tested NPs increased the average 
chlorophyll a content by 7.6% in the test plants and improved 
the low temperature tolerance (SI Appendix, Fig. S16C). The NP 
exposure dose is well known as a priority driver of uptake, and 
SI Appendix, Figs. S17 and S18 show that the uptake and transport 
factor (TF) of NPs in plants was size specific. The NP size affected 

the uptake of NPs in the plant leaf epidermis via stomata, as 
well as the translocation across the plant plasma membrane and 
organelle lipid bilayers in vivo (24, 25). Importantly, the uptake 
and transport of NPs depend on the plant species (26). Plant 
species and culture type affected the root concentration factor 
(RCF) and shoot concentration factor (SCF) of NPs in the plants 
(SI Appendix, Figs. S19 and S20). We conducted significance tests 
on the plant uptake and transport data in different plant species 
in SI Appendix, Fig.  S21, which showed significant differences 
in uptake, TF and SCF among the five tested species. The ZnO 
NP dose in wheat roots was higher than that in other plants, 
probably because ZnO NP induced the formation of the lateral 
roots of wheat to promote NP uptake (27). With respect to ZnO 
NP exposure, maize had a lower TF value than the other plants, 
probably due to its high capacity to store Zn in roots (27).

Understanding how NPs interact with plants and affect their 
responses and uptake/transport is critical for precision and sustain-
able nanoenabled agriculture (7). However, related information 
remains largely unknown due to the complicated interaction 
between NPs and plants (28). Most machine learning models, such 
as black-box models, are not well suited for further research on 
feature interactions (17). We calculated the feature–feature 
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interaction strength based on the structure of each tree in the RF 
model and established the feature interaction networks (described 
in the Methods). The dry weight interaction network is shown in 
Fig. 3F, and other networks are presented in SI Appendix, 
Figs. S11–S15, S17–S20, and S22–S24. The plant response net-
work analysis indicated that size (sizeTEM and sizeDLS) had strong 
interactions with the zeta potential of the NPs, while the NP expo-
sure dose had strong interactions with duration and temperature 
(daytime and night temperature). According to the plant uptake/
transport network analysis, the NP exposure dose interacted 
strongly with the culture substrate (e.g., acidic soil). The strong 
NP exposure dose–duration and sizeTEM–zeta potential interactions 
were displayed by double-variable partial dependence analysis in 
Fig. 4. For example, under a low NP exposure dose (<15 mg), the 
tendency of NPs to inhibit plant growth gradually weakened with 
duration, while a high NP exposure dose (>30 mg) caused irre-
versible damage to plants as the duration increased (29) (Fig. 4A). 
Fig. 4 C and D suggests the feasibility of achieving optimized 
effects by controlling the NP exposure dose and duration, such as 
enhancing photosynthesis and uptake. The zeta potential and size 
of NPs also played important roles in the formation of protein 
crowns, which affect uptake by plants (30, 31). For example, 
Fig. 4E shows that low negative charges (−20 to 0 mV) with a small 
sizeTEM (0 to 20 nm) of NPs promoted plant growth. NPs with a 
negative charge (<0 mV) and small sizeTEM (0 to 50 nm) induced 
an average 12.4 to 15.0% increase in superoxide dismutase activity, 
as shown in Fig. 4F. Superoxide dismutase activity resists superox-
ide radicals (32), and a suitable zeta potential (<−10 mV) increases 
superoxide dismutase activity and may resist damage from super-
oxide radicals. For NPs with a sizeTEM less than 50 nm in Fig. 4H, 
the zeta potential had a limited effect on NP uptake by plants (e.g., 
cucumber). However, for NPs (e.g., Fe and ZnO) ranging from 
50 to 100 nm, high surface charges (zeta potential >20 mV or 
<−20 mV) promoted NP uptake by plants. The above results are 
consistent with the previous proposal that a high surface charge is 
conducive to the realization of trans lipid membrane translocation 
in maize (33, 34). For the design and application of nanopesticides 
or other NPs, sizes and zeta potential should be considered simul-
taneously to achieve controllable uptake.

Development Potential of Nanoenabled Agriculture Projected 
by Models. Previous studies have focused on specific case studies, 
whereas local- and global-scale assessments of plant responses and 
NP uptake have been lacking, thus hindering the development 
of nanoenabled agriculture. This study attempted to fill the gap 
between laboratory research and field applications. Based on the 
above established models, we selected Fe2O3 and ZnO NPs, which 
are the most commonly used NPs in agriculture (28, 35), and 
projected their development potentials (effects on growth, oxidative 
stress, and uptake) in three widely distributed crops (bean, wheat, 
and maize) (Fig. 5). The data from laboratory experiments (e.g., 
daytime and night temperatures, soil type, illumination intensity, 
and relative humidity) corresponded one-to-one with the field 
features in the models. We found that daytime temperature was 
the main environmental factor of the low growth inhibition of 
bean root length induced by Fe2O3 NP (blue regions), and relative 
humidity was the main environmental factor of high growth 
inhibition (red regions) in Fig. 5A and SI Appendix, Fig. S25A. 
The detailed factors for differences in growth inhibition in Europe 
are provided in Fig.  5A. Beans presented more severe growth 
inhibition by Fe2O3 NPs (84.3%, corresponding to the normalized 
value of −0.157 in SI Appendix, Fig. S26A) in Europe compared 
with other continents, possibly due to the synergism of low night 
temperatures (SI Appendix, Table S3) and NPs, with 49.5% of 
bean areas mainly driven by night temperature (SI  Appendix, 
Fig. S25A). Compared with other continents, in Europe and North 
America, wheat presented high risks of inhibition (P < 0.01) in 
SI Appendix, Fig. S26A, with 39.1% and 47.7% of the respective 
regions mainly driven by night temperature in SI  Appendix, 
Fig. S25B. Low-temperature stress disrupts plant growth processes 
(36). According to the above results, Fe2O3 NP may aggravate the 
effect of low-temperature stress on wheat root growth (SI Appendix, 
Table S4). Compared to other continents, Africa had lower root 
growth inhibition (−0.013), as shown in Fig. 5A. Fe2O3 NP has 
been proven to improve the photosynthesis of maize seedlings 
with increased chlorophyll and carotenoid contents under high-
temperature stress (37, 38). Fe2O3 NP has potential application 
in maize cultivation in Africa with high daytime temperatures. 
Daytime temperature and night temperature were the main 
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environmental factors of the uptake of ZnO NP by crop roots 
during the seedling stage (SI Appendix, Fig. S27). The root uptake 
capacity of beans in Oceania (0.361) and North America (0.381) 
during the seedling stage was weak compared with that of other 
continents, which was related to the high daytime temperature in 
Fig. 5B. High-temperature stress may reduce the root function of 
seedlings by altering root system architecture (e.g., root depth and 
root width) and gene expression (e.g., inhibition of Pi starvation-
related gene expression decreased the level of Pi in roots) to reduce 
the ability of crop roots to take up NPs (39–41). High illumination 
intensity (523.3 μmol m−2 s−1) in maize regions (6.1%) in Latin 
America promoted the root uptake of ZnO NP (SI  Appendix, 
Figs.  S26B and S27C). High illumination intensity enhanced 
photosynthesis to promote maize root growth (e.g., root surface 
area and root hairs) and then indirectly improved the uptake of 
ZnO NP (42, 43).

This study projected the oxidative stress risk levels of NPs for 
crops in the fields by integrating a reliable machine learning model 
and laboratory and real field data (Fig. 6). The low oxidative stress 
during the bean seedling stage in Oceania (18% of oxidative stress 
at the 16th to 20th level) was projected compared to other con-
tinents (Fig. 6A). The illumination intensity (584.9 μmol m−2 s−1) 
was the main environmental factor of the high oxidative stress in 
bean leaves induced by ZnO NP in Oceania (red regions), as 
shown in Fig. 6A and SI Appendix, Fig. S28A. ZnO NP aggravated 
the effect of high illumination intensity stress on bean leaf oxida-
tive stress. Compared to other continents, North America had a 
high oxidative stress risk (63% of oxidative stress at the 16th to 
20th level) induced by ZnO NP, as shown in Fig. 6C, with 62.1% 
of the regions mainly driven by night temperature, as shown in 
SI Appendix, Fig. S28C. Maize is sensitive to low-temperature 
stress during the seedling stage (45–47). The low-temperature 
stress in North America is shown in SI Appendix, Table S5. The 
above results agree with the previous proposal that environmental 
conditions in specific regions play a critical role in the application 
of nanopesticides (1). In Africa, compared to bean and wheat, the 

regions where maize was grown under oxidative stress at the 16th 
to 20th level were small (9%) (Fig. 6). Nanopesticides based on 
ZnO NP may have potential applications for maize in Africa with 
high night temperatures. Based on regional differences in climate 
conditions (44), machine learning models predicted the global 
response and uptake of NPs during the crop seedling stage and 
identified environmental factors, although more field research is 
needed to validate the above results (48). The differences between 
continental and national scales provide optimization insights for 
nanoenabled agricultural applications, although many factors 
(such as the safety profile and cost) should be considered together 
(49, 50).

Climate change, particularly temperature increases, has resulted 
in great challenges to modern agriculture (51, 52). The important 
feature analysis and Shapley value suggested that temperature was 
a critical factor of the interactions between NPs and plants. Plant 
responses and the uptake of NPs were predicted for four future 
scenarios in 2080 to 2100 (SI Appendix, Figs. S29–S31) to explore 
the effect of NPs on plants under temperature increases. During 
the seedling stages of bean and wheat, the temperature increase 
led to an increase (SSP1, approximately 1.9 °C for bean and 2.1 °C 
for wheat compared with now) in root growth inhibition followed 
by a decrease, while the inhibitory effect of Fe2O3 NP on maize 
roots was alleviated after the temperature increase (SI Appendix, 
Fig. S29). An appropriate temperature increase may offset the 
adverse effects of Fe2O3 NPs on plant root growth (53). The tem-
perature increase in the SSP5 scenario (approximately 6.0 °C for 
beans and 5.9 °C for maize compared with now) reduced the 
oxidative stress in African beans and European maize induced by 
NPs (SI Appendix, Fig. S31). In contrast, a previous study pro-
posed that increased temperature significantly enhanced the tox-
icity of nanooxides to wheat by interfering with metabolism (e.g., 
disturbance of energy metabolism) (54), and more reliable research 
on the synergism of NPs and temperature is needed for the prac-
tical application of nanoenabled agriculture (55). The above find-
ings reveal the challenges posed by global regional differences and 
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Fig. 5. Spatial patterns of plant root length regulated by NP and NP uptake projected by models with laboratory and field data. (A) The effect of 50 mg Fe2O3 
NP on the crop root length during the planting period. (B) ZnO NP (50 mg) uptake by crop roots during the planting period. The spatial patterns are predicted 
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temperature changes to nanoenabled agriculture. The selection of 
typical fields for NP application is urgent to verify the above results 
for the development of nanoenabled agriculture.

Conclusion

Here, we built machine learning models to successfully identify 
and predict the interactions between NPs and plants. Machine 
learning models were used to analyze plant responses and NP 
uptake driven by NP properties and climatic and environmental 
factors. The feature interaction network revealed hidden relation-
ships to provide global insights into the plant responses induced 
by the NPs and their uptake/transport. The feature covariance 
analysis explained the critical roles of NP sizeTEM and zeta potential 
in the plant responses and NP uptake; for example, NPs with a 
low negative charge (−20 to 0 mV) and a small sizeTEM (0 to 20 nm) 
tended to promote plant growth. The established models predicted 
the responses and NP uptake in typical crops around the world 
and revealed the synergism between low night temperatures and 
NP exposure that may pose severe bean root length inhibition by 

ZnO NPs in Europe. The oxidative stress risks for maize were lower 
than those for bean and wheat in Africa due to the synergism 
between high night temperatures and ZnO NP exposure. Based 
on the prediction in the four future scenarios in 2080 to 2100, the 
temperature increase may reduce the oxidative stress in African 
bean and European maize by NPs. Currently, there are no com-
prehensive studies that evaluate plant responses to NPs under field 
conditions (56). This is a crucial knowledge gap between laboratory 
research and actual applications, leading to uncertainty in models. 
The uncertainty analysis of the projected global plant length, 
uptake, and oxidative stress prediction is provided in SI Appendix, 
Fig. S32. The models may not be perfect for complicated systems 
at a large scale or local regions due to the imitated data but will be 
improved with the increase in field studies (57). There are many 
debates related to the toxicity of NPs at environmentally relevant 
concentrations, especially in soil (58), which impedes the develop-
ment of nanoenabled agriculture. Scientific judgements and appli-
cations of NPs are urgent for the public (59). Machine learning 
that integrates laboratory and field studies will promote the devel-
opment of nanomaterials in modern agriculture.
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Fig. 6. Spatial patterns of crop oxidative stress risk levels associated with NPs projected by models with laboratory and field data. The effect of ZnO NPs (50 mg) 
on the oxidative stress of the crop leaves during the planting period. (A) Bean. (B) Wheat. (C) Maize. The histograms show the percentage of the areas at the 16th 
to 20th level of risk on the global map. Oxidative stress responses were predicted with RF models. Detailed feature settings are shown in SI Appendix, Table S8. 
The map has a spatial resolution of 5 arcmin, which is approximately 10 km × 10 km at the equator.
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Methods

Data Extraction. The publications in Institute for Scientific Information Web of 
Science, ScienceDirect, and Springer-Link were searched on 31 December 2021 
using the following key words: topical subject (TS) = (nano*), TS = (plant or 
vegetable or rice or wheat or Cucumis sativus or cucumber or tomato or bean or 
corn or maize), and TS = (phytotoxic* or agriculture). The search initially identified 
6,055 studies. Given the heterogeneity of the data, 57 studies were selected 
based on the following criteria: i) The full text was available; ii) the exposure 
experiment involved both experimental and control groups; iii) basic nanoma-
terial characterization data and experimental conditions were provided; and iv) 
indicators reflecting plant growth, plant physiological, and biochemical status 
and NP uptake were reported. The names and DOI numbers of the 57 studies 
are provided in Dataset S1. The global geographical distribution of the samples 
is shown in SI Appendix, Fig. S2. Finally, a total of 1,174 datasets were extracted 
and screened to establish the database. The size of the datasets could support 
modeling and subsequent analysis, and similarly sized datasets have been suc-
cessful in studies of the protein corona (1,219 samples) and resistance genes 
(1,088 samples) (21, 60). Datasets were all from laboratory data. The studies were 
from 2012 to 2021. To accurately and comprehensively establish the relationship 
between NP exposure characteristics and plant responses, the dataset consisted 
of 20 features covering NP properties, environmental factors, and experimen-
tal conditions. Three growth indicators (organ length, dry weight, and RS ratio), 
six antioxidant responses and photosynthesis indicators (ascorbate peroxidase, 
hydrogen peroxide, malondialdehyde, superoxide dismutase, chlorophyll a, and 
chlorophyll b), and four uptake/transport indicators (uptake, TF, RCF, and SCF) 
were selected as the output labels representing the development potential of 
nanoenabled agriculture (SI Appendix, Table S6). The RS ratio represents the ratio 
of the fresh weight of the roots to the fresh weight of the shoots. TF describes the 
ability of NPs to be transferred from roots to shoots within plants. RCF and SCF 
represent the capacity of plant roots and shoots, respectively, to take up NPs from 
the growth media (18, 61). The three indicators were defined as shown below:

	
[1]TF =

Concentration of NPs in plant shoots
(
mg∕kg dry weight

)

Concentration of NPs in plant roots
(
mg∕kg dry weight

) ,

	 [2]

RCF =
Concentration of NPs in plant roots

(
mg∕kg dry weight

)

Concentration of NPs in the growth media
(
mg∕ L

)
or

(
mg∕kg

) ,

	
[3]

SCF =
Concentration of NPs in plant shoots

(
mg∕kg dry weight

)

Concentration of NPs in the growth media
(
mg∕ L

)
or

(
mg∕kg

) .

The data on the plant responses to NPs are complex and are spread across the 
text, tables, and graphs of publications. Machine extraction of the required data 
is difficult. Data extracted from text and tables were copied manually. For the 
data in graphs, three readings were taken for each point using the “digitizer” 
tool provided by Origin Lab (2021, USA), and the average values were then cal-
culated. The full terms and abbreviations included in the dataset are listed in 
SI Appendix, Table S7.

Data Preprocessing. The eight characteristic variables (NP type, shape, plant 
species, plant category, plant growing state, plant culture, exposure pathway, and 
measured plant tissues) in the datasets were coded. The exposure pathway refers 
to seed exposure, root exposure, and leaf exposure. Plant tissues, including roots, 
shoots, leaves, and plants, were measured. One-hot is a general encoding method 
that converts unordered discrete variables into binary vectors to overcome the 
problem of machine learning algorithms failing to recognize these variables (62). 
The “one-hot” coding adopted the six discrete features (plant species, plant cate-
gory, plant growing state, plant culture, exposure pathway, and measured plant 
tissues). There was no obvious correlation between the features obtained by the 
one-hot coding (SI Appendix, Fig. S7). During RF model building, discrete features 
were one-hot encoded. In the raw dataset, there were 17 and 6 classifications for 
NP type and shape, respectively. To avoid the sharp increase in the dimensionality 
and to increase the generalization ability of features, we used two coding methods 

(type coding method and shape coding method) based on the physicochemical 
properties to describe the two features (NP types and shapes), as listed below. 
Other properties (e.g., zeta potential, purity and sizeTEM) were uniformly described 
and quantized and did not need to be coded. To reduce the biases caused by the 
imbalance of NP types, the type coding method converted discrete NP types into 
continuous features. The two coding methods were as follows:

NP types: carbide (0/1), metal (0/1), oxide (0/1), macromolecular compound 
(M.C., 0/1), component 1 (Com. 1, relative atomic mass), and component 2 (Com. 
2, relative atomic mass). Here, macromolecular compounds are mainly referred 
to as nanoplastics. The difference between Com. 1 and Com. 2, for example, TiO2 
(Com. 1 = 47.87, Com. 2 = 16.00) and graphene (Com. 1 = 12.01, Com. 2 = 0).

Shapes: granular NPs (Dim. 0, 0/1), one-dimensional NPs (Dim. 1, 0/1), two-
dimensional NPs (Dim. 2, 0/1), and hollow (0/1).

Differences in plant species, NP properties, and growth conditions in the lit-
erature make direct comparisons of raw data difficult. The general use of the 
z score can lead to a serious reduction in model accuracy. To intuitively reflect 
the degree of the relative effects of different NPs on the plants under different 
experimental conditions, the label data (except RS ratio, TF, RCF and SCF) were 
converted to values between −1 and 1 based on the control and treated groups 
in the literature to reduce biases.

The formula is as follows:

	 [4]
y� =

⎧
⎪⎨⎪⎩

y− c

y
y> c

y− c

c
y< c

where y and c are the values of the experimental group and control group, respec-
tively. y′ is the converted value.

Machine Learning Regression and Validation. RF is a robust machine learning 
algorithm based on decision trees with strong anti-interference performance (63). 
RF has a strong ability to handle heterogeneous big data with quantitative and 
qualitative factors to provide solutions for predicting the fate of NPs in plants 
(22, 64). As a machine learning model integrating multiple decision trees, the RF 
model aggregates the results of each tree, performs classification analysis with a 
majority vote, and performs regression analysis with an average value. We used 
20 variables that included NP properties, environmental factors, and experimental 
conditions as features (input data) for machine learning. The responses to NPs 
and uptake/transport in plants were used as labels (output data). RF models were 
built by the scikit-learn “RandomForestRegressor” in Python 3.8. The datasets 
were split into 13 subsets (3 growth subsets, 6 stress reaction subsets and 4 
uptake and transport subsets as described above) based on different labels, and 
then 13 RF regression models were built, as listed in SI Appendix, Table S6. We 
adjusted two important parameters (ntree and mtry) of the RF model to optimize 
the predictive performance by the grid search method. ntree was set to 500, 
and mtry was set to 20. Approximately 36.8% of the raw data, which were called 
out-of-bag (OOB) data, were used to validate the model performance (63). OOB 
validation ensured that the RF was robust enough to avoid overfitting. The OOB 
percentage was calculated by the following equation:

	
[5]lim

n→∞

(
1−

1

n

)n

=
1

e
≈ 0.368,

where n is the sampling frequency and e is the natural constant with a value of 
approximately 2.7183.

Moreover, we used the 10-fold cross-validation (ShuffleSplit) method for the 
13 machine learning models to avoid overfitting. The dataset was randomly 
divided into 10 parts, nine of which were used as training sets and the rest as test 
sets to test the performance of the model. To measure the model performance, we 
averaged the R2 and RMSE values of the 10 regressions between the observations 
and predictions. TensorFlow Keras was used in Python 3.8 to build a two-layer 
connected ANN model. Similar to RF, the 10-fold cross-validation (ShuffleSplit) 
method was used to avoid overfitting in the ANN models. The hidden layer of the 
ANN model was set to 2*(n−1), where n is the number of features. Adam was used 
as the optimizer, and a small learning rate decay of 0.0001 was used to avoid over-
fitting. SVM models were built by “svm” in Python 3.8. Tenfold cross-validation D
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(ShuffleSplit) was also applied. The kernel function used “rbf,” and 1 was set 
as the regularization parameter. XGB models were built by “XGBRegressor” in 
Python 3.8. Tenfold cross-validation (ShuffleSplit) was also applied. The ntree 
was set to 100.

Overfitting Test. We used a permutation test to represent the overfitting of 
the RF models. Random values randomly replaced 20, 40, 60, 80, and 100% 
of the label values in the training sets with the original label range in 10-fold 
cross-validation. Then, Q2 was calculated. The formula for Q2 is as follows (65):

	

[6]Q2 = 1 −

∑n

i=1

�
yi− ŷ

�2
∑n

i=1

�
yi−

−

y
�2

,

where yi is the observed label value, ŷ  is the predicted label value, and 
−

y  is the 
average value of the label. The permutation of each ratio was set to 20, 40, 60, 
80, and 100%, and 500 permutation Q2 values were calculated for each model 
(5 ratios × 10 times/ratio × 10-fold). The calculated predicted Q2 values and 
the original labels were subjected to linear regression. If the intercept of the 
regression result on the Y axis is less than 0.05, the model is not overfitted (17).

Feature Selection. Feature selection for the model was performed using the 
SBS procedure. This method started with the full feature set, removed redundant 
features one by one, and found the optimal feature subset. The R2 of each selected 
subset was calculated to compare the performance of different feature combi-
nations. We set the minimum number of features for the subsets (not less than 
half of the total number of features) to prevent the model from losing too much 
information. If there was no obvious improvement in the model performance 
through feature selection by the SBS algorithm, we chose the full features to build 
RF models for subsequent analysis to avoid missing important NP properties.

Heterogeneous Distribution Visualization of NP Type and Shape. A similar-
ity network was used to visualize the heterogeneous distribution of priority factors 
in NP-acting plant models based on the Kamada–Kawai layout algorithm (66). The 
similarity matrix was obtained from the RF models through the Kamada–Kawai 
layout algorithm, and the “igraph” package in R 4.0.5 was used to draw the sim-
ilarity network. Each data point in the model corresponded to a node in a similar 
network. The nodes were colored according to NP type or shape. The frequency 
of two data points appearing in the same node of a tree was used to quantify the 
factor–response dependence similarity in the proximity matrix. The value of two 
connected nodes was higher than a certain multiple (based on node number) of 
the average of the proximity matrix based on previous work (67). Data points with 
similarities in the RF model were reflected in the connected nodes. The cluster 
density was used to measure the tightness and heterogeneity of the network.

Avoiding Bias Using Four Feature Importance Analyses. Feature impor-
tance analysis of the RF models was performed using the “randomForest” and 
“randomForestExplainer” packages in R 4.0.5. MSE and node purity increases are 
widely used as measures of feature importance in machine learning. MSE and 
node purity increase because mathematical statistical indictors are affected by 
the quantity and quality of the datasets. Therefore, absolute dominant features 
may be incorrectly identified when a single importance evaluation index is used. 
To avoid the possible bias caused by a single importance criterion, we used a 
multiway feature importance analysis (increased MSE values, increased node 
purity, mean minimal depth, and P value) to screen important features. The MSE 
increase is a variable importance indicator based on the decrease in the predictive 
accuracy of the forest after perturbation of the variable. The MSE increase was 
computed by permuting OOB data. For each tree, the prediction error in the 
OOB portion of the data was recorded, with the error rate corresponding to the 
classification performance and the MSE indicating the regression performance. 
Then, the same procedure was performed after permuting each predictor variable. 
The differences between the initial MSE and MSE after permutation were then 
averaged over all trees and normalized by the SD of the differences. The variable 
that led to a larger MSE made a more important contribution to the output. The 
node purity increase indicated the total increase in node purity from splitting the 
variable averaged across all trees. Purity is the basis for determining the split of 
a decision tree node and is measured by the sum of the minimum mean square 
errors of the node. The variable that led to a higher node purity value made a more 
important contribution to the output. The mean minimal depth is a parameter 

from the structure of the forest and represents the distance of the feature to the 
tree root, where a closer root corresponds to a more important feature, and the 
P value indicates the significance of feature importance based on the one-sided 
binomial test. Partial dependence analysis was conducted using the “pdp” pack-
age for important features to obtain the relationship of the features to the plant 
responses and the uptake/transport of NPs.

Feature Interaction and Covariance Analysis. The number of occurrences 
in an RF model represents the strength of the interactions between two features 
(68). We analyzed the structure of each tree in the RF model and then obtained 
the number of feature-feature occurrences. We used the “randomForestExplainer” 
package in R 4.0.5 to calculate the number of occurrences between two features. 
The number of occurrences refers to the number of times that the two features 
appeared simultaneously on one tree of the forest as the nodes were split. A larger 
number of occurrences represents a stronger interaction between the two features 
in the RF model. Subsequently, we selected the feature–feature with the top 50 
occurrence frequencies and established the feature interaction network. Network 
graphs obtained with the Gephi 0.9.2 software package were used to visualize 
the strength of the feature-to-feature interactions in the models.

Based on the frequency of NPs and plants in the literature, we selected specific 
NPs and plants for two-feature covariance analysis (double-variable partial depend-
ence analysis). Two features of the NP properties and experimental conditions with 
the strongest interaction were screened out for covariance analysis (e.g., total NP 
exposure dose-duration and zeta potential- sizeTEM). In the study of the plant dry 
weight response, the total NP exposure dose ranged from 0 to 50 mg in 100 steps of 
0.5 mg; the duration ranged from 0 to 50 d in 100 steps of 0.5 d; the zeta potential 
of the NPs ranged from −50 to 0 mV in 100 steps of 0.5 mV; and the sizeTEM of the 
NPs ranged from 0 to 100 nm in 100 steps of 1 nm. In the study of the plant super-
oxide dismutase response, the NP total exposure dose ranged from 0 to 50 mg in 
100 steps of 0.5 mg; the duration ranged from 0 to 50 d in 100 steps of 0.5 d; the 
zeta potential of the NPs ranged from −50 to 50 mV in 100 steps of 1 mV; and the 
sizeTEM of the NPs ranged from 0 to 100 nm in 100 steps of 1 nm. In the study of the 
crop chlorophyll b response, the total NP exposure dose ranged from 0 to 50 mg in 
100 steps of 0.5 mg; the duration ranged from 0 to 50 days in 100 steps of 0.5 d; 
the zeta potential of the NPs ranged from −50 to 50 mV in 100 steps of 1 mV; and 
the sizeTEM of the NPs ranged from 0 to 100 nm in 100 steps of 1 nm. In the study 
of the crop uptake response, the total NP exposure dose ranged from 0 to 50 mg in 
100 steps of 0.5 mg; the duration ranged from 0 to 50 d in 100 steps of 0.5 d; the 
zeta potential of the NPs ranged from −50 to 50 mV in 100 steps of 1 mV; and the 
sizeTEM of the NPs ranged from 0 to 100 nm in 100 steps of 1 nm. For each analysis, 
we ran each model 10,000 times. The above feature range settings were based on 
the value distributions of the features in the datasets.

Global Predictions. The responses of global crops (bean, wheat, and maize) 
and the uptake of NPs in the first 21 d (seedling stage) of the real planting stage 
in 2018 (the most current and intact datasets we could obtain) were predicted 
using the RF models at a 5-arcmin spatial resolution. The seedling period of 
plants is relatively short and sensitive to NPs. The planting time of global crops 
is fixed, providing certain time parameters and field parameters for prediction. 
Considering the frequency and cost of application in agriculture, we use the most 
common ZnO and Fe2O3 NPs for global prediction instead of precious metals. 
Partial dependence analysis showed that the plant response and uptake of NPs 
changed with the total NP exposure dose (SI Appendix, Fig. S16). In SI Appendix, 
Fig. S16A, with the increase in the total exposure dose at 20 to 80 mg, the influ-
ence on plant length tended to change slightly, and we set the total exposure 
dose to 50 mg for further plant length studies. With the increase in the exposure 
dose to 50 mg, the oxidative stress index and the uptake of NP by plants tended 
to be stable (SI Appendix, Fig. S16 B and D), and 50 mg was used for further 
oxidative stress and uptake studies. The input data included specific NPs and 
crop properties, as well as the field global gridded dataset of daytime and night 
temperatures (data source, https://neo.gsfc.nasa.gov/), soil types (data source, 
https://www.soilgrids.org/), illumination intensity (data source, https://neo.gsfc.
nasa.gov/), and relative humidity (data source, https://cds.climate.copernicus.
eu/) (SI Appendix, Tables S3–S5). The resolution of the field data was unified to 
5 arcmin, and grids with missing data were deleted. Daytime and night temper-
atures, illumination intensity, and relative humidity over the growing season 
for a given crop type were acquired from the corresponding dataset, where the 
planting season in each grid cell was identified as the planting dates obtained D
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from the literature (44). Daytime and night temperature data were based on the 
monthly average temperature on the planting dates, as well as the illumination 
intensity and relative humidity. The soil datasets were classified into acid, neutral, 
and alkaline soil types based on the pH value (6.5 > pH, acid; 6.5 ≤ pH ≤ 7.5, 
neutral, and 7.5 < pH, alkaline). To apply the established machine learning model 
to actual field prediction, field data (e.g., the global gridded dataset of daytime 
and night temperatures, soil types, illumination, and relative humidity) were 
employed in the models. The data from laboratory experiments (e.g., daytime 
and night temperatures, soil types, illumination intensity, and relative humidity) 
have one-to-one correspondence with the field features in the models. The five 
feature ranges in the laboratory dataset almost cover the field features. Therefore, 
the model established based on laboratory and field data can project the situation. 
Predicted values of root length and NP uptake were mapped directly on the map 
using the ArcGIS 10.6 software package. Due to the lack of a composite indicator 
of oxidative stress, we used the absolute value of the average variation of the 
four oxidative indicators (ascorbate peroxidase, hydrogen peroxide, malondial-
dehyde, and superoxide dismutase) to represent the oxidative stress of the plants. 
Normalized absolute values (maximum value was 1) were sorted and divided into 
20 equal parts representing the relative levels of oxidative stress. Higher levels 
represent greater potential oxidative stress. The machine learning model is data-
driven, and the differences in spatial climate data will generate different spatial 
responses. Climate data and the Shapley value explained the differences in the 
spatial responses. The Shapley value can be used for local interpretation of the 
model and reflects the contribution of features (69, 70). Based on the RF model, 
“shap” was used to calculate the Shapley values of the environmental factors 
(daytime and night temperatures, illumination intensity, and relative humidity) 
of each cell in Python 3.8. The factor with the higher Shapley value acted as the 
more important factor.

To predict plant length, oxidative stress, and NP uptake under future climate 
conditions, future meteorological field data were obtained from ACCESS-CM2 
in the Coupled Model Intercomparison Project, now in its sixth phase (CMIP6) 
(https://www.worldclim.org/). CMIP6 climate models from the World Climate 
Research Programme (WRCP) play an important role in supporting climate 
research and are widely used for the prediction of future crop yield, although 
there is uncertainty from different coupling modes of climate models (71). 
Based on the CMIP6 climate model, a reduction in wheat yield was predicted in 
France under future climate change (72), and the impact of different scenarios 

on global maize, soybean, and rice yields were also analyzed (73). The above 
research indicates the feasibility and reliability of combining the CMIP6 cli-
mate model with crop prediction and provides solutions for the global study of 
NPs with plants under different temperature increase scenarios. In this study, 
we focused on the effects of temperature changes on future meteorological 
data. The difference between the annual mean temperatures in 2018 and 
2080 to 2100 (2090s) was calculated, and then the difference values were 
superimposed with the daytime and night temperatures in 2018 to obtain the 
daytime and night temperatures in the 2090s. In total, four future scenarios 
were selected (74), i.e., the sustainable scenario (SSP126), medium forcing 
scenario (SSP245), medium to high forcing scenario (SSP370), and high forcing 
scenario (SSP585).

Uncertainty Analysis. For global prediction models, the uncertainty was asso-
ciated with differences in laboratory and field conditions as well as the quality of 
input data. To assess the uncertainty related to the global soil and climate data 
and unexplained variability not captured by the RF model, we randomly ran the 
RF model 200 times. Maps of the global distribution of root length, NP uptake 
and oxidative stress were built based on the mean values of the model prediction 
results. The corresponding map of the relative uncertainty of prediction was built 
based on the SD divided by the predicted mean.

Data, Materials, and Software Availability. All datasets are available at 
https://github.com/dp1999nku/All-datasets (75). Code in the paper is available 
at https://github.com/dp1999nku/Code-supplement (76).
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