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ABSTRACT

AUTOMATED IDENTIFICATION AND MAPPING OF
INTERESTING MINERAL SPECTRA IN CRISM

IMAGES

FEBRUARY 2024

ARUN M. SARANATHAN

B.E., VISVESVARAYA TECHNICAL UNIVERSITY, BELGAUM, INDIA

M.S., UNIVERSITY OF MASSACHUSETTS, AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Mario Parente

The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) has

proven to be an invaluable tool for the mineralogical analysis of the Martian sur-

face. It has been crucial in identifying and mapping the spatial extents of various

minerals. Primarily, the identification and mapping of these mineral spectral-shapes

have been performed manually. Given the size of the CRISM image dataset, manual

analysis of the full dataset would be arduous/infeasible. This dissertation attempts

to address this issue by describing an (machine learning based) automated processing

pipeline for CRISM data that can be used to identify and map the unique mineral

signatures present in a CRISM image. The pipeline leverages a highly discriminative

representation learned through the use of Generative Adversarial Networks, such that

in this novel representation space simple distance metrics are sufficient to discrimi-

nate between even very similar spectral shapes. The pipeline leverages this enhanced

vi



feature space to set up an open set classification problem that labels each new pixel

as either a member of a known mineral class or novel spectral shape (or outliers).

Following this, a segmentation technique is used on the outliers to group them, and

further, reduce them to a representative set of the novel spectral shapes present in the

image. These novel spectral shapes can then be labeled based on expert analysis and

used to update the open-set classifier. The performance of these tools are validated

over a subset of CRISM images from different parts of the Martian surface such as

Jezero Crater, North East Syrtis, and Mawrth Vallis.
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CHAPTER 1

INTRODUCTION

Somewhere, something incredible is waiting to be known.

Carl Sagan

The Martian planetary surface holds many secrets on the various processes in-

volved in the formation and evolution of our nearest planetary neighbor. Given their

extraordinary ability to remotely identify and map mineral families present on the

surface of far away planetary bodies, spectral sensors have emerged as an essential tool

for the study of the Martian surface. In particular, spectral sensors at various spatial

and spectral resolutions were employed to achieve NASA’s aim for Mars Exploration

to “follow the water” [43]. Thermal sensors with low spatial resolution like Thermal

Emission Spectrometer (TES) on Mars Global Surveyor [21] (several kilometers per

pixel and spectral resolution between 0.5− 1 nm over a spectral range of 6− 50 µm)

and THErmal Emission Imaging System (THEMIS) on the Mars 2001 Odyssey mis-

sion [22] (100 m per pixel, with 10 bands over 9 wavelengths over a spectral range of

6.78−14.9 µm) were used to map and locate silicate materials that formed the igneous

rocks and other crystalline materials on the Martian surface. Following this Visible

and Near InfraRed (VNIR) sensors were deployed to track fine-grained hydrated and

hydroxylated secondary minerals that were formed in the presence of past “aqueous

activity”. One such sensor is the Observatoire pour la Minéralogie, l’Eau, les Glaces

et l’Activité (OMEGA)[11] (spatial resolution of a few hundred to thousand meters

per pixel and spectral range of 0.4 − 5 µm). While such sensors have proven to be

valuable for global or large scale studies of the planetary surface, a new sensor capa-

ble of measurements in the VNIR of a specific targeted location at a fine scale was

1



required- the Compact Reconnaissance Imaging SpectroMeter (CRISM) aboard the

Mars Reconnaissance Orbiter (MRO) [60] was launched to address this need.

CRISM measures the electromagnetic energy scattered by the surface in the VNIR

wavelength range (0.362− 3.920µm) at a spatial resolution of 18m/pixel (in the full

resolution mode) and a spectral resolution of 6.55 nm/channel. The analysis of the

CRISM spectral data has been instrumental in revealing the history of aqueous al-

terations on the Martian surface, thus confirming the presence of liquid water on the

Martian surface in a bygone era [30, 10, 61, 85]. Such analysis has enabled researchers

to identify the widespread presence of various phyllosilicate (smectite) minerals such

as hydrated silica [62], a variety of Fe/Mg-smectites [15], and Al-smectites [95]. Re-

searchers have also been able to identify a variety of other hydrated smectites and

chlorites [72]. Another commonly seen component of the Martian surface are mafic

minerals1 which are a primary component of igneous rocks. Commonly seen mafic

minerals on the martian surface are olivines (both magnesium-rich fosterite [83] and

iron-rich fayalite [62]) and pyroxenes (again both low-calcium [62] and high-calcium

[82]). Analysis has also lead to the identification of other minerals including Mg-

carbonates [29] and sulfates [92], together with several other species [27]. These

detections have been instrumental in understanding the physical and chemical pro-

cesses that led to the formation of the Martian surface. Identification of specific

groups of minerals and their spatial distributions on the Martian surface have also

shed a great amount of light on the habitability2 of Mars [88, 2, 14].

These detections have greatly improved our understanding of the various processes

at play in the formation of the Martian surface; and they have also greatly aided in

the selection of the landing sites for the Mars rover exploration missions [71]. Further,

1The word mafic is a portmontaeu of magnesium and iron (ferrous or ferric) minerals or rocks

2“The habitability zone is defined by the sum of the physical and chemical conditions, which
would support the presence of liquid water.” Treatise on Geophysics, 2007 [84]
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in its operating lifetime ranging from September 2006 to April 2023 CRISM acquired

tens of thousands of images of the Martian surface [80], providing a large amount

of granular spectral information of the Martian surface. Analysis of such a large

granular spectral dataset would be valuable in furthering our understanding of our

nearest planetary neighbor. Such analysis is made significantly harder by the various

noise/distortion processes present in the CRISM image dataset, such as (i) incomplete

or imperfect atmospheric correction, due to calibration errors, atmospheric distortion

artifacts persist in even the highest quality products available in the NASA CRISM

Planetary Data System (PDS)3, (ii) Cubes with increased noise due to instrument

performance degradation, in the later stages due to the degradation of the instrument

cooling systems many of the later cubes were measured at a higher then expected

detector temperature leading to increased noise/spike clusters in the measurements

[53, 45]. Many of these noise/distortion processes appear to be column-dependent

[63, 62, 29].

Given, such data conditions most of the analysis of the CRISM spectral data is per-

formed manually by expert in spectroscopy. Practitioners use techniques like “spectral

ratioing”, wherein spectra of interest are divided by an “unremarkable spectrum” (a

spectrum with no absorption features) from the same column. While spectral ratio-

ing can help ameliorate noise/distortion effects, ratioing also has adverse effects like

changing the continuum of the spectrum (see Appendix. A.1 for more details on the

continuum) and distorting the spectral features present in spectra of interest (if the

denominator spectra chosen are not completely “unremarkable”). Practitioners also

use techniques like spatial averaging to eliminate zero-mean noise present in the spec-

trum. Following this experts identify the spectral shapes and map them manually in

each image.

3https://pds-geosciences.wustl.edu/missions/mro/crism.htm
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Historically, the most common tool used by experts for mapping/analyzing the

spatial distribution of minerals in a specific image is the set of spectral summary

parameters (initially introduced in [69], and then updated and revised in [90]). The

spectral summary parameters use simple mathematical formulations to test each spec-

trum for the presence of a specific spectral feature. Each summary parameter assigns

a score to a spectrum based on the perceived strength of the spectral feature in the

specific spectrum. Practitioners further combine different spectral summary products

to create “browse products”, each browse product is 8-bit scaled RGB color compos-

ite that display three-band combinations of thematically related spectral summary

products. These browse products can be used to provide high-level products to guide

the experts to identify groups of related minerals. The browse products for specific

images can also be downloaded from the NASA PDS mentioned above.

Despite their widespread use, spectral summary parameters exhibit significant

limitations namely, the spectral summary parameters exhibit a large number of “false

positives”, i.e. spectral summary parameters are known to show high values for

spectra that do not contain the specific feature of interest but rather contain a different

feature in a similar spectral range (see [90] for a full list of “caveats” associated with

each spectral summary parameter). Another well known issue is that the summary

parameter values are greatly affected by many global factors and as such it does

not appear that there is a global statistical basis on whether a feature is present

or not. Rather they are used locally to identify spectra that are diverse from its

neighbors, and then the identifications are made manually. Also, given the nature

of their mathematical formulation, which uses the reflectance values seen at specific

spectral bands, they are greatly affected by the presence of noise/distortions. A more

detailed description of the spectral summary parameters and the issues associated

with these spectral summary parameters are shown in Section 2.2.
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Given the extensive size of the CRISM image database automated algorithms ca-

pable of identifying and mapping minerals in various CRISM images would be highly

valuable to the community. This quest is greatly helped by recent advances in the at-

mospheric correction of the CRISM spectral data (e.g. [45, 79]) making significantly

cleaner spectral data available for analysis. Initial attempts to perform automated

mineral identification and mapping endeavor to leverage the summary parameters, by

building automated rule-based systems/pipelines to identify and map various mineral

signatures in hyperspectral images. The methods attempt to build various rule-based

systems on top of the spectral summary parameters to make automated identifica-

tions and maps. Carter et al. [17], built a procedure for identifying the presence of

weakly hydrated minerals in CRISM images. Recently, the same authors also pub-

lished a first attempt at a global high resolution map of specific aqueous minerals

using data from multiple instruments in the Mars Orbital Catalog of Aqueous Alter-

ation Signatures (MOCAAS) [18]. The CRISM portion of their work still primarily

leverages spectral summary parameters to generate identifications and mappings. Af-

ter a variety of preprocessing steps (such as destriping, continuum-removal, spurious

pixel removal, etc.), the approach subtracts the average column spectrum from the

current pixel and performs continuum removal to highlight weak mineral absorptions.

Following this, spectral summary parameters are calculated, and the presence of an

individual mineral is identified by using a rule-based system based on whether a spe-

cific set of summary parameters are enhanced while others appear to be suppressed.

The system was developed primarily for minerals showing characteristic absorptions

in the spectral range 1.7− 2.6 µm.

Allender et al. [1] introduced another rule-based system, which combines a set

of mineral specific rules along with full summary parameter representation for both

mapping known spectra as well as identifying novel spectra. The proposed approach

begins by applying basic preprocessing steps such as photometric and atmospheric
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correction, destriping, and despiking to the chosen CRISM image cube. Following

this, the full list of standard CRISM spectral summary parameters described in [90]

are calculated for each CRISM-pixel. Then, the authors apply a super-pixel segmen-

tation [31] to summary-parameter cube, to find spatially contiguous regions (referred

to as “superpixels”) with similar spectral summary parameter representations. In

all future processing, each “superpixel” is represented by the median summary pa-

rameter vector, which significantly reduces the data complexity for future processing.

The superpixel formulation is also known to significantly reduce the effect of local-

ized noise artifacts. Following this, the procedure uses Discovery through Eigen-basis

Modeling of Uninteresting Data (DEMUD) [91], which is an anomaly detection al-

gorithm, to find the 500 most diverse spectral signatures (in terms of the estimated

summary parameters) from the CRISM image, the authors then use Ordering Points

To Identify the Clustering Structure (OPTICS) [3] to find the most diverse clusters

from this data. The summary parameter vector corresponding to the diverse clusters

are thresholded to find the enhanced summary parameter values for the cluster. The

list of enhanced summary parameter are compared to list of enhanced summary pa-

rameters for known mineral identifications and a rule based system is used to map

mineral shapes in the CRISM image. While this method is an interesting way of

leveraging available knowledge of known mineral identification, the method is pri-

marily dependent on summary parameters, and the method inherits all the known

issues of the summary parameter technique. Further, the lack of a global statistical

basis makes the extension of these mapping across images much harder as it is quite

difficult to compare pixel-spectra from different images.

The techniques mentioned above are primarily based on summary parameters and

as such these methods inherit all the issue of the summary parameters. Namely, they

are highly susceptible to variations due to noise/distortions. Also, the absence of

a global statistical basis to these summary parameters makes the creation of multi-
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image mapping products quite hard as it is often hard to compare pixel-spectra from

various regions based on their summary parameter values. Furthermore, these meth-

ods often require the construction of a rule-based system to identify various mineral

shapes, as such the addition of novel mineral shapes to the mapping library requires

significant time and effort from expert practitioners.

Another strain of mineral identification algorithms is the similarity based algo-

rithms that attempt to measure the similarity between two spectra using various

methods. Primarily these approaches attempt to match each test spectrum to a li-

brary of known spectral shapes or laboratory measurements referred to as exemplars.

A seminal approach of this strain of algorithms was introduced by Parente et. al. [67]

for the identification and mapping of mafic minerals in CRISM images. The method

first applies continuum removal to eliminate illumination and other acquisition effects

from the spectral data. Then the method models the absorption features using auto-

mated Gaussian curve-fitting methods. Finally, the coefficients for the fit to the target

spectrum are compared to the fit-coefficients associated with the exemplar spectra to

identify the closest match from the library.

Other practitioners attempt to leverage unmixing4 based methods for mineral

identification and mapping. Gilmore et al. [34] proposed a technique that first applies

a superpixel segmentation algorithm [31] to a CRISM image cube and then identifies

pixel-spectra which are considered the “corners” the data cloud (referred to as image

endmembers) by applying the Sequential Maximum Angle Convex Cone (SMACC)

[38]. Finally, the algorithm uses a spectral angle similarity to generate the maps

corresponding to the different image endmembers identified in the previous step. The

algorithm assumes that purest mineral shapes are the most extreme points of the

data cloud and as such these extreme pixel-spectra are the only mineral shapes of

4Unmixing refers to the attempt at identifying the constituent components in each spectrum.
See Appendix A for more information.
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interest in the data. While such assumptions appear reasonable in scenarios that

are noise free and with well known mixing models, such assumptions break-down in

the presence of random noise and atmospheric distortions like the ones present in

CRISM data. Rohani et al. [74] have previously shown that in scenarios where the

data is afflicted by significant amounts of noise, it appears that more and more points

can be considered extreme. Using certain graph-theoretic metrics they show that

most of the pixel-spectra in any CRISM image can be considered extreme, making

the identification of the mineral-spectra of interest using unmixing algorithms much

harder.

An interesting strain of algorithms for mineral identification are the Factor Anal-

ysis and Target Transformation (FA/TT) based techniques [56]. Factor Analysis

is a statistical method for identifying the significant independent components of a

datasets, the independent components can be considered the smallest set of vectors,

such that every element in the dataset can be expressed as a linear combination of

these components. The technique uses an eigenvalue decomposition to express the

given dataset as combination of a small number of uncorrelated and unobserved vec-

tors. The algorithm further postulates that a specific eigenvector is significant or can

be considered a factor if and only if the eigenvalue associated with the specific vec-

tor is above a chosen threshold. The target transformation portion of the algorithm

states given a list of factors associated with the dataset, the factors are sufficient to

not only reconstruct the spectral-vectors present in the dataset, but that they can

also reconstruct the spectra associated with the pure minerals which contribute to

the original dataset. Therefore the algorithm attempts to reconstruct known pure

mineral shapes in a spectral library using the factors extracted from the dataset of

interest. If the dataset specific factors are able to reconstruct an exemplar spectrum

accurately (measured using a simple euclidean distance), then it is concluded the

material corresponding to the exemplar is present in the dataset. This approach is
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very well known and has been commonly applied to Thermal InfraRed (TIR) spectral

data from various sources. [5, 6, 20, 35, 33, 40].

One of the first approaches which leverages FA/TT for CRISM data was described

by Thomas et al. [89], wherein the authors apply FA/TT to a significantly sub-

sampled version (the sub-sampling is about 1 : 25) of the image dataset to identify

factors. This approach has been quite successful in identifying the dominant mineral

modes in the CRISM images. The main issue with the FA/TT appears to be that the

process is computationally quite expensive as it requires an eigenvalue decomposition

for each image. Methods leveraging this technique often includes a significant sub-

sampling step to make the technique tractable for CRISM data. While sub-sampling

helps with the feasibility of the method it carries inherent risk that small deposits

may be missed as part of the sub-sampling. Another disadvantage of this technique

is that it produces a list of spectra corresponding to the mineral components present

in the CRISM image but in this form it does not produce a map of the different

components.

A recent approach Dynamic Aperture Factor Analysis for Target Transforma-

tion (DAFA/TT) [55] attempts to address some of the issues for FA/TT mentioned

above. DAFA/TT applies FA/TT for small moving windows of different shapes. Since

DAFA/TT considers a small dataset at each step it ameliorates the computation com-

plexity issue of the eigenvalue decomposition. Further, since the method looks for the

presence of each mineral in a small window it is also able to produce maps indicat-

ing whether the mineral is present in/around each pixel. The technique also uses

information on the presence of a specific mineral in windows/apertures of different

shapes to further refine the shape of each deposit. While DAFA/TT addresses many

of the issues endemic to FA/TT, it should be noted that DAFA/TT in some sense

trades computational complexity for a large number of iterations. Not only does this

algorithm require application for FA/TT for each pixel in an image, it also requires
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application of multiple apertures or windows. Practical applications have shown that

in spite of the ability of DAFA/TT to generate spatial extent maps the DAFA/TT

maps are a bit chunky and the creation of precise mineral maps requires the use of a

large number of windows/apertures. Further since DAFA/TT uses a distance func-

tion to estimate whether an independent component is well reconstructed they often

inherit the issues with similarity metrics to measure spectral similarity mentioned in

Section 2.1.

Leveraging recent advances in machine learning Plebani et al. [71] released a

machine learning toolbox/toolkit for the identification and mapping of mineral shapes

in CRISM images. The toolbox is built on ”ratioed” spectra- wherein each pixel-

spectrum of interest is ratioed with a neutral spectrum (i.e. a spectrum with no

clear mineral absorptions) in its vicinity. For this purpose the toolkit consists of

a neutral-pixel detector which both identifies spectra with mineral absorptions and

the closest neutral spectrum that can be used for ratioing the mineral spectrum.

Following this the toolkit has two main tools for mineral classification, namely a

Hierarchical Bayesian Model (HBM) and Convolutional Neural Network (CNN). The

HBM leverages bayesian inference [50] to estimate the posterior membership of the

test spectrum. The HBM has a two layer structure such that: “the lower layer models

spectral variations of the same class across images whereas the upper layer models

spectral variations across different classes.” [71]. In this scenario, the lower layer

models intra-class variability whereas the upper layer models inter-class variability.

The HBM starts with a prior at both levels and uses the bayesian machinery to

estimate the posterior probability for each test spectrum. The other approach uses

neural network models to perform a supervised classification of the test-spectra.

While the toolkit mentioned above shows impressive performance in terms of

detecting a variety of minerals in CRISM images it seems to primarily function as

mineral detectors. Since the toolkit is built for ratioed pixels the performance of
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the models are highly dependent on the presence of neutral spectral shapes in the

vicinity of a mineral spectrum (this is not always guaranteed as many images have

lots of pixels with clear mineral absorptions). While ratioing is a viable and valid

tool for spectral analysis it creates spectral shapes not present in the dataset and

thus requires validation based on expert analysis. Further to mitigate issues like false

positives etc, the tool-kit includes strict thresholds on model confidences and seems

to be generally used to detect the presence of minerals in specific images rather than

as a mapping algorithm. Further, since the machine learning models used in this

toolkit are supervised models, they are affected by the limitations of the supervised

algorithms, namely they are unsuited to process previously unseen spectral shapes.

Further, the training set used for the mineral classification is highly dis-balanced

(i.e. contains in-equal number of examples of the various classes) which also affects

model performance. Also, currently the toolkit only contains labeled datasets for the

CRISM Targeted Reduced Data Records (TRDR) images, and for analyzing other

CRISM data products significant work needs to be done for re-training the machine

learning models.

Past attempts at mineral mapping can be generally classified into three broad tiers.

The first tier consists of methods leverage the classical spectral summary parameters

to compare each test spectrum to known mineral shapes, often these techniques build

an additional rule based system on top the summary parameters to identify specific

spectral shapes. While such methods are quite intuitive in terms of how they work

such techniques inherit the drawbacks of the spectral summary parameters. Other

techniques that leverage methods to measure spectral similarity in different forms to

compare test spectrum to different members of a known spectral library. The main

drawback of this suite of models is that in general spectral similarity is a complicated

concept that is hard to measure using classical similarity metrics. Finally, recent

attempts of using supervised machine learning methods for mineral mapping is held
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back as the dataset is expected to contain some novel spectral shapes that are not

currently known. Overall, there is a severe lack of a comprehensive tool for identifying

and mapping all the unique spectral shapes present in a CRISM image.

1.1 Research objectives and contributions

The main objective of the research presented in this dissertation is to create/design

a comprehensive mapping pipeline for each CRISM image- which can create a sum-

mary of the various unique spectral shapes as well as the spatial extent of each

individual mineral deposits. Based on previous research the spectral shapes associ-

ated with the minerals present on the martian surface are known apriori. The full

processing pipeline needs to have the ability to:

1. To accurately identify and map the spatial extent of each of the known spectral

(mineral) shapes (if present) in each individual CRISM image.

2. To identify the presence of spectral (mineral) shapes that are different from the

mineral shapes in the known spectral library.

3. To identify the spatial extents of the novel spectral shapes for each individual

CRISM image.

4. To group novel spectral mineral shapes based on spectral similarity to create

products which experts can use for mineral attribution for each novel spectral

shapes identified in CRISM images.

1.2 Contributions of this work

To achieve these objectives mentioned in the previous section, the pipeline pre-

sented in this dissertation leverages some machine learning tools based on unsupervised/semi-

supervised learning (due to the absence of a large exhaustive database of labeled min-
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eral shapes present in the CRISM image database). The full list of tools designed for

this purpose are:

• A Feature Extractor based on Generative Adversarial Network (GAN)

In this portion, an (unsupervised) Generative Adversarial Network (GAN) was

trained on CRISM I/F spectral data. This dissertation will clearly demonstrate

the features extracted from the GAN are highly discriminative of the different

spectral shapes present in the CRISM image database . It will also be illus-

trated that these features can be used to identify clear examples of all the known

mineral spectral shapes from the CRISM image database. This tool is used to

create a labeled dataset with examples of all the known spectral shapes from

the CRISM image database

• An open set classifier for identifying hitherto unknown spectral shapes

Following this, the dissertation also presents an open-set classifier which is ca-

pable of known spectral shapes while simultaneously being able to also iden-

tify/flag pixels with spectral shapes that are unlike the ones present in the

labeled training set, i.e. “outliers”.

• A graph-based segmentation algorithm to group “outliers” with sim-

ilar spectral shapes into segments/groups

A modified version of the graph-based segmentation algorithm [31] that groups

similar spectral shapes into groups/segments.

1.3 Organization of this dissertation

The rest of this dissertation is organized as follows: Chapter. 2 introduces the

reader to common dissimilarity metrics used to measure spectral similarity. Further,

this chapter will also describe the issues with using these dissimilarity metrics for min-

eral discrimination. The chapter will also introduce readers to the spectral summary

13



parameters, commonly used by practitioners for mineral discrimination. The chap-

ter will also attempt to highlight some common issues with these spectral summary

parameters for data containing noise/outliers.

Chapter. 3, introduces the GAN based feature extractor that was designed for

CRISM I/F spectral data. The chapter briefly introduces GANs and describes the

various preprocessing steps used by the tool as well the training procedure for the

GANs. The following sections will describe the use of the GAN as a feature extractor

for the CRISM I/F data. The chapter will also attempt to clearly show the gains in

terms of the mineral discrimination when using these features relative to the original

data. Following this the chapter will describe the procdure to use these features to

map mineral shapes in CRISM images. The chapter concludes by listing known issues

and limitations with the described feature space.

Chapter. 4 will describe the full open set pipeline for mapping all known spectral

shapes as well as a the functionality to identify/flag the locations of the novel spectral

shapes (referred to as “outliers”). The chapter also describes a graph based clustering

tool to group these outliers into clusters with similar spectral shapes. Finally, the

chapter also describes a grouping scheme to create groups of the cluster means based

on spectral similarity.

Finally, the conclusions are presented in Chapter. 5.
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CHAPTER 2

WHY IS SPECTRAL DISCRIMINATION SO DIFFICULT?

The core requirement for any competent spectral mapping method is the ability

to accurately match the shape of a test spectrum to known mineral spectral shapes.

This matching is made significantly more difficult by the fact that mineral identi-

fication is often performed using the presence of specific absorption shapes in very

narrow spectral windows1. As mentioned in the previous chapter the two techniques

used to perform spectral similarity are similarity/dissimilarity metrics that can be

used to measure the spectral similarity and the spectral summary parameters. This

chapter will provide some insight into why these methods are not efficient methods

for measuring spectral similarity.

2.1 Issues with classical similarity metrics for spectral dis-

crimination

First, consider the issues present when using metrics including Spectral angle

divergence (used in [34]) and euclidean distance (used as RMSE in FA/TT based

methods) to measure spectral similarity. A general metric that measures either the

similarity/dissimilarity between the objects in a given set M can be defined as a

function d : MXM → R+, (where R+ denotes the set of positive real numbers) which

satisfies the following conditions:

• d(x, y) ≥ 0,∀x, y ∈ M , that is the similarity/dissimilarity is always positive.

1see Section A.1 for more information.
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• d(x, y) = d(y, x), i.e., the similarity/dissimilarity metrics must be symmetric.

• d(x, z) ≤ d(x, y)+d(y, z), this condition which is known as the triangle inequal-

ity ensures that the distance between two points is the shortest path between

the two points.

In such a scenario, the choice of the metric is an important factor in being able to

generate an accurate matching of a test spectrum with the library spectra. As men-

tioned above, some well-known metrics that have found wide-spread use are the cosine

distance and the euclidean distance (note that these metrics technically measure a

distance or dissimilarity that is the inverse of the similarity). Given two data-points

x, y that are two real valued vectors (i.e. x, y ∈ Rd), we define the euclidean distance

(deuc) as

deuc(x, y) = ∥x− y∥ =

√√√√ d∑
i=0

(xi − yi)
2 (2.1)

where ∥.∥ refers to simple ℓ2−norm. Geometrically, the ℓ2−norm is the euclidean

distance can be interpreted as the length of the shortest line between the two points.

While the cosine distance (dcosine) is defined as:

dcosine(x, y) = 1−

d∑
i=0

xiyi√√√√ d∑
i=0

x2
i

√√√√ d∑
i=0

y2i

(2.2)

Geometrically, this is 1 minus the cosine of the angle subtended by the vectors from

the origin to x and the origin to y. The main issue with such metrics appears to be

that they treat each dimension of the real vectors x & y equally, i.e., these metrics

do not prioritize some dimensions. This does not seem to agree with how spectra are

analyzed manually; generally mineral determination is performed based on spectral

features that span very few spectral bands. The classical interpretation means that
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often global factors have an inordinate effect on the measured similarity/dissimilarity

(with respect to the spectral similarity).

To illustrate the inability of the classical similarity metrics to measure notions of

spectral similarity accurately consider the example shown in Fig. 2.1. Fig. 2.1 (A)

shows spectra of the CMS2 standard for the mineral Nontronite at different grain sizes.

There is no difference in the mineralogy or chemistry of the two samples. The two

samples in Fig. 2.1 (A) display absorption features at 1.41µm and 1.91µm (indicating

the presence of water in the lattice), and absorptions at 1.43 µm and 2.3 µm, which

indicates the presence of ferric hydrooxide (Fe(OH)3) in the mineral lattice. Fig. 2.1

(B) on the other hand compares the CMS Nontronite samples to a CMS sample of

the mineral Montmorillionite. Montmorillionite is quite similar to Nontronite except

that the lattice primarily contains aluminium hydrooxide (Al(OH)3), instead of the

ferric hydro-oxide. This results in the absence of a strong 2.3 µm absorption and the

over-tone at 1.43 µm and instead shows a strong absorption feature at 2.2 µm. The

spectra corresponding to these samples were extracted from the NASA Reflectance

Experiment LABaratory (RELAB) [59] database.

Fig. 2.1 also shows the estimated dissimilarity values between the two pairs of

spectra shown in Fig. 2.1 (A) & (B). Note, that the two Nontronite spectra that have

the same mineralogy and chemical composition are shown to be more dissimilar as

compared to the Nontronite and Montmorillionite spectra which are chemically and

compositionally different as mentioned above. The actual value of the dissimilarity

metrics appears to be more affected by global factors such as differences/similarity in

the continuum etc., rather than the specific discriminatory features like the position

of the oxide band. This example clearly indicates that often the dissimilarity between

samples belonging to the same mineral class is significantly higher than the dissimi-

2CMS: Clay Mineralogical Society
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Figure 2.1. The issue with using standard similarity metrics to measure spectral
similarity. (A) CMS nontronite samples. (B) CMS nontronite vs CMS montmoril-
lionite. samples

larity (in terms of spectral angle divergence) between samples from differing classes.

To better illustrate this phenomenon, a simple experiment was carried out, wherein

the largest intra-class divergence/dissimilarity (i.e. the divergence of samples which

have the same mineralogy and chemical composition while having other physical

differences) and the smallest inter-class divergence/dissimilarity (divergence between

samples which have different chemical compositions) were estimated for some well-

Table 2.1. Maximum Intra-class Divergence for Some Mineral Families

Mineral max intra class angle
Nontronite (NO) 1.27e-2
Illite (IL) 6.23e-3
Ripidolite (RI) 4.06e-3
Sepiolite (SE) 3.85e-3
Olivine* (FO) 2.28e-3
Kaolinite (KA) 1.89e-3
Montmorillonite (MO) 5.13e-3

*Olivine(Fo): - fosterite
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Table 2.2. Minimum Inter-class Divergence for the Mineral Families in Table 2.1

NO IL RI. SE FO KA MO
NO X 2.86e-2 6.15e-1 3.24e-3 5.32e-2 9.7e-3 3.43e-3
IL 2.86e-2 X 2.09e-3 3.26e-2 2.23e-3 2.39e-2 1.52e-2
RI 6.15e-1 2.09e-3 X 7.29e-2 2.88e-3 5.73e-2 4.53e-2
SE 3.24e-3 3.26e-2 7.29e-2 X 6.71e-2 6.17e-3 4.8e-4
FO 5.32e-2 2.23e-3 2.88e-3 6.71e-2 X 4.86e-2 3.75e-2
KA 9.7e-3 2.39e-2 5.73e-2 6.17e-3 4.86e-2 X 1.85e-3
MO 3.43e-3 1.53e-2 4.53e-2 4.8e-4 3.75e-2 1.85e-3 X

known mineral classes. In this experiment the cosine distance was chosen as the

divergence metric. Spectra corresponding to samples from the 7 well-known mineral

classes were extracted from the RELAB and CMS spectral databases. To avoid any

confusion between members of related families we limited ourselves to minerals that

have a 4-level classification under the Dana classification systems for mineral species

[24]. Table (2.1) reports the largest divergence observed between samples of the same

mineral class (i.e. the maximum intra-class divergence). Each cell in Table (2.2) on

the other hand reports the smallest difference between a pair of samples corresponding

to the two mineral classes. The values highlighted in red in Table (2.2) correspond

to the cases where the maximum intra-class divergence of one of the classes is larger

than the minimum inter-class divergence between the class of another mineral family.

Note that for each mineral there is at least one other mineral such that intra-class

divergence is often higher than the inter-class divergence to some other spectrally

similar mineral class. Due to this behavior, it is almost impossible to use the similarity

metric to differentiate a member of the same mineral class from members of other

mineral classes. Setting a high threshold on the similarity metric carries the risk that

spectra not belonging to the same class may be considered similar. On the other hand

setting a low-threshold on the similarity metric would mean that diverse samples of

the same class are not accurately classified.
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[N.B.: Much of this analysis on the issues with using similarity metrics to measure

spectral similarity has been previously presented in our previous works, [75] & [76].]

2.2 Spectral summary parameters and the associated issues

Figure 2.2. Application of summary parameters to CRISM Data. (A) RGB Com-
posite of FRT000097E2 with the kaolinite deposit highlighted. (B) The spectrum of
the kaolinite deposit. (C) Summary Parameter MIN2200H on CRISM data denoised
using the method described in [45]-in spite of the image being aggressively denoised
the summary parameter map appears quite noisy and displays large parameter values
for many pixels other than the highlighted deposit.

In this section, let us consider the choice/use of the spectral summary parameters

for mineral identification. Spectral summary parameters identify the presence of a

absorption feature in a specific spectral window, by using a specific mathematical

formula, that is designed to produce a large value if the spectral feature is present

in the spectrum; otherwise, a small or negative value is produced. [The reader is

referred to Section. 4 in [90] for the exact procedure and nature of the mathematical

formulations used for various spectral shapes]. In Table 2, [90] also provides the list

of the commonly used spectral summary parameters along with minerals identified by

each of the parameters. The table also identifies the caveats or associated minerals

for which the parameter provides spuriously high values that may cause misidenti-

fications/errors. In addition to providing spuriously high values for other minerals
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Figure 2.3. The 25 pixel-spectrum from the CRISM image FRT000097E2 with the
highest score for the summary parameter MIN2200. Notice that a large number of
these spectra (highlighted in blue) do not consider the characteristic 2.2 µm absorp-
tion expected to be present in kaolinite-bearing spectra like the one shown in Fig. 2.2
(B)

which may have absorption features in a neighboring spectral windows, the spectral

summary parameters are highly susceptible to the presence of any noise or distortions

in the spectral window of interest. Given, the rather precise mathematical formula-
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tion of the spectral summary parameters even small amounts of noise in the window

of interest may affect the calculation of these summary parameters.

To illustrate the effect of noise on the spectral summary parameters, consider

the subset of the CRISM image FRT000097E2. The image has a small deposit

(highlighted by the red rectangle in Fig. 2.2 (A)), which is spectrally consistent

with the mineral kaolinite. An expert spectroscopist would make this determination

based on the presence of the “doublet” feature with the minimum near 2.2µm. The

specific feature is highlighted in red in Fig. 2.2 (B). The spectral summary parameter

MIN2200 was designed to identify spectra with this exact feature. Fig. 2.2 (C) shows

the MIN2200 parameter map for this image. Clearly the pixels corresponding to the

deposit of interest have a large value for the chosen summary parameter. It should also

be noted that the summary parameter map also appears quite noisy. Additionally,

when we consider the 25 pixel-spectra from FRT000097E2 which have the highest

value of the MIN2200 (as shown in Fig. 2.3), it seems clear that many of the pixel-

spectrum with a high score for the MIN2200, show no evidence of the characteristic

kaolinite-like absorption at 2.2µm (such examples are highlighted in blue in Fig. 2.3).

The issues described in this chapter are intended to provide the reader a general

notion on how complex spectral similarity is to define and measure. Spectral similarity

is often defined based on specific features and their location in terms of the spectral

window. This discrimination is made significantly more challenging by the presence

of noise and atmospheric distortions. In many cases the determination of whether

a feature present in a specific spectrum is noise/artifact or a characteristic mineral

absorption requires expert manual analysis. This chapter illustrates the need/value of

learning a representation wherein mineral discrimination can be better accomplished.
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CHAPTER 3

MINERAL MAPPING USING AN ADVERSARIAL
FEATURE EXTRACTOR

In the light of the issues described in Chapter 2, a representation which would

enable improved mineral discrimination would be very valuable. Algorithms like Gen-

erative Adversarial Networks (GANs) are highly capable of learning a very rich and

detailed representation of any dataset. A GAN is a specific neural network variant

composed of two neural network models with two components and generator and a

discriminator. At convergence, the generator portion of the network is highly capable

of creating samples that are indistinguishable from real samples in the dataset. At

the same stage the other portion of the model, the discriminator, which attempts to

separate “real samples” from the “generated samples”- in this process the discrim-

inator must have learned a rich representation of the data, which is clearly able to

describe and identify samples corresponding to the training dataset. The discrimina-

tor is expected to have this property as the discriminator is the main source of the

training signal for the generator in this formulation 1. As such the discriminator por-

tion of a GAN trained to generate CRISM pixel spectra is expected to have learned a

very rich representation of the CRISM data, which is able to successfully discriminate

between the various minerals present in the dataset. Given the richness of the repre-

sentation learned by the discriminator, it can be surmised that a similarity analysis

performed on the representation learned by the discriminator is far more potent than

the similarity analysis performed in the original data space [52].

1More information on this model is presented in Section 3.2.1
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This chapter describes a mineral mapping technique for hyperspectral CRISM data

based on the features learned by the discriminator of a GAN trained on CRISM spec-

tral data. This chapter will describe in detail all the aspects involved in the pipeline

for mapping of known mineral spectra in the CRISM image database, namely, (i)

describing the pre-processing steps, (ii) formulating an appropriate training dataset

using the CRISM image library, (iii) building and training a GAN on the CRISM

spectral dataset, (iv) demonstrating the improved discriminatory power of the ad-

versarial features over classical metrics and summary parameters, (v) describing the

complete mineral mapping pipeline for CRISM images, and (vi) illustrating the value

of these mapping pipelines for a couple of locations on the Martian surface. [N.B.:

Some of the material covered in this chapter has also been previously published in

[76]]

3.1 Preprocessing steps for the CRISM image data

The CRISM image dataset [60] is well known to be affected by a multitude of

noise and atmospheric distortion processes, even the most advanced version of the

CRISM data product available publicly on the NASA CRISM Planetary Data System

(PDS)2, i.e. the Targeted Empirical Record (TER) and Map-projected Targeted

Reduced Data Records (MTRDR) [45], are still affected by some amount of noise

and distortions [See [45] for more information on specific distortions]. Minimizing

the effect of the atmospheric distortions and noise is the most essential aspect of the

preprocessing stage. Additionally, as described in the primer on hyperspectral data

analysis (see Appendix A), each pixel-spectrum contains components that provide no

mineralogical information such as the continuum etc.., which can also be eliminated to

further highlight the mineralogical information of interest. This section will describe

2https://pds-geosciences.wustl.edu/missions/mro/crism.htm
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all the preprocessing steps used for the mineral mapping pipeline to minimize the

effect of these processes in the CRISM spectral data.

3.1.1 Atmospheric correction and denoising

Historically, the presence of various atmospheric and noise effects in CRISM data

products is ameliorated using the so called “volcano scan” [60, 61, 78, 79] method.

This is a legacy technique for atmospheric correction that has been previously also

used for OMEGA data products [51, 63]. The technique leverages empirical transmis-

sion spectra derived from the ratio of I/F spectra at the base and summit of Olympus

Mons (the tallest mountain/volcano on Mars). The atmospheric contribution in each

CRISM pixel is removed by dividing each pixel in the CRISM image by an empiri-

cally scaled transmission spectrum. This volcano-scan correction is well known in the

community and is available as part of the CRISM Analysis Toolkit which is available

in the CRISM PDS and has been the most popular method for atmospheric cor-

rection and has been leveraged for the creation of PDS products including the most

advanced TER/MTRDR products were created by using a version of the volcano scan

corrections.

Recently, Itoh & Parente [45] have recently proposed a novel method to do a better

job eliminating these atmospheric artifacts and severe noise present in the CRISM

image data. This method derives a refined transmission spectrum from the observed

I/F spectrum inside the image. This method works by estimating the transmission

spectrum by considering the light propagation through the atmosphere and surface

mixing. The method also uses this modeling to identify and correct spectral regions

that are affected by severe noise. Experimental results have shown this method

produces fewer column-dependent artifacts, in the spectral regions 1.1− 1.7 µm and

1.9−2.1 µm (regions with strong atmospheric absorptions). The new method also does

a better job in identifying and correcting bands suffering from severe noise compared
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to the volcano scan method. Since the technique is highly data-driven it is also better

able to contend with adverse scenarios including elevated detector temperatures and

water ice aerosols.

3.1.2 Continuum removal and scaling

As has been mentioned in Section A.1, each spectrum appears to be a combination

of smooth global shape (continuum) and some localized absorptions (which are spread

over small spectral regions), referred to as absorption bands. Since mineralogical

interpretation is generally performed using these absorption bands, the continuum can

be generally considered a nuisance factor for the mineral identification/discrimination

efforts. Continuum removal enhances the absorption bands(as shown in Figure 3.1

middle column). Since continuum spectra in the short-wave infrared (SWIR) are

generally convex or flat, we can estimate the continuum by fitting a set of convex

line segments (a convex hull) to the spectrum [23]. We estimated the convex hull by

using the iterative algorithm described in [9]. Finally, we eliminate the continuum

from the spectrum by ratioing the pixel spectrum at a specific wavelength with the

continuum value at that same wavelength.

While continuum removal minimizes the confusion from factors like illumination-

effects etc., even after continuum removal it is clear that the absorption bands of some

end-members are much bigger than others (see Figure 3.1 middle column). Mineral

identification is not based on the shape and position of various absorption features as

opposed to the overall size of the bands, which depends on factors like the spectral

ranges used for continuum removal, the slope in the spectrum, and grain size etc. Fur-

ther, the size of the absorption band cannot be directly linked to mineral abundance

due to factors including noise, other admixtures, and grain size. For this reason, we

introduce a band normalization step. Wherein, we normalize each spectrum so that

the smallest value in each continuum removed spectrum is the same, the effect of
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Figure 3.1. Illustration of the effect of the preprocessing steps. The original spec-
trum and the continuum (left column), the continuum removal (middle column) and
scaling (right column) on CRISM I/F spectrum

this step is shown in Figure 3.1 right column. Notice that these steps in combination

cause the bands to be more clearly visible and eliminates many of the known nuisance

factors from the spectrum.

3.1.3 Eliminating uninteresting spectra

Many of the pixel spectra in the CRISM database appear to have no obvious ab-

sorption features. A spectrum is considered as “neutral” or “bland” if the continuum-

removed spectrum (non-scaled) has no absorptions that are even 1% of the spectrum

continuum. The 1% threshold was chosen based on the amount of noise commonly

seen in CRISM pixel spectrum from multiple images. Given the amount of noise seen
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in these images, absorptions that are of this size by themselves are not considered

sufficient for mineral identification.

3.2 Creating the adversarial feature extractor

This section describes the various aspects of the model training to create a feature

extractor using the discriminator portion of the Generative Adversarial Networks

(GAN). It will describe the various aspects involved in training the feature extractor.

3.2.1 A brief description of Generative Adversarial Networks (GAN)

Figure 3.2. The general GAN scheme3

Classical machine learning algorithms referred to as discriminative or conditional

models leverage the presence of labeled examples to estimate or “learn” the map-

ping between the output (or dependent variable) given the corresponding input (or

independent variable) (e.g. logistic regression [25] or decision trees [49]). Generative

models on the other hand attempt to learn a representation of the data distribution.

Such models may be either explicit (such as variational auto-encoders [48]) or implicit

3This figure has been extracted from the blog “An intuitive introduction to Gen-
erative Adversarial Networks (GANs)”, available online at freecodecamp.org/news/

an-intuitive-introduction-to-generative-adversarial-networks-gans-7a2264a81394/
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(such as GANs [36]). Explicit generative models assume a specific model for the data

distribution and then attempt to estimate the parameters of the specific distribution.

On the other hand the implicit generative models do not explicitly model/estimate

the distribution. Rather the implicit generative models describe a stochastic process

that can be used to directly generate samples from the data distribution. [N.B. For

more information on implicit generative models readers are referred to Section II in

Goodfellow et al. (2016) [36].]

The GANs specifically work by pitting two networks against each other in a zero

sum game with competing objectives. A schematic representation of GANs is shown

in Fig. 3.2. The first network referred to as the generator (the green network in

Fig. 3.2) attempts to sample the data distribution. The generator accepts a low-

dimensional random noise vector to activate the network (i.e. input) and attempts

to generate a sample from the data distribution. The other network referred to as

the discriminator (shown in red in Fig. 3.2), attempts to separate samples generated

by the generator from the true data samples. GAN training consists of two steps:

(i) discriminator training, which leverages a combination of equal number true data

samples and samples generated by the current generator to improve the discrimina-

tion between the two classes. This can be achieved by training the network using a

simple binary-cross entropy loss; (ii) generator training, in this stage the generator is

trained to fool the discriminator. To achieve this the generator is chained with the

discriminator, the discriminator weights are frozen and the generator output is used

as the input to the discriminator. Following this the generator is trained to reduce

the binary cross entropy with flipped labels. Overall, this step is designed to train

the generator to create samples that the discriminator identifies as “real”. The above

two training updates are alternated unto convergence. At convergence, the samples

from the generator should be completely indistinguishable from real data samples.

Further, since the discriminator is constantly being trained to separate real samples
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from fake samples, it is expected that representation for an input sample learned by

the discriminator is rich and very useful for discrimination.

3.2.2 Creating the training dataset

To build a GAN that can model/recreate spectral data, a large spectral dataset

representative of the spectral variability present in the CRISM spectral dataset was

required. Such a dataset was created by sampling spectra from the ∼30 CRISM

images. To further ensure as much spectral variability as possible is represented in

the training dataset as possible, spectra were specifically drawn from the CRISM

images that were used for the clearest mineral identifications in the CRISM image

database. The clearest CRISM mineral identifications are referred to as the Minerals

Identified through CRISM Analysis (MICA library)[90] 4.

Additionally, since the primary effort is to ensure that the model is able to learn

“spectral features” we use the various preprocessing steps mentioned in Section 3.1.

Also, rather than use the original noisy spectra which contain some remnant noise/

distortions we train the model by using the noiseless approximations of CRISM pixel

spectra that are available as a byproduct of the denoising algorithm [45] mentioned

previously. This procedure is valuable since the aim is to enable the model to discrim-

inate mineral shapes, so even if at a pixel-level, the reconstructions are not accurate

the presence of these clean spectra allows the model to focus its full descriptive power

on capturing the mineral absorption features present in the CRISM data instead of

any noise features. Each spectrum in this dataset contains the mineral absorptions of

chosen CRISM pixels in the spectral range 1.0 − 2.6µm over 240 spectral bands. In

total, about a million total spectra were chosen and placed in the training dataset.

4The data corresponding to these observations is available at http://crism.jhuapl.edu/data/
mica/
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Figure 3.3. The architecture of the GAN used to create the CRISM feature extractor

3.2.3 Training the model: architecture and hyperparameters

The full model architecture is shown in Figure 3.3. The generator input is a noise

vector from R50. The generator has a dense input layer followed by 4 convolutional

layers, the output is spectrum (vector) ∈ R240. This spectrum is the input for the

discriminator, which contains 4 convolutional layers with a 1 node dense output layer.

Every dense or convolutional layer in the figure also followed by some common nor-

malization layers, namely- batch normalization (to stabilize training by normalizing

the input of each unit to have zero mean and norm-1) [44] and dropout (to minimize

over fitting by randomly dropping a specific fraction of weights at each training step)

[86]. In particular, this network is an instance of the popular Deep Convolutional

Generative Adversarial Network (DCGAN) [73] adapted to 1D dimensional data. As

such, convolutional networks are used for both the generator and the discriminator,

with a convolutional filter size of 7 and a stride of 2. Overall, these networks have

approximately 1 million parameters combined.

The network is then trained to convergence (which took about 250, 000 iterations),

each training step includes alternative updates of the discriminator and generator

weights. Each batch contained 256 randomly drawn samples. The stochastic Adam

[47] optimization technique was used for training, with a learning rate (α = 1e−4),

and the multipliers for the decay rate to the various moments set to (β1 = 0.9, & β2 =
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Figure 3.4. Comparison of real continuum rremoved Spectra from CRISM Images
(top row shown in red) to continuum removed spectra generated by the generator
(bottom row shown in blue)

Figure 3.5. The scheme used for training a GAN for CRISM spectra.

0.99). On a machine with one TITAN Xp ® GPU 5, the full training process takes

around 6 hours. At equilibrium, the GAN is able to produce continuum removed

spectra, which are very similar to the real continuum removed CRISM spectra. Fig.

5Titan Xp® is a registered trademark of the NVIDIA Corporation. Full specs on the Titan Xp
can be found at https://www.nvidia.com/en-us/titan/titan-xp/
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Figure 3.6. The GAN representations for various end-members from the MICA
Library. (A) Fe-olivine. (B) Mg-carbonate. (C) Kaolinite/halloysite. and (D) Al-
smectite.

3.4, shows a comparison of some real continuum removed MICA spectra(shown in red

on the top row), to their generated analogues (shown in blue on the bottom row).

Note, in particular, that the generated spectra appear quite similar to the spectrum

from the training dataset, and have the same characteristic absorption features as the

real spectra. The only difference appears to be a small amount of extra noise in the

generated spectra.

The full procedure needed for training the GAN required for mineral mapping is

shown in Fig. 3.5.
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3.3 Using the trained discriminator as a feature extractor

As was discussed briefly in the introduction of this chapter since the discriminator

is trained to identify spectra, the representation learned by the discriminator is highly

descriptive of CRISM pixel-type spectrum, this section will describe the procedure

for using the trained discriminator as a feature extractor. It will also describe the

procedure to use the features in conjunction with simple similarity metrics to perform

improved mineral discrimination. Finally, the next section (Sec. 3.4) will show the

results of mapping some well-known mineral detections present in the CRISM image

database referred to as “exemplars” on some well-studied regions of the Martian

surface.

3.3.1 Feature extraction from pixel-level CRISM spectral data

Pixel-level spectral data from the relevant spectral range (i.e. 1.0 − 2.6 µm) are

extracted from CRISM images of interest. The data are processed using the various

preprocessing steps described in Section 3.1. The only significant difference between

this stage and the training stage is that rather than using the modeled continuum-

removed spectra from an unmixing model, actual continuum-removed pixel spectrum

from CRISM images are considered for discrimination. These pixels are generally nois-

ier than the model derived continuum-removed CRISM type spectra used in training

the GAN model.

For each pixel (which is not considered “bland” or “neutral” as per the technique

in Section 3.1.3) considered for feature extraction, feature extraction is performed by

using a modified version of the discriminator network, wherein similar to previous

works such as Radford et al. [73], the discriminator without the final layer is used

as the feature extractor-i.e. the output of the penultimate layer of the discriminator

are used as the features. Since the discriminator has been fully-trained to identify
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Figure 3.7. Illustration of the improved discriminative strength of the GAN feature
space. Spectral Angle divergence between intra-class (2 nontronite) and inter-class
(nontronite and montmorillionite) members from the RELAB database in original
reflectance space (top row). Same analysis in the continuum removed reflectance
space (middle row). Same analysis in the GAN based feature space (bottom row).
Note that cleary, in the GAN-feature space (unlike the original and CR spaces) in
class distance is much smaller than the inter-class divergences.

CRISM type spectra, it is expected that the mineral discrimination will be easier in

this newly derived feature space.
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3.3.2 Improved mineral discrimination in the feature space

Figure 3.8. Mapping the kaolinite deposit in FRT000097E2 using the features from
the GAN discriminator. (A) RGB Composite of FRT000097E2 with the kaolinite
deposit highlighted. (B) the characteristic spectrum corresponding to the deposit.
(C) The pixels with high similarity to the characteristic spectra in the feature space.
(D) 20 most similar spectra to the characteristic spectrum in the image.

36



The first relevant question for mineral discrimination in this novel feature space

is to prove that there is indeed increased discrimination between the various mineral

classes in this novel feature space. The first prerequisite for such discrimination

is that the features corresponding to the manually identified exemplar spectra are

different and easily discriminable. To illustrate this Fig. 3.6 shows the representations

generated by the discriminator for some MICA exemplar spectra. It is interesting to

note that the features generated for the various exemplars are diverse in a variety

of ways such as: (i) the number of non-zero features; (ii) the profile of where the

features have large values as opposed to smaller values; and (iii) the average values

of the features etc.

Even for exemplar signatures that are very similar to each other, the representation

learned by the models is quite different, e.g., the MICA minerals kaolinite/halloysite

(shown in Fig. 3.6 third row) and Al-smectite (shown in Fig. 3.6 bottom row). Both

have characteristic absorptions at 1.4, 1.9 and 2.2µm, with minor differences in the

band shapes at 1.4 and 2.2µm where kaolinite appears to have a doublet (an absorp-

tion band with two local minima) as opposed to an absorption band (with a single

minimum) since the bands are in the same position cosine similarities are expected

to be similar. On the other hand, the representations of two spectra have different

numbers of non-zero features and completely different profiles (the Al-smectite profile

appears to have large values in the middle, while the large values are more spread out

for the kaolinite).

To further illustrate the improved spectral discrimination in the feature space con-

sider the example shown in Section 2.1. The example shows the inability of classical

global metrics in spectral space to accurately measure spectral similarity since spec-

tral discrimination is based on subtle differences. The issue is further illustrated in the

top and middle rows of Fig. 3.7, wherein the distance/divergence between members

of the same class is bigger than the distance/divergence between members of different
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classes. On the other hand note that (in the bottom row) the representations of the

two nontronite spectra are almost identical, i.e. they have the peaks and valleys at

the same locations. On the other hand the nontronite and montmorillionite spectra

have slightly different profiles with many instances where the peak and valleys do not

really match. From being farther away from each other in the reflectance I/F space

the two nontronite spectra are almost an order of magnitude closer to each other in

the feature space.

Similarly, even for the task of identifying the kaolin-type spectra from the CRISM

image FRT000097E2, mentioned in Sec. 2.2, these discriminator features are far more

capable of identifying the exact deposit and it exact boundaries. Notice the similarity

map shown in Fig. 3.8 (C) exhibit almost no noise, rather only identifies the deposit

of interest. Similarly, look at the 20 spectra that are closest to the characteristic

spectrum (shown Fig. 3.8 (D)) in the novel feature space; they all have the same

clear mineral absorption features as the characteristic spectrum. There are no noisy

spectra with high scores as was seen with the summary parameters (shown in Sec.

2.2).

3.3.3 Quantifying the improved discrimination of the features learned by

the discriminator

The previous subsection shows that the feature space of the discriminator is bet-

ter able to discriminate between mineral spectra from different classes with similar

shapes. Given these observations, it is essential to quantify the improved discrim-

ination of the discriminator feature space relative to the original reflectance space.

As has previously discussed there are not a lot of labeled CRISM spectra on which

a statistical test can be performed. To get around this issue, a simulated CRISM

dataset was created to ensure that a sufficiently large labeled dataset is available for

analysis.
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Figure 3.9. The Classification performance on the simulated dataset under the
various regimes. (A) Regime-1. (CR + SAD) (B) Regime-2 (CR + Norm. + SAD).
(C) Regime-3 (CR + GAN Rep. + SAD). (D) Regime-4 (CR + Norm + GAN Rep.
+ SAD).

This simulated dataset attempts to mimic the spectra in the CRISM image dataset

as much as possible. The dataset contains spectra with 10 constituent endmembers

referred to as “exemplars” (these are chosen from some of the most commonly seen

minerals in the CRISM image database). The mineral classes used in creating the
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mixtures are shown in the labels of the various confusion matrices in Fig. 3.9. Each

spectrum is modeled as mixture of up to 5 endmembers, with a single dominant

endmember. The dominant endmember is more than 70% by weight in each mixed

sample. Spectra with the same dominant endmember are considered to be in the same

class. There are 10, 000 spectrum corresponding to each class. Following this various

atmospheric effects, atmospheric distortions, and noise commonly seen in martian

data are simulated and added to the mixed spectrum. The presence of dust was

modeled by randomly mixing each spectrum with a small fraction (between 0−30%) of

a ”bland” spectrum (i.e., a flat spectrum with no clear absorption features). Finally to

model atmospheric correction/noise seen in CRISM pixel, we add a randomly selected

residual from the atmospheric correction method[45]. (The residual is estimated as

the difference between the CRISM spectrum and the model spectrum estimated by

the atmospheric correction method).

This simulated dataset contains CRISM-like spectral data wherein each sample is

associated with a corresponding label (based on the dominant mineral endmember).

Using this labeled dataset one can setup a classification task to provide a quantitative

measure of improved discrimination of the GAN discriminator feature space. Consider

for example a simple classification task where each samples is assigned the same

class label as the closest “exemplar” (closest is measured using the cosine distance

or Spectral Angle Divergence (SAD)). To illustrate the impact of the continuum

removal (CR) and normalization/feature extraction techniques (Norm.) we consider

the classification performance under four regimes (i) CR + SAD; (ii) CR + Norm.

+ SAD; (iii) CR + GAN Rep. + SAD; (iv) CR + Norm. + GAN Rep. + SAD.

In the first regime (CR+SAD), the spectra were processed using a simple continuum

removal followed by using the SAD based classification scheme described above. In

the second regime (CR + Norm. + SAD), both continuum removal and the band

normalization (these normalizations are described in Sec. 3.1.2) before performing the
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classification using the SAD. In the third regime (CR + GAN Rep. + SAD), following

continuum removal a GAN based feature representation of both the pure mineral

library and the simulated dataset are extracted, and the SAD-based classification

was performed in this feature space. In the final regime (CR + Norm. + GAN Rep.

+ SAD), both continuum removal and band normalization before extracting the GAN

representation, and the SAD-based classification was performed in this representation

space. Finally, the estimated labels were compared to the true labels to estimate the

various regimes’ performance.

The results of each of these regimes in terms of confusion matrices are shown in Fig.

3.9 (A)-(D) (where the entry in row i and column j of each sub-figure is the fraction

of the samples which belongs to class i that were predicted as being in class j). Notice

that regime-1 (CR + SAD) performed rather poorly (see Fig. 3.9 (A)). On the other

hand, when we added the normalization in regime-2, the performance improved quite

significantly (see Fig. 3.9 (B)). In these regimes the classification scheme confuses

endmembers that are similar to each other, for example Fig. 3.9 (A) & (B) shows

poor discrimination for endmembers with absorptions in similar spectral regions like

Al-smectite and Hydrated Silica. The other issues appear to be for minerals without

sharp absorptions such as LCP/HCP. Using the GAN representation in Regime-3,

the performance is already superior to the previous two regimes (see Fig. 3.9 (C),

but the best results are obtained in Regime-4, which includes both the normalization

and the GAN representation (see Fig. 3.9 (D)). This experiment clearly underlines

the value of both the GAN based representation and the various normalization steps

in improving mineral discrimination.

3.4 Mapping minerals in CRISM images

The previous section illustrates that the GAN-based features have significantly

enhanced discrimination compared to the data in the original reflectance space and
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Mg-Olivine Fe-Olivine Mg-Carbonate
Low-Ca
Pyroxene

Monohydrated
Sulfate

Jarosite Gypsum Kaolinite Al-smectite Fe/Mg-Smectite

Prehnite
Hydrated
Silica

Polyhydrated
Sulfate

Illite Talc

Serpentine Epidote Analcime
Hydroxylated
Fe-Sulfate

High-Ca
Pyroxene

Chloride Margarite Hematite

Chlorite Ca/Fe-Carbonate H2O-Ice CO2-Ice Bassanite

Table 3.1. List of mineral spectra from the MICA Library chosen as exemplars.
The minerals colored in pink are excluded as they are not suitable, and the minerals
colored in red have been left for future use

simple algorithms like spectral summary parameters. This section illustrates a the

use of this GAN based feature space for the mapping of CRISM images.

3.4.1 Leveraging the GAN-discriminator feature for mapping spectral

shapes in CRISM images

In the initial mapping approach, the mapping pipeline attempts to map some of

the previously identified mineral shapes from CRISM data. The mineral shapes were

extracted from the Minerals Identified by CRISM Analysis (MICA) [90], these mineral

detections have been verified by consensus in the community and are not subject to

interpretation. The various minerals in the CRISM MICA library are shown in Table.

3.4. In the initial implementation, only the minerals shown in black are used for

mapping the current images. Some of the MICA library minerals were excluded as

they were not suitable for our technique; such minerals are colored in pink in Table.

3.4. For example, the Hematite spectrum is excluded as its characteristic absorption

bands are outside the spectral range 1.0 − 2.6 µm, which is the region of interest in

this study. Further, the minerals Margarite and Chlorite have been excluded as the

numerator pixel spectra associated with the detections appear neutral and do not

show any absorptions in the spectral range 1.0− 2.6 µm. The other minerals marked

in red were not considered at this stage. In addition to the known MICA spectrum,
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some mixed spectra that have been identified in various scenes by expert analysis,

such as the hydrated silica-bearing spectrum identified by [87] were also included. The

mapping method was also used in community efforts such as “the CRISM Fandango”

[66, 65] to generate improved mineral mapping products for Jezero crater. These

products were validated by consensus across various mineral identification/mapping

techniques and expert analysis (Improved mapping products from these efforts will

be described in a future publication).

Figure 3.10. The scheme using the features from the GAN discriminator to map
mineral shapes in CRISM images.

A summary of the steps involved in mapping a single CRISM pixel is shown in

Fig. 3.10. The various steps in mapping the mineral shapes are:

1. Preprocessing: In the pre-processing stage each pixel is processed though the

various procedures such as denoising, continuum removal, and neutral-spectrum

removal, described in Section. 3.1.

2. Feature Extraction and Similarity Analysis: In this stage, for each pixel,

a feature space representation is extracted using the GAN discriminator. Fol-
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lowing, this the pixel representation is compared to the representation of known

mineral shapes or “exemplars”. The similarity is measured using a simple dis-

tance metric, in this case the cosine similarity. Following this step each pixel

is represented by a vector containing the similarity scores of each pixel to the

various exemplars in the mapping library.

3. Identify Best Guess: First, we threshold the similarity scores such that all

scores below 0.707 are set to 0 (as a score below this level indicates that the

pixel representation subtends an angle > 45◦ from the exemplar). Then, we

also zero out all but the highest score in the similarity vector for each pixel.

Any non-zero score in the similarity vector identifies the spectrum as closest in

shape to a specific member in the exemplar library.

4. Separating Best Guesses into Different Confidence levels: The cosine

similarity calculated over the previous stages provides us a degree of confidence

in our detection over various classes. Pixel-spectra with very high similarity

(i.e., cosine similarity > 0.95) to the exemplars are referred to as the identifi-

cations. Empirically we have verified that the pixels labeled as identifications

have the same absorption features (in terms of band positions, band shapes,

band minima, etc.) as the exemplar, such that based on visual analysis, an

expert would also classify the spectrum as being similar to the exemplar. The

next level are pixels, which we refer to as guesses, whereby guess pixels have

an intermediate similarity to the exemplar (0.85 < cosine similarity < 0.95).

The spectra also show moderately high similarity to the exemplar in terms of

the mineral absorption features, but there are certain clear differences. In most

cases, these differences are not significant enough to produce a changed class

assignment from an expert (differences such as a change in the relative size of

the hydration band, etc. will affect spectral similarity but will not affect an
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expert’s labeling of the pixel spectrum). In some instances, the changes in rel-

ative band size, etc. may affect the labeling, and as such, the guesses need to

be manually investigated to ensure perfect accuracy.

Following this process, it is necessary to create composite mineral maps that enable

the user to simultaneously identify the various minerals present in the scene. To enable

this a dictionary is created wherein each mineral shape in the “exemplar library”

is assigned a single color or RGB code. Pixels identified with high confidence or

“identifications” are marked in the mineral map using the exact color corresponding to

the specific exemplar, while pixel identified with intermediate confidence or “guesses”

are marked using subdued versions of the same color (i.e. 0.7 × mineral RGB code).

3.4.2 Illustration of the mineral mapping on a single CRISM image

To illustrate the mapping capability of the GAN discriminator features, consider

the task of mapping the spectral shapes in a single CRISM image. FRT000093BE is an

image in the Jezero Watershed (N:19.2363, E:76.3465) that shows significant spectral

variability, and provides an excellent test case for the mapping abilities of the GAN

based pipeline. Fig. 3.11 (A) shows an RGB composite of the region covered by the

specific image. Fig. 3.11 (C) shows a browse product made with three well known

summary parameters, wherein the summary parameters corresponding to the various

channels are R: OLINDEX, G: BD2500, B: D2300. In these browse products, pixels

that appear white (with a greenish tinge) represent Mg-Carbonate, pixels that are

blue identify Fe/Mg-Smectite or Serpentine and red pixels would identify olivine. Note

that the summary parameter map appears quite noisy, and identifying the presence of

small deposits in this map would be quite challenging. Note that the olivine bearing

units are not clearly visible in this browse product. Similarly, Fig. 3.11 (B), shows the

mapping of well known mineral spectra using the GAN based discriminator features.

The mineral identification maps are overlaid on the CRISM image RGB composite to
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Figure 3.11. GAN based Mapping of the CRISM image. (A) RGB Composite of
the image FRT000093BE. (B) Mineral Map using the GAN pipeline for FRT000093BE.
(C) CRISM parameter browse product for FRT000093BE. (R: OLINDEX, G: BD2500, B:
D2300).

allow the reader to appreciate the correlation between mineral detections and natural

geological features present in the image. Pixels that have been assigned no color

correspond to pixels not considered sufficiently similar to any of the mineral shapes

in the exemplar library (or pixels eliminated from consideration in the preprocessing).

The colors corresponding to the various mineral identifications are shown in the legend

on the bottom right of Fig. 3.11.
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The boldly colored pixels in Fig. 3.11 (B) represent identifications, while the

subdued colors indicate guesses. It is also observed that the regions of high con-

fidence identifications are surrounded by areas containing guesses or mixed classes,

which agrees with our expectations of optical mixing at the margins of deposits, which

leads to the presence of mixed classes or variations at the edges of various deposits.

The regions identified as Mg-Carbonate and Fe/Mg-Smectite by the GAN represen-

tation (shown in Fig. 3.11 (B)) have quite a good correspondence to the appropriate

regions in the browse product (shown in Fig. 3.11 (C)) while showing clearer margins

and separations between the various classes. The detection map can further identify

a variety of other minerals as well without needing to generate/analyze more browse

products.

Figure 3.12. Comparison of mineral spectra for the image FRT000093BE identified us-
ing the GAN representation to the exemplar spectrum for the minerals. (A) Mg-Carbonate.
(B) Fe/Mg-Smectite. (C) Olivine/Mg-Smectite Mix. (D) High-Ca Pyroxene. (E) Fe-
Olivine.

Fig. 3.12 illustrates that the pixel spectra from the regions marked by the GAN

representations as identifications have the same absorptions as the “exemplar”. Com-

paring the pixel spectrum identified in the CRISM image FRT000093BE as Mg-

Carbonate, Fe/Mg-Smectite, olivine/Mg-Smectite Mix, High-Ca pyroxene, and Fe-

olivine are shown in Fig. 3.12. We see that the spectra have very similar absorption
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features across different spatial deposits to the “exemplars”. The only differences are

in factors like brightness, slope, etc., which have no bearing on the mineralogy. On

the other hand, if we look at the spectra from the guess classes shown in Fig. 3.13,

there are some differences in the absorption features, which reduces the model con-

fidence. For example, while the detected spectra in Fig. 3.13 (A) and (B) have the

bands at the same spectral location as the “exemplars” the characteristic absorptions

are not as clear/deep. The detected spectrum in Fig. 3.13 (C) shows an additional

absorption feature at 2.3 µm compared to the exemplar. Similarly, in Fig. 3.13 (D),

the bands are not as deep as the exemplar (especially the band at 1.9 µm), and in

Fig. 3.13 (E) the hydration band (at 1.9 µm) is not as deep, and the faint shape at

the end of the spectrum around 2.5 µm is not as clear. In general, the guesses have

many of the same absorption features as the associated “exemplar”, but these spectra

also exhibit some differences as described above. As such, the “exemplar” chosen is

interpreted as the spectrum in the library that is closest to the given spectrum.

Figure 3.13. Comparison of mineral spectra for the image FRT000093BE guessed using
the GAN representation to the exemplar spectrum for the minerals. (A) Al-smectite. (B)
Epidote. (C) Kaolinite/Halloysite. (D) Hydrated Silica. (E) Poly-Hydrated Sulfate.

It is also interesting to note that the the mineral maps for overlapping images in

similar regions have very similar mineral maps. For examples, consider the CRISM

image FRT000097E2, which almost completely overlaps with the image FRT000093BE.
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The maps from the two images are shown in Fig. 3.14. Note that the maps are very

similar in terms of the margins of the different exemplars and the corresponding

geological units where these minerals are found.

Figure 3.14. Comparison of mineral maps for overlapping CRISM images (A) RGB
Composite of the image FRT000093BE (B) Mineral Map using the GAN pipeline for
FRT000093BE (C) RGB Composite of the image FRT000097E2 (D) Mineral Map using
the GAN pipeline for FRT000097E2

3.4.3 Mineral map composites by using multiple CRISM images over well

known Martian regions

This mapping method can be used over multiple CRISM images from a specific

spatial region on the Martian surface to create composite maps that enable the study

of the various trends in the minerals seen on the surface. To illustrate this, mineral

detection maps were generated for some of the CRISM images near Jezero Crater

(E:18.4463, W:77.4565) and North East Syrtis (E:17.8899, W:77.1599). These regions
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are well known and have been well studied in the literature as they were candidate

landing sites for the “NASA Perseverance Rover” (Jezero crater was finally chosen

as the landing spot for this mission).

Figure 3.15. Mineral Identification Maps for the region around Jezero Crater. The
pixels identified as minerals are shown by the colored pixels, and the proposed landing site
is marked in yellow.

Figs. 3.15 & 3.17 shows these composite detection maps overlain on the CRISM

images themselves and allows one to easily appreciate the trends of the various miner-

als present in the region. These maps show that the dominant mineralogy in these sites

are the Mg-Carbonates (shown in green in Fig. 3.15 and 3.17) and Fe/Mg-smectites

(shown in cyan in Figs. 3.15 and 3.17). There are also some olivine-smectite mix-

tures in both sites (shown in salmon in both figures). The various mineral phases

detected and mapped in the Jezero region are shown in Fig. 3.16. The dominant
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Figure 3.16. Identified Mineral Spectra from/near Jezero Crater. (A) Fe-Olivine. (B)
Mg-Carbonate. (C) Fe/Mg-Smectite. (D) High-Ca Pyroxene. (E) Olivine-Smectite Mix-
ture. (F) Serpentine.

phases in this region and Olivine (shown in red), Mg-Carbonate (shown in green),

and olivine+Smectite Mix (shown in salmon).

The North East Syrtis region appears to have a significant amount of high-Ca

pyroxene (shown in orange). The spectra for high-Ca pyroxene shown in Fig. 3.16

(D) and Fig. 3.18 (D) appear to generally have the same shape as the “exemplar”,

but there are some detections that appear to have a significantly different slope.
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Figure 3.17. Mineral identification maps for the region around north east Syrtis.

However, these spectra have the same shape in terms of the continuum removed

spectra. Additionally, there are jarosite deposits (shown in pink in Fig. 3.17) in the

CRISM image HRL0000B8C2. The jarosite spectra from the image HRL0000B8C2

shown in Fig. 3.19 (E) (This detection agrees with previous detections mentioned in

[28]). There is also evidence of serpentine in a few images, and the spectra associated

with the mineral shown in Fig. 3.19 (A). There is also some Low-Ca pyroxene (shown

in dull yellow in Fig. 3.17) in some images in the North East Syrtis regions. The
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Figure 3.18. Spectra of minerals seen across many images from/near north east Syrtis.
(A) Mg-Carbonate. (B) Fe/Mg-Smectite. (C) low-Ca Pyroxene. (D) high-Ca Pyroxene.
(E) Kaolinite/halloysite. (F) poly hydrated sulfate.

detected low-Ca pyroxene spectra are shown in Fig. 3.18 (C). Various other minerals

such as epidote, Al-smectite, kaolinite, etc. are found in much smaller deposits, but

the spectra show clear similarities to the specific “exemplar” spectra.
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Figure 3.19. Spectra of minerals seen across a few images from/near northeast Syrtis.
(a) Serpentine. (b) Olivine + Mg-smect mixture. (C) Hydrated silica. (D) Al-Smectite.
(E) Jarosite. (F) Epidote.

3.5 Known issues and limitations of the mapping method

The main limitation of the mapping technique is that it is a spectrum mapping

technique instead of a mineral mapping technique. This is a subtle difference, as

mineral identification is generally made based on the presence of specific absorption

features, there may/may not be some other absorption features that indicate some

alteration of the mineral in question that is not sufficient to change the mineral iden-
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tification, e.g., some spectra tend to have an additional feature at 1.9 µm based on

whether the mineral in that region was hydrated. While this feature appears quite

prominently in the mineral, the presence/absence of this feature is not generally used

by the experts to make a specific mineral identification. Unlike the expert, the map-

ping method has no means of identifying specific absorption features as unimportant,

so does not immediately identify alterations of known mineral spectra. An example

of this is shown for the mineral Mg-Carbonates, (shown in Fig. 3.20 (A)), where the

identification is made based on the presence of the bands at 2.31 and 2.51 µm (bands

at the black lines in Fig. 3.20 (A)), but the spectra often show some variation in the

other spectral regions in Fig. 3.20 (A); for example, see the bands at 1.34 and 1.9 µm.

These differences are further enhanced in the case of the continuum removed spectra

(shown on the bottom row), and as such, the model is unable to identify the green

spectra as “similar” to the blue or “exemplar spectra” due to the differences in the

additional bands. In this specific case these slope differences are neglected as slope

artifacts in the range 1.0− 1.4 µm are known artifacts of the atmospheric correction.

Figure 3.20. Known issues with the GAN based automatic identification. (A) Inter Class
variability. (B) Continuum Issues. (C) Ratio problems.

Another associated problem with the method is since all decisions are made based

on the continuum removed spectra; any errors in the continuum removal process is

detrimental to the performance. This is mainly a problem for the CRISM spectra

having some concavity at low and high wavelength ranges. These concavities appear

55



as small bands in the continuum removed spectra, making mineral identifications

more difficult, particularly when the absorption features of interest are also small.

An example of this is shown in Fig. 3.20 (B), where we have two spectra that appear

to have the same absorptions in the CRISM I/F space, but in the continuum removed

space we see a band in the low wavelength range of the blue spectrum. Also, note that

the “fake” band is similar in size to the smallest absorption bands in the spectra, and

this makes mineral discrimination hard in these cases. This problem can be thought

of as artificially increasing the spectral variability of a class. This issue is further

exacerbated by the fact that an artificial edge is created at 1.0 µm because of the

spectral properties of the sensor and the exact location at which the continuum is

fitted to the spectrum.

Note that both these above problems cause the model to “miss” out on identifying

some possible mineral spectra (i.e., these are false negatives) as opposed to misiden-

tifying a pixel as belonging to a different class (or false positives). Additionally, one

can work around these issues by augmenting the exemplar library to contain exam-

ples relevant to each class’s spectral variants. This would ensure that the model can

identify all the different mineral phases present in the data. {N.B., the exemplar

library used to create the maps shown in the previous section has been enhanced by

including variants for the different MICA classes to improve mineral identification}.

Another limitation of the technique is that it can only make detections if the

absorption features are present in the CRISM I/F data. A common procedure used

in manual mineral identification is ratioing , wherein the pixel spectrum of interest

is ratioed with a neutral spectrum (i.e., a spectrum with no absorption features) to

remove instrument based distortions and increase the spectral contrast of the data. In

some cases, the ratioing may induce/eliminate certain spectral features in the ratioed

spectra, leading to mineral identifications. An example of this is shown in Fig. 3.20

(C), where both the numerator (blue) and denominator (red) spectra are shown in
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the top row while the ratio spectrum (black) is shown in the bottom row. Note that

the band at 2.5 µm is present in the ratioed spectrum and appears to be in line

with the convexity in the denominator spectraum at that wavelength. The original

spectrum (and its convex continuum removed spectrum), does not contain such a

large and clear band, and the model is therefore, unable to find such spectra in an

automated manner. It should be mentioned that this is not to argue that the ratioing

is incorrect (the ratio is similar to subtracting a spectrum in the log-space, so this

operation can be considered to be analogous to unmixing), but rather to highlight

that the GAN-based mapping is unable to identify minerals that are only highlighted

after the removal of some fractional components.
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CHAPTER 4

AUTOMATED IDENTIFICATION OF NOVEL MINERAL
SHAPES IN CRISM IMAGES

The previous chapter describes a promising method for mapping known mineral

shapes in CRISM images which leverages features learned by an unsupervised machine

learning algorithm–namely, the GANs. One capability the existing suite of tools lack,

is that they are currently unable to identify variants/alterations of known mineral

shapes or previously unknown/novel spectral shapes present in CRISM images. A

traditional classification technique, such as the GAN feature based classifier described

in Section. 3.3.3 also does not include this capability (the full pipeline is schematically

shown in Fig. 4.1). This technique (classifier) simply assigns each test sample to the

same class as the exemplar to which it is closest to in the GAN feature space, i.e.

it would simply classify each test pixel as a member of one of the known classes. In

terms of machine learning, the GAN feature based classifier described above is known

as a closed set classifier, wherein each test sample is classified as a member of one of

the known classes. Such an approach, does not include the ability to check whether

a test spectrum is an example of a novel class (i.e., the spectral shape is unknown

apriori).

Similarly even classical neural network classifiers, are also designed under the

closed set paradigm, wherein each sample is classified as a member of one of the k

known classes. These models are supervised machine learning models, i.e. the models

use some examples of the k-known classes to learn the relationship between the input

sample and class memberships. Finally, these classifiers leverage a SoftMax layer [32]

as the final layer to produce a classification result. The SoftMax layer converts a
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k−dimensional output vector of the neural network into a probability distribution

over the k−dimensions, i.e., classifier output is a distribution across the k classes.

The test sample is assigned the label corresponding to the most probable class in the

output distribution.

Figure 4.1. Flow chart describing the CRISM pixel classification using the GAN features

The mapping tool described in the previous chapter (in Sec. 3.4) is only able to

assign high confidence labels to very few pixel-spectra (i.e., pixel spectra with a cosine

similarity ≥ 0.95 to a specific exemplar in the GAN feature space). Most images

contain a significant number of pixel spectra which are considered “non-bland” or

“interesting” (as per the criterion in Sec. 3.1.3) which cannot be identified as either

“identifications” or “guesses” corresponding to any of the known exemplars. Even for

the of pixels marked as “guesses” in the previous chapter too, it is essential to render

a decision on whether the spectral shape is the same as the exemplar or a variant

that needs to be mapped separately. It should be noted that strict thresholds were

set for the “identifications” in the previous chapter to ensure uniformity between the

spectral shapes identified as similar to a specific exemplar. Given these conditions,

the ideal tool for application to CRISM data can instead be modeled as open-set

classifier.
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Under the open-set scheme, the classifier considers two possible scenarios for each

test sample, that it is either a (i) Known class sample, or an (ii) Out-of distribu-

tion sample. In the first scenario the model decides that the specific test sample

is a member of a known class (i.e. is similar to some of the samples encountered

during training). In this case the classifier also renders a decision on which of the

known classes the specific test sample belongs to. In the second scenario, the model

decides that the test-sample is unlike any of the spectral shapes encountered dur-

ing training. Instead, the model marks/labels the test-spectrum as an “outlier” to

the spectral shapes the models has been exposed to previously or and novel spectral

shape. While, the machine learning literature contains a variety of techniques and

approaches for open-set classification [96], there two reasonably well known architec-

tures which allow for open set classification using classical deep learning networks,

namely the OpenMax [8] and the Deep Open Classifier (DOC) [81]. Both the open

set classification architectures include modified output layers (to replace the closed

set SoftMax ) designed for an open set scenario.

The OpenMax [8] modifies the scores/output for a traditional closed set classifier

based on Extreme Value Theory. The eponymous OpenMax layer operates on the

outputs of penultimate layer of the traditional network (referred to as an Activation

Vector (AV)). In this formulation, each class is considered to be represented by the

Mean Activation Vector (MAV), which the mean computed over the AV of correctly

classified examples of that class. For each class the technique further calculates the

distance between the MAV and the AV of the correctly classified examples. Following

this for each class, the technique fits a Weibull distribution to the largest distances

between the correctly classified AVs and the class MAV (The choice of Weibull distri-

butions for the distances is motivated by previous analysis of classifier scores which

found that such scores follow a Weibull Distribution [77]). For a test-sample the ac-

tivation vector is revised based on the Weibull scores from the estimated distribution
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functions. The technique also calculates a pseudo-activation for the “outlier” class a

the sum of difference between the original and revised activations. The full activation

vector for this layer is now the combination of the “outlier” activation and the re-

vised class activation vector. This revised activation vector further normalized using

a SoftMax. A test samples is marked as “outlier” if either, the (pseudo-)activation

of the “outlier” class is highest or if the activation of the largest class is below a

user-defined threshold.

The DOC attempts to generate a similar output, but instead replaces the final

layer of the classifier by a K node layer with simple sigmoid activations. Shu et

al. (2017) show that this layer behaves as a set of K 1-vs-rest classifier wherein

each node decides whether the test sample is member of a specific class. Following

this, the DOC identifies thresholds for each class based on the differences between

the scores of in class members and scores of non-class members. Finally, any test-

sample whose output in the DOC layer is below the identified thresholds for all the K

classes is considered “outliers”. This chapter describes a pipeline that leverages the

DOC layer for setting up of open-set classifier that can be used for processing CRISM

images. This pipeline is able to simultaneously identify both known and novel spectral

shapes present in the image and map their spatial extents . In this implementation,

both approaches were tested on a model open set problem for CRISM data (more

details on the exact experiment is presented in Sec. 4.1.1) and for this specific test

both approached showed very similar performance. Given this information the DOC

architecture was preferred as it simpler to train and implement and does not require

an additional Weibull fitting. It should be noted that the main motivation at this

stage is to ensure that open set tool capable of identifying novel spectral shapes from

the CRISM image database rather than optimizing for the best tool of this nature.

Future works can delve into the ideal open-set tool for CRISM data.

61



Figure 4.2. Flow chart describing the novel spectral shape identification using a DOC
for CRISM images

Table 4.1. Architectural details of the CRISM-based Deep Open Classifier designed
for this project

Deep Open Classifier (DOC) Architecture

Layer
Filters/
Nodes

Stride Activation o/p size

Input 240 X 1
Conv-1 20 2 Leaky ReLU 120 X 1
Conv-2 40 2 Leaky ReLU 60 X 1
Conv-3 80 2 Leaky ReLU 30 X 1
Conv-4 160 2 Leaky ReLU 15 X 1
Flatten 2400 X 1
Dense-1 100 n/a Sigmoid 100
Dense-2 50 n/a Sigmoid 50
Output
(Dense)

22 n/a Sigmoid 22

4.1 Deep Open set Classifier (DOC) for CRISM images

This section describes the process of setting up and training an open-set classifier

for the CRISM spectral data. The full DOC-based scheme for CRISM images is

shown in Fig. 4.2. The first step leverages the preprocessing methods described

previously (see Chapter 3.1). The DOC model is also designed to leverage the feature

extractor (i.e. the discriminator) described in the previous chapter. This choice is
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made as the previous chapter has shown the GAN-based feature extractor to be highly

discriminative in terms of spectral shape. The overall architecture used for the DOC

on CRISM spectra is described in Table 4.1. The initial layers of the model (shown

in green in Table 4.1) are layers corresponding to the GAN-based feature extractor

and were initialized under the “warm-start” [4] scheme, wherein the weights of a pre-

trained model (in this case the initial layers of the discriminator from the previous

chapter) are used to initialize a new network. These initial layers corresponding to

the GAN-based feature extractor are held frozen during the training phase.

The DOC models have dropout layers with a dropout of 0.3 after each computa-

tional layer. The models use an Adam optimizer[47] with a learning rate (α = 1e−4),

and the multipliers for the decay rate to the various moments set to (β1 = 0.9, & β2 =

0.99). All DOC models are trained with a batch size of 256 for 200 epochs, with early

stopping using a validation dataset. The model is trained using the summation of

the log-losses of the k−sigmoid functions (assuming k is the number of classes) on

the training data (with N samples) as shown in Eqn. 4.1 [81]:

Loss =
N∑
j=1

k∑
i=1

−I(yj == li)log(p(yj) == li)− I(yj ̸= li)log(1− p(yj) == li) (4.1)

Following the training the algorithm includes a thresholding condition for each node’s

output for the rejection of samples as “outliers”. In the original implementation, a

specific threshold is evaluated for each class/node is evaluated, with any test-samples

with maximal output activation below the threshold are considered outliers (assigned

a label of −1). For each node/class the algorithm considers each member of the class

as positive example and every member of other classes as a negative example and

identifies a threshold which can best separate the two. With this modification the

neural network model is expected to be able to not only identify members of the

known classes but is also able to identify any test samples that the model was not

exposed to in training.
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4.1.1 Verifying the performance of the DOC on CRISM spectral data

Prior to the application to CRISM image data the chosen open-set classifier has

to be tested under the open-set paradigm for spectral data. For this purpose a toy

open set problem was created with labeled spectral data. The training dataset of

this problem contains 4500 labeled examples per class from 6 mineral classes known

to be present in CRISM data, these mineral classes are Fe-olivine, Mg-carbonate,

low Ca-pyroxene, mono hydrated Sulfate, Alunite, Al-smectite, and Fe/Mg-smectite.

To simulate the open set paradigm the test set also included samples from 4 addi-

tional classes found in Martian data, namely, Jarosite, Gypsum, hydrated Silica, and

Prehnite. This open-test set contains 1500 test-samples corresponding to each of the

test classes mentioned. Following this, a DOC classifier with the architecture shown

in Table. 4.1 is trained with the spectra in the training set described here. Post the

training with the labeled dataset the outputs of each node for the different classes are

analyzed. In this implementation, the threshold to identify “outliers” is estimated

as 2 times the standard deviation of the activation for the training samples of the

specific class. This threshold was chosen as across all the classes in the training there

were no negative samples included in the specific class with this threshold. Following

this the DOC model is tested on the open-test set described above. For the samples

corresponding to the novel classes the models’ classification is considered successful

if they are labeled as “outliers” and not members of a known class. The confidence

matrix showing the performance of DOC on the open-test set is shown in Fig. 4.3.

From the results shown in Fig. 4.3, it is clear that for the simple open-test set

described here, the model is able to not only classify the samples of the known classes,

the DOC is also able to identify the outliers successfully. In analyzing the results

for the open-test set described above it is essential to note that the open-dataset

described here is significantly simpler than the CRISM image dataset, as the classes

are disparate by construction, i.e. the samples in each class are drawn from a clearly
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Figure 4.3. Confidence matrix showing the performance of the DOC for a simple exper-
iment with labeled samples

65



separable regions in the GAN representation space. Rather, this experiment only

provides a baseline to indicate that the DOC able to clearly separate the unknown

samples from the known samples, as indicated by the 100% accuracy in identifying

the “outliers” (see top row of Fig. 4.3). Interestingly there are some cases when

class-members are marked as “outliers”, this is because of the strict thresholds placed

on the definition of the class, and a continuation of our preference to miss a detection,

rather than mislabeling a spectrum. Further, based on this trend that model is more

likely to miss a specific detection rather mislabel one, it can be surmised that samples

labeled as a class by the model are spectrally consistent. This mode of labeling can

be considered identifying region is the GAN-based feature space that is consistent

with the spectral class.

4.1.2 Creating a training dataset for CRISM DOC classifier

In the initial implementation the DOC for CRISM images were initially trained

on the 18 major well-known mineral classes (shown in black in Table. 3.4) from the

CRISM MICA database. While primarily 18 classes were considered, some of the

classes encompassed multiple spectral shapes, for example the expert analysis has

shown two spectral shapes that are both considered Mg-Carbonate (see Fig. 3.20

(A) for specific shapes). Following this we search a training database of around 40

CRISM images for spectra that are very similar to exemplars corresponding to the

various classes. Similar to the efforts in the previous section, spectra corresponding

to the known classes are found by leveraging a similarity analysis in the GAN-based

feature space. In this case, the spectra that can be considered identifications are

extracted and placed in a labeled spectral database (to ensure strict similarity with

the exemplar, the identification threshold (in terms of cosine similarity) was further

tightened to 0.97). This search enabled the creation of a labeled CRISM spectral

database that can be used for training ML models.
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The one issue identified with the labeled dataset is that it is significantly imbal-

anced, i.e. there are more examples of certain prevalent minerals such as Fe-Olivine

and Fe/Mg-smectite that have identifications ranging in the tens of thousands, while

rare minerals like Jarosite have examples ranging in only the tens or hundreds. To ad-

dress this issue a simple data augmentation techniques is used, convex combinations

of existing members of the class are created to create more examples of the sparse

class. Following this a simple training dataset is created with 10000 samples of each

class to train the DOC model. Following this is a DOC model is trained with this

dataset using the same architecture and hyperparameters as the model described in

Sec. 4.1.1. Further, a similar scheme is used to identify the outlier threshold for each

of the known classes.

4.1.3 Training the DOC classifier for CRISM data

Finally to use the DOC classifier to generate maps for various minerals/outliers

present in a CRISM image, each image is first processed using the preprocessing steps

mentioned in Chapter 3.1. Then each pixel with significant absorptions is applied to

the trained DOC model which produces a 18−dimensional vector as on output for

each pixel. All activations except the highest score in the output are zeroed out. Then

for the maximal class activation if the score is above the threshold for the specific

mineral the pixel is marked as “class-member” (denoted by label 1). If the score is

below the class threshold the pixel is marked as an “outlier” (denoted by label 2).

Thus, each non-bland “pixel-sepctrum” is represented by an 18−dimensional vector

with one non-zero value. For the pixels marked “outlier” (i,e., pixels for which the

non-zero value in the label vector is 2), the label vector also identifies the library

exemplar to which the outlier spectrum is closest to in shape.

67



Figure 4.4. Maps showing the DOC performance of the CRISM images FRT0000A425
with: (A) RGB composite of the CRISM images. (B) DOC maps for Al-smectite. (C) DOC
maps for Fe-smectite (D) DOC class members and outliers for Al-smectite and (E) DOC
class members and outliers for Fe-smectite
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4.1.4 Illustration of the DOC Mapping on a single CRISM image

To illustrate the performance of the DOC classifier we consider the CRISM image

FRT0000A425 is an image from Mawrth Vallis (N:25.248355, W:20.254675). The

image is well-known and is in fact the scene from which the MICA exemplar for Fe-

Smectite was identified. The image has been well-studied and contains a wide variety

of spectral shapes and provides an excellent test case for the open-set classification.

The main mineral detections of the DOC classifier in this image are smectites namely

Al-smectite and Fe/Mg-Smectite respectively. The maps of the two minerals from the

DOC classifier are shown in Fig. 4.4 (B) & (C). The pixels marked in grey are class

members of the class Fe-smectite and Al-smectite. The pixels marked in white are

the outlier pixels in the image who’s closest library match is the either Al-Smectite or

Fe-Smectite respectively.The plots in Fig. 4.4 (D) & (E) and illustrate the comparison

of the class members and outliers relative to the class exemplar.

To illustrate the differences between the “class-members” and “outliers” Fig. 4.4

shows the comparison of the class exemplar with some manually chosen examples

of either class. Note that the class members (the dashed-blue plots) shown in Fig.

4.4 (D) & (E) have all the same absorptions as the class exemplars (the solid-blue

plots) in the continuum removed space. The major bands in general have the same

approximate shape, width and depth also. On the other hand, the outlier spectra

(shown in dashed-red plots) are significantly different in terms of the absorptions

present. The Al-smectite outlier (shown in red in Fig. 4.4 (D)) has an absorption

at 2.27 µm instead of at 2.205 µm like the exemplar of the Al-smectite class. Also

there are differences in the shape of the hydration band at 1.4 µm. Similarly, for the

outlier spectrum of the Fe-Smectite class (shown in red in Fig. 4.4 (E)), the specific

pixel spectrum has bands at 2.205 & 2.31 µm instead of the characteristic 2.29 µm

absorption typical of the Fe-Smectite. Clearly, the outlier show significant variations

from the class exemplars and their identification as outliers appears reasonable.
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Based on this DOC classification, the model classifies a total of 82, 475 of the

significant pixels as members of the known classes, while about 73415 pixels were

labeled as outliers and needed to be analyzed further.

4.2 Parsing the list of outlier spectra in CRISM images

Post-processing of a CRISM image by the DOC classifier as described in the

previous section, a significant portion of the non-bland pixels are marked as “outliers”.

The outlier count runs in the thousands or tens of thousand for most CRISM images.

Parsing such a large list of spectra manually and identifying the unique spectral

shapes of interest and their spatial extents will be highly tedious and intractable on a

large scale. Further, given the expectation that neighboring pixels in CRISM images

have very similar spectral shapes it would be useful if an automated processes is able

to group the identified outlier spectra into clusters/segments such that all the spectra

in a given cluster/segment have a uniform spectral shape. In pursuit of this objective,

a graph-based segmentation approach [75] was leveraged to group the outlier spectra

from a given image into spectrally uniform clusters.

4.2.1 Distance based spectral clustering

The graph based clustering algorithm begins by describing a graph G over the

elements of interest. In mathematics, a graph is a set of objects that are related in

some sense. The objects are modeled as nodes/vertices with the relationships between

them being modeled as edges [93]. In this initial graph definition each element in the

input set (which can be represented as a vector v ∈ RD) is modeled as node.

Further, the graph connects each node to its k−nearest neighbors with edges, each

edge can be weighted according to a mathematical relationship between the nodes it

connects. The full set of edges is referred to as E .Thus a graph G is defined by a set of
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Figure 4.5. Clustering identified Outlier pixels into segments. (A) RGB composite of the
CRISM images. (B) DOC maps for Al-smectite. (C) DOC maps with mineral identifications
marked as colored pixels (Cyan:Fe−smect, Blue:Al−smect) and outlier pixels marked in
white. (C) effect of segmenting/clustering the outlier pixels-each colored cluster identifies
pixel spectra that the segmentation algorithms considers similar to each other.

nodes/vertices V and a set of relationships between the nodes, i.e. edges E , together

the graph is expressed as G(V , E).

For clustering, the algorithm begins by considering each node/vertex as a clus-

ter/segment on its own. Following this the algorithm arranges all the edges in E in

increasing order of the edge weights. Each edge is then processed if it connects nodes

in different segments, say Sa and Sb. In this case, the algorithm then estimates the

minimal similarity (MSim(Sa, Sb)) between the two segments as:

MSim(Sa, Sb) = min
vi,vj

1− dcosine(vi, vj)

s.t. vi ∈ Sa; vj ∈ Sb

(4.2)

Following this, two segments are merged if the minimal similarity between them

is above a user-defined threshold. Following the merging of these nodes into one

cluster/segment, the segment id for all the members are updated to be the same.

Once the algorithm has completed processing all the edges in the set E , the algorithm

would have grouped all elements with other similar nodes in the input dataset.

71



4.2.2 Grouping outlier into similarity based clusters

The various pixel spectrum in an image identified as “outliers” by the DOC in

an image are extracted. Following the spectra are passed through the GAN based

feature extractor- the feature extraction is performed as this representation is shown

to be more discriminative than the original spectral space. Following this, the graph-

based clustering algorithm (described in Sec. 4.2.1) is used to cluster the image

outliers into segments/clusters of similar spectral shapes. For CRISM image set, each

edge is weighted by the cosine distance between the two spectral shapes in the GAN

feature space. In this application the similarity threshold for merging was chosen

to be a spectral similarity of 0.95. This threshold was chosen based on heuristic

manual analysis that has indicated that spectra with cosine similarity greater than

this threshold are spectrally consistent and can be considered members of the class.

Post clustering, each cluster is only represented by the average spectrum of each

cluster. Such averaging very useful in eliminating/suppressing the noise/distortions

present in an individual pixel. For the CRISM image FRT0000A425, such processing

reduces the number of unique spectral shapes to be analyzed from 73415 down to

135. The shapes of outlier clusters/segments is shown in Fig. 4.5.

4.2.3 Grouping Cluster Medians for manual analysis

While the previous step significantly reduces the data complexity from thousands

of spectral shapes to be considered to a few hundred, manually analyzing a few hun-

dred shapes will still be physically taxing. For this purpose, an additional clustering

step is proposed wherein the clustering is reapplied to the cluster medians identified

in the previous step, but the threshold is loosened down to the value 0.707. This

threshold now ensures that each median is grouped with spectra it is most similar

to but no longer guarantees spectral uniformity inside the group. This step is useful

as it allows a human expert to consider each spectrum relative to spectra that they
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are most similar to. This will allow the expert to easily identify spectra that are dis-

tinct and should be mapped separately. For the CRISM image FRT0000A425, this

approach groups the 135 unique spectral shapes into 17 distinct groups. Illustration

of what the spectra in the different groups looks like is shown in Fig. 4.6

Consider for example the shapes in Fig. 4.6 (B) all the members of this group

have clear absorptions at 1.4, 1.9, 2.2 & 2.3 µm. The spectra show differences in the

exact depth of the Al-OH band (2.2 µm) relative to the hydration band (1.9 µm).

They also show a weaker absorption at 2.3 µm. The blue spectrum in the group also

shows a continuum variation (easily seen in Fig. 4.6 (C)) in the 1.0− 1.8µm spectral

range that may be interesting to an expert. Similarly all the spectra in 4.6 (E) also

show a clear absorption at 2.27 µm indicative of sulfates like jarosite. Some of the

spectra (specifically the blue and red ones) also show an absorption at 2.4 µm that

may indicate an alteration to an expert. The spectral groups and associated maps

(both group maps and segment shapes are shown in Fig. 4.6).

4.3 A brief description of the products from the automated

mineral identifications

This section will briefly describe the various products that are generated by the

automated mineral identification pipeline and provide some insight on how they are

meant to be used. The pipeline produces three main products:

[1] The first product generated by the pipeline will be an ENVI style 3−D image

(’.img’), where each band contains the maps for one of the pre-known classes. Pixels

identified marked as 1 can be considered as members of the specific class. Some pixels

may be marked 0 for all the classes, this can either be because the mapping pipeline

considers the spectrum “insignificant” (i.e. it contains no clear absorptions), or that
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Figure 4.6. Effect of grouping unique outlier spectral shapes. (A) Maps of pixels corre-
sponding to various shapes in Group 15, (B) & (C) Spectral shapes and Continuum removed
spectral shapes in Group 15. (D) Maps of pixels corresponding to various shapes in Group
17. (E) & (F) Spectral shapes and Continuum removed spectral shapes in in Group 17.
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the spectra are considered “outliers” by the mapping pipeline.

[2] The second product of the outlier detection pipeline is an ENVI style spectral

library (a .sli file) containing all the unique spectral shapes identified by the mapping

pipeline. As a general rule, this file contains between 30− 100 unique spectral shapes

for each CRISM image. Often the differences between the members of this file are

rather subtle and may not raise to the level of a spectral difference in the opinion of

an expert spectroscopist, but in the interest of displaying all the shapes identified by

the pipeline, this product presents all the spectral shapes identified. The names of

the product will indicate the group memberships of each spectral shape and should

help guide a user to compare spectral shapes that are similar.

[3] The first of the outlier-map products generated by the mapping pipeline will be

a group level mapping product. This product is an ENVI style 3−D image (’.img’),

wherein each band corresponds to one of the groups identified by the pipeline. This is

a global mapping product and identifies where spectra of specific shapes are present

in the image. If an expert determines that the differences inside a group are not

“mineralogical”, these bands will provide the maps for the specific class.

[4] The final product produced by the pipeline is a map for each spectral shape

identified. As mentioned above in most cases the individual spectral shapes in each

cluster are similar and may not be mineralogically relevant. The product is provided

to account for cases where the grouping does lump in diverse spectral shapes and

allow a fine scale analysis of the spectral differences.
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CHAPTER 5

SUMMARY AND CONCLUSIONS

Given its long and fruitful operational life the CRISM instrument(2006-2023) the

instrument has acquired close to 10000 images with infra-red spectral information.

Given the size and scope of the dataset tools that can automatically analyze and

summarize the spectral information present in the images would be a valuable asset to

the planetary remote sensing community. Attempts to directly create automatic tools

to analyze such images are hampered by the fact that spectral similarity is difficult to

define and measure. Experimental effort such as those shown in Sec. 2.1 have shown

that classical similarity metrics struggle in measuring spectral similarity, i.e., there

does not seem to be a clear separation between the classes. Even metrics like spectral

summary parameters which are designed for the express purpose of identifying specific

spectral families (see Sec. 2.2 for details).

Given the inability of classical methods such as similarity/dissimilarity metrics

and spectral summary parameters to measure spectral similarity described by human

experts, automated mineral identification and mapping has proven to be an impor-

tant challenge for the Martian remote sensing community. Given the issues mentioned

above, efforts to leverage simple rule based systems to create mineral identification

maps have encountered only partial success. This dissertation attempts to address

this gap by creating/defining a suite of machine learning tools for mineral discrimina-

tion and identification. The first tool is a GAN-based spectral feature extractor that

provides significantly improved mineral discrimination (see Chapter 3). The GAN is

described as an approximate sampler of the actual CRISM spectral data distribution.
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Given the ability of the discriminator portion of the GAN to separate CRISM spectral

shapes from non-CRISM spectral shapes, the features learned by this discriminator

are expected to be far more discriminative between different spectral shapes than

the original representation in the CRISM I/F space. In this specific implementation,

the features used are the output of the penultimate layers the discriminator is used

as the feature space representation. Experiments have shown that this novel feature

space shows a significant improvement in terms of the spectral discrimination (see

Sec. 3.3.2 for details). Following this, Sec. 3.4 shows some experimental results of

mapping CRISM images using this feature extractor. These results have been vali-

dated manually and used to create maps for candidate Perseverance Landing sites as

part of the CRISM data “Fandango” project.

While the GAN-based space can be leveraged to create significantly improved min-

eral maps (or more accurately spectral maps) for mineral spectral-shapes, a missing

functionality is the ability to identify hitherto unknown spectral shapes. For this pur-

pose an open-set classifier is defined, which is designed under the specific paradigm

that the test data contains classes that are previously unknown. For this purpose we

define a deep open classifier that describes each class as a small compact region in

the activation space of the penultimate layer of such classifiers. Such models are then

capable of identifying spectral shapes that are unlike the constant shapes in a specific

region. Once identified such models are able to identify novel spectral shapes present

in images. The spectral shapes are then grouped based on similarity and provided to

experts for further validation.

While the tools described in this dissertation address some of the issues in the

identification and mapping of spectral shapes in the CRISM spectral data, they are

by no means a final solution. The noise and other distortions often present in CRISM

spectra can change the appearance of these spectra, making them resemble spectra of

other minerals. This for the mapping and identification stages as either a spectrum
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of the same class is not identified or spectrum of the same mineral is class is again

identified as an “outlier. Additionally, even physical factors like mixing may affect

spectral shapes which may lead to an over segmentation of the pixel space. Future

work should focus on addressing these issues. In addition to this further attempts

can also focus on combining the information from the VNIR and SWIR spectral

data available from the CRISM instrument. Finally, while these tools show massive

promise, a significant amount of work needs to be conducted in validating maps and

identifications of these images,
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APPENDIX

A BRIEF INTRODUCTION TO HYPERSPECTRAL
IMAGING

Remote Sensing is the measurement of the properties of a surface from a distance,

rather than in situ (at the original location), i.e. without any direct contact. One such

remote sensing technique is hyperspectral imaging which studies the surface of interest

using optical signals. Hyperspectral imagers capture/measure the electromagnetic

energy (light) scattered in their field of view in very narrow spectral windows (of width

around 10 nm) in the Visible to Near Infra-Red (NIR) wavelength range (0.4− 4µm)

[19], over a 2−dimensional spatial grid. Hyper-Spectral Images (HSIs) take the form

a 3D data-cube, with each plane corresponding to the measure of electromagnetic

energy scattered off the surface over this narrow spectral intervals. These intervals

are generally referred to as a spectral channels or band. Consequently each spatial

location in the field of view is associated with a radiance spectrum, which represents

the amount of radiation that is reflected from the surface at that location. Further, the

radiance at each pixel/location is divided by the amount of total energy (in the specific

spectral channel) incident at the location to create a hyperspectral reflectance cube

[16]. The measured reflectance is a property unique to the materials present on the

surface being observed, and as such can be used identify the materials present on the

observable surfaces [54]. This ability to identify the materials present in the observed

scenes from a distance/without any direct contact makes HSI a valuable resources

for various tasks such as for agricultural management and food safety[68], monitoring

aquatic ecosystems [64], forensic analysis [57], and various geological applications [7].
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Geological applications leverage the ability of hyperspectral images to identify and

map the spatial patterns of mineral assemblages present on planetary surfaces [16].

Since such studies generally focus on mapping specific mineral shapes on a geographic

scale they focus on leveraging hyperspectral data from airborne and satellite sensors

such as the Airborne Visual/Infrared Imaging Spectrometer (AVIRIS) [37] for earth

observation, the Moon Mineralogy Mapper (M3) [70] to investigate the lunar surface,

and the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) [60] for

studying the martian surface. Since these sensors are air or satellite-borne: each

scene captured by these sensors correspond to a relatively large area on the ground

(for example, each CRISM pixel corresponds to approximately 18 m on the ground,

an AVIRIS pixel (in EO-2 mode) to 20 m on the ground). As a consequence, it

is quite probable that this area comprises different materials. In this scenario, the

spectrum associated with each pixel is expected to be some combination (mixture)

of the spectra of the different materials present in the area. In remote sensing image

analysis the task of identifying the constituent materials present in a scene and their

fractional abundances is referred to as the Mixing/Unmixing problem [46]. Fig. A.1

shows a schematic representation of airborne/satellite borne hyperspectral imaging.

Based on the prevalent conditions different models maybe required to explain the

mixing present in hyperspectral images, the mixing models proposed in the literature

fall broadly into two categories: the Linear Mixing Model (LMM) and nonlinear

mixing models. The LMM states that the spectrum associated with a pixel is a

weighted combination of the spectra of the materials (endmembers) present in the

area covered by the pixel. The weight associated with each material is proportional

to the abundance of the particular material in the region. Under the geometric

optics approximation, the LMM assumes that each ray of light interacts with a single

material and that the optical mixing occurs at the sensor [54, 13]. In general the LMM

is a feasible approximation in the case of coarse, checker-board mixtures. However
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Figure A.1. The scheme for Air/Satellite-borne hyperspectral imaging. [Source:
Dr. Yuki Itoh-Private Communications ]
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in the presence of non-trivial spatial structures or intimate or microscopic mixtures

the assumptions of the LMM, i.e. light rays do not undergo multiple reflection en

route to the sensor, are not valid [46, 42]. In such cases the mixing can no longer be

considered linear and is modeled using non linear representations [13, 42, 26].

Most existing unmixing algorithms that have been developed assume an underly-

ing linear mixing model to solve the mixing problem. They are based on ideas such

as Non-Negative Matrix Factorization (NNMF) [58], least-squares regression [12],

minimum volume simplices [94] and convex cones [38]. Non-linear methods taking

into account secondary scattering have been proposed such as bilinear models (e.g.

[39]). Some models explicitly describe the multiple scattering properties of the me-

dia and result in nonlinear formulations such as the ones developed by Hapke [41].

Other techniques attempt to identify endmembers in intimate mixing scenarios by

non-parametric graph-based algorithms [74]. Such systems only make some general

assumptions on the geometrical properties of the data such as, endmembers are always

on the boundaries of such a data cloud.

Further, planetary hyperspectral datasets are affected by complicating factors such

as the presence of noise, instrument distortions and outliers [45]. Also, for sensors

studying planetary surfaces the atmospheric calibration is complicated due to the

scarcity of usable ground-truth information. The leads to spectral distortions caused

by the incorrect correction of the atmospheric effects. The presence of such spectral

distortions can significantly affect the spectral shape of data obtained from the plan-

etary instruments. In addition, these instruments are rife with significant amounts of

noise. The noise further makes the application of geometric and physical methods for

data processing harder as the presence of noise distorts/eliminates the presence of the

geometrical structure in the data-cloud from these datasets [74]. Given these data

conditions atmospheric correction and denoising are an essential pre-processing step

82



for hyperspectral data-processing (see Itoh and Parente (2021) [45] for an example of

an atmospheric correction pipeline for CRISM data and the issues therein).

In spite of these complicating factors very often such remote sensing data sources

such as hyperspectral images are the best sources of information of large swathes of

often inaccessible surfaces at a great distance with which there is minimal contact.

A.1 Interpreting spectral data

As has been mentioned hyperspectral images take the form of 3D cube, wherein

each pixel in the 2D spatial grid is associated with a vector, and as such each pixel

in a hyperspectral image can be modeled as a spectrum as has been shown by the

pixel-spectral plot in Fig. A.1. Fig. A.2 shows a selected spectrum from the CRISM

image FRT00003E12, which observes a portion of the Martian surface in the Nili

Fossae region [the image center coordinates are 22.260495◦N, 77.076525◦E]. Fig. A.2

(B) shows the spectrum associated with pixel marked in red in Fig. A.2 (A). This

spectrum appears to be a combination of smooth global shape and some localized

absorptions (which are spread over small spectral regions), which are referred to as

absorption bands. The smooth global shape is referred to as the continuum is gener-

ally modeled by the convex-hull envelope fit to the spectrum, as shown by the green-

spectrum in Fig. A.2 (C). The value of the continuum depends on the global factors

of the measurement such as angle of incident light to the surface normal (incidence

angle), angle of the detector to the surface normal (emission angle), the atmospheric

conditions, and other global factors such as cloud-cover etc.. Further, since it is known

that different materials has a unique set of frequencies over which it absorbs when

light is diffracted off it, these absorptions can be used identify the specific mineral

components present on the chosen spatial location. Spectroscopists have used the

size and shape of the absorption bands at 2.31 & 2.51µm, to identify the presence

of a Mg-Carbonate at that location. The absorption features are enhanced in the
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Figure A.2. Interpreting Spectral Information (A) an RGB composite of the CRISM
image FRT00003E12 with the chosen pixel marked in red, (B) The spectrum asso-
ciated with the pixel marked in (A), (C) The pixel spectrum and the associated
continuum (D) the continuum-removed spectrum

continuum-removed spectrum as shown in Fig. A.2 (D). The absorption features in

the continuum spectrum depends primarily upon the mineral composition of the sur-

face at the specific spatial location as opposed to global measurement factors. These

absorption features have been instrumental in successfully identifying and mapping

many different minerals on various such far-away unreachable terrains.
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[13] Bioucas-Dias, José M, Plaza, Antonio, Dobigeon, Nicolas, Parente, Mario, Du,
Qian, Gader, Paul, and Chanussot, Jocelyn. Hyperspectral unmixing overview:
Geometrical, statistical, and sparse regression-based approaches. IEEE journal
of selected topics in applied earth observations and remote sensing 5, 2 (2012),
354–379.

[14] Bishop, Janice L. Remote detection of phyllosilicates on mars and implications
for climate and habitability. In From habitability to life on Mars. Elsevier, 2018,
pp. 37–75.

[15] Bishop, Janice L, Dobrea, Eldar Z Noe, McKeown, Nancy K, Parente, Mario,
Ehlmann, Bethany L, Michalski, Joseph R, Milliken, Ralph E, Poulet, Francois,
Swayze, Gregg A, Mustard, John F, et al. Phyllosilicate diversity and past
aqueous activity revealed at mawrth vallis, mars. Science 321, 5890 (2008),
830–833.

[16] Borengasser, Marcus, Hungate, William S, and Watkins, Russell. Hyperspectral
remote sensing: principles and applications. CRC press, 2007.

[17] Carter, J, Poulet, F, Murchie, S, and Bibring, JP. Automated processing of
planetary hyperspectral datasets for the extraction of weak mineral signatures
and applications to crism observations of hydrated silicates on mars. Planetary
and Space Science 76 (2013), 53–67.

[18] Carter, John, Riu, Lucie, Poulet, François, Bibring, Jean-Pierre, Langevin, Yves,
and Gondet, Brigitte. A mars orbital catalog of aqueous alteration signatures
(mocaas). Icarus 389 (2023), 115164.

[19] Chang, Chein-I. Hyperspectral data exploitation: theory and applications. John
Wiley & Sons, 2007.

[20] Christensen, Philip R, Bandfield, JL, Clark, RN, Edgett, KS, Hamilton, VE,
Hoefen, T, Kieffer, HH, Kuzmin, RO, Lane, MD, Malin, MC, et al. Detection of
crystalline hematite mineralization on mars by the thermal emission spectrome-
ter: Evidence for near-surface water. Journal of Geophysical Research: Planets
105, E4 (2000), 9623–9642.

86



[21] Christensen, Philip R, Bandfield, Joshua L, Hamilton, Vicky E, Ruff, Steve W,
Kieffer, Hugh H, Titus, Timothy N, Malin, Michael C, Morris, Richard V, Lane,
Melissa D, Clark, RL, et al. Mars global surveyor thermal emission spectrometer
experiment: investigation description and surface science results. Journal of
Geophysical Research: Planets 106, E10 (2001), 23823–23871.

[22] Christensen, Philip R, Jakosky, Bruce M, Kieffer, Hugh H, Malin, Michael C,
McSween, Harry Y, Nealson, Kenneth, Mehall, Greg L, Silverman, Steven H,
Ferry, Steven, Caplinger, Michael, et al. The thermal emission imaging system
(themis) for the mars 2001 odyssey mission. Space Science Reviews 110 (2004),
85–130.

[23] Clark, Roger N, and Roush, Ted L. Reflectance spectroscopy: Quantitative anal-
ysis techniques for remote sensing applications. Journal of Geophysical Research:
Solid Earth 89, B7 (1984), 6329–6340.

[24] Dana, James Dwight. A system of mineralogy. BoD–Books on Demand, 2022.

[25] DeMaris, Alfred. A tutorial in logistic regression. Journal of Marriage and the
Family (1995), 956–968.

[26] Dobigeon, Nicolas, Tourneret, Jean-Yves, Richard, Cédric, Bermudez, José Car-
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