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ABSTRACT 

MULTI-METHOD APPROACH TO ASSESS THE IMPACT OF OFF-FAULT 

DEFORMATION DURING FAULT EVOLUTION 

FEBRUARY 2024 

CHRIST FAVIANA RAMOS SÁNCHEZ 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Dr. Michele Cooke 

Scaled physical experiments using analog materials that simulate deformation 

processes in the Earth’s crust provide direct observations of deformation during strike-

slip fault evolution. Carefully scaled experiments allow us to directly observe millions of 

years of deformation within hours and document the behavior of experimental faults. My 

thesis is composed of three distinct chapters that use scaled physical experiments to help 

us better understand partitioning of deformation on and off of strike-slip faults within the 

Earth’s crust. For my first project, I built a workflow that allows the measurement of off-

fault deformation manifested as vertical motions along faults. When combined with 

horizontal displacements, these measurements allow us to quantify off-fault deformation 

in three dimensions during strike-slip fault experiments conducted in the geomechanics 

laboratory. My second project, inspired by the 2019 Ridgecrest earthquake, investigates 

the impact of pre-existing weaknesses during strike-slip fault evolution using scaled 

physical experiments with wet kaolin that simulate upper crustal deformation processes. 

Pre-existing weaknesses oriented 90-120˚ (counter-clockwise) from the primary fault 

experience left-lateral slip that matches coseismic observations from the northern portion 

of the Ridgecrest main shock rupture. My third and final project utilizes results from 

experimental strike-slip faults on wet kaolin and dry sand (both poured and sedimented) 

to train convolutional neural networks (CNN) to predict off-fault deformation from maps 

of active strike-slip faults of different maturity such as those in southern California. The 
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different analog materials produce different estimates of off-fault deformation along 

strike-slip faults due to the different portioning of strain on and off of faults within the 

materials. Whether due to material properties or active fault geometry, regions of greater 

off-fault deformation in the crust have greater shallow slip deficit so that surface 

estimates of deformation may underestimate sub-surface seismic hazard. 
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CHAPTER 1 

STRUCTURE FROM MOTION 

 

1.1 Introduction 

As strike-slip faults evolve, strain is both localized along and distributed around 

active faults. Distributed strain away from the fault, known as off-fault deformation, is 

manifested through deformation of the crust in three dimensions, such as distortional and 

dilatational strain of material along faults (e.g., Toeneboehn et al., 2018). Geologic field 

observations only provide us with the final cumulative information about off-fault 

deformation around strike-slip faults but do not directly inform its evolution.  

To investigate fault evolution, experimental strike-slip faults that are carefully 

scaled to represent faulting processes within the upper crust provide us with direct 

information about strain partitioning of strike-slip faults as they evolve. While fault 

evolution in the crust occurs at length scales and time that are impossible to directly 

observe, we can record such deformation within table-top experiments. Wet kaolin strike-

slip fault experiments are capable of simulating crustal fault evolution because the 

properties and length scaling of the clay have been previously well-studied and serve as a 

good analog for the crust (e.g., Cooke et al., 2013; Cooke & Van Der Elst, 2012; Hatem 

et al., 2015, 2017; Henza et al., 2010). Previous studies use Digital Image Correlation 

methods to accurately measure the horizontal slip components and strain partitioning of 

faults throughout experiments (e.g., Elston et al., 2022; Hatem et al., 2015, 2017; 

Toeneboehn et al., 2018). What is missing from those horizontal displacement fields is 

the vertical change in clay surface elevation that reveals both localized dip-slip on faults 
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and distributed off-fault deformation. To calculate this vertical off-fault deformation 

associated with strike-slip faults as they evolve, Toeneboehn et al. (2018) used a stereo 

vision method. However, this method is no longer in-use by the UMass geomechanics 

laboratory as it requires lengthy and unreliable calibration of photos.  

Since the change in uplift/subsidence of the surface of the wet kaolin adjacent to 

strike-slip faults may only vary by a few millimeters in elevation, we need fine vertical 

resolution to capture the incremental elevation of the topography throughout all stages of 

the experiment. Therefore, our goal is to find the most efficient tool and workflow that 

will allow reliable and detailed measurement of uplift/subsidence. To quantify off-fault 

deformation evolution in three dimensions we need time series of both horizontal and 

vertical displacement fields throughout the experiment. Here, I describe an efficient 

Structure from Motion workflow (Bemis et al., 2014), using Agisoft Metashape software, 

that provides sufficient resolution of uplift throughout the experiments to inform off-fault 

deformation around strike-slip faults.  

 

1.2 Methods 

Our workflow is composed of seven steps that take place after the wet kaolin has 

been prepared and placed in the claybox (Figure 1.1). 
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Figure 1.1: Workflow of the seven-step experimental method. 

 

1.2.1 Measuring Incremental Uplift/Subsidence 

Structure from Motion uses many photographs taken from a range of positions 

and directions to produce a composite three-dimensional point cloud using dense stereo 

matching (e.g., Bemis et al., 2014). Here, we analyze changes in the experiment 

topography revealed by the point cloud to investigate the distribution of off-fault 

deformation as faults evolve. Previous studies used stereovision (Toeneboehn et al., 

2018) or other open-source Structure from Motion software such as MicMac (Visage et 

al., 2023) to calculate the horizontal and vertical deformation of the experiment surface. 

However, they require overly complicated camera calibration, lengthy correlation 

methods, and higher computer power (Toeneboehn et al., 2018). We use Metashape 

software by Agisoft because it provides efficient and swift results with a single tool.  
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Metashape can process over 50,000 photos (either aerial, close-range, or satellite) 

at once and form 3D spatial data in the form of dense point clouds that can eventually be 

used to create textured polygonal models, or a georeferenced orthomosaic. Metashape 

considers the interior and exterior orientation parameters of overlapping image pairs to 

generate multiple pairwise depth maps for each camera. The pairwise depth maps are 

then merged into a single depth map, for each camera, that has redundant information 

within the overlapped regions to filter wrong depth measurements. Afterwards, each 

combined depth map produced for each camera is merged to create a partial dense point 

cloud that goes through an additional noise filtering step applied in the overlapping 

regions to finally make the dense point cloud (“Agisoft Metashape: User Manuals”).  

For our experiments we use only 5 simultaneous photos taken from different 

angles to create the 3D surface. To reduce the errors that would arise from using only 5 

photos we incorporate the known 3D coordinate location for each control point added on 

the top of the clay surface and on the edges of the claybox. These ground control points 

increase the accuracy of the dense point cloud during the dense stereo matching. We can 

generate robust 3D point clouds that have millions of points of data (with known x, y, and 

z coordinates) of the complete surface of the clay during any time frame of the 

experiment simply by using 5 sets of pictures and 12 control points as inputs.   

 

1.2.1.1 Wet Kaolin  

Physical experiments on a tabletop are 5 orders of magnitude smaller in spatial 

scale than faults within the crust. Hence, the analog material (wet kaolin) is also 5 orders 
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of magnitude weaker than crustal rocks (e.g., Cooke et al., 2013; Hatem et al., 2015, 

2017; Henza et al., 2010). During experiments, 1 cm in the claybox apparatus represents 

1-2 km of the crust (Hatem et al., 2017; Henza et al., 2010). Prior to each experiment, we 

adjust the water content of the wet kaolin to achieve the shear strength that maintains this 

claybox : crust length scaling. Wet kaolin’s particle size distribution is 5-10% of sand, 

30-35% of silt, and 60% of clay sized particle by mass (Hatem et al., 2017) with a water 

content of 60-65% and shear strengths around 100-110 Pa (Cooke et al., 2013; Hatem et 

al., 2017; Henza et al., 2010). Wet kaolin is often used to replicate fault experiments 

because it produces visible and sharp faults that are easy to trace throughout the 

experiment (Eisenstadt & Sims, 2005; Henza et al., 2010). Furthermore, wet kaolin has 

the ability of producing long-lived faults due its low but non-zero shear strength (Cooke 

et al., 2013; Eisenstadt & Sims, 2005; Withjack et al., 2007) and it can simulate off-fault 

relaxation of the crust due to its viscoelastic behavior (Cooke & Van Der Elst, 2012). 

 

1.2.1.1.1 Claybox, Template, and Control Points 

Within the laboratory we simulate crustal fault evolution with the experimental 

claybox (or also known as split box), which is a motor-controlled, tabletop apparatus (e.g. 

Hatem et al., 2017). The claybox has two pieces: one is a static plate that remains fixed to 

the table and the other plate is attached to stepper motors and moves at a prescribed speed 

(mm/min) and direction (Figure 1.2). The claybox has a length of 50 cm but it can have 

width ranging from 25 cm to 30 cm, depending on the experiment configuration and the 

desired basal condition. Since the claybox remains with the same length but varies in 

width, I designed and created a Plexiglass template (Figure 1.2) to guide the accurate and 
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consistent placement of the cylindrical control points for all experiments, even those with 

different claybox widths. 

 

Figure 1.2: Plexiglass template designed to control the placement of six control points on top of 

the wet kaolin prior to running the experiments. Green arrows denote the holes designed for strike 

slip fault experiments with 2 cm or 5 cm stepover and blue arrows indicate holes to use when 

conducting strike-slip fault experiment with no stepover. The red circles denote the six permanent 

control points located on the edges of the moving plate and static plate of the claybox apparatus. 

 

The Structure from Motion technique optimizes uplift resolution using the known 

positions of control points. I designed six lightweight 3D cylinders that function as 

control points located on top of the surface of the wet kaolin (Figure 1.3) and added six 

more control points (three placed on the static plate and three on the moving plate) on the 

outside walls of the claybox (Figure 1.2). All six 3D cylinders have the same diameter 

but different heights (Figure 1.3). The height varies from 2 mm to 22 mm (with 
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increasing height of 4 mm each) to span the range of cumulative elevation typically 

generated within strike-slip fault experiments. 

 

 

Figure 1.3: Control points designed in different heights for the claybox. Each cylinder sits 

directly on the clay surface. 

 

The one-dimensional control points located on the outer walls of the claybox 

provide greater accuracy than just using the six cylinders as ground control points. We 

secured to the claybox outer walls paper-printed control points provided by the software 

that can be automatically detected by Metashape. All control points have known x, y, and 

z coordinates at the onset of the experiment and their positions are tracked throughout the 

experiment. Placing the cylinders on top of the wet kaolin with known coordinates plus 

six more one dimensional control points aligned on the edges of the claybox greatly 

improves the resolution of the topography of the clay. The three 3D cylinders and three 

one dimensional control points on the moving plate (Figure 1.2) will shift in the x-

direction as the stepper motors transport the moving plate. Because of this shift in 

position, we wrote a script that uses the horizontal displacement field data to adjust the x 

position of each control point during any time frame during the experiment. When 
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generating a dense point cloud at a particular stage of the experiment, we can calculate 

the three-dimensional position of each control point at that stage of the experiment.  

 

1.2.1.1.1.1 Cameras Position and Calibration 

Because uplift/subsidence of the surface of the wet kaolin around strike-slip faults 

only ranges from a few millimeters up to 2 cm in elevation, we need fine vertical 

resolution to capture the incremental elevation of the topography throughout all stages of 

the experiment. We used five Canon cameras (two Canon Rebel T3i and three Canon 

Rebel SL3) with standard 18-55mm lenses and polarized light lenses to improve image 

quality by increasing focal length and avoiding glare of the horizontal edges of the 

claybox. To provide a variety of look angles of the surface of the clay, we placed four 

cameras, with zoom and polarized light lenses, on each corner of the claybox and a fifth 

camera directly above the center of the box. After setting up each camera and before 

running the experiment, we need to calibrate all cameras with a uniform black and white 

chessboard grid.  

Because each of the five cameras is set up at different angles and distances, we 

must perform a new calibration any time that the position or zoom length of a camera is 

adjusted. Once all cameras are accurately positioned and focused as desired, we took at 

least 3 pictures from each camera of the chessboard pattern that we placed on top of the 

claybox spanning the desired field view. These photos are used to calibrate the camera 

positions and look angles into a single consistent world view. Once all pictures of the 

chessboard pattern are taken for all cameras, we cannot perturb the cameras throughout 

the duration of the experiment.  
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The central camera is placed at a height that fully captures the region of interest 

within the claybox and the photos are used for both structure from motion and generating 

incremental horizontal displacement fields via Digital Image Correlation. We only used 

lens corrected (undistorted) series of photos from the top camera for the incremental 

displacement field. We performed undistortion of all pictures taken from the top camera 

in batches using Adobe Photoshop, which also allows us to turn all color images in black 

and white to reduce file size and expedite image analysis. We do not employ this 

undistortion step to the photos from the remaining four cameras because Agisoft 

Metashape Professional Edition has an automatic calibration step for the full camera 

matrix that includes non-linear distortion coefficients.  

Because we rely on the images from the central camera to generate the 

incremental horizontal displacement fields, the central camera takes frequent pictures 

throughout the experiment, which generates hundreds of pictures. This allows us to detect 

horizontal strain field maps with <1 mm spacing and calculate strike-slip rates along 

faults (Elston et al., 2022). On the other hand, because the vertical movement associated 

with strike-slip faults is much slower than the horizontal movement, the remaining four 

cameras, set at varying angles and zoom length, capture less frequent pictures than the 

top camera. Because the remaining cameras take pictures less frequently than the top 

camera, we wrote a script that creates folders of images corresponding to the same stage 

of the experiment. This is a significant step in the workflow because we need all 

corresponding five pictures (one image taken per camera) of the same stage for the 

purpose of aligning them and creating the final dense point cloud of the surface of the 

clay to resolve the vertical displacement of that one timeframe. 
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1.2.1.1.1.1.1 Analyzing Uplift/Subsidence 

Once we have the final dense point cloud representing the topography of the clay 

surface (Figure 1.4), we import the point cloud into Matlab™ for processing. I designed a 

script that down samples the unrefined dense point cloud, crops to the area of interest, 

and performs subtle noise filtering (3x3 median filter) to generate the final surface map 

(Figure 1.5a) that we later use for analysis of the uplift/subsidence rate of the clay 

surface. Each separate stage of the experiment needs to be cropped and smoothed 

consistently to create an animation of the evolution of the topography.  This step can be 

further analyzed using tools developed by Toenenboehn et al. (2018) to calculate the 

three-dimensional displacement and evolution of off-fault deformation. 

 

Figure 1.4: Final dense point cloud with over 4 million data points generated in Metashape. The 

blue flags and numbers indicate the position of the six control points placed on top of the surface 

of the clay. We cropped the raw dense point cloud to only show the area of interest. This dense 

point cloud represents the final stage of a 15° and 2 cm stepover restraining bend experiment. 

 

To determine if this workflow provides sufficient resolution of the topography for 

our type of experiments and laboratory setup, I estimated the noise for each final surface 
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map. We determined that areas with patchy and uneven regions correspond to noise along 

the surface of the claybox (Figure 1.5a). Transects along the patchy areas of the surface 

map show the range of noise (small spikes) along each transect (Figure 1.5b). The noise 

of the surface map is within ~1 mm, which guarantees fine-detail information of the 

surface of the clay for experiments. 

 

 

Figure 1.5: a) Surface map of 120 mm plate displacement of a 15˚ and 2 cm step over restraining 

bend experiment. Color bar indicates elevation of the surface measured in millimeters. Red 

arrows indicate the location of the transects across the noisy areas of the surface map to assess the 

magnitude of noise on the clay surface. Green circle captures the position of one of the 3D 

cylinders, which has a higher elevation than the rest of the clay surface. b) Blue line indicates 

first transect along row 300 and orange line indicates second transect along row 600. Note that 

both transects cut across the restraining bend (uplifted section) around 150 mm. Hence, the small 

spikes before the restraining bend represent the noisy area on the surface. The noise of the 

elevation profile stays under ~1 mm. 

 

1.3 Results 

I created a manual for the geomechanics laboratory on the best-practice workflow 

that should be followed to optimize the elevation models. This process emerged after 

many iterations and tests with different types of experiments. I used this workflow for 5 
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different strike-slip fault experiments (restraining bends and releasing bends) that had 

various basal conditions and loading rates configurations. The results from the releasing 

bend experiments, led by Alana Gabriel, are used in her paper currently in preparation to 

measure the dip of exposed normal fault surfaces – I am a co-author on that paper. 

Additionally, we designed four scripts that significantly speed up the process and, more 

importantly, achieve fine resolution of the surface of the wet kaolin during experiments. 

Our final surfaces generated have elevation uncertainty of < ~1 mm (Figure 1.5b) which 

guarantees accurate information of the topography of the clay. This accuracy of elevation 

models will allow us to quantify off-fault deformation manifested as advection and 

uplift/subsidence adjacent to strike-slip faults that evolve through time. 
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CHAPTER 2 

THE IMPACT OF PRE-EXISTING WEAKNESSES ON STRIKE-SLIP FAULT 

EVOLUTION: RUPTURE MAPS FROM THE 2019 RIDGECREST 

EARTHQUAKE INSPIRE SCALED-PHYSICAL EXPERIMENTS 

 

2.1 Introduction 

The Eastern California Shear Zone of Southern California, USA, has hosted 

several historic ground rupturing earthquakes along complex networks of strike-slip 

faults. A contributing factor to the geometric complexity of these rupture traces is that 

they follow pre-existing faults and heterogeneities in the upper crust. For example, the 

2019 Ridgecrest earthquake occurred in a region with pervasive pre-existing weaknesses 

that are at a high angle to the main rupture surface (e.g., Nevitt et al., 2023). The 

Ridgecrest earthquake produced a complex rupture pattern along the mainshock fault 

where the northwest end of the dextral rupture re-activated with sinistral slip a set of 

disconnected older faults perpendicular to the strike of the mainshock fault, also known 

as cross-faults (Figure 2.1; e.g., Antoine et al., 2021; Milliner et al., 2021). The highly 

segmented and disconnected geometry of active faulting at the northwest end of the 

rupture is believed to reflect very immature faulting that provides insights into the early 

development of strike-slip faults (Antoine et al., 2021; Milliner et al., 2021). Why did 

these NE striking sinistral faults re-activate rather than developing a new NW trending 

dextral fault that could accommodate the coseismic strain?  

Understanding how the orientation of pre-existing cross-faults can influence the 

early evolution of strike-slip faults and strain localization over geologic time scales can 

inform future seismic hazard assessments of regions with pre-existing structures. Physical 
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experiments that simulate upper crustal deformation using scaled analog materials, such 

as wet kaolin, allow us to control loading and material rheology, and directly document 

the complete evolution of entire fault systems (Reber et al., 2020). Such temporal and 

spatial documentation of off-fault evolution is not possible from field data, which only 

offers a limited view of faulting patterns and shows the cumulative result of deformation. 

By tracking fault geometry and off-fault deformation during experiments of strike-slip 

fault evolution, we can gather information that can potentially guide interpretations of 

crustal faults. 

 

Figure 2.1: a) Ridgecrest’s mainshock (epicenter marked by blue star) and foreshock (marked by 

red star) coseismic displacement map from Antoine et al. (2021). Transition to the Coso Basin on 

the northernmost section of the mainshock highlighted by yellow box. b) Closer look at the 

northeast trending faults with left-lateral slip shown with red (anti-clockwise vorticity) and right-

lateral slip in blue (taken from Milliner et al., 2021). 

a)

b)
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2.2. Methods 

Similar to many previous studies, we use wet kaolin as the analog material to 

conduct scaled physical experiments that simulate reactivation of slip along faults within 

the upper crustal (e.g., Bonini et al., 2016; Elston et al., 2022; Hatem et al., 2015; Henza 

et al., 2010; Toeneboehn et al., 2018; Bonini et al. 2023). Analog experiments that last a 

few hours in the laboratory give us the opportunity to directly observe and document 

processes that typically span thousands to a million years in the crust. We conducted 

scaled experiments within wet kaolin to simulate the initiation and maturation of crustal 

strike-slip faults with pre-existing weaknesses at a range of orientations. 

 

2.2.1 Wet Kaolin Properties  

This study uses a wet kaolin clay produced by the pottery industry as #6 tile clay. 

This kaolin rich material mostly consists of clay and silt particles, with a size less than 62 

m (Hatem et al., 2017) composed approximately 5-10% sand, 30-35% silt, and 60% 

clay-sized particles (Hatem et al., 2017). The high silt content provides low plasticity to 

the clay which facilitates localized faulting along sharp fault surfaces (Cooke & Van Der 

Elst, 2012). We use wet kaolin as the analog material because it produces localized and 

easy to track faults that are long-lived and pre-existing weaknesses can be introduced by 

cutting the clay (e.g., Bonanno et al., 2017; Bonini et al., 2023; Hatem et al., 2017). 

Furthermore, prior to failure, wet kaolin deforms as a bi-viscous Burger’s material with 

both elastic and viscous properties that makes it well-suited to simulate inelastic crustal 

deformation processes at a variety of time scales (Cooke & Van Der Elst, 2012; Elston et 
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al., 2022). At failure, clay exhibits neutral rate and state frictional behavior that allow 

faults to constantly creep during experiments (Cooke & Van Der Elst, 2012).  

To simulate crustal deformation processes in the laboratory, which is 5 orders of 

magnitude smaller than the crust, we need to scale the shear strength of the analog 

material to be five orders of magnitude weaker than the strength of the crustal material. 

We adjust the shear strength of the wet kaolin by modifying the water content. For 

instance, increasing the water content of the clay reduces the shear strength (Cooke & 

Van Der Elst, 2012; Eisenstadt & Sims, 2005). Hence, we modify the water content of 

the wet kaolin so that in situ fall cone strength test show undrained shear strengths of 

119- 123 Pa for the experiments conducted in this study. The density of the wet kaolin 

used in the experiments discussed here is ~1.6 g/cm³ and the clay has a water content of 

70-73% by weight. We collect samples of wet kaolin before and after each ~2 hours long 

experiment to assess changes in the water content. The water loss within the upper 1 cm 

is less than 3% for experiments discussed here, which correlates to only ~2 Pa increase in 

shear strength. The bottom half of the claypack does not experience water loss.  

We follow the density and strength scaling relationship of the analog material and 

the crust employed by Henza et al. (2010) and used by previous studies (e.g., Cooke et 

al., 2013; Elston et al., 2022; Hatem et al., 2015, 2017) in which the strength (S) ratio of 

the model (m) to the prototype, or the crust, (p) is equal to the density (ρ) ratio of the 

model to the prototype multiplied by the length (Z) ratio of the model to the prototype: 

𝑆𝑚
𝑆𝑝
=
𝜌𝑚
𝜌𝑝

𝑍𝑚
𝑍𝑝
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Using similar coefficients of internal friction for both the analog material and the 

Earth’s crust (0.55-0.85; Henza et al., 2010; Reber et al., 2020), density of 𝜌𝑝= 2.65g/cm³ 

and strength of 𝑆𝑝= 10-20 MPa for the crust, and known density and strength of the 

analog material (Hatem et al., 2015), we determine that the length of 1 cm within the wet 

kaolin experiment is equivalent to 1-2 km in the Earth’s crust.   

The non-zero shear strength of the wet clay allows the introduction of planes of 

weaknesses by making cuts with an electrified probe into the clay prior to the onset of 

experiments. Upon deformation, the pre-cut surfaces may be reactivated before the 

failure of the intact clay (Reber et al., 2020). The ability of introducing planes of 

weaknesses into the analog material provides the opportunity of investigating fault 

evolution that incorporates deformation along existing weaknesses, such as  other  faults 

or bedding planes, in the crust (Bonanno et al., 2017; Bonini et al., 2016, 2023; Elston et 

al., 2022; Hatem et al., 2015, 2017).  

 

2.2.1.1 Experimental Set-up  

All strike-slip fault experiments are conducted using a split box apparatus 

(claybox) in which one half of the box remains static while the position of the other half 

is controlled by stepper motors that apply velocity of 0.5 mm/min in dextral slip at the 

basal boundary for all experiments discussed here (Figure 2.2). An overhead camera 

above the claybox captures images at 30 seconds intervals corresponding to 0.25 mm of 

applied displacement recorded per image. We emplace the claypack of 2.5 cm thickness 
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into the box from the center outward to prevent large air bubbles within the clay and 

scrape the clay to produce a level surface. 

 

 

Figure 2.2: Laboratory set up for all localized basal shear strike-slip fault experiments 

where the plates are juxtaposed. Drawing depicts the claybox apparatus placed on a table 

top where one plate is attached to the table while the other plate moves via stepper motors 

with the prescribed velocity to impose dextral slip. Stepper motors are connected to a 

computer where we indicate the desired total displacement of the plate, the direction (X 

and/or Y-axis), and velocity in mm/min. Deformation within all experiments is 

documented with an overhead camera that takes photos at 30 seconds intervasl 

throughout the experiment. Spotlights with difussers provide even lighting while 

minimizing glare. Note the selected region of interest (ROI) for all experiments 

conducted in this study. This ROI was selected to avoid the boundary effects of the 

claybox apparatus. For distributed basal shear experiments we superglue a 1.5 cm wide 

elastic band on the bottom of each plate and pre-strech it to 2.5 cm prior to the onset of 

the experiment. 

 

 

Following the preparation and placement of the clay into the split box apparatus, 

we utilize a programmable plotter fitted with an electrified probe to create vertical 
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surfaces in the clay with the desired orientation and spacing. The small current in the 

probe reduces the drag of the probe through the claypack. After creating the weaknesses, 

we sieve red and black sand on the surface of the clay to provide contrasting texture for 

photos used for Digital Image Correlation, which generates incremental displacement 

fields from pictures taken throughout the experiment. The average image resolution for 

all experiments is around ~160 pixels/cm and we select the same region of interest for 

analysis for all plate-on-plate experiments and an enlarged region for elastic band 

experiments.  

We vary three aspects of the experimental set up to assess the impact of various 

pre-existing weaknesses on strike-slip fault evolution. We vary both the initial orientation 

and spacing of the vertical surfaces, and we apply both localized and distributed basal 

shear. To create strike-slip fault experiments with localized basal shear we juxtapose both 

basal plates (Figure 2). For these experiments, we introduce planes of pre-existing 

weaknesses at initial angles of 60°, 90°, 120°, and 150° measures counterclockwise from 

the applied dextral shear orientation with spacings of both 2 cm and 5 cm. 

 For distributed basal shear experiments, we use a 1.5 cm wide elastic 

TheraBand™ glued to the bottom of the plates and pre-stretch to 2.5 cm prior to the onset 

of experiments to avoid ripping of the elastic band and undulations in the sheared 

TheraBand™. For experiments that include an elastic sheet between the basal plates, we 

introduce vertical surfaces oriented at 90°, 120°, and 150° with spacing of 2 cm. The 

experiments reach total displacement of 60 mm except for distributed basal shear 

experiments where the elastic band ripped prior to reaching 60 mm of plate displacement. 
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2.2.1.1.1 Data Processing  

We utilize PIVlab 2.63 version for MATLAB (Thielicke & Stamhuis, 2014) to 

calculate the incremental displacement fields from the time series of overhead photos 

from each experiment. We adopt the multi-pass PIV workflow from Hatem et al. (2017), 

which analyses each image pair three times with a descending window size to refine the 

deformation field to yield data points every 12 pixels. This process results in 

displacement data every 0.75 mm. From the horizontal displacement field, we calculate 

the vorticity for each stage of the experiment, which reveals the localized fault slip and 

off-fault shear strain.  

  To detect faults from the incremental vorticity maps we follow the approach of 

Chaipornkaew et al. (2022) and use an adaptive threshold to create active fault maps for 

each stage of the experiment. The adaptive threshold detects faults from the stacked 

vorticity maps using a sensitivity of 0.1 and a neighborhood size that determines the 

region used to identify zones of localized high shear strain. For our study, we stack four 

consecutives strain maps to reduce random noise and use a neighborhood size of 5x5 

mm2 to capture small fault details. After applying the adaptive threshold technique to 

detect areas of high incremental vorticity we apply a noise reduction filter to remove high 

shear strain regions with fewer than 8 connected pixels (area < 6 mm²) from the active 

fault maps.  

Additionally, some experiments have random noise in low strain regions away 

from the fault zone, so we filter out these regions by eliminating noise in the top and 

bottom 15 rows of the fault map. The result of this step is a binary fault map with the 

active fault configuration from each stage of each experiment.  
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We can use the vorticity fields and active fault maps to assess the partitioning of 

strain as slip along faults and distributed deformation off of faults. From this assessment, 

we estimate the portion of applied velocity that is expressed as incremental slip along the 

active faults in the direction of the applied loading, called the kinematic efficiency (KE, 

e.g., Hatem et al., 2017). Hence, kinematically efficient faults have greater fault slip and 

less off-fault deformation (KE = 1 – off fault deformation). For this measure of kinematic 

efficiency, we only use the component of fault slip measured in the same direction as the 

applied velocity because we are interested in how the applied loading is partitioned on 

and off of faults. As faults propagate, link, and become throughgoing surfaces, their 

kinematic efficiency increases (e.g., Cooke et al., 2013; Hatem et al., 2017). 

 

2.3 Results 

All experiments with different basal boundary conditions, pre-existing weakness 

orientations, and spacings show the three stages of strike-slip fault evolution associated 

with strain localization defined by Hatem et al. (2017) for faults without pre-existing 

weaknesses. In the early stages of fault initiation, distributed shear strain started to 

localize along right-stepping echelon faults (Stage 1). With further deformation, these 

echelon faults reorganized through propagation, abandonment, and linkage (Stage 2) until 

they formed a continuous fault surface (Stage 3; Figure 2.3a-c).  

The mechanical behavior, timing, and duration of these stages varied for initial 

orientation of the pre-cut surfaces, the spacing in between the surfaces, and the basal 

shear configuration. Some of the experiments also show an early phase of reactivation 
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prior to the development of new echelon faults. In addition to observing the reactivation 

of the pre-cut surfaces, we analyze the evolution of strike-slip faults with pre-existing 

structures by documenting the evolution of both kinematic efficiency of the fault system 

and the shear zone width. 

 

2.3.1 Reactivation and Evolution of Fault Surfaces 

Reactivation of pre-existing weakness occurred in experiments with surfaces at 

some but not all orientations. Experiments with pre-existing weaknesses oriented at 60˚ 

or 90˚ from the applied dextral shear direction did not show evidence of early slip along 

the surfaces in any of the experiments (Figure 2.3d and g, Figure 2.4d, and Figure 2.5a 

and d).  

Instead, shear strain localized along new right-stepping echelon faults and the 

active fault network initiated similarly to the experiment with no pre-existing weaknesses 

(Figure 2.3a-b, 2.3d-e, 2.3g-h). In contrast, experiments with weaknesses oriented 120° 

from the applied shear reactivated with sinistral slip and experiments with weaknesses at 

150˚ reactivated with early dextral slip in all experiments (Figure 2.3j and m, Figure 2.4g 

and j, and Figure 2.5g and j). 
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Figure 2.3: Incremental vorticity fault maps for localized basal shear experiments with (a-c) no 

pre-existing weaknesess, (d-f) with closely spaced pre-cut surfaces oriented 60° from the applied 

shear, (g-i) 90°, (j-l) 120°, and (m-o) 150°. (d-i) Experiments with pre-cut surfaces initially 

oriented between 60° and 90° showed no re-activation of the pre-existing weaknessess. (j-l) 

Experiments with pre-existing planes of weaknessess oriented 120° from the applied shear 

exhibited sinitral re-activation and clock-wise rotation. (m-o) Experiments with pre-cuts oriented 

150° from the applied shear exhibited dextral re-activation with no rotation.  
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Figure 2.4: Incremental vorticity fault maps for distributed basal shear experiments with (a-c) no 

pre-cut surfaces, (d-f) with closely spaced pre-cut surfaces oriented 90°, (g-i) 120°, and (j-l) 150°. 

(d-f) Experiments with pre-existing surfaces initially oriented at 90° showed no re-activation of 

the pre-existing weaknessess. (g-i) Experiments with pre-existing planes of weaknessess oriented 

120° from the applied shear exhibited sinitral re-activation and clock-wise rotation. (j-l) 

Experiments with pre-cut surfaces oriented 150° from the applied shear exhibited dextral re-

activation with no rotation.  

 

 

Figure 2.5: Incremental vorticity fault maps for localized basal shear experiments with widely 

spaced (5 cm) pre-cut surfaces oriented (a-c) 60° from the applied shear, (d-f) 90°, (g-i) 120°, and 

(j-l) 150°. (a-f) Experiments with pre-cut surfaces initially oriented between 60°and 90° showed 

no re-activation of pre-existing weaknessess. (g-i) Experiments with pre-existing planes of 

weaknessess oriented 120° from the applied shear exhibited strong sinitral re-activation and 

clock-wise rotation. (j-l) Experiments with pre-cuts oriented 150° from the applied shear 

exhibited dextral re-activation with no rotation.  

 

Experiments with no pre-existing weaknesses, with 60°, and 90° pre-cut surfaces 

required almost the same amount of plate displacement to reach all three stages of strike-

slip fault evolution and create a continuous strike-slip fault surface at 25 mm of plate 

displacement (Figure 2.3c, 2.3f, and 2.3i). In addition to the new echelon faults with 

similar spacing and orientation as in the uncut and 60˚ pre-cut surfaces experiments, the 

experiment with 90° pre-cut surfaces exhibited short-lived dextral slip that was limited to 
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the portions of the surfaces between the early echelon faults.  This local reactivation 

indicates that the presence of the 90° pre-cut surfaces impacted the reorganization of the 

early echelon faults even if these surfaces were not reactivated at the start of the 

experiment (Figure 2.3i).  

For experiments with weaknesses oriented 120˚ from the applied shear direction, 

the pre-cut surfaces developed short faults with sinistral slip that experienced significant 

clockwise rotation during the experiments. In addition to localized sinistral slip along the 

pre-cut surfaces, the early stages of the experiment showed distributed dextral shear 

strain between the sinistral faults that contributes to the local rotation (Figure 2.3j, Figure 

2.4g and Figure 2.5g). The sinistral faults that started oriented 120˚ from the direction of 

shear rotated clockwise and continued to show sinistral slip until they were oriented ~90° 

from the applied shear (Figure 2.3j-k, Figure 2.4g-h, and Figure 2.5g-h). Once the pre-cut 

surfaces became perpendicular to the applied shear, the surfaces became inactive and 

shear strain localized onto new dextral echelon faults located in between the pre-cut 

surfaces. These new echelon faults propagated and linked and eventually formed a rough 

localized slip surface without further reactivation along the pre-cut surfaces.  

  The experiments with pre-cut faults oriented 150˚ from the applied shear direction 

showed early dextral slip but did not show rotation of slip surfaces documented in the 

120˚ pre-cut surfaces experiments. After dextral reactivation of the 150° pre-cut surfaces 

new dextral echelon faults with orientation closer to that of the applied shear (~165˚) 

developed between the pre-cut surfaces. The 150˚ faults became inactive as the new 

echelon faults propagated and linked to form a rough throughgoing surface with remnant 
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irregularities from the pre-existing weaknesses (Figure 2.3m-o, Figure 2.4j-l, and Figure 

2.5j-l).   

The amount of plate displacement needed to reach each stage of strike-slip fault 

evolution differed between the localized and distributed basal shear experiments with the 

same pre-cut surface orientations and spacings (Figures 2.3 and 2.4). For experiments 

with no precuts and surfaces that don’t reactivate (e.g., 90˚), the distributed basal shear 

produces longer echelon faults than the experiments with localized basal shear (Figure 

2.4b and e versus Figure 2.3b and h). Shear strain localized along new faults at around 

the same plate displacement for experiments with no pre-cut surfaces and with pre-cut 

surfaces that did not reactivate (e.g., 90°). On the other hand, distributed basal shear 

experiments needed 20 mm more of plate displacement than the localized basal shear 

experiments to obtain an almost thoroughgoing fault surface (45 mm versus 25 mm; 

Figure 2.3c and i, and Figure 2.4c and f). Additionally, the final fault surface for the 

distributed basal shear experiments showed a more segmented and rougher fault trace 

(Figure 2.4c and f) than that in the localized basal shear experiment (Figure 2.3c and i). 

Similarly, for experiments where pre-cut surfaces were reactivated (120° and 150°), the 

distributed basal shear experiments needed more plate displacement than the localized 

experiments for pre-cut surfaces to become inactive as strain localized on new echelon 

faults that eventually linked and formed a continuous fault surface (Figure 2.3j and m, 

Figure 2.4g and j).  

Localized basal shear experiments with 5 cm wide pre-cut surfaces showed 

similar strike-slip fault evolution as the localized basal shear experiments with 2 cm pre-

cut surfaces. Despite introducing wider spaced pre-cut surfaces into the wet kaolin, the 
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experiments did not need more plate displacement than the closely spaced pre-cut 

surfaces experiments to reach similar stages of strike-slip fault evolution (Figures 2.3 and 

2.5). Experiments with non-reactivated cuts (90°) exhibited similar fault geometries at the 

same plate displacement for both pre-cut surface spacings (Figure 2.3g-i versus Figure 

2.5d-f). Likewise, experiments with reactivated pre-cut surfaces (120° and 150°) had the 

same timing for reactivation, rotation (if present), abandonment of pre-cut surfaces, and 

localization of strain onto new echelon faults located in between the surfaces. 

Furthermore, we noticed that the final fault geometry of the widely spaced pre-cut 

experiments (Figure 2.5i and l) was smoother and more continuous that the equivalent 

closely spaced pre-cut experiments (Figure 2.3l and o) at the same plate displacement. 

 

2.3.1.1 Partitioning of Strain as Pre-existing Weaknesses Evolve 

To assess the distribution of fault slip and off-fault deformation as strike-slip 

faults with pre-existing weaknesses evolve, we track the kinematic efficiency to quantify 

the evolving mechanical behavior of faults (Figure 2.6). All experiments begin with 0% 

kinematic efficiency as the applied loading was accommodated as off-fault deformation 

and kinematic efficiency increases as the faults evolve and accommodate greater slip. 

Because the experiments with different precut surface spacing and basal loading evolve 

similarly, we only analyze the kinematic efficiency of experiments with 2 cm spacing 

between pre-cut surfaces with localized basal shear (Figure 2.3). 
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Figure 2.6: Kinematic efficiency versus plate displacement for all localized basal shear 

experiments with 2 cm spacing of pre-cut surfaces. The uncut experiment serves as a baseline for 

assessing the impact of the pre-existing weaknesses on strike-slip fault evolution. The symbols 

indicate the different stages of strike-slip fault evolution, and the star marks the reactivation of the 

pre-cut surfaces. Stage 1 is the early localization of shear along early echelon faults when faults 

first emerge. Stage 2 shows continued localization of strain as fault slip as echelon faults 

reorganize by propagation, abandonment, and linkage. By Stage 3 slip is localized along a 

continuous fault surface.  

 

The evolution of kinematic efficiency for the uncut experiment serves as a 

baseline for assessing the impact of pre-cut surfaces on fault evolution. The kinematic 

efficiency started increasing in the uncut experiment with the emergence of the first right-

stepping echelon faults at around 8 mm of plate displacement (Figure 2.6), followed by 

an increase in slip along the echelon faults as they started to propagate and reorganize at 

around 13 mm. At around 25 mm of plate displacement, when the fault developed a 

throughgoing surface, the kinematic efficiency for the uncut localized experiment 

approached 70%, indicating that 30% of applied deformation was distributed as off-fault 

deformation. As the fault continued to slip and become smoother, the kinematic 

efficiency increased close to 75% (25% off-fault deformation) and remained around that 

value for the rest of the experiment. 
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The uncut experiment has the highest kinematic efficiency from all experiments, 

indicating that even when pre-cut surfaces did not reactivate at the start of the experiment 

(60° and 90° surfaces), these pre-existing weaknesses contributed to the amount of off-

fault deformation (Figure 2.6). The uncut, 60°, and 90° pre-cut surfaces experiments 

exhibited almost the same amount of plate displacement needed for the earliest 

emergence of faults (~10 mm) and the localization of strain on right-stepping echelon 

faults (~15 mm). At around 25 mm of plate displacement both the uncut and 60° pre-cut 

surfaces experiments exhibited a throughgoing fault surface with a kinematic efficiency 

of 68% and 63%, respectively. On the other hand, the experiment with 90° pre-cut 

surfaces required almost 15 mm more plate displacement to create a continuous fault 

surface with a kinematic efficiency of 66% (Figure 2.6). Despite the experiment with 90° 

pre-cut surfaces having great segmentation due to local short-lived reactivation of pre-cut 

surfaces during reorganization and needing more plate displacement to reach a 

continuous slip surface than the 60° experiment, the highest kinematic efficiency 

obtained by both experiments is almost 70%, indicating that once the continuous surface 

develops, strain partitioning on and off of the fault becomes stable. For these experiments 

without early reactivation of pre-cut surfaces, ~30% of the deformation is accommodated 

off of the mature fault (Figure 2.6).  

The pre-cut surfaces oriented 120° from the applied shear direction had much 

lower kinematic efficiency than the other experiments. The 120° pre-cut surfaces 

reactivated with sinistral slip at around 8 mm but because of the orientation of this slip 

and the low slip rates, the component of right-lateral slip parallel to the loading direction 

remained low until after 10 mm of plate displacement (Figure 2.6). At 13 mm of plate 
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displacement the pre-cut surfaces became inactive, and strain started to localize on new 

right-stepping echelon faults with increased kinematic efficiency. The development of a 

suite of sinistral cross-faults early in the experiment promoted significant off-fault 

deformation, which is also manifested as clockwise rotation of material, including the 

faults, within the shear zone. Even after the 120˚ experiment developed a continuous slip 

surface at almost 50 mm of plate displacement, the off-fault deformation remains higher 

(~40%) than all other experiments (Figure 2.6).  

The experiment with 150° pre-cut surfaces showed the earliest localization of 

fault slip and development of a fault system with high kinematic efficiency. The 150˚ 

experiment had an early bump in kinematic efficiency at around 5 mm of plate 

displacement when the pre-cut surfaces were reactivated with dextral slip. The dextral 

reactivation of the pre-cut surfaces suggest that they facilitated the early development of 

the strike-slip fault system compared to an uncut system. With further plate displacement, 

the emergence of new echelon faults that formed between the pre-cut surfaces around 10 

mm of plate displacement increased kinematic efficiency to 15%. During the subsequent 

reorganization of the fault network kinematic efficiency reached almost 40%. With 

continued plate displacement, the fault generated a continuous slip surface after 30 mm of 

plate displacement with a kinematic efficiency of ~68%, indicating that 32% of the 

loading was partitioned as off-fault deformation. Despite the experiment having greater 

early fault slip than the uncut experiment, the presence of the 150° pre-cut surfaces 

increased the amount of off-fault deformation of the system resulting in kinematic 

efficiency values for the mature fault that are similar to those of 60° and 90° pre-cut 

surfaces experiments (Figure 2.6). 
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2.3.1.1.1 Evolution of Shear Zone Width 

We follow the method used by Hatem et al. (2017) for calculating the evolution of 

the shear zone width using thresholds of the plate-motion parallel velocity. Along each 

transect across the fault network, we measured the distance between where the 

displacement at the surface of the clay reaches 20% and 80% of the applied basal plate 

velocity. We average the shear zone width from 446 transects across the fault and 

calculate the standard deviation (Figure 2.7a). We analyzed all localized basal shear 

experiments with closely spaced (2 cm) pre-cut surfaces to assess the impact of pre-

existing weakness on the evolution of the shear zone width. 
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Figure 2.7: Evolution of shear zone width for experiments with localized basal shear. a) 

Evolution of shear zone width for experiment with no pre-existing weaknesses. Black solid line is 

the average width and grey solid lines show the standard deviation across the region of interest. 

b) Shear zone width for experiments with 2 cm spaced pre-cut surfaces oriented 60°, 90°, 120°, 

and 150° from the applied dextral shear and for experiment with no pre-existing weaknessess. 

The colored lines represent the average shear zone width for each experiment and the symbols 

indicate the onset of different stages of strain localization as strike-slip fault evolve (same 

symbols as Figure 6).   

 

The experiments started with wide zones of distributed deformation and the width 

of the shear zones decreased nonlinearly with evolution of the strike-slip faults 

throughout all experiments (Figure 2.7b). The uncut experiment serves as the baseline for 

assessing the impact of pre-existing weaknesses on evolving shear zone width. In the 

uncut experiment, the shear zone width decreased within the first 10 mm of plate 

displacement with the emergence of the first faults at 10 mm (Figure 2.7b). As the new 

faults developed, the shear zone remained about 6 mm wide. As the early echelon faults 

started to propagate and reorganize at around 15 mm of plate displacement, the shear 
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zone width decreased until reaching a width of around 1.4 mm at the later stages of fault 

evolution (Figure 2.7b). 

Experiments with surfaces oriented 60° and 90° from the applied shear direction 

showed similar shear zone width evolution to the experiment with no pre-existing 

weaknesses. The first few millimeters of plate displacement showed a continuous 

decrease of shear zone width until the earliest faults emerged at almost 10 mm of plate 

displacement for both experiments, after which the width remained ~7 mm wide for the 

60° pre-cut surfaces experiment while the 90° experiment experienced a small increase in 

width to 8 mm. At 15 mm of placement, the 90˚ pre-cut surfaces briefly reactivated 

between the new echelon faults and contributed to a wider shear zone width compared to 

the 60° experiment (Figure 2.7b). Followed by the reorganization of echelon faults to 

generate a continuous mature fault surface at 25 mm of plate displacement for the 60° 

experiment and much later (38 mm) for the 90° experiment. The uncut and 60° 

experiment have a similar shear zone width of 1.4 mm when slip localized along a 

continuous and mature fault surface at 25 mm of plate displacement, whereas at 38 mm 

of plate displacement when there is a throughgoing slip surface for the 90° experiment, 

the shear zone width is higher (2.1 mm). The difference between plate displacement 

needed to generate a continuous fault surface in experiments with non-reactivated 90° 

surfaces (38 mm) and the uncut experiment (25 mm) indicates that the local and short-

lived reactivation along these pre-existing weaknesses impacted the evolution of the 

shear zone width. The small difference in shear zone width between the uncut experiment 

and the experiment with 60˚ pre-cut surfaces that experience no reactivation is well 

within the standard of deviation for shear zone width. 
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The experiment with 120° pre-cut surfaces produced the widest shear zone during 

fault reorganization. The reactivation of the pre-cut surfaces at 7 mm of plate 

displacement was followed by a decrease in shear zone width as strain was 

accommodated along the pre-cut surfaces (Figure 2.3j). The increase in shear zone width 

at around 11 mm of plate displacement occurred as the pre-existing weaknesses rotated to 

~90° from the applied shear direction. Because the length of each sinistral fault stayed the 

same during this rotation, the shear zone widened with rotation (Figure 2.3k). When the 

pre-cut surfaces became inactive at ~17 mm of plate displacement, the shear zone width 

decreased, and shear strain started to localize on dextral echelon faults that formed 

between the pre-cut surfaces. The shear zone width continued to thin as the echelon faults 

propagated, linked, and re-organized at 22 mm of plate displacement until reaching a 

final shear zone width of approximately 2.2 mm (Figure 2.7b).   

The experiment with 150° pre-cut surfaces had a thinner shear zone width than 

the uncut experiment during the early stages of fault evolution but had thicker shear zone 

for mature faults. Because the 150˚ precut surfaces slipped before new faults developed 

in the uncut experiment (Figure 2.6), the reactivation of the pre-cut surfaces jumpstarted 

the strike-slip fault evolution. Consequently, the experiments with 150˚ pre-cut surfaces 

had a narrower shear zone than the uncut experiment between 10-15 mm of plate 

displacement (Figure 2.7b). Nonetheless, these planes of weaknesses impacted the shear 

zone width of the mature fault, which had wider shear zone width than the uncut 

experiment. At 15 mm of plate displacement, the fault system reorganized to form new 

echelon faults with shallower orientation than the pre-cut surfaces and the geometry of 

the new faults was impacted by the pre-cut surfaces. This reorganization contributes to 



 46 

the increased segmentation of the mature fault in the 150˚ experiment compared to the 

uncut experiment and the wider shear zone width. The mature fault in the 150° pre-cut 

experiment has a similar mature fault shear zone width of around 2.1 mm to the 90° and 

120° experiments that also had reactivation of the precut surfaces (Figure 2.7b). The 

wider shear zone for the mature faults that grow from even locally and ephemerally 

reactivated pre-cut surfaces may result from the geometric irregularities that they 

introduce that persist along the mature fault. 

 

2.4. Discussion 

2.4.1 Repeatability 

To confirm the observations documented throughout each experiment, we ran a 

second suite of experiments with the same laboratory conditions as well as the wet kaolin 

recipe. We ran all localized basal shear experiments with closely spaced (2 cm) pre-cut 

surfaces twice per pre-cut surface orientation resulting in a total of 8 experiments (Table 

2.1). Additionally, we conducted four localized basal shear experiments with widely 

spaced (5 cm) pre-cut surfaces at 60°, 90°, 120° and 150° from the applied shear. For 

distributed basal shear experiments, we ran three closely spaced pre-cut surfaces at initial 

orientations of 90°, 120°, and 150° (Table 2.1). Also, we ran experiments with no pre-

existing weaknesses for both basal shear configurations to use as the baseline during our 

analysis and comparisons. In total, our study encompasses 17 strike-slip fault 

experiments with different basal shear conditions and variations in the orientation and 
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spacing of the pre-cut surfaces to document and assess the impact of pre-existing 

weaknesses on strike-slip fault evolution.  

We confirm that the findings presented here persist for each localized basal shear 

experiment with closely spaced pre-cut surfaces. Experiments with 60° and 90° pre-cut 

surfaces did not re-activate at the onset of the experiment, while all 90° experiments 

exhibited local and short-lived reactivation of pre-cut surfaces during fault 

reorganization. For the 120° experiments, the pre-cut surfaces reactivated with sinistral 

slip and rotated to 90° from the applied shear whereas for the 150° experiments the pre-

cut surfaces reactivated with dextral slip but did not rotate. 

 

2.4.1.1 Why Do Pre-existing Weaknesses at Various Initial Orientations Get 

Reactivated with Different Slip Senses? 

  Figure 2.8a shows a Mohr circle diagram schematically representing the stress 

state within the early shear zone along with the slip envelopes required for 1) the 

conditions for initiation of slip along pre-cut surfaces (black solid line) and 2) the 

conditions for slip along surfaces that previously slipped and experienced some degree of 

slip weakening (black dotted line). We also show pre-cut surface orientations with 

reference to the applied shear direction, which is set up as the maximum shear direction 

on the Mohr diagram.  

Pre-cut surfaces orientated 60˚ and 90° to the applied shear direction have no 

early reactivation and fall below the envelope for slip along pre-cut surfaces. On the other 

hand, pre-cut surfaces at 120° from the applied shear showed strong sinistral re-activation 
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implying that the stress state is at (or exceeding) the threshold for sinistral slip (negative 

shear stress on Figure 2.8a) along these surfaces. Pre-existing surfaces at 150° from the 

applied shear showed dextral reactivation (positive shear stress on Figure 2.8a) indicating 

that the stress state meets (or exceeds) the threshold for slip along these surfaces. (Figure 

2.8a).   

The experimental results show that while pre-cut surfaces oriented at 90˚ to the 

applied shear direction did not slip, pre-cut surfaces oriented 120° from the applied shear 

that slipped and rotated to 90˚ did exhibit small sinistral slip (dashed arrows on Figure 

2.8a). This observation is consistent with the inference that the threshold for slip along 

surfaces that have previously slipped, and consequently experienced slip weakening is 

lower than the threshold to initiate slip (Figure 2.8a).  The process of accruing slip along 

the surfaces may align the clay particles and/or draw water to the fault zones that reduces 

its strength. By mapping the observations from the different experiments into the Mohr 

diagram, the claybox acts like an experimental rheometer to inform the properties of the 

clay.  

We integrated the experimental results with previous findings of slip surface 

networks within the fault zone that use Riedel shear nomenclature (e.g., Davis et al., 

2000). Figure 8b shows expected slip sense of pre-existing weaknesses with different 

orientations within a shear zone. We determined that pre-existing surfaces oriented 

anywhere between ~30°- 85° are likely to remain inactive as they are within the grey 

zone. Weaknesses oriented between ~85° - 135° from the imposed shear direction 

reactivate with sinistral slip, which is also supported by analysis of R’ surfaces (e.g., 
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Davis et al., 2000), and surfaces between ~145° - 185° exhibit dextral slip, which is 

supported by analysis of R surfaces (e.g., Davis et al., 2000).   

 

 

Figure 2.8:  a) Schematic Mohr diagram depicting angles of orientation of pre-cut surfaces used 

in our study with circles for stress state within the shear zone. Color of the arrows indicate the 

sense of slip and dotted arrows indicate small amounts of slip. Failure envelopes show stress 

conditions for initial slip along the pre-cut surfaces (‘pre-cut’) and for surfaces that have 

previously slipped (‘slipped’). b) Diagram of real world angle orientations for the pre-cut surfaces 

with expected sense of slip. R and R’ indicate Riedel shear naming system used by many 

researchers. 

 

 

2.4.1.1.1 What Do Strike-Slip Fault Experiments with Pre-existing Weaknesses Tell 

Us About the Faults that Hosted the 2019 Ridgecrest Rupture? 

The northwest section of the Ridgecrest mainshock rupture is characterized by a 

series of parallel, NE-trending sinistral faults that are orthogonal to the NW-trending 

dextral faults (Figure 2.1b). This series of cross-faults are believed to predate the 2019 

rupture and experienced re-activation during the Ridgecrest event. Previous studies that 

analyzed the 2019 Ridgecrest rupture have proposed several reasons for the sinistral slip 

of these cross-faults located northwest to the mainshock fault (Figure 2.1b). Milliner et al. 

(2021) proposed that the left-lateral motion of the NE trending faults is mostly related to 
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individual block rotations inside the dextral shear zone of the northernmost section of the 

mainshock rupture; this follows a ‘bookshelf’ faulting pattern proposed for many regions. 

The bookshelf faulting occurs in two locations at either end of a NW-SE oriented dextral 

fault (Figure 2.1b). In addition to bookshelf faulting, Antoine et al. (2021) have proposed 

that these sinistral faults might be fingerprints of the rupture process because some of the 

fault strands appear to be slightly curved or have a sigmoidal shape (Figure 2.1b). Others 

have proposed that the dynamic stress pulse located ahead of the rupture tip triggered 

motion along these pre-existing structures while the rupture was propagating towards the 

north (Okubo et al., 2019). These proposed mechanisms are not exclusive of one another 

as the same stress state can arise by multiple mechanisms. Regard of mechanism, we 

propose that the reactivation of the high-angled pre-existing weaknesses located on the 

northwest section of the Ridgecrest mainshock exhibited similar mechanical behavior and 

evolution as the 120° pre-cut surface experiments conducted in our study. In the past, the 

cross faults may have been oriented between ~135° and ~105° from the applied shear and 

rotated clockwise to present-day orientation of the pre-existing structures within the shear 

zone.  

Studies by Milliner et al. (2021) and Antoine et al. (2021) demonstrated that the 

series of parallel NE-trending faults have small sinistral slip while being oriented almost 

perpendicular to the dextral mainshock fault. The present-day pattern of pre-existing 

structures in the crust is similar to the experiments with pre-existing weaknesses oriented 

120° from the applied shear at 15 mm of plate displacement. The experimental strike-slip 

fault evolution suggests that these pre-existing structures might become inactive in the 

future as strain continues to accumulate in the fault zone and may begin to localize on 
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new right-stepping dextral echelon faults. With continued deformation these echelon 

faults might propagate and link to create a mature throughgoing dextral strike-slip fault 

surface with remnant irregularities from the pre-existing structures. 

 

2.5 Conclusion 

Our study reveals that the presence of pre-existing weaknesses impacts the 

amount of off-fault deformation even if the weaknesses have limited and ephemeral 

reactivation. Experiments with limited reactivation of pre-cut surfaces (90°) had a higher 

degree of off-fault deformation than experiment with no pre-existing weaknesses (Figure 

2.6). Experiments with significantly re-activated pre-cut surfaces (120° and 150°) also 

exhibited high amounts of off fault deformation. The experiment with 120° pre-cut 

surfaces had the highest degree of off-fault deformation due to the re-activation of a suite 

of sinistral cross-faults during early stages of fault evolution that lead to significant off-

fault deformation, such as rotation of material including the cross-faults within the shear 

zone. The early reactivation also created irregularities that persisted along the continuous 

mature strike slip fault and contributed to off-fault deformation. The experiment with 

150° pre-existing weaknesses exhibited a similar amount of off-fault deformation along 

the mature strike-slip fault to experiments with limited to non-reactivated pre-cut surfaces 

(60° and 90°) despite the early dextral re-activation of the surfaces that jump-started the 

earliest development of the strike-slip fault system. Hence, non-reactivated and re-

activated pre-existing weaknesses impacted the amount of off-fault deformation of the 

system even after the continuous surface developed and deformation partitioning became 

stable. 
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The pre-existing structures on strike-slip faults also influenced the evolution of 

the shear zone width of the fault system. Our study demonstrated that experiments with 

90°, 120°, and 150° pre-cut surfaces had a different shear zone width evolution than 

experiment with no pre-existing weaknesses or no reactivation (60° experiment). All 

three experiments had wider shear zones around the mature fault than the uncut and 60° 

pre-cut surfaces experiment due to the geometric irregularities that grew from the pre-cut 

surfaces and persisted throughout the evolution of the continuous fault surface.  

We showed that laboratory experiments using crustal analog materials that are 

carefully scaled to simulate faulting deformation within the upper crust can shed insights 

on the impact and evolution of pre-existing weaknesses on strike-slip faults, like the 2019 

Ridgecrest rupture. The findings from such experiments can be used to inform future 

seismic hazards of strike-slip faults with pre-existing weaknesses in the Earth’s crust. 
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CHAPTER 3 

PREDICTING OFF-FAULT DEFORMATION USING CONVOLUTIONAL 

NEURAL NETWORKS TRAINED ON EXPERIMENTAL STRIKE-SLIP 

FAULTS 

 

3.1 Introduction 

Surface offsets from strike-slip earthquake ruptures can underestimate the total 

slip at seismogenic depths because surface ruptures produce shallow distributed off-fault 

deformation in addition to localized slip (e.g., Milliner et al., 2021; Nevitt et al., 2020; 

Pollitz et al., 2020). This distributed strain within the upper 3-4 km (Kaneko & Fialko, 

2011), can manifest as secondary faulting and/or pervasive continuous shear (Milliner et 

al., 2021). The degree and nature of off-fault deformation depends both on the rock and 

soil properties and the geometry of the primary slip surface (e.g., Milliner et al., 2021; 

Nevitt et al., 2020). For example, smooth and continuous strike-slip faults can more 

efficiently accommodate slip with less off-fault deformation than faults with more rough 

or segmented traces in the slip direction (e.g., Chester & Chester, 2000; Fang & Dunham, 

2013; Newman & Griffith, 2014; Saucier et al., 1992).  

The hypothesis that smoother faults produce greater slip is strongly supported by 

scaled physical experiments that simulate the evolution of strike-slip faults (Hatem et al., 

2017; Visage et al., 2023). The direct and complete observations available from 

laboratory experiments provide insights not available from field data, which generally 

reveal only cumulative deformation and parts of the fault structure (e.g., Reber et al., 

2020). The power of scaled experiments derives from using carefully controlled analog 

materials that simulate within the laboratory, the same deformation processes that act 
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across kilometers and thousands of years in the upper crust. Scaled physical experiments 

that simulate crustal strike-slip fault development with a range of analog materials, 

loading rates, and boundary conditions reveal the evolution of both active fault networks 

and off-fault deformation values that are consistent with field measurements of crustal 

faults (Hatem et al., 2017; Lefevre et al., 2020; Visage et al., 2023). Additionally, deep 

learning can use the rich results from physical experiments to build Convolutional Neural 

Networks (CNN) that can estimate off-fault deformation from maps of active faults 

(Chaipornkaew et al., 2022). CNN are supervised deep learning algorithms capable of 

extracting features and accurately recognizing patterns in input images.  

In this study, we build upon the CNN developed by Chaipornkaew et al. (2022) 

and use the experimental time series of active fault maps generated from strike-slip fault 

experiments in three different materials to train and test CNNs to predict off-fault 

deformation. By including a range of analog materials that reproduce upper crustal 

deformation processes (wet kaolin, poured sand and sieved/sedimented sand), the CNN 

can capture a wide range of processes that contribute to the crustal shallow slip deficit. 

Furthermore, the experiments include a variety of loading rates and basal conditions to 

simulate a wide range of crustal conditions that may control evolution of both fault 

geometry and off-fault deformation. Using experimental strike-slip fault datasets, we 

train the CNN to associate the geometry of the active fault networks with the degree of 

off-fault deformation. We test each trained CNN on experimental fault maps produced 

within different materials, on synthetic fault maps, and on crustal strike-slip fault maps of 

different maturity for which we have estimates of off-fault deformation. Because the 

CNNs are trained on analog experiments that are carefully scaled to simulate upper 
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crustal deformation, they can be used to estimate off-fault deformation and shallow slip 

deficit for crustal faults that are similar to those in the experiments. With this approach, 

the trained CNN may provide estimates for the potential shallow slip deficit along crustal 

faults that do not currently have sufficient information on off-fault deformation and these 

estimates can contribute to seismic hazard assessment. 

 

3.2 Scaling and Rheology of Analog Materials 

Wet kaolin and dry sand have previously been used as analog materials for crustal 

deformation because they both replicate brittle failure and localized deformation of the 

upper crust (e.g., Eisenstadt & Sims, 2005; Reber et al., 2020). For instance, wet kaolin 

deforms viscoelastically followed by frictional failure with the formation of localized 

faults (Reber et al., 2020) (Figure 3.1a). On the other hand, dry sand demonstrates 

distributed plastic deformation upon loading associated with the rearrangement of 

granular force chains followed by localized frictional failure (Figure 3.1c and d; Panien et 

al., 2006; Rudolf et al., 2023). The materials differ in the nature of distributed 

deformation prior to failure, but both exhibit shear weakening upon the formation of 

localized fault surfaces and have similar coefficient of internal friction to crustal 

materials (Eisenstadt & Sims, 2005). The difference in distributed deformation prior to 

failure on wet kaolin and dry sand may impact the off-fault deformation that develops 

near strike-slip faults. 

To simulate upper crustal deformation processes in the laboratory with 

apparatuses that are five orders of magnitude smaller than the Earth’s crust, we need to 
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adequately scale the strength of the analog material to also be five orders of magnitude 

weaker than the strength of the crustal material. The density and strength scaling 

relationship of the analog material and the crust is: 

𝑆𝑚
𝑆𝑝
=
𝜌𝑚
𝜌𝑝

𝑍𝑚
𝑍𝑝

 

in which the strength (S) ratio of the model (m) to the prototype (p) is equal to the density 

(ρ) ratio of the model to the prototype multiplied by the length (Z) ratio of the model to 

the prototype (e.g., Cooke et al., 2013; Hatem et al., 2015, 2017; Henza et al., 2010; 

Hubbert, 1937).  

Both analog materials and the crust have similar coefficient of internal friction 

(0.55-0.85; Henza et al., 2010; Panien et al., 2006; Reber et al., 2020). Using a density of 

𝜌𝑝= 2.65g/cm³, and a strength of 𝑆𝑝= 10-20 MPa for the Earth’s crust (Hatem et al., 

2015), we determine that the length of 1 cm within the wet kaolin experiment is 

equivalent to 1-2 km of the crust and 1 cm in the sand box represents 2 km in the Earth’s 

crust (Table 3.1; e.g., Elston et al., 2022; Hatem et al., 2015; Lefevre et al., 2020; Visage 

et al., 2023).  

All strike-slip fault experiments with wet kaolin have a thickness of 2.5 cm that 

scales to 1.9-3.5 km of crustal material and the sand pack thickness in experiments with 

dry sand ranges from 2.5-7 cm that scales to 5-14 km in the crust. Within the crust, slip at 

3-4 km depth decreases towards the surface due to the shallow slip deficit (e.g., Kaneko 

& Fialko, 2011). Thus, the thicknesses of the experimental claypack and sandpack scale 

to the crustal thicknesses over which we detect the shallow slip deficit. 
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Figure 3.1:  a) Image of a normal fault surface on wet kaolin taken from Henza et al. (2010) 

showing fine slickenline features. b) Schematic diagram of experimental set up for experiments 

on wet kaolin taken from Chaipornkaew et al. (2022). Split box set up illustrates distributed basal 

shear configuration with elastic band between the plates. For localized basal shear, the plates are 

juxtaposed. (c-d) Granular dry sands used for strike-slip fault experiments (Klinkmuller et al., 

2016).  c) CV32 denotes the Fontainebleau aeolian quartz sand used for experiments that train 

and test the CNN and d) G12 is the quartz sand to test the CV32 trained CNN. e) Experimental 

set up for strike-slip fault experiments in dry sand modified from Visage et al. (2023). 

 

Table 3.1: Physical properties of analog materials used for strike-slip fault experiments 

(Klinkmüller et al., 2016; Reber et al., 2020; Rudolf et al., 2023; Visage et al., 2023). 

 

                   

  

    

  

Analog Material Composition 

(𝒘𝒕%) 

Mean 

Grain Size 

(𝝁𝒎) 

Bulk Density 

(g/cm³) 

Peak 

static friction 

coefficient 

Length scaling 

Wet Kaolin 5-10% Sand, 

30-35% Silt, 

60% Clay 

62 1.6 0.7 1 cm = 1-2 km 

Poured Sand CV32 98% Quartz 250 1.68 0.66 1 cm = 2 km 

Sedimented Sand 

CV32 

98% Quartz 250 1.71 0.96 1 cm = 2 km 

Sieved 

Sand G12 

95% Quartz 271 1.53 0.86 1 cm = 1-10 km 
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3.2.1 Wet Kaolin Rheology  

Prior to failure, wet kaolin behaves as a bi-viscous Burger’s material with both 

elastic and viscous deformation that makes it well-suited to simulate crustal deformation 

at a variety of time scales in the Earth’s crust (Cooke & Van Der Elst, 2012; Elston et al., 

2022). After failure, wet kaolin exhibits neutral rate and state frictional behavior so that 

the experimental faults exhibit creep (Cooke & Van Der Elst, 2012).  

Numerous studies have successfully utilized wet kaolin clay to simulate fault 

evolution under extension, shortening, strike-slip, and inversion of the Earth’s crust 

(Bonini et al., 2016, 2023; Cooke et al., 2013; Eisenstadt & Sims, 2005; Elston et al., 

2022; Hatem et al., 2015, 2017; Henza et al., 2010; Toeneboehn et al., 2018; Withjack et 

al., 2007). The wet kaolin used for the analog experiments performed at the University of 

Massachusetts Amherst is produced for the pottery industry and sold as #6 tile clay 

(Figure 3.1a; Cooke & Van Der Elst, 2012). It is mostly composed of clay and silt size 

particles less than 62μm (Hatem et al., 2017; Reber et al., 2020). The high silt content of 

the kaolin type clay provides low plasticity index of 9-10 that facilitates localized faulting 

(Cooke & Van Der Elst, 2012). Additionally, the non-zero shear strength of wet kaolin 

facilitates continued slip along non-optimally oriented fault surfaces rather than 

continuous development of new fault surfaces (e.g., Cooke & Van Der Elst, 2012; 

Eisenstadt & Sims, 2005; Henza et al., 2010). 

We modify the shear strength of the wet kaolin by altering the water content in 

order to scale the clay to the Earth’s crust (e.g., Cooke & Van Der Elst, 2012; Hatem et 

al., 2017). Increasing the water content of the clay reduces the shear strength (Cooke & 

Van Der Elst, 2012; Eisenstadt & Sims, 2005). We modify the water content of the wet 
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kaolin so that in situ fall cone strength tests show undrained shear strengths of 100-107 

Pa (Chaipornkaew et al., 2022). The shear strength of the wet kaolin depends on loading 

rate so that the 100-107 Pa measured in the relatively fast fall cone test corresponds to 

about 55-65 Pa at the 0.25-1.5 mm/min that we load the experiments. The wet kaolin 

discussed here has a density of ~1.6 g/cm³ and water content of 71-77% by weight (Table 

3.1). We also collect samples of wet kaolin before and after the several hours long 

experiments to assess changes in the water content. The water loss in the upper 1 cm of 

the clay is less than 2% during experiments and correlates to only around 2 Pa increase in 

strength.  The lower half of the claypack does not change in water content during the 

experiments. 

 

3.2.1.1 Dry Sand Rheology  

Quartz sand is widely used for modeling the brittle deformation of the upper crust 

due to its ease of use and dynamic scalability to the Earth’s crust (e.g., Reber et al., 

2020). The analog experiments discussed here utilize two dry sands from different 

laboratories. The coarse, well-sorted, Fontainebleau aeolian quartz sand (CV32) used at 

the University of Cergy has 98% quartz with a mean grain size of 250 μm (Figure 3.1c; 

Visage et al., 2023). A second angular, well-sorted quartz sand (G12) used at GFZ 

Potsdam has 95% quartz with a mean grain size of 271 μm (Figure 3.1d; Klinkmüller et 

al., 2016; Rudolf et al., 2023).  

We train and test the CNN on data from strike-slip faults that evolve within the 

poured and sedimented CV32 sand. Subsequently, we use the CNN trained on CV32 to 
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test on the two G12 sand experiments to assess the predictive power of CNN on similar 

sand not seen during training. 

Dry sand undergoes strain-hardening prior to failure followed by strain-

weakening at the onset of faulting (Cubas et al., 2010; Eisenstadt & Sims, 2005; 

Klinkmüller et al., 2016; Lohrmann et al., 2003; Maillot, 2013; Panien et al., 2006; 

Rudolf et al., 2023). Just prior to developing localized faults the sand develops arrays of 

short-lived shear bands in the region of incipient faulting (Dotare et al., 2016; Lohrmann 

et al., 2003; Panien et al., 2006; Visage et al., 2023). In order to accommodate shear 

within these bands the sand pack dilates as individual grains adjust to move past one 

another. The dilatant nature of early faulting in sand experiments depends on the grain 

size of the sand and the nature of sand grain packing.  

Previous studies demonstrated that the properties of sand depends on whether the 

sand is sedimented, sifted, or poured (Klinkmüller et al., 2016; Lohrmann et al., 2003; 

Maillot, 2013; Panien et al., 2006). Sedimented and sifted sand packs will generate more 

densely packed grains with higher internal friction coefficients that require more 

dilatancy to create faults (Lohrmann et al., 2003; Maillot, 2013; Panien et al., 2006; 

Rudolf et al., 2023).  

Whereas, poured sand packs produce under-compacted sand grains with lower 

internal friction coefficients and lesser dilation upon shearing (Table 3.1; Visage et al., 

2023).  The significant dilation associated with early faulting within sedimented or sifted 

sandpacks may not replicate the most common processes of crustal faulting (Eisenstadt & 

Sims, 2005; Visage et al., 2023). 
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3.3 Methods 

3.3.1 Experimental Set up 

All strike-slip fault experiments performed at the laboratories of the University of 

Massachusetts Amherst, the University of Cergy, and GFZ Potsdam use a split box 

apparatus in which one half of the box remains static while the other half is controlled by 

a stepper motor that applies either dextral (clay and G12 sand experiments) or sinistral 

(CV32 sand experiments) slip at the basal boundary (Figure 3.1b and e). For presentation 

purposes, we flip the CV32 experiments results so that all experiments show similar slip 

sense.  

To simulate a range of strike-slip loading styles, the experiments have various 

basal shear conditions (i.e., basal friction and localized or distributed shear) as well as 

different loading velocities. The clay experiments are the same as those reported in 

Chaipornkaew et al. (2022) and the CV32 sand experiments are reported by Visage et al. 

(2023) and Lefevre et al. (2020). The G12 sand experiments are new to this study. 

Strike-slip fault experiments with wet kaolin include distributed shear over a 2.5 

cm elastic band secured between the basal plates and localized shear above juxtaposed 

plates. Both sets of experiments have prescribed loading rates of 0.25, 0.5, 1.0, and 1.5 

mm/min. Chaipornkaew et al. (2022) conducted each experiment configuration twice, 

resulting in a total of 16 dextral strike-slip fault experiments with variations of basal 

shear and loading rates (see Table S1 in appendix).  

The strike-slip fault experiments with CV32 dry sand performed by Visage et al. 

(2023) and Lefevre et al. (2020) use a range of sand pack thicknesses, friction of basal 
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materials, and deposition techniques (e.g., sedimented and poured). The sedimented sand 

was deposited over a basal discontinuity using a sedimentary device that ensures uniform 

density of the sand pack (Maillot, 2013). For poured sand experiments, the sand was 

manually deposited with small increments while using a squeegee to smooth the surface 

(Lefevre et al., 2020; Visage et al., 2023). For this study, we use 32 strike-slip fault 

experiments with sedimented sand and 18 experiments with poured sand with sand pack 

thicknesses ranging at 2-7 cm and basal materials that include PVC (polyvinyl chloride), 

sandpaper, and alkor-foil (Lefevre et al., 2020; Visage et al., 2023) (see table S2 in 

appendix).  

We excluded from our analysis strike-slip fault experiments thinner than 2.0 cm 

and 2.5 cm with sedimented and poured sand respectively because thin sandpacks do not 

produce early echelon faults upon shearing. Strike-slip fault experiments with thin sand 

packs produce smooth continuous faults without significant fault geometry variability 

(Lefevre et al., 2020) needed for CNN training. We also excluded experiments with 

sandpacks thicker than 7 cm because these experiments generate 3 or fewer fault maps 

(explanation in section 3.3.1.1.1), which does not allow us to split the dataset into 

independent sets for training, evaluating, and testing of the convolutional neural 

networks.  

We use two strike-slip fault experiments with G12 dry sand from the GFZ 

Potsdam Laboratory. The G12 sand experiments were sieved onto alkor foil covered 

basal plates creating 3 cm thick sandpacks. The stepper motors displaced half of the split 

box at 6 mm/min.   
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3.3.1.1 Digital Image Correlation 

All experiments use Digital Image Correlation from a series of photos taken with 

an overhead camera to document the surface deformation.  During experiments with wet 

kaolin, the overhead camera captured images every 0.3 mm of basal displacement 

(Chaipornkaew et al., 2022). Overhead images were taken every 0.5 mm of basal 

displacement for experiments on CV32 sand (Lefevre et al., 2020; Visage et al., 2023) 

and every 0.1 mm/min during G12 sand experiments. We select a region of interest to 

avoid boundary effects of the split box for all experiments.   

The G12 and CV32 sand include dyed grains to facilitate the correlation of pixels 

between successive photos. Similarly, prior to the onset of the clay experiments red and 

black sand is sieved on top of the wet kaolin to provide contrasting texture to facilitate 

the Digital Image Correlation (e.g., Hatem et al., 2017; Chaipornkaew et al., 2022). We 

employ Digital Image Correlation using Particle Image Velocimetry (Thielicke & 

Stamhuis, 2014) to determine the incremental horizontal displacement fields from 

successive images taken throughout the duration of the experiment (e.g., Adam et al., 

2005). 

 

3.3.1.1.1 Preparing Fault Maps and Label for Training and Testing the CNN 

The training of the CNN requires both active fault maps (binary 64 x 128 pixel 

maps) and off-fault deformation data (label) from the experiments. We develop the active 

fault maps and label data needed to train the CNN from time series of the incremental 

horizontal displacement maps. A median filter reduces noise in the incremental 
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displacement fields while preserving displacement discontinuities along fault segments 

without introducing smearing. The vorticity and divergence of the incremental horizontal 

displacement fields provide the shear and dilatational strain respectively that can be 

summed to inform the net incremental strain for each stage of the experiment.  

The active fault maps for each stage are the regions of the incremental net strain 

map with localized strain higher than the background. We detect the faults from the 

background strain using an adaptive threshold also used in Chaipornkaew et al (2022). 

However, before we can apply the adaptive threshold to the incremental strain maps, we 

have to scale all of the displacement fields so that each 64 x 128 pixel fault map window 

from every experiment includes comparable portions of the fault network. For example, 

we would not want 64 x 128 pixel fault maps from one experiment to include many early 

echelon fault segments while 64 x 128 pixel fault maps from another experiment with 

higher resolution photos only show a smooth portion of one fault trace without capturing 

nearby segments.  

To produce comparable active fault maps, we tailored the down-sampling of the 

incremental displacement fields for each experiment so that each 64 x 128 pixel fault map 

window captures about three early echelon faults. Using this approach, each fault map 

window will be wide enough to completely span at least one stepover between early 

echelon strike-slip faults. Because the early segmented echelon faults develop differently 

within different analog materials and because thicker material above the basal plates 

produces wider spaced echelon faults (e.g., Hatem et al., 2017; Lefevre et al., 2020), the 

physical width represented in fault map windows differs between experiments.  
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While Chaipornkaew et al. (2022) used fault map windows that were twice as 

wide as the typical echelon spacing in the wet kaolin experiments, in this study, we widen 

the windows to three times the typical echelon length to better ensure that the fault maps 

in each window completely capture stepovers. Because all clay experiments have 2.5 cm 

thickness and early echelon fault spacing of ~3.6 cm, we use a fault map window width 

of 11 cm and down sample the wet kaolin experimental displacement fields so that 64 

pixels equals 11 cm. For dry sand experiments, the early echelon fault spacing depends 

on sand pack thickness, whether the sand is sedimented or poured, and the basal friction 

material (Lefevre et al., 2020).  

We use the empirical correlations developed by Lefevre et al. (2020) for the inter-

echelon spacing for the CV32 sand experiments to estimate the appropriate fault map 

window width. For the G12 sand experiments, we use the empirical relationships 

developed by Lefevre et al. (2020) for sedimented CV32 sand. For each experiment, the 

displacement fields are down-sampled so that each 64 pixel wide fault map window 

spans three echelon spacing. The resulting window widths ranges from 8 - 50 cm for the 

sedimented sand and 12 - 28 cm for poured sand experiments (see table S2 in appendix).   

Robust training of the CNN requires many independent active fault maps. To 

increase the number of windows per experiment, we allow up to 50% overlap of fault 

map windows. Thicker experiments generally require greater overlap than thinner 

experiments to optimize the number of windows per experiment stage (Figure 3.2). The 

overlap ranges from 20% to 50% within all experiments (see table S1 and S2 in 

appendix). 
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Figure 3.2: (a-c) Incremental strain maps for wet kaolin, sedimented sand, and poured sand 

representing 20 mm of plate displacement and varying thicknesses. Hue indicates sense of strain 

while saturation indicates amount of strain. Faults in wet kaolin show mostly shear within a 

localized fault zone whereas faults in sedimented sand have distinct dilation and convergence 

during early stages of fault evolution. Early faults in poured sand have similar geometric patterns 

to faults in wet kaolin. (d-e) Fault maps generated from stacked net strain stages. We generate 

fault map windows that span a stepover between the echelon faults and have window overlaps 

depending on clay and sand pack thicknesses. We also generate the kinematic efficiency labels 

that will be used for training and testing the convolutional neural network.   

 

From the down-sampled incremental horizontal displacement fields, we calculate 

the incremental vorticity, divergence, and net strain to detect active faults (Figure 3.2). 

We calculate the incremental net strain by adding the absolute values of the incremental 

vorticity and divergence maps and stack the incremental net strain over 5 stages to reduce 

noise. The adaptive threshold technique used by Chaipornkaew et al. (2022) detects faults 

from the stacked net strain maps using a sensitivity of 0.1 and a neighborhood size that 

determines the region used to identify zones of localized high strain. When using a small 

neighborhood size, the adaptive threshold only detects regions with the highest strain 

resulting in few and thin faults (Figure 3.2b).  

On the other hand, a high neighborhood size generates fault maps with thick and 

overly connected faults (Figure 3.2c). While experimental fault zones have similar width, 

due to the variable down-sampling of the incremental displacement maps, using the same 
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neighborhood size for all experiments would produce fault maps that have large 

variations in fault trace thickness. To prevent the CNN from training on fault maps with 

variable fault trace thickness, each experiment has a neighborhood size that yields fault 

traces with thicknesses between 2-4 pixels (see tables S1 and S2 in appendix).  

Consequently, experiments with small down-sampling ratios use large 

neighborhoods (9x9 pixels) to detect small fault details while experiments with high 

down-sampling ratios use a small neighborhood size (5x5 pixels) to avoid wide and 

overly connected faults. Overall, a 7x7 pixels neighborhood works well for most 

experiments in wet kaolin and dry sand with the exceptions made for sand experiments 

with very low or high down-sampling ratios (see table S2 in appendix). 

 

Figure 3.3: a) Incremental Net strain map from poured sand experiment and (b-c) fault maps 

with different fault detection sensitivity. b) Fault maps detected with low sensitivity (5x5 px 

neighborhood size) exhibit thinner and fewer faults than fault maps detected with c) larger 

neighborhood size (9x9 px) even though they both derive from the same net strain map. 

Saturation of each window indicates the kinematic efficiency that varies with the sensitivity of the 

fault map detection. 

 

After applying the adaptive threshold technique to detect areas of high net 

incremental strain, we apply one last set of filters to the fault maps to reduce noise. High 

strain regions with fewer than 8 connected pixels are removed from the active fault maps. 
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Some experiments also have noisy net strain maps in the low strain regions far from the 

zone of applied basal shear and we filter these regions to avoid false detection of faults 

following Chaipornkaew et al. (2022). The result of this process is a set of binary fault 

map windows from each stage of each experiment that show the active fault 

configuration.   

The CNN training also requires each fault map to have a label in order to learn the 

relationships between fault geometry and off-fault deformation. We use kinematic 

efficiency (KE), the ratio of incremental strike-slip accommodated along the fault in the 

direction parallel to loading to the total incremental displacement (e.g., Hatem et al., 

2017), as the label to train and test the CNN on experimental fault maps. The off-fault 

deformation is the portion of the total applied loading that is not expressed as slip (KE = 

1 – off fault deformation) (Hatem et al., 2017).  

In all materials, the first early array of echelon segments have relatively low 

kinematic efficiency of 50-60% (high off-fault deformation) that evolve into continuous 

mature strike-slip fault segments with higher kinematic efficiency of 80-90% (low off-

fault deformation) (e.g., Hatem et al., 2017; Visage et al., 2023). The successfully trained 

CNN will predict the kinematic efficiency of strike-slip faults given just an active fault 

map. 

For each stage of the experiments and for each 64x128 px window, we calculate 

the average and standard deviation of the kinematic efficiency (KE), the portion of shear 

strain accommodated along faults. We calculate the average KE and standard deviation of 

KE values found by integrating the shear strain within the active fault maps regions along 

the 64 transects perpendicular to the applied loading within each window. Consequently, 
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each fault map window used to train the CNN has both an average kinematic efficiency 

and the associated standard deviation of KE across the window. Following Chaipornkaew 

et al. (2022), we use both the KE labels and the standard deviation in the custom loss 

function that optimizes and assesses the CNN performance.  

At the start of the experiments, shear strain is distributed until the first localized 

echelon faults emerge on the surface of the clay. Consequently, the early active fault 

maps are largely null except for occasional noise. To prevent that early noise from being 

considered a valid active fault map, we limit the fault maps used for CNN training to 

those with average kinematic efficiency greater than 0.02. The first fault maps with KE > 

0.02 capture the very earliest stage of strike-slip faulting that have only a few small 

echelon faults. After filtering out early fault maps prior to the initiation of active faulting, 

we have 9050 input fault maps for wet kaolin, 8364 for poured sand, and 6742 for 

sedimented sand.   

 

3.3.1.1.1.1 Data split for the CNN  

Developing the CNN requires three independent data groups, one used for 

training, another for evaluating the given model and assisting in tuning hyperparameters, 

and a third dataset for testing the final CNN model once training is completed. We 

separate the fault maps generated from each set of experimental conditions (e.g., basal 

friction, thickness, loading rate, and basal shear material) into three groups: training, 

validation, and testing.  We randomly distribute the largest amount of fault map windows 

to training, followed by validation, and then testing.  
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When we split the dataset, we allocate the whole time series of each fault map 

window to its chosen group so that the evaluation and testing are not conditioned by 

training and testing on the same fault maps. With this approach, all datasets are 

statistically equivalent as they contain samples from all experiment configurations.  

We use the following split ratio for each suite of experiments: ~70% for training 

the network, ~20% for validating the performance of the CNN on fault maps unseen 

during training, and ~10% for assessing the CNN’s performance on unseen fault maps 

during training and validation once the learning stage is completed (Figure 3.4).   

 

 

Figure 3.4: Convolutional neural network used to individually train each dataset modified from 

Chaipornkaew et al. (2022). The data split for all datasets is as follow: ~70% training, ~20% 

evaluation, and ~10% testing. Modified from Chaipornkaew et al. 2022. 

 

 

3.3.1.1.1.1.1 CNN Architecture and Optimization  

We utilize the CNN architecture developed by Chaipornkaew et al. (2022) and 

sketched in figure 4 but with stricter loss function (described below) and we use a grid 
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search of optimal hyperparameters for each dataset. We follow Chaipornkaew et al. 

(2022) and use ImageDataGenerator class of TensorFlow’s Keras to process mini batches 

and apply subtle geometric transformations such as flipping, zooming, and shifting to 

introduce variations in the active fault maps (Shorten & Khoshgoftaar, 2019). Flipping of 

the fault maps means that regardless of whether the experiments produced right-lateral or 

left-lateral faults, the maps used for training will have both right and left-lateral fault 

maps. Shifting of the fault maps ensures that the faults are not always centered within the 

map. We do not tilt the faults maps because different fault orientation would yield 

different off-fault deformation. Instead, we ensure that the shear loading is parallel to top 

and bottom of the fault maps. 

All CNNs employ the Adam optimizer with a modified stochastic gradient 

descent with a prescribed learning rate and follow a convolutional neural architecture 

inspired by LeNet-5 and AlexNet networks (Krizhevsky et al., 2012; Lecun et al., 1998) 

that use stacked convolutional layers with kernel sizes and dilation parameters. This 

allows the detection of small-scale features such as stepovers between echelon faults and 

large-scale patterns like fault connectedness. 

To improve learning and performance, we follow Chaipornkaew et al. (2022) and 

incorporate batch normalization and use the rectified linear activation function (ReLU) 

followed by max-pooling (Kulathunga et al., 2021). Max-pooling highlights the most 

significant features in each fault map, reduces the number of parameters, and increases 

computing efficiency before the layer is flattened into a vector for the fully connected 

layers.  
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To prevent overfitting of the data, we apply a dropout rate before the final layer 

(Figure 3.4; Srivastava et al., 2014). Furthermore, we perform a hyperparameter grid 

search for each dataset to enhance learning and accuracy of the neural network. 

Hyperparameters of batch-size, learning rate, momentum, and dropout rate were 

iteratively tuned until reaching the optimal combination that resulted in the minimum loss 

in the validation dataset (see table S3 in appendix).  

The CNN models are trained using a custom loss function that assesses if a 

prediction is correct. The custom loss function calculates the squared difference of the 

predicted and the truth value (KE label) based on a normalized mean square error (MSE) 

(Srivastava et al., 2014). The CNN model has a correct prediction of the KE label if the 

difference between the predicted KE and the label KE is within one standard deviation, 

SD, of the label. This loss function is stricter than that used by Chaipornkaew et al. 

(2022) that allowed correct predictions within two standard deviations of the label KE. 

To prevent overfitting of the label, all models have an imposed early stopping that 

stops the network from training when the model no longer improves its accuracy on the 

validation data set. We select the final model based on the lowest loss in the validation 

dataset and the highest accuracy in the batch for both the training and validation datasets 

and use this model to predict kinematic efficiency on fault maps from the testing set. 

Additionally, we conduct multiple iterations with the consistent final hyperparameters 

combinations while altering the initial randomizations to ensure the reproducibility of 

each CNN model’s performance. 
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3.4 Results 

The different experimental materials, wet kaolin, poured sand, sedimented, and 

sieved sand, produce different early active fault patterns and similar mature strike-slip 

fault patterns. The earliest faults in the wet kaolin and poured sand are echelon fault 

segments that form at an angle relative to the basal fault and have strike-slip (Hatem et 

al., 2017; Lefevre et al., 2020; Visage et al., 2023). These echelon faults have been called 

‘R’-type Riedel shears in some studies (e.g., Lefevre et al., 2020). In the wet kaolin and 

poured sand experiments, the echelon segments are each planar and generally link up via 

new segments that develop at the center of the echelon segments and above the basal 

shear (Figure 3.2a and c). Eventually, the faults link and form a continuous active fault 

that may contain some irregularities that are relicts of the early echelon segments.  

The early echelon faults within the denser sand packs of the sedimented and 

sieved sand produce significant dilation at the onset of faulting and generate early 

immature faults that have patterns distinct from faults within wet kaolin and poured sand. 

The first faults to form have a sigmoidal shape where the distal ends trend parallel to the 

applied loading direction and accommodate reverse slip (Figure 3.2b).  

The central portions of the faults trend around 30° from the applied shear and 

accommodate predominantly strike-slip. These early faults link via new segments that 

parallel the loading and form across the centers of the early echelon faults. Once linked, 

the distal reverse slip portions of the early faults are abandoned. As with the other 

materials, the continuous active fault may have irregularities that reflect the early fault 

configuration. 
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3.4.1 Testing CNNs on Experimental Fault Maps  

We train and evaluate the CNN individually on wet kaolin, poured sand, and 

sedimented sand and then test each trained CNN on its corresponding testing set to assess 

the predictive power of the CNN. Our results demonstrate that all CNNs have KE 

prediction accuracy >90% on datasets unseen during training and validation (Figures 3.5-

3.7). The CNN model trained on wet kaolin achieves the greatest prediction accuracy 

(93%; Figure 3.5c), while CNN models trained on poured sand and sedimented sand 

predict with 92% (Figure 3.6c) and 91% (Figure 3.7c) KE accuracy, respectively.  

In this study, the wet kaolin trained CNN achieves a 3% higher prediction 

accuracy than the CNN previously trained by Chaipornkaew et al. (2022) that used the 

same experimental dataset and a less strict custom loss function than applied here.  

The improvement in accuracy can be attributed to several factors. First, each 

window was widened to better capture the stepover of echelon faults (Figure 3.2). This 

adjustment likely improved the CNN’s ability to learn and understand fault patterns. 

Second, the elimination of fault maps with early noise (KE<0.02) cleaned the dataset, 

which improved the model accuracy. Lastly, the optimization of hyperparameters using 

the refined dataset further improved the CNN’s performance despite using a stricter loss 

function. 
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Figure 3.5: Results from a) training, b) evaluating, and c) testing the CNN on the wet kaolin 

dataset. The trained CNN can predict KE of unseen fault maps during testing with 93% accuracy. 

Red circle on c) indicates fault maps for which the CNN has overpredicted the KE label 

(underpredicted off-fault deformation). d) Loss and e) accuracy of the model as we train over 40 

epochs and evaluate the performance at the end of each epoch. We impose an early stopping to 

prevent the model from overfitting (denoted by the star). Solid lines represent the best-performing 

model and translucent lines are repeated runs using the final hyperparameter combination.  
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Figure 3.6: Results from a) training, b) evaluating, and c) testing the CNN on the poured sand 

dataset. Trained CNN can predict KE of unseen fault maps with 92% accuracy. Red circle on c) 

indicates fault maps for which the CNN has overpredicted the KE label (underpredicted off-fault 

deformation). d) Loss and e) accuracy of the model as we train over 20 epochs and evaluate the 

performance at the end of each epoch. Solid lines represent the best-performing model and 

translucent lines are repeated runs using the final hyperparameter combination. 
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Figure 3.7: Results from a) training, b) evaluating, and c) testing the CNN on the sedimented 

sand dataset. Trained CNN can predict KE of unseen fault maps with 91% accuracy. Red circle 

on c) indicates the fault maps for which the CNN has underpredicted the KE label (overpredicted 

off-fault deformation). d) Loss and e) accuracy of the model as we train over 30 epochs and 

evaluate the performance at the end of each epoch. Solid lines represent the best-performing 

model and translucent lines are repeated runs using the final hyperparameter combination.  

 

The wet kaolin, poured, and sedimented sand trained CNNs have different 

patterns for mispredictions. Most of the wet kaolin and poured sand fault maps that 

deviate by more than one standard deviation from the label during testing tend to 
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overpredict KE (see red circle on Figures 3.5c & 3.6c). These overpredictions of the 

kinematic efficiency occur at early to mid-stages of fault maturity (KE < 0.6). For these 

wet kaolin and poured sand faults maps, both CNNs underpredict off-fault deformation. 

On the other hand, the sedimented sand trained CNN tends to underpredict the KE label 

(overpredict off-fault deformation) on unseen test datasets (see red circle on Figure 3.7c). 

This underprediction of sedimented sand occurs mostly for mature fault traces (KE > 

0.8). All CNN models achieve a high accuracy during testing, demonstrating their 

effectiveness in predicting kinematic efficiency on experimental active fault maps. 

 

3.4.1.1 Testing Fault Threshold Sensitivity 

Various approaches to delineate localized fault slip from distributed deformation 

can potentially yield different fault maps (e.g., Hatem et al., 2017; Lefevre et al., 2020; 

Visage et al., 2023). Having different fault maps will generate different KE labels (e.g., 

Figure 3.3), which might influence the predicting power of the CNN. Here, we assess 

whether the trained convolutional neural networks can successfully predict the kinematic 

efficiency of fault maps generated with different fault detection sensitivity. By testing 

each previously trained CNN on fault maps generated with varying neighborhood sizes 

we can evaluate the sensitivity of the predictions to different fault maps (e.g., Figure 3.3). 

All three experiment trained CNN models perform reasonably well with predictions that 

range from 65% for sedimented sand (Figure 3.8c) to 94% for poured sand (Figure 3.8b). 
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Figure 3.8: a) Results from testing the wet kaolin trained CNN on fault maps with varying levels 

of fault sensitivity from experiments EB_050_3 and PP_050_2, b) testing the poured sand trained 

CNN on experiments E441 and E457 and, c) testing the sedimented sand trained CNN on 

experiments E369, E338, E458, and E461. All CNNs can reasonably well predict the kinematic 

efficiency of fault maps defined using different detection thresholds. 

 

The outliers from all three tests where the CNN failed to predict the KE label 

within one standard deviation belong to fault maps with low to high sensitivities (see 

Figure S1 in appendix). This result suggests that the predictive performance of the CNN 

does not depend on the fault detection threshold. All CNNs, especially the poured sand 

trained CNN, have effectively learned to generalize and make consistent predictions 

across fault maps that were defined in different ways. 

 

3.4.1.1.1 Testing the CNNs on Synthetic Fault Traces 

To better understand the nature of the predictions made by each trained CNN, we 

test each CNN on synthetic fault maps representing various stages of strike-slip fault 

maturity. The synthetic fault maps were inspired from field mapping studies of strike-slip 

faults conducted or compiled by Guo et al. (2023) and Manighetti et al. (2021), as well as 

the time-series of active fault maps for experiments with wet kaolin, poured sand, and 

sedimented sand (Figure 3.2a-c). We apply each trained CNN to fault map windows of 
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three synthetic faults representing very immature, immature, and mature fault traces 

according to definitions and quantitative metrics of fault maturity by Guo et al. (2023) 

and Manighetti et al (2021) (Figure 3.9a-c). The approximate KE values that we would 

expect for the very immature fault trace ranges from 40-55%, 55-65% for the immature 

fault trace, and KE values > 75% for the mature fault trace. These expected values are 

approximated from the analysis of fault maps from all stages of fault maturity for 

experiments in all three datasets and their corresponding KE labels per stage and crustal 

studies that provide estimates of off-fault deformations (Antoine et al., 2021, 2022; 

Milliner et al., 2016; Scott et al., 2019; Shelef & Oskin, 2010).    

 

 

Figure 3.9: Synthetic strike-slip fault maps for a) very immature, b) immature, and c) mature 

fault traces (see Figure 3.2a-c). (d-e) The clay and poured sand trained CNNs have consistent 

predictions that overlap our expectations for very immature and immature fault traces while the 

sedimented sand predicts lower off-fault deformation. f) In contrast, the wet kaolin trained CNN 

predicts the highest kinematic efficiency values for the mature fault trace while the sedimented 

and poured sand predict greater off-fault deformation.   
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The predictions of the CNN on the synthetic fault maps reveal that both the CNNs 

trained on wet kaolin and poured sand have overlapping predictions of kinematic 

efficiency for the very immature and immature fault traces. The predictions of these CNN 

are also within the range of our estimated KE for the less mature fault traces (Figure 

3.9d-e). On the other hand, the CNN trained on sedimented sand consistently predicts 

higher kinematic efficiency values (corresponding to lower off-fault deformation) for the 

very immature and immature fault traces. The sedimented sand CNN predictions exceed 

the expected KE values for the very immature fault trace (Figure 3.9d) but are within the 

expected KE range for the immature fault trace (Figure 3.9e). 

The CNNs prediction of kinematic efficiency for the mature fault trace depend on 

whether the active fault trace is continuous across the window or has a gap (Figure 3.9c).  

The CNN trained on wet kaolin predicts the highest KE values that are also within our 

estimated range for windows that capture a continuous segment of the fault trace. In 

contrast, the poured and sedimented sand trained CNNs have lower KE predictions for 

these windows that overlap each other (Figure 3.9f). All three CNNs provide similar KE 

estimates for the middle active fault map window that captures a gap along the otherwise 

mature fault trace. We expect lower off-fault deformation (higher KE values) on the 

smoother sections of a fault trace than on segmented portions and this is confirmed by all 

three CNNs (Figure 3.9f).  

The CNN trained on sedimented sand predicts higher KE values for the 

segmented very immature fault traces (Figure 3.9d) than for the smooth sections of the 

mature fault trace (Figure 3.9f) that are inconsistent with both our expectations and the 

predictions of the CNN trained on other materials. The inconsistency of the sedimented 
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sand trained CNN predictions for these synthetic faults of varying maturity/roughness 

indicates that this CNN may be a less reliable predictor for off-fault deformation around 

strike-slip faults than the CNN trained on other materials.  

Overall, the CNN trained on sedimented sand consistently underestimates the off-fault 

deformation of very segmented and immature fault traces (Figure 3.9d), while both the 

wet kaolin and poured sand trained CNNs predict reasonable estimates of the off-fault 

deformation on very immature and immature faults. 

 

3.4.1.1.1.1 Testing CNNs on Experimental Fault Maps from Different Rheology  

Can CNN trained on one material that simulates upper crustal deformation 

successfully predict the partitioning of strain on faults produced in another material?  We 

assess the performance of all three CNNs by testing each CNN on all experimental fault 

maps of other materials to determine their ability to predict the kinematic efficiency of 

fault maps generated from experiments conducted with different materials that are all 

viable analogs for upper crustal deformation (Figure 3.10). In addition to testing each 

trained CNN with other materials, we test each CNN on the G12 sieved sand experiments 

run at the GFZ Potsdam laboratory. When assessing the performance of the predictions, 

we determined that unsuccessful predictions have <50% accuracy, acceptable predictions 

have up to 70% accuracy, good predictions have up to 90% accuracy, and exceptional 

predictions have >90% accuracy when predicting the kinematic efficiency label on 

unseen dataset. 
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Figure 3.10: The color of thick boxes around each plot indicates the goodness of the trained 

CNN on predicting kinematic efficiency. CNN trained on wet kaolin has overall the best 

performance at predicting kinematic efficiency of fault maps with different rheology properties. 

The CNN trained on CV32 sand performs well at predicting KE of fault maps in G12 sand 

experiments. However, both CNNs trained on poured and sedimented sand obtain low results 

when predicting KE of fault maps in wet kaolin. 

 

The CNN trained on wet kaolin provides acceptable or good predictions off-fault 

deformation at all stages of fault evolution in poured, sedimented, and sieved sand. The 

wet kaolin trained CNN makes good predictions when tested on poured and sieved G12 

sand fault maps (Figure 3.10b and d) and makes acceptable predictions for sedimented 

CV32 sand fault maps (Figure 3.10c). Most mispredictions outside of one standard 

deviation belong to fault maps where the CNN has underpredicted KE values 

(overpredicted off-fault deformation) of poured, sedimented/sieved sand fault maps. 
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These underpredicted KE values are from fault maps from all stages of fault maturity in 

poured and sedimented CV32 sand but only from mid-late stages (KE = 0.5-0.8) in 

sieved G12 sand.  

The poured sand trained CNN predicts well the strain partitioning of other sand 

(Figure 3.10g and h) but cannot predict off-fault deformation of active fault maps in wet 

kaolin (Figure 3.10e). The model has unsuccessful predictions when tested on clay fault 

maps at all levels of maturity, but the poured sand trained CNN can predict the kinematic 

efficiency of fault maps in sedimented sand with moderately good accuracy (Figure 

3.10g) and on sieved G12 sand fault maps with exceptional accuracy (Figure 3.10h). 

Most of the failed predictions when tested on the sedimented sand dataset are mature 

fault maps (KE > 0.7) where the CNN model underpredicts the KE label (Figure 3.10g). 

In contrast, the few outliers when testing the poured sand trained CNN on sieved G12 

sand active fault maps arise from immature fault traces (KE < 0.3).    

Like the poured sand trained CNN, the sedimented sand trained CNN predicts 

well strain partitioning of other sand (Figure 3.10j and l) but cannot predict off-fault 

deformation of active fault maps in wet kaolin (Figure 3.10i). The sedimented sand 

trained CNN incorrectly predicts off-fault deformation of active fault maps from all 

stages of strike-slip fault maturity in wet kaolin (Figure 3.10i) and has a lower predicting 

accuracy than the poured sand trained CNN (Figure 3.10e). The sedimented sand trained 

CNN makes good predictions of KE for active fault maps with different maturity in 

poured sand with overpredictions of KE at all levels of fault maturity (Figure 3.10j). 

Similarly, the sedimented sand trained CNN makes good predictions of strain partitioning 
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on the sieved G12 sand fault maps with a few overpredictions of KE at all levels of fault 

maturity (Figure 3.10l). 

 

3.4.1.1.1.1.1 Combining all Experimental Datasets for Training and Testing 

Can the CNN trained on an extensive experimental dataset that draws from three 

different crustal analog materials provide a wider range of fault evolution patterns to 

better capture crustal deformation? We assess this question by creating a new dataset that 

encompasses experiments on wet kaolin, sedimented sand, and poured sand. We combine 

all three datasets to train and test the convolutional neural network to assess its predicting 

power and subsequently apply this more comprehensively trained CNN on crustal fault 

maps (see discussion). We maintain the same data split used for individually trained CNN 

models (see tables S1 and S2 in appendix) and utilize the same CNN architecture used for 

all models (Figure 3.4). Because the combined experimental dataset has greater 

complexity than each individual type of analog material, the CNN trained on the 

combined data learns differently. For this reason, we perform a new extensive grid search 

of hyperparameters instead of using the previous hyperparameter combinations 

determined for each dataset (see table S3 in appendix).  

We test the CNN model on an unseen test dataset that encompasses a combination 

of active fault maps in wet kaolin, sedimented sand, and poured sand from all stages of 

fault maturity. The CNN trained on the combined dataset has 87% accuracy of KE 

predictions when tested on an unseen dataset (Figure 3.11c). Outliers that fall outside one 

standard deviation during testing arise from fault maps of all maturity levels where the 
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CNN overpredicts KE (underpredicts off-fault deformation). These results suggest that 

the CNN trained on experiments from all three materials representing a range of rheology 

has learned to estimate KE from fault geometry that developed in different materials. The 

CNN trained on all three materials provides good predictions of off-fault deformation 

from all levels of fault maturity. 

 

Figure 3.11:  Results from a) training, b) evaluating, and c) testing the CNN on the wet kaolin + 

sedimented sand + poured sand datasets. Trained CNN can predict KE of unseen fault maps with 

87% accuracy. d) Loss and e) accuracy of the model as we train over 30 epochs and evaluate the 

performance at the end of each epoch. Red circle indicates outliers where the CNN has 

overpredicted KE (underpredicted off-fault deformation) of immature to mid-mature fault maps 

(KE < 0.65). Solid lines represent the best-performing model and translucent lines are repeated 

runs using the final hyperparameter combination. 
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3.5. Discussion  

3.5.1 Testing on Crustal Fault Maps 

Because scaled physical experiments use materials that are designed to simulate 

upper crustal deformation, the CNN trained on experimental strike-slip faults can inform 

strain partitioning along and off of fault of crustal strike-slip fault traces (Chaipornkaew 

et al., 2022). To assess the potential of using experimental trained CNNs on crustal fault 

maps, we compare the off-fault deformation estimates from four geologic studies to the 

predictions made by the experiment trained CNNs that use the active fault maps of the 

geologic studies. These geologic studies estimate off-fault deformation accumulated 

across different time spans: coseismic deformation associated with the 2019 Ridgecrest 

mainshock (Figure 12a; Antoine et al., 2021; Milliner et al., 2021), coseismic 

deformation associated with the 2016 M7 Kumamoto earthquake along the Futagawa 

fault (Figure 12b; Scott et al., 2019), bending of Mesozoic faults and dikes adjacent to the 

northern Calico fault in the Eastern California Shear Zone (Figure 12c; Shelef & Oskin, 

2010), and Holocene deformation of drainages on the northwest side of the San Andreas 

fault at Mecca Hills (Figure 12d; Gray et al., 2018).  

The Futagawa fault, the northern Calico fault, and the San Andreas fault at Mecca 

Hills, were also analyzed by Chaipornkaew et al. (2022). We keep the three fault maps in 

our analysis because they provide varying levels of fault maturity and off-fault 

deformation estimates accumulated across different periods. Also, we tune the workflow 

for creating the fault maps, widen the fault maps windows to three times the echelon 

length to better capture stepovers, and exclude fault maps with early occasional noise 

(KE < 0.02) (see method section). Because we have improved the training dataset and 
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hyperparameter search from that of Chaipornkaew et al. (2022) leading to a higher model 

accuracy for the wet kaolin trained CNN in our study (Figure 3.5), we can expect 

differences in the predictions of KE for the same crustal fault maps. Furthermore, 

because we widen the fault map windows for training, we have also widened the crustal 

fault map windows. Consequently, our study has fewer but wider fault map windows than 

that of Chaipornkaew et al. (2022) that capture stepovers for all crustal maps. 

 

Figure 12. CNN models applied to crustal fault trace maps and the kinematic efficiency ranges 

from each geologic study (gray rectangles) and the CNN predictions for each model denoted by 

symbols and colors in legend. a) Coseismic displacement associated with the 2019 Mw. 7.1 

Ridgecrest Mainshock (Antoine et al., 2021; Milliner et al., 2021), b) coseismic deformation 

associated with the 2016 M7 Kumamoto earthquake along the Futagawa fault (Scott et al., 2019), 

c) bending of Mesozoic faults and dikes near Calico fault (Shelef & Oskin, 2010), and d) 

deflected drainages at Mecca Hills (Gray et al., 2018). e) The KE predictions made by all CNNs 

are almost all within the off-fault deformation range provided by Milliner et al. (2021) but only 

the predictions made for the left window overlap with the estimated value by Antoine et al. 

(2021). f) All CNNs predict KE values for the Futagawa fault within the range of crustal study; 

the poured sand trained CNN predicts the highest KE. g) For the Calico fault only the wet kaolin, 

poured, and sedimented sand overlap the crustal study’s estimate for off-fault deformation for the 

left window. The combined trained CNN predicts greater off-fault deformation than other CNN 

for both windows. h) A few of the CNNs overlap with Gray et al. (2018) value for off-fault 

deformation along San Andreas fault (between grey and blue lines). All active fault maps from 

each of the geologic studies are oriented so that the regional maximum shear direction, 

determined from GNSS data, is consistent with the shear loading of fault maps in our experiments 

(i.e., along the top and bottom of each 64x128 pixel fault map window). 
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This study includes the Ridgecrest Mainshock for which we have two estimates 

for off-fault deformation (Figure 3.12a). Milliner et al. (2021) considered off-fault 

deformation along the whole rupture (grey box on Figure 3.12e) while Antoine et al. 

(2021) calculated estimates for different portions of the mainshock rupture (grey line on 

Figure 3.12e). The predictions made by the CNNs trained on experimental data with wet 

kaolin, poured sand, sedimented sand, and the combination of those materials are almost 

all within the ranges of off-fault deformation provided by Milliner et al. (2021) for the 

2019 Ridgecrest Mainshock (Figure 3.12e). All CNNs predict higher KE (lower off-fault 

deformation) for the left (northwest) window of the Ridgecrest crustal map, which has 

less mature fault trace than the right (southeast) window. All CNNs, except for the 

sedimented sand trained CNN, provide KE values that overlap with the off-fault 

deformation value provided by Antoine et al. (2021) for the left window of the fault trace 

but they all predict higher KE values (lower off-fault deformation) for the right portion of 

the fault trace (Figure 3.12e). Furthermore, the sedimented sand trained CNN predicts the 

highest KE values of all the models for both fault maps windows of the segmented 

Ridgecrest mainshock rupture; this CNN makes similar predictions for the very immature 

synthetic fault trace on Figure 3.9d.  

Most of the CNN KE predictions for the Futagawa crustal fault in the Kumamoto 

earthquake are within the range of Scott et al (2019) for off-fault deformation (Figure 

3.12b). The sedimented sand and combined CNN predict KE values that overlap each 

other. Similarly, the wet kaolin trained CNN predicts high off-fault deformation while the 

poured sand trained CNN predicts lower off-fault deformation for the same section of the 

fault trace (Figure 3.12f).  
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Some of the experiment trained CNNs predict KE within Shelef and Oskin’s 

(2010) range for off-fault deformation along the Calico fault (Figure 3.12g). The wet 

kaolin, poured sand, and sediment sand trained CNNs provide KE predictions that are 

within the off-fault deformation range for Calico’s left window that captures two 

segmented semi parallel faults whereas, the combined trained CNN predicts a higher off-

fault deformation for the same fault portion (Figure 3.12b and g). For the right window 

(southeast) that captures a less geometrically complex section (one active fault strand) of 

the fault trace, all CNNs predict higher off-fault deformation values than for the left 

(northwest) window. The off-fault deformation values predicted by each CNN fall 

outside range estimate by Shelef and Oskin. (2010) with the highest KE prediction by the 

poured sand trained CNN and the lowest KE (greatest off-fault deformation) prediction 

by the combined trained CNN (Figure 3.12g). Out of all models, the combined trained 

CNN consistently predicts higher off-fault deformation for all crustal fault map windows 

along the Calico fault, especially for the right-most (southeast) window. 

Most experiment trained CNN predictions for the mature San Andreas fault at 

Mecca Hills overlap the kinematic efficiency estimates for the Calico fault (Figure 

3.12d). The off-fault deformation estimates from Gray et al. (2018) are based on 

measurements of 3.5± 1.5 mm/yr of drainage deflection within 800 m on the northeast 

side of the fault. If the southwest side of the San Andreas fault, which was not analyzed, 

also experiences 3.5± 1.5 mm/yr of off-fault deformation, then the total off-fault 

deformation along this fault may be 11-29% of the 35-40 mm/yr slip rate on this fault. 

Because the San Andreas dips northeast, the off-fault deformation may be greater on the 

northeast side of the fault so we will consider 29% as a maximum with likely values 
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between 10 and 25%. All the experiment trained CNN models agree with each other and 

predict off-fault deformation similar to the crustal estimates (Figure 3.12h).    

The CNN model trained on the combined experimental dataset predicts kinematic 

efficiency that overlaps the other experimental trained CNNs for most of the four crustal 

fault maps (Figure 3.12e-h). This consistency probably suggests that the wet kaolin and 

poured sand trained CNN models contributed greatly to the combined training.  

Overall, the CNN models predict the highest off-fault deformation for the 

segmented Futagawa fault and similar but lower off-fault deformation for the Ridgecrest 

mainshock, Calico fault, and San Andreas fault at Mecca Hills (Figure 3.12a-d).  Most of 

the CNN predictions of off-fault deformation match geologic estimates, demonstrating 

that experimental trained CNN can be used to provide estimates of off-fault deformation 

and the degree of shallow slip-deficit on strike-slip faults using the fault trace and known 

regional loading orientation.  

We can compare the crustal fault KE predictions made by the wet kaolin trained 

CNN in our study to the predictions estimated by the CNN of Chaipornkaew et al. 

(2022). For the three crustal fault maps that were used in both studies, the differences 

between KE predictions of the two CNN vary across all fault map windows. The 

Futagawa fault KE predictions by the wet kaolin trained CNN are lower in our study than 

KE predictions of Chaipornkaew et al. (2022). On the other hand, our KE predictions for 

the Calico fault are higher and within the range of predictions for each of the narrower 

fault map windows used by Chaipornkaew et al. (2022). For the San Andreas fault at 

Mecca Hills our KE predictions are similar to those of Chaipornkaew et al. (2022). The 

slight differences in KE predictions between our wet kaolin trained CNN and 
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Chaipornkaew et al. (2022) could be due to various reasons. We train our CNN model on 

a smaller but improved dataset and with a different combination of hyperparameters. 

Furthermore, we test on fewer but wider fault map windows that better capture stepovers 

than Chaipornkaew et al. (2022), which could explain the variations in KE predictions. 

 

3.5.1.1 CNN Application to the San Jacinto Fault Trace  

We can apply the experimental trained CNN model to predict off-fault 

deformation along strike-slip faults for which we do not yet have geologic information 

about strain partitioning. To demonstrate this application, we use the trace of the San 

Jacinto fault taken from the USGS Quaternary Fault and Fold database (USGS, accessed 

2022). The active trace of the San Jacinto fault has some regions that are continuous and 

mature while other regions are complex with fault branches and segmented (Figure 3.13). 

Figure 3.13 shows the fault map windows that we use for predicting kinematic efficiency 

using the CNN trained on the combination of wet kaolin and dry sand fault maps, which 

represents the widest range of rheologic conditions. 
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Figure 3.13: Active fault trace of the San Jacinto fault overlain on the windows used as inputs to 

the CNN model trained with the combination of the clay and sand fault maps. The color of each 

fault map window indicates the predicted off-fault deformation (pink) of that portion of the San 

Jacinto fault. The northwest windows that capture the immature section of the fault trace have 

higher degree of strain partitioned as off-fault deformation than the southeast windows that show 

a higher relative maturity. 

 

The CNN model predicts a higher degree of strain partitioned as off-fault 

deformation (~40-50%) for segmented and corrugated fault portions (see northwest 

windows on Figure 3.13) that represent immature fault geometries. On the other hand, the 

windows where the CNN predicts higher kinematic efficiency (~80%) are smoother 

portions of the fault with less undulation but with branching segments (see southeast 

windows on Figure 3.13).  The CNN trained on the combined dataset predicts patterns of 

off-fault deformation that are consistent with our expectations; corrugated and segmented 

fault trace indicate less mature fault segments with greater off-fault deformation. The 

lowest off-fault deformation and highest kinematic efficiency occur where two fault 

segments overlap so that the map window contains two parallel faults. Such geometry is 

not considered mature but may accommodate a significant portion of strike-slip along the 

two active faults. However, the experiments of this study generally only hosted a single 

active fault trace. Consequently, the CNN trained in this study would not reliably 

estimate off-fault deformation in regions with parallel active strands. 

 

3.5.1.1.1 Limitations of the CNN 

Both wet kaolin and dry sand are well suited for examining the evolution of fault 

structures over many earthquake cycles. Faults within the materials of experiments 

studied here creep and do not exhibit stick-slip behavior often realized along crustal 
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faults.  Off-fault deformation from dynamic rupture processes occurring during 

earthquake events would not be captured in the experiments that simulate quasi-static 

deformation. For example, the experiments of this study do not capture aspects of 

distributed near surface deformation that may arise from the co-seismic ground shaking. 

The lack of these dynamic effects may cause the experiment trained CNNs to 

underpredict the co-seismic shallow slip deficit along crustal faults.   

Co-seismic off-fault deformation estimates (e.g., Antoine et al., 2021; Milliner et 

al., 2021; Scott et al, 2019; Gray et al., 2018; Shelef & Oskin, 2010) do not include the 

distributed deformation that accumulates during the interseismic period. One might 

therefore expect geologic estimates of off-fault deformation to exceed co-seismic 

estimates for the same fault. These two factors combined, the underprediction of ground 

shaking effects and inclusion of at least some long-term off-fault deformation, may allow 

the CNN estimates to match coseismic estimates of off-fault deformation (Figure 3.12a 

and b).  By extension, we would then expect the experiment trained CNN to underpredict 

off-fault deformation for the geologic estimates that include many earthquake cycles 

(Figure 3.12c and d) because the CNN lack ground shaking effects. One reason we might 

not see this for the findings of the Calico fault is that the deflected Mesozoic structures 

mapped by Shelef and Oskin. (2010) are within bedrock materials so that these off-fault 

deformation estimates do not include the shallow slip deficit that occurs in the upper few 

kilometers.   

3.6 Conclusion 

Although the geologic record does not often provide reliable estimates of off-fault 

deformation, we can use experimentally produced active strike-slip fault trace maps 



 95 

developed within different analog materials to train Convolutional Neural Networks to 

predict off-fault deformation from active strike-slip fault traces. Because laboratory 

experiments use analog materials that are carefully scaled to reproduce crustal processes, 

the CNNs trained on experimental fault maps can be used to predict crustal off-fault 

deformation and provide estimates of the degree of shallow slip deficit along strike-slip 

faults, such as Figure 3.13 for the San Jacinto fault.    

We show that all experiment trained CNN models (wet kaolin, poured sand, and 

sedimented sand) have exceptional accuracy when tested on an unseen dataset of a 

similar analog material (Figures 3.5c, 3.6c, and 3.7c). The CNN trained on the combined 

data set has good accuracy of predicting off-fault deformation on unseen fault maps from 

all the experiments (Figure 3.11c). The CNN trained on one material produces variable 

accuracy when tested on other materials (Figure 3.10). The wet kaolin trained CNN has 

the best overall performance with acceptable accuracy of off-fault deformation 

predictions on all materials (Figure 3.12b-d).   

The wet kaolin and poured sand trained CNNs perform the best when predicting 

the off-fault deformation of synthetic and crustal faults representing different fault 

maturity whereas the sedimented sand trained CNNs has low prediction reliability on 

both synthetic and crustal faults. The off-fault deformation predictions of the combined 

CNN model follow the predictions of individually trained CNNs on crustal fault maps, 

suggesting that this CNN recognizes characteristics of fault geometry expressed by 

different materials that represent a range of deformation mechanisms within the upper 

crust. This study shows the potential for deep learning trained on experimentally 
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produced faults to estimate the strain partitioning of crustal faults which can help us 

estimate the degree of shallow slip deficit along faults of differing maturity. 
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APPENDIX 

SUPPLEMENT FOR CHAPTER 3 

 

Table S1. Strike-slip fault experiments with wet kaolin used for training, evaluation, and testing. 

Table indicates each experiment configuration with loading conditions (mm/min), window width 

(cm), the amount of window overlap, the number of fault map windows obtained per experiment, 

and the fault sensitivity used (neighborhood size). Since each experiment configuration is 

repeated, we split the data into training, evaluation, and testing. To fully allocate the first 

experiment configuration to training and the repeated experiments divided into training, 

evaluation, and testing.  

 

 

 

 

 

Experiment 

Name 

Basal 

Configuration 

Velocity 

(mm/min) 

Window 

Width 

(cm) 

Overlap 

(%) 

# 

Windows 

Neighborhood  

Size 

Data Split 

PP_025_1 Plate 0.25 11 20 5 5 Train 

PP_025_2 Plate 0.25 11 20 5 5 Train/Eval/Test 

PP_050_1 Plate 0.50 11 20 5 5 Train 

PP_050_2 Plate 0.50 11 20 5 5 Train/Eval/Test 

PP_100_1 Plate 1.0 11 20 5 5 Train 

PP_100_2 Plate 1.0 11 20 5 5 Train/Eval/Test 

PP_150_1 Plate 1.50 11 20 5 5 Train/Eval/Test 

EB_025_1 Elastic Band 0.25 11 20 5 5 Train 

EB_025_2 Elastic Band 0.25 11 20 5 5 Train 

EB_025_3 Elastic Band 0.25 11 20 5 5 Train/Eval/Test 

EB_050_1 Elastic Band 0.50 11 20 5 5 Train 

EB_050_2 Elastic Band 0.50 11 20 5 5 Train 

EB_050_3 Elastic Band 0.50 11 20 5 5 Train/Eval/Test 

EB_150_1 Elastic Band 1.50 11 20 5 5 Train 

EB_150_2 Elastic Band 1.50 11 20 5 5 Train 

EB_150_3 Elastic Band 1.50 11 20 5 5 Train/Eval/Test 
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Experiment 

Name 

Deposition 

Technique 

Sand pack 

Thickness 

(cm) 

Basal 

Material 

Window 

Width 

(cm) 

Overlap 

(%) 

# 

Windows 

Neighborhood 

Size 

Data Split 

E280 Sedimented 4  PVC 25 43 7 7 Train 

E287 Sedimented 2.5 PVC 12.5 20 10 9 Train 

E319 Sedimented 4 PVC 25 42 6 7 Train/Eval/Test 

E320 Sedimented 4 PVC 25 50 4 5 Train/Eval/Test 

E321 Sedimented 4 PVC 25 37 6 7 Train/Eval/Test 

E322 Sedimented 4 PVC 25 31 6 7 Train/Eval/Test 

E324 Sedimented 4 PVC 25 37 6 7 Train 

E328 Sedimented 3.5 PVC 20.8 20 6 7 Train/Eval/Test 

E329 Sedimented 3.5 PVC 20.8 20 6 7 Train 

E331 Sedimented 3 PVC 16.7 20 8 7 Train/Eval/Test 

E332 Sedimented 2.5 PVC 12.5 20 10 7 Train/Eval/Test 

E345 Sedimented 5 PVC 33.3 48 5 7 Train/Eval/Test 

E346 Sedimented 3.3 PVC 19.1 20 6 7 Train 

E347 Sedimented 5 PVC 33.3 45 5 5 Train/Eval/Test 

E353 Sedimented 3 PVC 16.7 20 8 7 Train/Eval/Test 

E355 Sedimented 6 PVC 41.6 48 4 5 Train/Eval/Test 

E458 Sedimented 5 PVC 33.3 45 6 7 Train/Eval/Test 

E459 Sedimented 5 PVC 33.3 46 6 5 Train 

E461 Sedimented 4 PVC 25 50 4 7 Train/Eval/Test 

E463 Sedimented 6 PVC 41.6 50 5 5 Train/Eval/Test 

E464 Sedimented 7 PVC 49.9 49 3 5 Train 

E499 Sedimented 6 PVC 41.6 50 5 5 Train 

E338 Sedimented 4 Alkor-foil 28.4 45 6 9 Train/Eval/Test 

E339 Sedimented 3.5 Alkor-foil 23.9 40 7 7 Train/Eval/Test 

E340 Sedimented 3 Alkor-foil 19.5 34 8 7 Train 

E342 Sedimented 2.5 Alkor-foil 15.0 31 9 7 Train 

E363 Sedimented 5 Sandpaper 44 26 3 5 Train/Eval/Test 

E364 Sedimented 2 Sandpaper 8.3 20 16 9 Train 

E365 Sedimented 3 Sandpaper 25 45 7 7 Train/Eval/Test 

E366 Sedimented 2.5 Sandpaper 20.3 45 9 9 Train 

E368 Sedimented 4 Sandpaper 34.5 48 5 7 Train/Eval/Test 

E369 Sedimented 3.5 Sandpaper 29.8 46 6 9 Train 

E350 Poured 4 PVC 14.7 20 8 7 Train/Eval/Test 

E351 Poured 5 PVC 19.0 35 8 7 Train 

E352 Poured 3.5 PVC 12.6 20 10 7 Train 

E439 Poured 4 PVC 14.7 20 11 7 Train/Eval/Test 

E440 Poured 4 PVC 14.7 20 12 7 Train 

E441 Poured 4 PVC 14.7 20 11 7 Train/Eval/Test 

E442 Poured 4 PVC 14.7 20 11 7 Train/Eval/Test 

E444 Poured 4 PVC 14.7 20 11 7 Train/Eval/Test 

E451 Poured 6 PVC 23.3 39 8 7 Train 

E452 Poured 6 PVC 23.3 38 8 7 Train/Eval/Test 

E455 Poured 7 PVC 27.6 40 7 5 Train 
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Table S2. Strike-Slip fault experiments with dry sand CV32 indicating deposition technique, 

thickness of sandpack (cm), basal frictional material, window width (cm), the amount of window 

overlap (%), the number of fault map windows obtained per experiment, and the fault sensitivity 

(neighborhood size) used per experiment. The data split consists of allocating all windows of the 

first experiment configuration to training and the repeated experiment configurations divided into 

training, evaluation, and testing. Allowing training to get most of the windows, followed by 

evaluation, and the least windows for testing.  

 

 

 

 

Hyperparameters Search 

Ranges 

Selected Values for 

Wet Kaolin  

Selected Values 

for Poured Sand 

Selected Values for 

Sedimented Sand 

Selected Values 

for Combined 

#Kernels in the first 

CNN layer 

4 - 8 4 4 4 4 

Learning Rate 1e-5 – 1e-2 5e-3 9e-3 3e-3 1e-3 

Batch Size 8 - 512 256 256 128 128 

Momentum 0.60 - 0.99 0.60 0.65 0.95 0.65 

Dropout Rate 10% - 30% 30 30 25 15 

 

Table S3. Hyperparameters grid search for all three distinct CNN networks and for the combined 

CNN network trained in all three datasets.  

 

 

 

 

E456 Poured 7 PVC 27.6 43 7 5 Train/Eval/Test 

E457 Poured 5 PVC 19.0 20 8 7 Train/Eval/Test 

E481 Poured 6 PVC 23.3 46 7 5 Train/Eval/Test 

E482 Poured 6 PVC 23.3 50 7 5 Train/Eval/Test 

E483 Poured 6 PVC 23.3 39 8 7 Train/Eval/Test 

E484 Poured 6 PVC 23.3 39 8 7 Train/Eval/Test 

E494 Poured 6 PVC 23.3 20 7 7 Train/Eval/Test 
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Figure S1. Outliers outside one standard deviation of the label when testing a) the wet kaolin 

trained CNN, b) poured sand, and c) sedimented sand on fault maps with different maturity. 

Outliers belong to fault maps with different sensitivities from all stages of fault evolution. 
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