
University of Massachusetts Amherst University of Massachusetts Amherst

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst

Masters Theses Dissertations and Theses

March 2024

Extracting DNN Architectures Via Runtime Profiling On Mobile Extracting DNN Architectures Via Runtime Profiling On Mobile

GPUs GPUs

Dong Hyub Kim
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/masters_theses_2

 Part of the Artificial Intelligence and Robotics Commons, Computer and Systems Architecture

Commons, and the Data Science Commons

Recommended Citation Recommended Citation
Kim, Dong Hyub, "Extracting DNN Architectures Via Runtime Profiling On Mobile GPUs" (2024). Masters
Theses. 1406.
https://scholarworks.umass.edu/masters_theses_2/1406

This Open Access Thesis is brought to you for free and open access by the Dissertations and Theses at
ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses by an authorized
administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

https://scholarworks.umass.edu/
https://scholarworks.umass.edu/masters_theses_2
https://scholarworks.umass.edu/etds
https://scholarworks.umass.edu/masters_theses_2?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F1406&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F1406&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/259?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F1406&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/259?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F1406&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1429?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F1406&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/masters_theses_2/1406?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F1406&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

EXTRACTING DNN ARCHITECTURES VIA RUNTIME
PROFILING ON MOBILE GPUS

A Thesis Presented

by

DONG HYUB KIM

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE IN ELECTRICAL AND COMPUTER ENGINEERING

February 2024

Electrical and Computer Engineering

© Copyright by Dong Hyub Kim 2024

All Rights Reserved

EXTRACTING DNN ARCHITECTURES VIA RUNTIME
PROFILING ON MOBILE GPUS

A Thesis Presented

by

DONG HYUB KIM

Approved as to style and content by:

Sandip Kundu, Chair

Daniel Holcomb, Member

Russell Tessier, Member

Christopher V. Hollot, Department Chair
Electrical and Computer Engineering

ABSTRACT

EXTRACTING DNN ARCHITECTURES VIA RUNTIME
PROFILING ON MOBILE GPUS

FEBRUARY 2024

DONG HYUB KIM

B.S., INHA UNIVERSITY

M.S.E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Sandip Kundu

Due to significant i nvestment, r esearch, a nd d evelopment e fforts ov er th e past

decade, deep neural networks (DNNs) have achieved notable advancements in classi-

fication and regression d omains. As a result, DNNs are considered valuable intellec-

tual property for artificial intelligence p roviders. Prior work has demonstrated highly

effective model extraction attacks which steal a DNN, dismantling the provider’s busi-

ness model and paving the way for unethical or malicious activities, such as misuse

of personal data, safety risks in critical systems, or spreading misinformation. This

thesis explores the feasibility of model extraction attacks on mobile devices using ag-

gregated runtime profiles a s a s ide-channel t o l eak DNN a rchitecture. S ince mobile

devices are resource constrained, DNN deployments require optimization efforts to

reduce latency. The main hurdle in extracting DNN architectures in this scenario

is that optimization techniques, such as operator-level and graph-level fusion, can

obfuscate the association between runtime profile operators and their corresponding

iv

DNN layers, posing challenges for adversaries to accurately predict the computation

performed. The thesis presents a novel approach for identifying the original archi-

tecture of a Deep Neural Network (DNN) based on analyzing its GPU call profile as

a side-channel. Even when the optimization process has obscured layer information

and introduced noise, the proposed approach can effectively determine the original

structure. Additionally, we propose extraction of hyperparameters layer-by-layer from

sub-layer patterns. No existing solution has extracted architectures from optimized

DNN models deployed on mobile GPUs, especially in the presence of obfuscation or

optimization. This research is the first to do so.

v

TABLE OF CONTENTS

Page

ABSTRACT . iv

LIST OF TABLES .viii

LIST OF FIGURES . ix

CHAPTER

1. INTRODUCTION . 1

2. BACKGROUND AND RELATED WORK . 5

2.1 Deep Neural Networks . 5

2.1.1 White-Box vs. Black-Box Access . 7

2.2 Adversarial Machine Learning Attacks . 7
2.3 Model Extraction Attack . 8

2.3.1 Architecture Extraction . 8
2.3.2 Parameter Extraction . 9
2.3.3 Adversarial Motivation for Model Extraction 10

2.4 TVM Runtime Profiles . 10

2.4.1 Apache TVM . 10
2.4.2 TVM Compiler . 11
2.4.3 TVM Debug Executor (Profiler) . 12

3. ATTACK METHODOLOGY . 14

3.1 Attack Methodology . 14

3.1.1 Threat Model . 14
3.1.2 Attack Framework . 15

vi

3.1.2.1 Offline Preprocessing . 16
3.1.2.2 Online Attack . 20

4. EXPERIMENTAL SETUP . 21

4.1 Experimental Setup . 21
4.2 Results . 22

4.2.1 Train with Optimization Level 0, Test on Optimization Level
0 . 23

4.2.2 Generalization of Optimization Levels . 25
4.2.3 Train with all Optimization Levels, Test on Each Level 28
4.2.4 Further Attack Optimization . 28

5. LAYER-BY-LAYER RECONSTRUCTION OF MODEL
ARCHITECTURE . 31

5.1 Motivation . 31
5.2 Methodology . 32

5.2.1 Pre-processing . 32
5.2.2 Training Regression Model and Feature Augmenting

Classification Sub-models . 33
5.2.3 Inference Phase with Result Propagation in the Connected

Model . 35
5.2.4 Post-processing . 36

5.3 Result . 38

5.3.1 Model Performance . 38
5.3.2 Predicting Representative DNN Victim Models 39
5.3.3 Comparing DNN Performance of Reconstructed vs Original 40

6. CONCLUSION . 44

BIBLIOGRAPHY . 46

vii

LIST OF TABLES

Table Page

4.1 The 34 PyTorch vision architectures forming the candidate set in the
proposed architecture extraction attack. These are all of the
architectures present in Torchvision v0.10.0 [32] except for the
ResNext architectures due to lack of support for group
convolution TVM operations on the Arm Mali G52 GPU. 21

4.2 Architecture prediction accuracy of a Random Forest classifier
trained on one or two optimization levels and tested on all
optimization levels using the binning technique in Scenario 2.
Reported accuracy is on the Victim Set. 25

4.3 Architecture prediction accuracy of architecture prediction models
trained on all optimization levels and tested on each optimization
level. There were 146 features for Scenario 1 and 4 for Scenario
2. 27

5.1 The accuracy of classification sub-models for the purpose of feature
augmentation, along with the testing configurations applied to
these sub-models. 39

5.2 The normalized average error calculated for each specific output of
the regression model, as well as for the complete connected
inference model which involves the prediction result
propagation . 40

5.3 The normalized average error evaluated under attack conditions by
the complete connected inference model when applied to
representative victim DNNs selected from PyTorch zoo 41

5.4 The major difference between the original and reconstructed DNN is
observed in the front part of VGG19. For the layers where correct
predictions were made, the remaining layers were truncated. 43

viii

LIST OF FIGURES

Figure Page

2.1 A DNN architecture is an unparameterized computation graph
specifying how to compute an output of the network given some
input. The parameters (weight and bias) of a DNN are found
through a training process, resulting in a specific parameterization
of an architecture, or a model. Distinct edge colors in a
Parameterized DNN Architecture figure signify variations in
parameter values being assigned. 6

2.2 TVM Profiling system diagram. 12

3.1 Step-by-step illustration of proposed architecture extraction
attack. 15

3.2 Sortation of layer duration from a ResNet18 model into 2 bins (left),
Binned count distribution for different models (right). 18

3.3 Distribution of ResNet18 layer durations at TVM optimization level
0. The x axis is in microseconds. 18

4.1 Architecture prediction accuracy by number of training profiles per
architecture (left) and number of features (selected by RFE using
a Random Forest model) used to train the architecture prediction
model (right), for Scenario 1 considering only TVM optimization
level 0. 24

4.2 Architecture prediction accuracy by number of training profiles per
architecture for Scenario 2 considering only TVM optimization
level 0. 24

4.3 Architecture prediction accuracy by number of training profiles per
architecture per optimization level (left) and number of features
(selected by RFE using a Random Forest model) used to train the
architecture prediction model (right), for Scenario 1, training and
testing on all optimization levels. 29

ix

4.4 Architecture prediction accuracy by number of training profiles per
architecture per optimization level for Scenario 2, training and
testing on all optimization levels. 30

5.1 Training phase, each feature augmentation sub-models and the
regression model are trained with labels . 34

5.2 Complete connected model in inference phase with prediction result
propagation. 35

5.3 Image Length of the prediction of ResNet34 before (Left) and after
(Right) 4th method applied. 37

5.4 Loss(left), Accuracy(right) Trace of the Original DNN. 42

5.5 Loss(left), Accuracy(right) Trace of the Reconstructed Victim
DNN. 42

x

CHAPTER 1

INTRODUCTION

Deep Neural Networks (DNNs), have achieved remarkable performance improve-

ments in classification and regression problems over the last decade [22, 36, 38]. This

success has led artificial intelligence (AI) providers to integrate DNNs into diverse

domains, such as autonomous vehicles [20] and health monitoring [49]. Importantly,

the evolving business strategies for capitalizing on DNNs, such as licensing, pay-per-

use, or pay-per-install models, perceive DNNs as valuable intellectual property (IP).

Consequently, any compromise to the integrity of DNN IP also poses a threat to the

provider’s underlying business model.

Previous work has demonstrated the feasibility of a model extraction attack which

enables an adversary to steal a DNN [25,37,43]. The consequences of this attack are

devastating as the adversary will be able to release the model to the public, sell it

as their own, create a competing product, or bypass paywalls. Besides breaking the

provider’s business model, model extraction attacks present several threats. First,

DNN models are costly to develop. Each phase in the machine learning pipeline,

spanning from gathering data [17] to designing DNN models [8], training, and main-

taining them [33], incurs substantial expenses, underscoring the valuable nature of

the model’s intellectual property (IP). The training cost alone may eclipse $1m [34].

This investment is lost if an adversary steals the DNN. Second, an adversary may

easily calculate the gradient of a stolen DNN, enabling them to mount further adver-

sarial attacks with much more potency [30]. They could craft maliciously perturbed

inputs which fool the DNN, giving the adversary control of the model’s output, or

1

could reconstruct training data [1, 2]. Such attacks compromise the system in which

the DNN operates.

Model extraction attacks are usually split into two steps. The first step, ar-

chitecture extraction [14, 27, 39], steals the architecture of a DNN, which are the

mathematical operations that define the model’s computation. These operations are

semantically split into DNN layers based on the type of operation such that there

is no data dependency within a layer. The second step steals the parameters of the

DNN which are found through training. Architecture extraction attacks typically use

side-channel data and have been demonstrated in many different threat scenarios.

Effective side-channels include memory and cache accesses to the CPU [13,21,24,44],

GPU [23, 29, 31], and DNN accelerators [15], power consumption [21, 42], electro-

magnetic emanations [3, 9, 27, 45], PCIe bus snooping [14, 50], and application pro-

files [14, 21,29,31,39,50].

In this work, we consider architecture extraction attacks applied to mobile de-

vices. AI providers may run DNNs on mobile devices to preserve data privacy (the

data never leaves the device) to limit server load (edge devices bear the computa-

tional load rather than the cloud) and to reduce latency. Because mobile devices are

hardware constrained and running a DNN is computationally expensive, many hard-

ware providers include special purpose hardware accelerators to speed-up machine

learning workloads, such as the Qualcomm Snapdragon Neural Processing Engine

(SNPE), Arm Mali, and Apple Neural Engine [18]. A large-scale study by Sun et.

al [35] found that 54% of mobile applications include GPU support.

In addition to hardware support, AI providers reduce the DNN computational load

through software optimization. Deep learning compilers like Apache TVM (Tensor

Virtual Machine) [6] reduce computational load through operator-level and graph-

level optimization techniques. Operator-level fusion involves applying optimizations

such as vectorization, loop tiling, and reordering within each layer of the model, while

2

graph-level fusion combines layers to reduce the number of DRAM accesses, thereby

achieving a latency benefit. For example, when there is a sequence of convolution,

batch normalization, and ReLU layers, there are nine DRAM accesses required for

parameters, input and output tensors. However, fusing these three layers into one

layer reduces the DRAM accesses to three.

Compiler-based optimizations pose a significant hurdle in model extraction at-

tacks, as they obscure model architectures. The TVM compiler stack itself may be

employed as a defense strategy against architecture extraction k [14]. The main chal-

lenges are:

• Operator-level fusion: Operator-level fusion significantly alters the duration of

individual operator computations, making it challenging for attackers to accu-

rately predict their functions.

• Graph-level fusion: By merging multiple layers into single operators, graph-level

fusion renders traditional layer-by-layer extraction methods ineffective.

• Obfuscation: Model architecture extraction confronts additional challenge when

fused operators have arbitrary, uninformative names, a technique previously

employed to protect data privacy in DNNs [16].

In our study, we employ the Apache TVM framework for optimization targeting

Arm Mali G52 GPU platform. Our goal is to perform faithful model architecture ex-

traction despite optimization. Using the TVM runtime profile as a side-channel,

we extract a sequence of layer durations. Despite the inherent challenges posed

by optimization-induced noise and obfuscation during the optimization process, our

study reveals that employing a feature engineering technique that involves binning

the layer durations allows for accurate prediction of the DNN architecture. This

innovative approach enables precise identification of the original DNN architecture.

3

Our research distinguishes itself from the work of Wu et. al [41], Zhang et. al [48],

and Liu et. al [26], who used decompilers for compiled TVM binaries that are specific

to a hardware backend. Their method relies on binary analysis while our method is

based on runtime profile. Binary analysis does not not deal well with obfustaction. In

fact, obfuscation was proposed as a countermeasure against attack [7]. In contrast,

our work is not tied to a specific hardware backend, file format of the TVM binary as

proposed by Chen et. al [7], or any keywords, since we rely solely on runtime profile.

Our contributions include:

1. DNN model architecture extraction from runtime profiles even when the model

is optimized in a way that fuses multiple DNN layers.

2. We present a novel binning approach for profile analysis that can discern runtime

features, even in the absence of feature information due to obfuscation.

3. We demonstrate that our approach achieves 100% accuracy on the Arm Mali

G52 GPU with OpenCL when all models from the model zoo use fixed opti-

mization level.

4. We further demonstrate that our method maintains >97.2% accuracy for all

model zoo models, even when they are subjected to diverse optimization levels.

5. To the best of our knowledge, this is the first-ever solution to extract architec-

tures from optimized DNN models on mobile GPUs even with obfuscation in

the optimization process.

6. Lastly, we also present a layer-by-layer reconstruction solution for arbitrary

models that also achieves high architecture extraction accuracy.

4

CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Deep Neural Networks

The focus of this study is on feed-forward neural networks for image classification

tasks. Fundamentally, these models learn a function X → Y , where the network input

X ⊆ Rd encodes an image and the network output Y ⊆ Rk is a categorical distribution

among k classes. For some input x ∈ X and corresponding output y ∈ Y , argmax(y)

represents the classifier’s predicted class for the input x.

The difference between a DNN architecture and a DNN model is illustrated in Fig-

ure 2.1. A DNN architecture f is the computational graph specifying equations for

computing the output of the network for some input. One component of the architec-

ture is the sequence of DNN layers, such as fully-connected, convolution, max-pooling,

or batch normalization layers. Each of these layers includes hyperparameters such as

padding, stride length, and number of nodes. The other architectural component

is the connections between the layers, or how the data flows between layers in the

computational graph. In feed-forward networks, a node will link to some subset of

nodes in later layers of the network.

The DNN layer sequence, layer hyperparameters, and layer connections are all

design choices when creating a DNN architecture, so the space of possible architec-

tures is extremely large. Finding a high-performing architecture within this space

is an active research problem [8]. When designing an AI application, providers are

incentivized to use existing state-of-the-art architectures rather than develop their

own to avoid the cost of this search [4].

5

DNN Architecture Parameterized DNN Architecture

Figure 2.1: A DNN architecture is an unparameterized computation graph specifying
how to compute an output of the network given some input. The parameters (weight
and bias) of a DNN are found through a training process, resulting in a specific pa-
rameterization of an architecture, or a model. Distinct edge colors in a Parameterized
DNN Architecture figure signify variations in parameter values being assigned.

As opposed to a DNN architecture, a DNN model f θ is an architecture f param-

eterized by θ, a set of parameters obtained from training the model, including biases,

weights, and batch normalization parameters. Typically, the parameters θ are found

according to a training process

argminθ

∑
xi∈D

L(yi, f
θ(xi)) (2.1)

which is the sum of a loss function L between the ground truth value y and the

model’s prediction f θ(x) over a labeled dataset D. The training hyperparameters,

such as batch size, learning rate, and number of epochs, are not represented in the

model. Once the training process is complete, the parameters θ are fixed. Passing an

input to the model and computing the output when the parameters are fixed is called

inference.

A DNN model is inherently valuable due to the significant costs incurred at each

stage of the machine learning pipeline required to create it. The collection of a

dataset D and the training process described in Equation 2.1 is expensive. If the

6

DNN architecture is novel and achieves state-of-the-art performance, this further

increases the value of the model.

2.1.1 White-Box vs. Black-Box Access

When an adversary has white-box access to a DNN model f θ, they possess com-

plete knowledge of both the model’s architecture f and its parameters θ. Conversely,

an adversary with black-box or query access to a model f θ has no knowledge of the

model’s architecture or parameters, and can only provide an input x ∈ X and ob-

serve the model’s output f θ(x). From an adversarial standpoint, white-box access is

far more advantageous than black-box access since the adversary can compute the

model’s gradient, which significantly enhances the effectiveness and reduces the cost

of adversarial attacks. In this work we assume a black-box model to extract the model

architecture. A surrogate model may be trained with the extracted architecture to

create a gray-box model that is functionally a close approximation of the victim model.

2.2 Adversarial Machine Learning Attacks

Model evasion and model inversion are two adversarial machine learning attacks

that exploit vulnerabilities inherent to DNN algorithms [1,2,5]. Model evasion attacks

cause a DNN to produce wildly incorrect outputs using only a slight perturbation on

an input. For image classification domains, the unperturbed image and the perturbed

image look identical to a human, but the DNN misclassifies the perturbed image. A

model evasion attack could cause a self-driving car to classify a stop sign as a speed-

limit 60MPH sign or cause a facial recognition system to admit an adversary through

a security checkpoint. Model inversion attacks allow an adversary to recover data used

to train a DNN, which causes privacy concerns when the training data is sensitive.

Critically, the efficacy of both of these attacks escalates if the adversary has white-box

7

access to the victim DNN and can calculate the gradient of the network. Such attacks

may be accelerated significantly using the gray-box model described above.

2.3 Model Extraction Attack

A model extraction attack steals a DNN model f θ. Before running the attack,

the adversary has black-box access to the victim model, and after running the attack,

the adversary will have a gray-box surrogate model that closely approximates the

victim model. To run this attack, the adversary first steals the architecture of the

victim model (architecture extraction) and then the adversary steals the parameters

(parameter extraction). Since the architecture and parameters together completely

define a DNN model, running these two steps is equivalent to stealing a DNN.

More specifically, after running architecture extraction, the adversary has a predic-

tion f̂ of the victim architecture f and uses that prediction to instantiate a surrogate

model f̂ θ̂ whose role is to mimic the victim model f θ. The best case result for the

adversary is when f = f̂ , the surrogate and victim have the same architecture, and

θ = θ̂, the surrogate and victim have the same parameters.

This work focuses on architecture extraction only. There are many existing pa-

rameter extraction methods [4,10,11,19,46,47], most of which require the adversary

to complete architecture extraction prior to running the algorithm.

2.3.1 Architecture Extraction

The goal of architecture extraction is to generate a prediction f̂ for the architecture

of the victim model f θ, which has architecture f . This is usually done with a side-

channel attack, where the adversary collects side-channel information during DNN

inference, and then trains a model A to map from the side-channel information to

a predicted DNN architecture. This architecture prediction model A takes as input

side-channel information collected about the victim model H(f θ) and outputs a guess

8

of the DNN architecture that produced that side-channel information. Formally, this

is implemented as

A(H(f θ)) = E[f |H(f θ)] = f̂ (2.2)

The architecture prediction accuracy of A is calculated as the percent of correct

predictions over a set of N DNN architectures

1

N

N∑
i=1

1(fi = f̂i) (2.3)

where 1 is the indicator function evaluating to 1 if its argument is true and 0 otherwise.

The architecture prediction model A is typically a supervised learning model,

and thus must be trained offline on a dataset of labeled side-channel examples. The

amount of data required depends on the stochasticity in the side-channel and the

compatibility between the side-channel data format, the architecture prediction model

A, and the training algorithm. The adversary is required to collect this dataset and

therefore prefers architecture extraction methods which minimize the amount of data

required and the complexity of training A.

2.3.2 Parameter Extraction

The goal of parameter extraction is to steal the functionality of the victim model

f θ. After completing architecture extraction, the adversary has a prediction f̂ for

the victim model architecture f . The adversary creates a surrogate model f̂ θ̂ and

attempts to set the surrogate model parameters θ̂ to mimic the victim model pa-

rameters θ. This is done through an adaptation of knowledge distillation, in which

a "teacher" DNN (the victim model) labels data on which the "student" DNN (the

surrogate model) is trained:

argminθ̂

∑
xi∈D

L(f θ(xi), f̂
θ̂(xi)) (2.4)

9

which is similar to the DNN training process described in Equation 2.1 except that the

optimization parameters are θ̂ and the ground-truth label is replaced by the victim

model’s output f θ(xi). Evaluation of parameter extraction methods may either rate

the surrogate model’s performance on the problem domain or compare the similarity

of the victim and surrogate model’s outputs on the same input.

2.3.3 Adversarial Motivation for Model Extraction

An adversary’s motivation for model extraction may be theft or reconnaissance.

A theft-motivated adversary may damage the owner of the DNN IP by creating

a competing service, selling the IP as their own, bypassing paywalls, or releasing

the IP to the public. In this case, performing architecture extraction is not strictly

necessary as the adversary could instantiate a surrogate model with sufficient capacity

(i.e. neuron and layer count) for the problem domain and run parameter extraction

directly. However the results of parameter extraction are improved if architecture

extraction is completed first [28,47].

A reconnaissance-motivated adversary seeks to mount further attacks like model

evasion or model inversion. Since the adversary has white-box access to the extracted

surrogate model, they may calculate the gradient of the surrogate model to perform

these attacks with higher potency. Performing architecture extraction is necessary

to achieve higher misclassification for model evasion and better approximation of the

training data distribution for model inversion [27].

2.4 TVM Runtime Profiles

2.4.1 Apache TVM

Apache TVM [6] is an open source machine learning compiler framework for CPUs,

GPUs, and machine learning accelerators. It enables DNN workload optimization

across a variety of hardware backends.

10

2.4.2 TVM Compiler

The TVM compiler transforms a DNN implementation in a high level machine

learning library into a deployable module optimized for a specific set of hardware

operators. As shown by Figure 2.2, first, TVM converts the high level DNN com-

putation graph into a framework-agnostic Intermediate Representation (IR) such as

Relay IR and Tensor IR. Relay IR represents end to end model graph and Tensor

IR represents low level operator implementation. Then the compiler applies different

IR-specific enhancements including graph-level and operator-level optimization. The

optimization level is a user-defined parameter which can take the values 0 (no opti-

mization), 1, 2, or 3 (maximum optimization). Finally, through a code generation

tool, TVM generates a hardware-specific model executable.

The compiler output executable includes 3 components: 1) the execution graph

represented in json format, 2) the TVM operator library that comprises of compiled

functions (i.e. OpenCL kernel script) specifically optimized for the target hardware,

and 3) the parameter blobs of the model.

After the 3 artifacts are generated, model is converted into a .tar file format. The

.tar file contains 2 object files containing script of those 3 artifacts. This .tar file is

then ready to be exported to target storage and loaded to the runtime environment

that is waiting inside the target device. When the .tar file is loaded on the runtime,

components of the model are linked together and finally ready to be executed by the

device.

To execute the DNN on the hardware, TVM runtime loads the .tar file and

unzips it to obtain the graph.json, compiled operator library, and parameters. Then

it constructs a graph from the graph.json file. The graph holds information on the

name of the operators and the shape of the input and output data at each layer. The

implementation of the operators comes from the compiled operator library. When

inference is invoked, runtime module reads graph and calls the operators implemented

11

Import to Relay IR

Optimization

Target Translation

ONNX Format

Host Target

ARM Mali G52

Compile

graph.json, compiled model
library, parameter

RuntimeRPC

mod.tar
(graph.json, compiled model library,

parameter)

Export

Load

Debug
Executor

Profile Data

tarballin
g

Figure 2.2: TVM Profiling system diagram.

in the compiled operator library sequentially, thereby executing by making calls to

the underlying hardware API.

2.4.3 TVM Debug Executor (Profiler)

The TVM Debug Executor (referred to henceforth as the profiler) is a TVM object

that can invoke the TVM runtime to run and profile the execution of deep learning

models on target hardware platform. The intended purpose of the profiler is to

identify and diagnose performance issues like bottlenecks, errors, and other problems

that may occur during the execution of a model on specific hardware backend. The

profiler yields a log containing the names of the operations being executed and their

duration. The names are available due to a pairing of the profiler with the TVM

runtime module allowing the profiler to see the operator names in the graph.json

file. These operator names are automatically generated by the TVM compiler, but

the operator names are arbitrary and could be changed for operator obfuscation [16].

In Figure 2.2, the red arrows indicate the commands invoked by profiler, which may

12

function like a remote controller that has a performance profiling ability while running

DNN inference.

There are multiple options for profiling the TVM runtime without physical access

to a device. A TVM remote procedure call (RPC) object enables runtime profiling

across a network connection without credentials if the RPC server is running on the

target device. Additionally, profiling can be performed via an SSH session or local

terminal.

13

CHAPTER 3

ATTACK METHODOLOGY

In this chapter, we consider the attack scenario where the candidate DNN set

are known. In Chapter 5, we present attack methodology where the candidate DNN

architecture set is not known a priori.

3.1 Attack Methodology

3.1.1 Threat Model

Adversary’s Objective: We consider DNNs compiled with the TVM framework

at various optimization levels and deployed onto a mobile device. The adversary’s

objective is to extract the architecture of a victim DNN which has already been

deployed from the AI provider to the mobile device.

Adversary’s Capabilities: The adversary knows a candidate set of DNN archi-

tectures from which the victim DNN model is likely drawn. Also, the adversary can

profile the TVM runtime during DNN inference. In order to do this, the adversary

can find the path to the mod.tar file within an application using filename analysis

like keyword matching [35] and may either enable the TVM profiler through a remote

procedure call or SSH session. In either case the RPC (Remote Procedure Call) server

process or Linux user must be able to access the mod.tar file to perform inference.

We consider this threat model in two scenarios. In Scenario 1, the TVM-generated

operator names are unchanged, so this scenario is easier to attack. In Scenario 2, the

AI provider may obfuscate the operator names by choosing arbitrary names. In both

14

Figure 3.1: Step-by-step illustration of proposed architecture extraction attack.

scenarios we consider DNNs optimized to all TVM optimization levels sweeping from

no optimization to maximum optimization.

This threat model would be applicable in a situation where a malicious smartphone

user downloads an AI application containing a TVM-compiled model. Then the user

may find the mod.tar file in the application and profile it locally or through any

aforementioned method.

We note that the TVM compiler runs with a target hardware backend in mind,

and different backends will run the same operations with different speeds, so the TVM

runtime profile is hardware dependent. The adversary will run the online and offline

steps of the attack on the same device for both Scenario 1 and Scenario 2.

3.1.2 Attack Framework

Figure 3.1 shows the proposed architecture extraction attack framework. The

attack operates in a similar fashion to a generic machine learning classification work-

flow. In an offline step, the adversary collects a dataset of side-channel information

15

labeled by the DNN architecture (Step 1). Then the adversary trains a supervised

learning model on this dataset to predict DNN architecture given some side-channel

information (Step 2). As in several prior works [21, 31, 40, 42, 45], we formulate the

prediction problem as a multiclass classification task over a candidate set of archi-

tectures. In the online attack, the adversary collects side-channel information on the

victim DNN and uses the trained architecture prediction model to predict the victim

DNN architecture (Step 3). Having this, the adversary would then run a parameter

extraction attack to complete the DNN model theft.

3.1.2.1 Offline Preprocessing

Data Collection: Step 1 of the attack, the adversary must collect side-channel

data H(f θ) on a candidate set of K DNN architectures {f1, f2, ..., fK}. The side-

channel data H(f θ) is a TVM profile, and the label for the data is the architecture f .

The adversary collects N profiles per architecture to generate a dataset of size K ·N .

As long as the architecture prediction accuracy can be maintained, the adversary

prefers smaller values of N to reduce the effort of data collection. For each architecture

in the candidate set, the adversary will deploy a DNN onto the target device according

to the blue arrows in Figure 2.2 and profile the DNN inference according to the red

arrows. After collecting this dataset, the adversary may perform preprocessing to

format the data so that the architecture prediction model may achieve high prediction

accuracy. We outline these methods by the threat scenario below.

Scenario 1: In Scenario 1, the names of TVM operators are not obfuscated.

The TVM profile and side-channel data H(f θ) consists of a sequence of tuples (op-

erator_name, operator_duration). The data may be formatted and preprocessed in

many ways conducive to training an architecture prediction model, including leaving

the data unprocessed [14]. However, when choosing our approach we had to take

into account the effect of TVM optimizations which may fuse DNN layers. A con-

16

volution layer, for example, may be fused with a batch normalization layer and an

activation layer. So the duration of a TVM operator may include the latency of a

forward pass on multiple DNN layers. We choose to adapt an aggregation feature

engineering step which has been demonstrated to be successful in similar attacks on

CUDA profiles [40]. The aggregation groups all of the operator_duration data by the

operator_name which enables 3 features per operator_name:

• The total duration spent on a TVM operator over the whole DNN inference.

• The percentage of the total DNN inference time spent on a TVM operator.

• The number of times a TVM operator was invoked over the whole DNN infer-

ence.

We also add two more features: 1) the total number of TVM operator invocations,

and 2) the total duration of all invocations. By preprocessing the data in this way,

the architecture prediction model may associate a set of aggregated TVM operator

features with a specific architecture for each TVM optimization level.

Due to differences in layer compositions among the models, some operators are

present in one model but not in another. For example, a transpose operator is present

in ShuffleNet but not in VGG13. This effect is also seen by varying the TVM opti-

miztion level. We fill the missing values with zero so that the data is complete.

Aggregating TVM operator features in this manner creates a wide dataset from

which a few features could be sufficient to perform architecture extraction. To narrow

the dataset, the adversary may rank the features using Recursive Feature Elimination

(RFE) [12], which has been used in prior work to shrink the width of side-channel

data [31,40]. This also reduces the complexity of training the architecture prediction

model.

Scenario 2: TVM is an intermediate representation (IR)-based optimization

enabled framework. Therefore there could always be the case that the AI provider

17

Duration (us)

185290

1145

1086

975

21468

270

Resnet18

This is a large layer

This is a small layer

This is a small layer

This is a small layer

This is a large layer

This is a small layer
Large Small

Accumulate Duration and Count

googlenet vgg16 resnet18
Duration 4000us

0

5

10

15

20

Co
un

t

googlenet vgg16 resnet18
Duration < 4000us

0

50

100

150

200

Figure 3.2: Sortation of layer duration from a ResNet18 model into 2 bins (left),
Binned count distribution for different models (right).

0 50000 100000 150000
Duration

0

10

20

30

40

50

Fr
eq

ue
nc

y

ResNet18: Histogram of the layer duration

Figure 3.3: Distribution of ResNet18 layer durations at TVM optimization level 0.
The x axis is in microseconds.

18

tunes their own layer names differently. Since Scenario 1 makes a prediction based

on a layer’s name, the previous approach will not work because when the adversary

profiles the victim DNN in Step 3, the operator names will not match any of the

operator names from the dataset collected in Step 1.

In this scenario, the names of the TVM operators are obfuscated. Like in Sce-

nario 1, the TVM profile and side-channel data H(f θ) is a sequence of tuples (oper-

ator_name, operator_duration), except the challenge is that the operator names are

arbitrary.

In response to this challenge, we adopt a binning feature engineering technique on

only the operator_duration features, shown in Figure 3.2. The binning technique par-

titions the nonnegative real numbers R into M bins and sorts each operator_duration

feature into the bin that includes its duration in microseconds. For example, we use

M = 2 and bins representing the intervals [0, 4000) and [4000,∞), where the number

4000 was determined experimentally using a search process. Therefore a TVM op-

erator with operator_duration = 5000µs would be sorted into the second bin. From

each bin, we extract 2 features:

• The sum of the operator durations in that bin.

• The number of the operators durations which were assigned to that bin.

We call these two features duration and count respectively. Figure 3.2 shows a visu-

alization of these features for the large bin for GoogleNet, VGG16, and ResNet18.

The motivation for the binning approach is that the distribution of layer durations

in inference is sensitive to the DNN architecture. For example, a convolution layer

with many large filters, padding, and a low stride length will have a much longer

duration than one with a few small filters, no padding, and a large stride length,

which will in turn have a longer duration than most non-convolutional layers. The

sequence of layers is specific to each architecture and generates a long-tail distribution

19

of layer durations which acts as a fingerprint to identify the architecture. We show

an example of this distribution in Figure 3.3.

Training an Architecture Prediction Model: In Step 2 of the attack, the

adversary has completed data collection and preprocessing. They will train an archi-

tecture prediction model to map from the side-channel data to a DNN architecture

from the candidate set according to Equation 2.2. The adversary will validate that

the model generalizes well with high architecture prediction accuracy before moving

on to the online phase.

3.1.2.2 Online Attack

Step 3 of the attack follows a similar procedure to the training process, with the

difference being that the victim model is now profiled and treated as a black box. The

adversary collects a profile of the deployed victim DNN following the red arrows in

Figure 2.2. Then the adversary will preprocess the data using aggregation or binning

depending on the threat scenario. Finally, the adversary feeds the profile to the

architecture prediction model that was trained in Step 2, resulting in the prediction

of the victim model architecture.

20

CHAPTER 4

EXPERIMENTAL SETUP

In this Chapter, we present our experimental findings from the attack procedure

described in Chapter 3.

4.1 Experimental Setup

This section presents an in-depth view of the internal setup of the TVM system on

both the host machine and the target device to facilitate the experiment. All exper-

iments were completed using the Hard Kernel Odroid N2+ Single Board Computer

with the ARM Mali G-52 GPU, Quad-Core ARM Cortex A73 CPU, and Dual-Core

Arm Cortex A53 CPU. The versions of relevant software packages includes the follow-

ing: Python v3.7.3, TVM v0.11.dev0, ONNX v1.21.0, PyTorch v1.12.1, and OpenCL

v2.0 (supported by the Odroid N2+).

AlexNet VGG11_bn DenseNet121 MnasNet0_75
ResNet18 VGG13 DenseNet169 MnasNet1_0
ResNet34 VGG13_bn DenseNet201 MnasNet1_3
ResNet50 VGG16 DenseNet161 ShuffleNet_v2_x0_5
ResNet101 VGG16_bn GoogleNet ShuffleNet_v2_x1_0
ResNet152 VGG19 MobileNet_v2 ShuffleNet_v2_x1_5
Wide_ResNet50 VGG19_bn MobileNet_v3_large ShuffleNet_v2_x2_0
Wide_ResNet101 SqueezeNet1_0 MobileNet_v3_small
VGG11 SqueezeNet1_1 MnasNet0_5

Table 4.1: The 34 PyTorch vision architectures forming the candidate set in the
proposed architecture extraction attack. These are all of the architectures present in
Torchvision v0.10.0 [32] except for the ResNext architectures due to lack of support
for group convolution TVM operations on the Arm Mali G52 GPU.

21

In our study, we used the Open Neural Network Exchange (ONNX) format to

prepare 34 deep learning image classification models converted from the PyTorch

model zoo [32], which served as our candidate set shown in Table 4.1. For each TVM

optimization level (0, 1, 2, and 3) we profile each model from the candidate set 20

times, resulting in a dataset of 680 profiles per optimization level.

To preprocess the data, in Scenario 1, we use recursive feature elimination (RFE)

to rank the aggregated TVM operator features to narrow the dataset and make the

learning task easier. In Scenario 2, we set M = 2 bins with the intervals [0, 4000)

and [4000,∞). We observe that the choice of the binning threshold is not critical to

achieve high architecture prediction accuracy due to low intra-class variance and high

inter-class distance in the distribution of layer durations from models in our candidate

set. The choice of the binning threshold becomes more important when distinguishing

between DNN architectures with highly correlated layer duration distributions such

as the one shown for ResNet18 in Figure 3.3. Therefore the intervals were sufficient

for experimentation on this candidate set.

To train the architecture prediction model in Step 2 of our attack, we test seven

different supervised learning classifiers from Scikit-learn to predict the victim archi-

tecture. These classifiers include Gaussian Naive Bayes (nb), Random Forest (rf), Lo-

gistic Regression (lr), Multi-layer Perceptron (nn), Nearest Centroid (nc), K Nearest

Neighbors (knn), and AdaBoost (ab). We train these classifiers using the aggregated

and profiled data obtained from Step 1 of the attack, allowing them to learn patterns

and make predictions on the victim architecture.

4.2 Results

In this section, we test our proposed architecture extraction attack using Scenario

1 and Scenario 2. The organization of this section is as follows. First, we validate

that the attack achieves sufficient accuracy in the easiest case holding the TVM

22

optimization level constant, and we investigate the minimum effort required by the

adversary in data collection and architecture prediction model training to realize the

best performance. Second, we test the generalization of models trained on one or two

optimization levels and tested on all optimization levels separately. Third, we train

architecture prediction models on all optimization levels and assess the accuracy on

each level. Finally, as in the first section, we find the minimum attack requirements

for the adversary when considering all optimization levels.

4.2.1 Train with Optimization Level 0, Test on Optimization Level 0

We first show that the proposed architecture extraction attack is feasible in the

easiest case where only TVM optimization level 0 (no optimization) is applied. In

subsequent sections, we consider all optimization levels.

The dataset of profiles at optimization level 0 contains 19 unique TVM operators

across the 34 architectures in the candidate set. The data preprocessing for Scenario

1 generates 59 features from these operators, and 4 features for Scenario 2.

Scenario 1: In Figure 4.1 we show that the architecture extraction attack can

achieve 100% accuracy while reducing the computational complexity of the attack.

The left subfigure shows that N , the number of profiles collected per architecture

in Step 1 of the attack, may be reduced to 8 while maintaining this accuracy. This

reduces the size of the dataset and reduces the adversary’s data collection effort. The

adversary could collect 8 · 34 = 272 profiles instead of 680 with no accuracy loss.

The right subfigure ranks the 59 features by RFE using a random forest model,

and selects the top B features to train the architecture prediction model. We find

that 4 features are sufficient to determine the DNN architecture. We observe that the

total duration feature, which was ranked first by RFE, enables over 90% architecture

prediction accuracy alone. This result narrows the dataset reduce the complexity of

training the architecture prediction model. We find that in both experiments, the

23

Figure 4.1: Architecture prediction accuracy by number of training profiles per archi-
tecture (left) and number of features (selected by RFE using a Random Forest model)
used to train the architecture prediction model (right), for Scenario 1 considering only
TVM optimization level 0.

Gaussian Naive Bayes and Random Forest architecture prediction models perform

best.

Figure 4.2: Architecture prediction accuracy by number of training profiles per ar-
chitecture for Scenario 2 considering only TVM optimization level 0.

Scenario 2: We run a similar experiment for Scenario 2. Considering the dataset

is already constrained with only 4 features, it is decided not to observe the relationship

between feature size and the accuracy in this particular scenario. Figure 4.2 shows

that only 5 profiles per architecture are necessary to achieve 100% architecture pre-

diction accuracy for the Gaussian Naive Bayes, Random Forest, and Nearest Centroid

24

Table 4.2: Architecture prediction accuracy of a Random Forest classifier trained on
one or two optimization levels and tested on all optimization levels using the binning
technique in Scenario 2. Reported accuracy is on the Victim Set.

Train Set Victim Set

opt_level0 opt_level1 opt_level2 opt_level3

opt_level0 99.4% 24.1% 23.5% 20.5%
opt_level1 30.4% 98.9% 79.4% 71.6%
opt_level2 26.4% 71.6% 99.2% 74.7%
opt_level3 26.5% 67.8% 81.6% 97.3%

opt_level0 & opt_level1 99.4% 99.8% 79.5% 77.0%
opt_level0 & opt_level2 99.4% 80.0% 99.8% 77.9%
opt_level0 & opt_level3 99.4% 83.8% 85.4% 97.6%
opt_level1 & opt_level2 32.3% 99.5% 99.8% 76.4%
opt_level1 & opt_level3 32.6% 99.7% 83.6% 97.8%
opt_level2 & opt_level3 26.4% 83.8% 99.7% 99.7%

models, and 8 for the K Nearest Neighbors model. This means the adversary would

only need to collect 5·34 = 170 profiles. Interestingly, as compared to training with 59

features in Scenario 1, the 4 features in Scenario 2 admit a smaller dataset to achieve

the same accuracy, meaning that the binning features are particularly representative

of the DNN architecture.

4.2.2 Generalization of Optimization Levels

Next, we test if an architecture prediction model trained on one or two TVM

optimization levels can generalize to other optimization levels. In Scenario 1, the

total number of TVM operator grows from 19 to 48 when adding optimization levels

1-3. The TVM operator names at optimization levels 1-3 have almost no overlap with

the names at optimization level 0 due to the transformed feature names resulting from

the fusion or change of layers. For example, when moving from optimization level

0 to 1, ResNet18’s convolution operator, with name convolution, becomes fused

25

with relu to become convolution_relu. Therefore it is not feasible to conduct this

experiment using Scenario 1 and we perform this experiment using only Scenario 2.

We present these results in Table 4.2 where we consider a Random Forest archi-

tecture prediction model, the best performing model in the previous experiments.

The first four rows of the table test the accuracy of the classifier trained with one

optimization level and tested on each level separately. Consistent with the results

from the previous section, we find that the accuracy is high when the training and

testing optimization levels are the same. Notably, the prediction accuracy signifi-

cantly decreased when the classifier was trained with no optimization (level 0) and

tested on any level of optimization (level 1, 2, or 3) or when it was trained with any

level of optimization and tested on profiles with no optimization. This poor accuracy

is attributed to the application of graph fusion optimization, which occurs when the

optimization is raised from 0 to 1. This process involves fusing a larger layer with

smaller layers, thereby reducing the number of smaller layers and causing classifier to

predict inaccurately.

This result prompted us to conduct an additional experiment such as training the

classifier with 2 different optimization levels. The last six rows of the table show

that this approach may yield much better prediction accuracy across all optimization

levels, especially when the training set included optimization level 0 and one optimized

level. We observe poor accuracy when level 0 was not included in the training set

and the classifier was tested on level 0.

Our results indicate a high correlation between optimization level and prediction

accuracy, and we suggest that adversaries include a wide range of optimized version

of models in their training set to achieve accurate predictions when trying to attack

optimized model.

26

Table 4.3: Architecture prediction accuracy of architecture prediction models trained
on all optimization levels and tested on each optimization level. There were 146
features for Scenario 1 and 4 for Scenario 2.

Classifier & Scenario Victim Set

opt_level0 opt_level1 opt_level2 opt_level3

Naive Bayes Scenario 1 99.5% 98.9% 99.7% 100%
Scenario 2 98.5% 97.9% 98.5% 95.1%

Random Forest Scenario 1 99.7% 99.8% 100% 100%
Scenario 2 99.7% 99.4% 98.6% 97.2%

K Nearest Neighbors Scenario 1 98.3% 98.3% 97.9% 97.5%
Scenario 2 97.6% 94.5% 95.0% 92.6%

Nearest Centroid Scenario 1 98.2% 96.0% 97.0% 97.5%
Scenario 2 95.1% 88.9% 90.0% 89.5%

MLP Classifier Scenario 1 50.5% 50.1% 34.1% 84.4%
Scenario 2 5.8% 10.7% 8.9% 5.8%

Logistic Regression Scenario 1 31.1% 27.6% 20.3% 42.3%
Scenario 2 5.8% 12.7% 10.5% 8.8%

Adaboost Scenario 1 20.5% 8.8% 2.9% 20.5%
Scenario 2 17.6% 5.9% 5.8% 5.8%

27

4.2.3 Train with all Optimization Levels, Test on Each Level

The cross-optimization generalization results from the previous section indicate

that architecture prediction is highest on all optimization levels when multiple levels

are included in the training data. In this section, we consider architecture prediction

models trained on a dataset of 20 profiles per architecture per optimization level,

resulting in a dataset of size 20·34·4 = 2720 profiles. We train architecture prediction

models on this dataset using data preprocessing from Scenario 1 and Scenario 2. We

then test the accuracy of these models on all optimization levels.

These results are presented in Table 4.3. Our architecture extraction attack

achieves at least 99.7% accuracy for Scenario 1 and at least 97.2% accuracy for Sce-

nario 2 using a Random Forest model. As in previous experiments, the Gaussian

Naive Bayes, K Nearest Neighbors, and Nearest Centroid models had similarly high

performance. We show that, despite the challenge of obfuscated TVM operator names

in Scenario 2, the binning feature engineering achieves nearly the same accuracy as

Scenario 1 when the TVM operator names are visible, illustrating the strength of this

approach. There is only a slight (<5.6%) decrease in accuracy as the optimization

level increases in Scenario 2 for the highest performing models.

4.2.4 Further Attack Optimization

The previous results show that an adversary will have highest success including all

TVM optimization levels in their training data. In this case, we may test the extent

to which the training dataset length and width may be decreased, as we showed before

when considering only one optimization level.

Scenario 1: In Figure 4.3, we show that the Gaussian Naive Bayes, Random

Forest, Nearest Centroid, and K Nearest Neighbors models all converge to their ar-

chitecture prediction accuracy from Table 4.3 with 8 profiles per architecture per

optimization level. This means that the data collection requires only 8 · 34 · 4 = 1088

28

Figure 4.3: Architecture prediction accuracy by number of training profiles per archi-
tecture per optimization level (left) and number of features (selected by RFE using
a Random Forest model) used to train the architecture prediction model (right), for
Scenario 1, training and testing on all optimization levels.

profiles instead of the 2720 collected previously, a 60% decrease. Also, we show

that 4 out of the 146 features are sufficient to maintain the architecture prediction

accuracy, a 97.2% decrease in the dataset width. These most important features

were the total duration of the DNN inference, the percentage of the inference time

spent on the TVM operator nnmaxpool2d, the percentage of the inference time spent

on the TVM operator nndenseadd, and the total duration of all invocations to the

nnconv2dnnbiasaddnnrelu operator. Significantly, only a subset of these features are

present in profiles at different optimization levels. For example, optimization level 0

does not include the nndenseadd or nnconv2dnnbiasaddnnrelu operators.

Scenario 2: Similarly, we show that in Scenario 2, the architecture prediction

accuracy converges between 5 and 13 profiles per architecture per optimization level.

An adversary would select the highest performing model, Random Forest, converging

with 6 profiles and a dataset size of 816. Compared to Figure 4.2, these results show

that the same reduction in attack complexity may be achieved despite considering all

optimization levels instead of one.

29

Figure 4.4: Architecture prediction accuracy by number of training profiles per archi-
tecture per optimization level for Scenario 2, training and testing on all optimization
levels.

30

CHAPTER 5

LAYER-BY-LAYER RECONSTRUCTION OF MODEL
ARCHITECTURE

In this Chapter we consider attack scenario where the candidate DNN set is not

known a priori. Hence, the hyperparameters must be extracted layer-by-layer.

5.1 Motivation

In the earlier chapter, we successfully demonstrated the efficacy of predicting DNN

architecture from candidate set. However, the challenge of extracting the hyperpa-

rameters of a victim DNN with permuted configuration or an unknown DNN model

remains. In this section, We discuss DNN model extraction attack focusing on hy-

perparameters extraction. Hyperparameters of a DNN are parameters configured by

AI developers. When constructing DNN models, developers specify layer parame-

ters such as number of channels, kernel size, padding, stride, and more, aiming to

achieve various objectives such as classification accuracy, performance enhancement

or efficient computing. If we have information about the hyperparameters, we can es-

timate the duration, representing the amount of computation (such as FLOPs, MAC

operations) required. The key question of this section is to know if it is possible

to determine this relationship in reverse. In other words, We want to know if we

can extract hyperparameters if we possess sequential kernel data obtained from GPU

profiles, which incorporate duration information in it.

When employing traditional methods, defining this relationship is challenging,

given that a singular duration is influenced by diverse set of hyperparameters, in-

cluding the number of channels, feature map size, and kernel size. This challenge

31

prompts us to adopt machine learning methods to overcome the limitations of tradi-

tional approaches. Utilizing the associations between duration and hyperparameters

in known models, we train our machine learning model that predicts hyperparame-

ters. Our research is focused on predicting the hyperparameters of the convolution

layer in CNN models, which involves input image’s height, input image’s width, the

number of the input channel, output image’s height, output image’s width, the num-

ber of the output channels and the kernel size. The convolution layer stands out as

the most challenging, given that it undergoes primary shape changes and is affected

by the largest number of factors influencing its duration. Successfully determining

the hyperparameters of the convolution layer essentially acts as a key to completing

the information for the remaining layers. This is due to the fact that the remain-

ing layers are mostly influenced by the dimension of the image, a factor that can be

automatically determined once the convolution layers are accurately compromised.

5.2 Methodology

5.2.1 Pre-processing

In this hypothetical scenario, the adversary possesses sequential profile data ob-

tained from running a known DNN model on the target mobile GPU as a train

dataset. The train dataset comprises details about layer types, duration of the layer,

and known hyperparameters such as input shape, output shape, and kernel size.

Initially, the adversary identifies a convolution sub-layer pattern within the se-

quential data that appears to be linked to the duration of the targeted convolution

layer. Subsequently, the adversary extracts durations and hyperparameters from the

layers in designated pattern, creating a single row where these durations function as

features and hyperparameters function as labels. To train the feature augmentation

sub-model, as detailed in the modeling method section, we categorize hyperparam-

eters based on their values and add them as an additional column, represented as

32

bin numbers. This algorithm iterates through all 34 DNN models from PyTorch zoo,

making a single file that contains 1171 rows. In our research, we define a layer pattern

as convolution, bias_add, relu. In this pattern, the input and output shapes of

bias_add and relu, as well as the output shape of convolution, are identical. It

is noteworthy that predicting hyperparameters associated with relu and bias_add

from their durations is easier, as it only involves considerations of the number of

channels and the image size. This design allows the durations of bias_add and relu

to influence the output shape of the convolution layer, simplifying the prediction task

by focusing relatively solely on predicting kernel size and input shape. In contrast,

if the model were exclusively trained with convolution layers, it would need to con-

sider input shape, kernel size, and output size simultaneously, making the prediction

process more challenging.

By establishing the pattern first, the prediction process becomes more accurate.

However, for the adversary to successfully extract hyperparameters, they must con-

sider the pattern’s impact on duration and selectively exclude profile layer type that

are unlikely to be relevant to its hyperparameters during the prediction process.

5.2.2 Training Regression Model and Feature Augmenting Classification

Sub-models

The adversary’s regression model aims to predict the hyperparameters of the

victim DNN model solely based on the duration information from the profile data.

However, it is observed that training the regression model using only the durations of

convolution, relu, and bias_add leads to poor prediction performance. To enhance

the model’s capability, additional features are introduced by employing sub-models

that serves more hints to regression model by classifying hyperparameter categories,

previously categorized as bins in the preprocessing phase. The first sub-model is de-

signed to take only duration information as input, producing output_w_class and

33

Figure 5.1: Training phase, each feature augmentation sub-models and the regression
model are trained with labels

output_h_class as outputs. The subsequent sub-model, taking both the duration

and the output of the first sub-model as input, generates output_c_class as its out-

put. This sequential propagation continues through five sub-models until predictions

for all the desired result categories are achieved. In the training phase, all these

sub-models are trained with labels without propagation. The main regression model

is intended to take all the predictions generated by the sub-models, along with the

durations, as inputs to produce the final regression result. Similar to the training

approach for sub-models, the regression model is trained using labels instead of the

predictions obtained from the propagated predictions of the sub-models. The test ac-

curacy of sub-models can be influenced by adjusting the number of hyperparameter

bins. As the number of hyperparameters increases, accuracy tends to decrease, while

precision increases. Conversely, reducing the number of hyperparameters results in

increased accuracy but lower precision. The choice of the number of bins for catego-

rizing hyperparameters is carefully set to maintain accuracy above 90%, while also

maximizing precision. In our experiment, Random Forest Models are used both in

classification and the regression task with number of estimators set to 100 for optimal

performance.

34

5.2.3 Inference Phase with Result Propagation in the Connected Model

Figure 5.2: Complete connected model in inference phase with prediction result prop-
agation.

Following the training of the feature-augmenting sub-models and the regression

model with their respective labels, these models are interconnected. The complete

connected model collectively takes only duration information as input, propagate pre-

dictions, and generate the final regression result. The order of prediction in feature

augmenting sub-models is strategically designed to predict relu and bias_add side

hyperparameters first. As detailed in the pre-processing section, the input and output

shapes of relu and bias_add, as well as the output shape of convolution, are identi-

cal. Predicting hyperparameters for relu and bias_add is relatively straightforward,

given that the size of the feature map and the number of channels are the key factors

determining these hyperparameters. Once the output side of the convolution layer is

predicted, it is sequentially propagated to predict the kernel size and the input side of

the convolution layer. When the prediction of sub-models is finished, the regression

35

model takes both the duration and the classification predictions generated by the

sub-models as input, producing the final regression output.

5.2.4 Post-processing

With the generated regression output, post-processing is necessary for three rea-

sons described next. The first reason is to minimize regression errors, thereby im-

proving the overall precision of the prediction. The second reason is to ensure a

consistent layer shape flow. Failure to achieve this consistency could lead to issues

when compiling the reconstructed DNN. The third reason is to fill in shape hyper-

parameters for the remaining layers, mostly max_pooling. In this context, We have

made 4 post-processing method for the prediction result.

1. We convert the predicted hyperparameter regression output to the closest label

from the known DNN train dataset.

2. If the convolution pattern is consecutive, we convert the input shape of the

subsequent layer pattern to the output shape of the current layer pattern

(e.g., current_conv - current_bias_add - current_relu - subsequent_conv

- subsequent_bias_add - subsequent_relu).

3. If the convolution pattern is not consecutive and there is another type of layer in

between, we fill the shape hyperparameters of the target layer with predictions

from the neighboring layer patterns (e.g., prev_conv - prev_bias_add - prev_

relu - max_pooling - next_conv - next_bias_add - next_relu).

4. Taking into account that the image size (excluding channel) follow a decreasing

function in whole layers, we iterate through each predicted layer. At each step,

we refer to the image sizes of the next five layers from the current layer and

adjust the current layer’s image size to the maximum value among these five

values. During the iteration, a slightly different approach is taken for considering

36

the input and output image sizes. the input image size is determined by referring

to the input image sizes of the next five layers. Similarly, the output image size

is determined by referring to the output image sizes of the next five layers.

Additionally for the output image size, we ensure that the output image size

does not exceed the input image size in the same layer.

Figure 5.3: Image Length of the prediction of ResNet34 before (Left) and after (Right)
4th method applied.

The first method aims to align with common DNN design conventions, thereby re-

ducing prediction errors. We’ve observed that deep learning hyperparameters often

fall within a limited value pool favored by DNN developers. Additionally, this rule

has the effect of rounding the predicted hyperparameter. The second method is im-

plemented to address the second reason. Ensuring shape consistency in consecutive

pattern layers is crucial to prevent errors during DNN compilation. This method

also contributes to reducing prediction errors. The third method is designed to fill in

missing hyperparameters for layers not present in the pattern, completing the overall

reconstruction process. The final method prevents the feature map size fluctuation by

smoothing out the predicted image size to the maximum one. It is important to note

that these methods should be applied carefully and with flexibility while examining

the result data, as changing the value of predictions may potentially causing correct

predictions to become incorrect.

37

5.3 Result

We evaluate the efficacy of hyperparameter extraction through various dimensions.

Initially, we examine the test accuracy of the models we trained, including each sub-

model and the complete connected model. Next, using the complete connected model,

we attempt to extract hyperparameters from representative models in the zoo and

assess the regression error. Lastly, we select VGG19 and compare the performance of

the reconstructed model with the original one.

5.3.1 Model Performance

Given that our extraction model comprises numerous small machine learning mod-

els, we evaluate the performance of each sub-model using diverse metrics. In the

context of classification for feature augmenting sub-models, accuracy serves as the

metric of choice. For the regression model, responsible for producing the final regres-

sion result, we employ normalized average error to describe the errors associated with

each output on varying scales fixed to 100. The normalized average error is described

as follows.

NormalizedErrori =
|ŷi − yi|

ŷmax − ŷmin
× 100 (5.1)

NormalizedAverageError =

∑n
i=1NormalizedErrori

n
(5.2)

After evaluating each sub-model and the regression model, we assess the perfor-

mance of the complete connected model, which involves the result propagation pro-

cess. In the preprocessing phase, a total of 1171 pattern rows were extracted. Each

pattern row consists of durations for three layers (convolution, bias_add, relu),

resulting in the extraction of 3513 layers from 34 models in the zoo. In each distinct

sub-model, the test size is adjusted empirically to achieve the highest accuracy. For

sub-models responsible for feature augmentation, all test accuracies are observed to

be above 90%. In the regression model, utilizing a total of 117 samples derived from

a test size of 10%, the normalized average error for all predicted hyperparameters is

38

under 3 with values normalized between the range of 0 and 100. During testing with

the complete connected model involving result propagation, a slight increase in error

is observed compared to testing only the regression model. This increase in error

is anticipated to stem from misclassifications during the propagation process, given

that the accuracy of the sub-models was not 100%. It is observed that employing

feature augmentation with prediction result propagation demonstrates a 1
20

reduction

in Mean Squared Error (MSE) for the regression model compared to not using these

techniques.

Table 5.1: The accuracy of classification sub-models for the purpose of feature aug-
mentation, along with the testing configurations applied to these sub-models.

RF1 RF2 RF3 RF4 RF5

Input Duration
Duration

Output_w_class
Output_h_class

Duration
Output_w_class
Output_h_class
Output_c_class

Duration
Output_w_class
Output_h_class
Output_c_class

Kernel_Size

Duration
Output_w_class
Output_h_class
Output_c_class

Kernel_size
Input_w_class
Input_h_class

Output Output_w_class
Output_h_class Output_c_class Kernel_Size Input_w_class

Input_h_class Input_c_class

Width 92.68% Width 99.15%Test Acc Height 91.61% 92.54% 91.49% Height 99.15% 90.09%

Test Size 0.4 0.4 0.2 0.2 0.2
Number of Bins 8 4 (5) 8 4

5.3.2 Predicting Representative DNN Victim Models

We proceed to evaluate how well our model performs when actively attacking

victim DNN. The previous results focused on the model’s performance, while this

evaluation incorporates the effectiveness of post-processing. To conduct this assess-

ment, we select 11 representative victim DNN models from the PyTorch zoo. Next,

we extract the convolution, bias_add, relu pattern from the victim model and pre-

dict with our trained complete connected model. Following the prediction phase, we

carry out post-processing to finalize the extraction process. The metric for evaluating

the results is the normalized average error, which is consistent with the metric used

39

Table 5.2: The normalized average error calculated for each specific output of the
regression model, as well as for the complete connected inference model which involves
the prediction result propagation

RF_Regressor
(test size = 0.1) Inference

Input

Duration
Output_w_class
Output_h_class
Output_c_class

Kernel_size
Input_w_class
Input_h_class
Input_c_class

Duration
Propagation of the prediction

Output

Output_w
Output_h
Output_c

Kernel_size
Input_w
Input_h
Input_c

Output_w
Output_h
Output_c

Kernel_size
Input_w
Input_h
Input_c

Output_w 0.71 1.54
Output_h 0.71 1.54
Output_c 2.30 2.80

Kernel_Size 1.28 1.14
Input_w 1.53 1.38
Input_h 1.53 1.38

Normalized
Average
Feature
Error

(scale = 100)
Input_c 1.39 2.59

to evaluate the regression model. When only considering sequential models, The ob-

servation shows that three DNNs from the VGG family are perfectly extracted, while

VGG19 shows the most inaccurate predictions (3.23), as indicated by the average

error across multiple outputs. The most inaccurate victim including complex chained

model (lower part of the table partitioned by line) was ShuffleNet v2 (3.82).

5.3.3 Comparing DNN Performance of Reconstructed vs Original

We explore how close the extracted victim model are to the original model in

terms of performance. We exclusively consider sequential models, as it is simpler to

40

Table 5.3: The normalized average error evaluated under attack conditions by the
complete connected inference model when applied to representative victim DNNs
selected from PyTorch zoo

Model Normalized Average Error (Scale = 100)
input c input h input w kernel size output c output h output w

VGG11 0.00 0.00 0.00 0.00 0.00 0.00 0.00
VGG13 0.00 0.00 0.00 0.00 0.00 0.00 0.00
VGG16 0.00 0.00 0.00 0.00 0.00 0.00 0.00
VGG19 2.34 4.29 4.29 0.0 2.38 4.68 4.68

ResNet18 0.00 1.78 1.78 2.04 0.00 0.00 0.00
ResNet34 5.00 0.83 0.83 2.85 5.00 0.00 0.00

Densenet121 6.15 0.83 0.83 0.48 1.74 1.66 1.66
Densenet169 2.07 0.03 0.03 0.00 0.30 0.07 0.07
ShuffleNet v2 2.18 5.20 5.20 3.70 0.80 4.86 4.86
SqueezeNet 6.12 1.52 1.52 2.19 6.06 2.15 2.15
GoogleNet 7.32 0.38 0.38 2.00 4.53 0.76 0.76

probe impact of the hyperparameters difference, while complex chained models may

introduce performance noise due to their architectural characteristic. We make the

assumption that a perfectly predicted model, such as VGG11, behaves exactly the

same as the original model, while a poorly predicted model, such as VGG19, exhibits

the most significant performance differences. In this context, we choose VGG19 for

comparison in this section, anticipating that other models with better predictions

will show smaller performance differences. We observed that majority of differences

occurs from front part of the architecture as in table 5.4. For the layers where correct

predictions were made, the remaining layers were snipped. We train and test with

CIFAR10 dataset with batch size = 64 and run for 20 epochs. Even with a different

image size from ImageNet (224x224), it is still possible to use CIFAR10 (32x32) as

a dataset. This is feasible because the model itself manages the change in image

size, rather than configuring the image size layer by layer. We configure Stochastic

Gradient Descent (SGD) as an optimizer with a learning rate of 0.1 and momentum of

0.9. To ensure robustness of the result, we conduct the test 10 times and calculate the

average test accuracy and test loss for both the original and reconstructed DNN. The

41

average test accuracy shows 79.15% in original VGG19 and 76.8% in reconstructed

VGG19. Based on this testing, we conclude that the most poorly reconstructed model

exhibits less than a 3% performance difference, and we can anticipate obtaining closer

performance traces from other better-predicted models.

Figure 5.4: Loss(left), Accuracy(right) Trace of the Original DNN.

Figure 5.5: Loss(left), Accuracy(right) Trace of the Reconstructed Victim DNN.

42

Table 5.4: The major difference between the original and reconstructed DNN is ob-
served in the front part of VGG19. For the layers where correct predictions were
made, the remaining layers were truncated.

Layer Pattern Input_c Input_h Input_w Kernel_Size Output_c Output_h Output_w

Conv Bias ReLU Original 3 224 224 3 64 224 224

Reconstructed 3 224 224 3 64 224 224

Conv Bias ReLU Original 64 224 224 3 64 224 224

Reconstructed 64 224 224 3 256 112 112

Max Pooling Filled with Preceding, Following Hyperparameters

Conv Bias ReLU Original 64 112 112 3 128 112 112

Reconstructed 256 112 112 3 128 112 112

Conv Bias ReLU Original 128 112 112 3 128 112 112

Reconstructed 128 112 112 3 128 112 112

Max Pooling Filled with Preceding, Following Hyperparameters

Conv Bias ReLU Original 128 56 56 3 256 56 56
Reconstructed 128 112 112 3 128 112 112

Conv Bias ReLU Original 256 56 56 3 256 56 56
Reconstructed 128 112 112 3 256 56 56

Below Layers Identical (truncated)

43

CHAPTER 6

CONCLUSION

We presented a method to extract a DNN architecture from TVM runtime profiles.

We considered two cases. In the first case, the target victim model belongs to to a

known architecture family, i. e. candidate set is known. This allows candidates to be

profiled and matched. We then consider the second case, where the victim architecture

is unseen before attack.

For the first case, we considered a number of scenarios ranging from the simplest

case of no optimization to various levels of DNN optimization that fuses TVM opera-

tions. We also consider a more challenging scenario, where the TVM operator names

are deliberately obfuscated. In response to this challenge, we propose a binning tech-

nique based on duration partitioning that is robust to changes in DNN computation

graphs caused by the TVM optimization transformation.

For the second case, where the the victim architecture has not been seen, we pro-

pose a hyperparameter extraction process to overcome the limitation of the candidate

matching.

Our experiments demonstrate that the adversary can predict the victim DNN

architecture from a candidate set of architectures with 100% accuracy if the opti-

mization level is known, at least 99.8% accuracy if the optimization level is unknown

and the TVM operators are visible, and at least 97.2% accuracy if the optimization

level is unknown and the TVM operators are obfuscated.

For unseen victim models, the hyperparameter extraction process achieves a nor-

malized average error below 2 (on a scale of 100) for predicted hyperparameters, and

44

the reconstructed model exhibits a maximum classification accuracy difference of 3%

compared to the original DNN.

Our novel step-by-step attack approach overcomes all existing model extraction

attack defenses, demonstrating a critical vulnerability in current AI security. The

success of our attack raises concerns about security, privacy, and financial risks for

the entire AI industry. This work highlights the importance of research in developing

resilient techniques to defend against such attacks.

45

BIBLIOGRAPHY

[1] Akhtar, Naveed, Mian, Ajmal, Kardan, Navid, and Shah, Mubarak. Threat
of adversarial attacks on deep learning in computer vision: Survey II. CoRR
abs/2108.00401 (2021). https://arxiv.org/abs/2108.00401.

[2] Akhtar, Naveed, and Mian, Ajmal S. Threat of adversarial attacks on deep
learning in computer vision: A survey. IEEE Access 6 (2018), 14410–14430.
https://doi.org/10.1109/ACCESS.2018.2807385.

[3] Batina, Lejla, Bhasin, Shivam, Jap, Dirmanto, and Picek, Stjepan. CSI NN:
reverse engineering of neural network architectures through electromagnetic side
channel. In 28th USENIX Security Symposium, USENIX (2019), Nadia Heninger
and Patrick Traynor, Eds., USENIX Association, pp. 515–532. https://www.
usenix.org/conference/usenixsecurity19/presentation/batina.

[4] Carlini, Nicholas, Jagielski, Matthew, and Mironov, Ilya. Cryptanalytic ex-
traction of neural network models. In Advances in Cryptology - CRYPTO
(2020), Daniele Micciancio and Thomas Ristenpart, Eds., vol. 12172 of Lec-
ture Notes in Computer Science, Springer, pp. 189–218. https://doi.org/10.
1007/978-3-030-56877-1_7.

[5] Chakraborty, Anirban, Alam, Manaar, Dey, Vishal, Chattopadhyay, Anupam,
and Mukhopadhyay, Debdeep. A survey on adversarial attacks and defences.
CAAI Trans. Intell. Technol. 6, 1 (2021), 25–45. https://doi.org/10.1049/
cit2.12028.

[6] Chen, Tianqi, Moreau, Thierry, Jiang, Ziheng, Zheng, Lianmin, Yan, Eddie Q.,
Shen, Haichen, Cowan, Meghan, Wang, Leyuan, Hu, Yuwei, Ceze, Luis, Guestrin,
Carlos, and Krishnamurthy, Arvind. TVM: an automated end-to-end opti-
mizing compiler for deep learning. In 13th USENIX Symposium on Operat-
ing Systems Design and Implementation, OSDI 2018, Carlsbad, CA, USA, Oc-
tober 8-10, 2018 (2018), Andrea C. Arpaci-Dusseau and Geoff Voelker, Eds.,
USENIX Association, pp. 578–594. https://www.usenix.org/conference/
osdi18/presentation/chen.

[7] Chen, Zhi, Yu, Cody Hao, Morris, Trevor, Tuyls, Jorn, Lai, Yi-Hsiang, Roesch,
Jared, Delaye, Elliott, Sharma, Vin, and Wang, Yida. Bring your own codegen
to deep learning compiler. CoRR abs/2105.03215 (2021). https://arxiv.org/
abs/2105.03215.

46

[8] Chitty-Venkata, Krishna Teja, and Somani, Arun K. Neural architecture search
survey: A hardware perspective. ACM Comput. Surv. 55, 4 (2023), 78:1–78:36.
https://doi.org/10.1145/3524500.

[9] Chmielewski, Lukasz, and Weissbart, Leo. On reverse engineering neural net-
work implementation on GPU. In Applied Cryptography and Network Secu-
rity Workshops - ACNS (2021), vol. 12809, Springer, pp. 96–113. https:
//doi.org/10.1007/978-3-030-81645-2_7.

[10] da Silva, Jacson Rodrigues Correia, Berriel, Rodrigo Ferreira, Badue, Claudine,
Souza, Alberto F. De, and Oliveira-Santos, Thiago. Copycat CNN: are random
non-labeled data enough to steal knowledge from black-box models? CoRR
abs/2101.08717 (2021). https://arxiv.org/abs/2101.08717.

[11] Gong, Xueluan, Chen, Yanjiao, Yang, Wenbin, Mei, Guanghao, and Wang,
Qian. Inversenet: Augmenting model extraction attacks with training data in-
version. In Proceedings of the Thirtieth International Joint Conference on Ar-
tificial Intelligence, IJCAI (2021), Zhi-Hua Zhou, Ed., ijcai.org, pp. 2439–2447.
https://doi.org/10.24963/ijcai.2021/336.

[12] Guyon, Isabelle, Weston, Jason, Barnhill, Stephen, and Vapnik, Vladimir. Gene
selection for cancer classification using support vector machines. Mach. Learn.
46, 1-3 (2002), 389–422. https://doi.org/10.1023/A:1012487302797.

[13] Hong, Sanghyun, Davinroy, Michael, Kaya, Yigitcan, Locke, Stuart Nevans,
Rackow, Ian, Kulda, Kevin, Dachman-Soled, Dana, and Dumitras, Tudor. Se-
curity analysis of deep neural networks operating in the presence of cache side-
channel attacks. CoRR abs/1810.03487 (2018). http://arxiv.org/abs/1810.
03487.

[14] Hu, Xing, Liang, Ling, Li, Shuangchen, Deng, Lei, Zuo, Pengfei, Ji, Yu, Xie, Xin-
feng, Ding, Yufei, Liu, Chang, Sherwood, Timothy, and Xie, Yuan. Deepsniffer:
A DNN model extraction framework based on learning architectural hints. In
ASPLOS ’20: Architectural Support for Programming Languages and Operating
Systems, Lausanne (2020), James R. Larus, Luis Ceze, and Karin Strauss, Eds.,
ACM, pp. 385–399. https://doi.org/10.1145/3373376.3378460.

[15] Hua, Weizhe, Zhang, Zhiru, and Suh, G. Edward. Reverse engineering convolu-
tional neural networks through side-channel information leaks. In Proceedings of
the 55th Annual Design Automation Conference, DAC (2018), ACM, pp. 4:1–4:6.
https://doi.org/10.1145/3195970.3196105.

[16] Huang, Po-Hsuan, Tu, Chia-Heng, Chung, Shen-Ming, Wu, Pei-Yuan, Tsai,
Tung-Lin, Lin, Yi-An, Dai, Chun-Yi, and Liao, Tzu-Yi. Securetvm: A tvm-
based compiler framework for selective privacy-preserving neural inference. ACM
Transactions on Design Automation of Electronic Systems (2023). https:
//dl.acm.org/doi/10.1145/3579049.

47

[17] IEEE. The radical scope of tesla’s data hoard. https://spectrum.ieee.org/
tesla-autopilot-data-scope, Aug 2022.

[18] Ignatov, Andrey, Timofte, Radu, Kulik, Andrei, Yang, Seungsoo, Wang, Ke,
Baum, Felix, Wu, Max, Xu, Lirong, and Gool, Luc Van. AI benchmark:
All about deep learning on smartphones in 2019. In 2019 IEEE/CVF Inter-
national Conference on Computer Vision Workshops, ICCV Workshops 2019,
Seoul, Korea (South), October 27-28, 2019 (2019), IEEE, pp. 3617–3635. https:
//doi.org/10.1109/ICCVW.2019.00447.

[19] Jagielski, Matthew, Carlini, Nicholas, Berthelot, David, Kurakin, Alex, and Pa-
pernot, Nicolas. High accuracy and high fidelity extraction of neural networks.
In 29th USENIX Security Symposium, USENIX (2020), Srdjan Capkun and
Franziska Roesner, Eds., USENIX Association, pp. 1345–1362. https://www.
usenix.org/conference/usenixsecurity20/presentation/jagielski.

[20] Janai, Joel, Güney, Fatma, Behl, Aseem, and Geiger, Andreas. Computer vi-
sion for autonomous vehicles: Problems, datasets and state of the art. Found.
Trends Comput. Graph. Vis. 12, 1-3 (2020), 1–308. https://doi.org/10.1561/
0600000079.

[21] Jha, Nandan Kumar, Mittal, Sparsh, Kumar, Binod, and Mattela, Govardhan.
Deeppeep: Exploiting design ramifications to decipher the architecture of com-
pact dnns. ACM 17, 1 (2020), 5:1–5:25. https://doi.org/10.1145/3414552.

[22] Krizhevsky, Alex, Sutskever, Ilya, and Hinton, Geoffrey E. Imagenet clas-
sification with deep convolutional neural networks. In Advances in Neu-
ral Information Processing Systems 25: 26th Annual Conference on Neural
Information Processing Systems (2012), Peter L. Bartlett, Fernando C. N.
Pereira, Christopher J. C. Burges, Léon Bottou, and Kilian Q. Weinberger,
Eds., pp. 1106–1114. https://proceedings.neurips.cc/paper/2012/hash/
c399862d3b9d6b76c8436e924a68c45b-Abstract.html.

[23] Liu, Sihang, Wei, Yizhou, Chi, Jianfeng, Shezan, Faysal Hossain, and Tian,
Yuan. Side channel attacks in computation offloading systems with GPU vir-
tualization. In 2019 IEEE Security and Privacy Workshops, SP (2019), IEEE,
pp. 156–161. https://doi.org/10.1109/SPW.2019.00037.

[24] Liu, Yuntao, and Srivastava, Ankur. GANRED: gan-based reverse engineering
of dnns via cache side-channel. In CCSW’20, Proceedings of the 2020 ACM
SIGSAC Conference on Cloud Computing Security Workshop (2020), Yinqian
Zhang and Radu Sion, Eds., ACM, pp. 41–52. https://doi.org/10.1145/
3411495.3421356.

48

[25] Liu, Yuntao, Zuzak, Michael, Xing, Daniel, McDaniel, Isaac, Mittu, Priya,
Ozbay, Olsan, Akib, Abir, and Srivastava, Ankur. A survey on side-channel-
based reverse engineering attacks on deep neural networks. In 4th IEEE Interna-
tional Conference on Artificial Intelligence Circuits and Systems, AICAS (2022),
IEEE, pp. 312–315. https://doi.org/10.1109/AICAS54282.2022.9869995.

[26] Liu, Zhibo, Yuan, Yuanyuan, Wang, Shuai, Xie, Xiaofei, and Ma, Lei. De-
compiling x86 deep neural network executables. CoRR abs/2210.01075 (2022).
https://doi.org/10.48550/arXiv.2210.01075.

[27] Maia, Henrique Teles, Xiao, Chang, Li, Dingzeyu, Grinspun, Eitan, and Zheng,
Changxi. Can one hear the shape of a neural network?: Snooping the GPU
via magnetic side channel. In 31st USENIX Security Symposium, USENIX
(2022), Kevin R. B. Butler and Kurt Thomas, Eds., USENIX Association,
pp. 4383–4400. https://www.usenix.org/conference/usenixsecurity22/
presentation/maia.

[28] Mirzadeh, Seyed-Iman, Farajtabar, Mehrdad, Li, Ang, and Ghasemzadeh, Has-
san. Improved knowledge distillation via teacher assistant: Bridging the gap
between student and teacher. CoRR abs/1902.03393 (2019). http://arxiv.
org/abs/1902.03393.

[29] Naghibijouybari, Hoda, Neupane, Ajaya, Qian, Zhiyun, and Abu-Ghazaleh,
Nael B. Rendered insecure: GPU side channel attacks are practical. In Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS (2018), David Lie, Mohammad Mannan, Michael Backes,
and XiaoFeng Wang, Eds., ACM, pp. 2139–2153. https://doi.org/10.1145/
3243734.3243831.

[30] Papernot, Nicolas, McDaniel, Patrick D., Goodfellow, Ian J., Jha, Somesh, Celik,
Z. Berkay, and Swami, Ananthram. Practical black-box attacks against machine
learning. In Proceedings of the 2017 ACM on Asia Conference on Computer
and Communications Security (2017), Ramesh Karri, Ozgur Sinanoglu, Ahmad-
Reza Sadeghi, and Xun Yi, Eds., ACM, pp. 506–519. https://doi.org/10.
1145/3052973.3053009.

[31] Patwari, Kartik, Hafiz, Syed Mahbub, Wang, Han, Homayoun, Houman, Shafiq,
Zubair, and Chuah, Chen-Nee. DNN model architecture fingerprinting attack
on CPU-GPU edge devices. In 7th IEEE European Symposium on Security and
Privacy, EuroS&P (2022), IEEE, pp. 337–355. https://doi.org/10.1109/
EuroSP53844.2022.00029.

[32] PyTorch. Torchvision v0.10.0 documentation. https://pytorch.org/vision/
0.10/, Jun 2021.

49

[33] Sculley, D., Holt, Gary, Golovin, Daniel, Davydov, Eugene, Phillips, Todd,
Ebner, Dietmar, Chaudhary, Vinay, Young, Michael, Crespo, Jean-François,
and Dennison, Dan. Hidden technical debt in machine learning systems.
In Advances in Neural Information Processing Systems 28: Annual Con-
ference on Neural Information Processing Systems (2015), Corinna Cortes,
Neil D. Lawrence, Daniel D. Lee, Masashi Sugiyama, and Roman Garnett,
Eds., pp. 2503–2511. https://proceedings.neurips.cc/paper/2015/hash/
86df7dcfd896fcaf2674f757a2463eba-Abstract.html.

[34] Sharir, Or, Peleg, Barak, and Shoham, Yoav. The cost of training NLP models:
A concise overview. CoRR abs/2004.08900 (2020). https://arxiv.org/abs/
2004.08900.

[35] Sun, Zhichuang, Sun, Ruimin, Lu, Long, and Mislove, Alan. Mind your weight
(s): A large-scale study on insufficient machine learning model protection in mo-
bile apps. In 30th USENIX Security Symposium (USENIX Security 21) (2021),
pp. 1955–1972.

[36] Sutskever, Ilya, Vinyals, Oriol, and Le, Quoc V. Sequence to sequence learning
with neural networks. In Advances in Neural Information Processing Systems 27:
Annual Conference on Neural Information Processing Systems (2014), Zoubin
Ghahramani, Max Welling, Corinna Cortes, Neil D. Lawrence, and Kilian Q.
Weinberger, Eds., pp. 3104–3112. https://proceedings.neurips.cc/paper/
2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html.

[37] Tramèr, Florian, Zhang, Fan, Juels, Ari, Reiter, Michael K., and Ristenpart,
Thomas. Stealing machine learning models via prediction apis. In 25th USENIX
Security Symposium, USENIX (2016), Thorsten Holz and Stefan Savage, Eds.,
USENIX Association, pp. 601–618. https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/tramer.

[38] Vaswani, Ashish, Shazeer, Noam, Parmar, Niki, Uszkoreit, Jakob, Jones, Llion,
Gomez, Aidan N., Kaiser, Lukasz, and Polosukhin, Illia. Attention is all you need.
In Advances in Neural Information Processing Systems 30: Annual Conference
on Neural Information Processing Systems (2017), Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan,
and Roman Garnett, Eds., pp. 5998–6008. https://proceedings.neurips.cc/
paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

[39] Wei, Junyi, Zhang, Yicheng, Zhou, Zhe, Li, Zhou, and Faruque, Mohammad
Abdullah Al. Leaky DNN: stealing deep-learning model secret with GPU context-
switching side-channel. In 50th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, DSN (2020), IEEE, pp. 125–137. https:
//doi.org/10.1109/DSN48063.2020.00031.

[40] Weiss, Jonah O’Brien, Alves, Tiago, and Kundu, Sandip. Ezclone: Improving
dnn model extraction attack via shape distillation from gpu execution profiles,
2023. https://arxiv.org/abs/2304.03388.

50

[41] Wu, Ruoyu, Kim, Taegyu, Tian, Dave Jing, Bianchi, Antonio, and Xu, Dongyan.
{DnD}: A {Cross-Architecture} deep neural network decompiler. In 31st
USENIX Security Symposium (USENIX Security 22) (2022), pp. 2135–2152.

[42] Xiang, Yun, Chen, Zhuangzhi, Chen, Zuohui, Fang, Zebin, Hao, Haiyang, Chen,
Jinyin, Liu, Yi, Wu, Zhefu, Xuan, Qi, and Yang, Xiaoniu. Open DNN box by
power side-channel attack. IEEE Trans. Circuits Syst. 67-II, 11 (2020), 2717–
2721. https://doi.org/10.1109/TCSII.2020.2973007.

[43] Xu, Qian, Arafin, Md Tanvir, and Qu, Gang. Security of neural networks from
hardware perspective: A survey and beyond. In ASPDAC ’21: 26th Asia and
South Pacific Design Automation Conference (2021), ACM, pp. 449–454. https:
//doi.org/10.1145/3394885.3431639.

[44] Yan, Mengjia, Fletcher, Christopher W., and Torrellas, Josep. Cache telepa-
thy: Leveraging shared resource attacks to learn DNN architectures. In 29th
USENIX Security Symposium, USENIX (2020), Srdjan Capkun and Franziska
Roesner, Eds., USENIX Association, pp. 2003–2020. https://www.usenix.org/
conference/usenixsecurity20/presentation/yan.

[45] Yu, Honggang, Ma, Haocheng, Yang, Kaichen, Zhao, Yiqiang, and Jin, Yier.
Deepem: Deep neural networks model recovery through EM side-channel infor-
mation leakage. In 2020 IEEE International Symposium on Hardware Oriented
Security and Trust, HOST (2020), IEEE, pp. 209–218. https://doi.org/10.
1109/HOST45689.2020.9300274.

[46] Yu, Honggang, Yang, Kaichen, Zhang, Teng, Tsai, Yun-Yun, Ho,
Tsung-Yi, and Jin, Yier. Cloudleak: Large-scale deep learning mod-
els stealing through adversarial examples. In 27th Annual Net-
work and Distributed System Security Symposium, NDSS (2020), The
Internet Society. https://www.ndss-symposium.org/ndss-paper/
cloudleak-large-scale-deep-learning-models-stealing-through-adversarial-examples/.

[47] Yuan, Xiaoyong, Ding, Leah, Zhang, Lan, Li, Xiaolin, and Wu, Dapeng Oliver.
ES attack: Model stealing against deep neural networks without data hurdles.
IEEE Trans. Emerg. Top. Comput. Intell. 6, 5 (2022), 1258–1270. https://
doi.org/10.1109/TETCI.2022.3147508.

[48] Zhang, Jinquan, Wang, Pei, and Wu, Dinghao. Libsteal: Model extrac-
tion attack towards deep learning compilers by reversing dnn binary library.
https://faculty.ist.psu.edu/wu/papers/DLCompilerAttack.pdf.

[49] Zhao, Rui, Yan, Ruqiang, Chen, Zhenghua, Mao, Kezhi, Wang, Peng, and Gao,
Robert X. Deep learning and its applications to machine health monitoring: A
survey. CoRR abs/1612.07640 (2016). http://arxiv.org/abs/1612.07640.

51

[50] Zhu, Yuankun, Cheng, Yueqiang, Zhou, Husheng, and Lu, Yantao. Hermes at-
tack: Steal DNN models with lossless inference accuracy. In 30th USENIX Secu-
rity Symposium, USENIX (2021), Michael Bailey and Rachel Greenstadt, Eds.,
USENIX Association, pp. 1973–1988. https://www.usenix.org/conference/
usenixsecurity21/presentation/zhu.

52

	Extracting DNN Architectures Via Runtime Profiling On Mobile GPUs
	Recommended Citation

	tmp.1707322540.pdf.XleQ1

