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ABSTRACT

INCORPORATING MACHINE LEARNING WITH SATELLITE 
DATA TO SUPPORT CRITICAL INFRASTRUCTURE 

MEASUREMENT AND SUSTAINABLE DEVELOPMENT

FEBRUARY 2024

AGGREY MUHEBWA

B.Sc., MAKERERE UNIVERSITY

M.Sc., CARNEGIE MELLON UNIVERSITY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Jay Taneja

Under the umbrella concept of Arti�cial Intelligence (AI) for good, recent advances in 

machine learning and large-scale data analysis have opened new opportunities to solve 

humanity’s most pressing challenges. Improvements in computation complexity and ad-

vances in AI (e.g., Vision Transformers) have led to faster and more e�ective techniques 

for extracting high-dimensional pa�erns from large-scale heterogeneous datasets (big 

data). Further, as satellite data become increasingly available at varying temporal-spatial 

resolutions, AI tools are helping us to be�er understand the underlying causes of envi-

ronmental and socioeconomic changes at an unprecedented scale, ushering in an era of 

data-driven decision-making to support sustainable and equitable development. Based on 

these, we propose data-driven methods and techniques for critical infrastructure measure-

ment and sustainable development. Using machine learning and remotely sensed data, we

vii



show that we can exploit knowledge and temporal-spatial characteristics learned from

data-rich regions to improve data-driven predictions in regions with scant to no data.

Speci�cally, we focus on three critical infrastructures: rivers, roads, and electricity ac-

cess. Knowledge rivers, particularly their discharge, can help us understand how climate

change is evolving, its manifestation on global water resources, and its impact on critical

sectors like agriculture and renewable energy generation. On the other hand, be�er roads

facilitate societal development, enabling access to local and global markets and socioeco-

nomic opportunities, leading to be�er equality in service provision, faster socioeconomic

development, and, ultimately, be�er human outcomes. Finally, we develop tools to sup-

port sustainable development, focusing on supporting electricity demand stimulation to

improve energy access in rural communities. �ese methodologies and techniques can

help emerging economies achieve their primary sustainable development goals (SDGs)

by 2030.
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CHAPTER 1

INTRODUCTION

1.1 �esis Contributions

Population density, 2022
The number of people per km² of land area

No data 0 2 5 10 20 50 100 200 500 1,000

Source: Food and Agriculture Organization of the United Nations via World Bank (2021); Gapminder (v6); HYDE (v3.2); UN (2022)
OurWorldInData.org/world-population-growth • CC BY

Figure 1.1: Map showing global population density (2022). Over 80% of the world’s population
lives in the global south. On the other hand, a large percentage of real-time hydrological data (Fig
1.2) is available in the global north.

In this thesis, we propose data-driven methods and techniques to support critical in-

frastructure measurement and sustainable development. Using machine learning and re-

motely sensed data, we show that we can exploit knowledge and temporal-spatial char-

acteristics learned from data-rich regions to improve data-driven predictions in regions
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with li�le to no data. Speci�cally, we focus on three key infrastructures: rivers, roads,

Figure 1.2: Map showing the global location of active river gauge stations from 1919 to the present.
Most active gauge stations (blue) are present in the global North, while a big percentage of the
inactive or decommissioned stations are in the global South. (Source: World Meteorological Orga-
nization)

and electricity access. Knowledge of rivers, particularly their discharge, can help us un-

derstand how climate change is evolving and manifesting itself on global water resources

and the resulting impact on key sectors such as agriculture, renewable energy generation,

and the overall economy. On the other hand, be�er roads hasten societal development,

enabling access to local and global markets and the movement of goods and ideas, leading

to be�er equality to service provision, faster economic development, and, ultimately, bet-

ter human outcomes. Finally, we develop tools to support electricity demand stimulation

to improve energy access in rural communities. Here, we designed a mobile application

to (a) understand the movement pa�erns of �shing boats to estimate the optimal times

when they can be charged if converted to �shing boats and (b) understand the cellular

network signal strength as �shing boats move further from the landing site in order to

design best network communication and data synchronization strategies. By Juxtaposing

methods and techniques that e�ectively use highly stochastic data (e.g., climate data) with
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those that use deterministic data (e.g., satellite imagery), we show that with the right data,

data modeling techniques and data-driven methods, data scare regions can bene�t from

reliable and consistent data generated by data-rich regions.

1.1.1 Global River Discharge Estimation

�e recent increase in the frequency and severity of natural disasters indicates an imme-

diate need to address the cascading impacts of climate change. However, climate change

cannot be measured directly. In a weather cycle, river discharge is the result of any hy-

drologic process and thus directly measures the e�ect of two major parameters used to

measure the impacts of climate change: Temperature and Precipitation. Unlike current

methods that can infer climate change pa�erns over a long period, river discharge is an

e�ective proxy for measuring the e�ects of climate change within a short period. Un-

fortunately, current statistical and physics-based models neither take full advantage of

hydrometeorological information encoded in over 100 years of historical hydrologic data

nor are they applicable globally.

Our contribution is twofold. First, we train Long Short Term Memory (LSTM) Recur-

rent Neural Network models on satellite observations and daily discharge from gauged

basins to predict discharge in ungauged basins. Our models show Kling-Gupta and Nash-

Sutcli�e E�ciency scores of 85% and 81%, respectively, in ungauged basins with limited to

no existing data, while the latest state-of-the-art process-based hydrology models show

performance between 0% and 50% in similar circumstances. However, categorizing basin-

wide rivers into classes is less e�cient because of varying hydrometeorology character-

istics across river basins. To overcome this, we propose leveraging the projected increase

in the availability of �ne-grained hydrometeorological data from the recently launched

surface water and ocean topography (SWOT) mission. Data from the SWOT mission will

help improve our knowledge of local rivers on a global scale. We hypothesize that inte-

grating spatiotemporal hydrologic knowledge into the data modeling process (distribu-
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tion/disaggregated modeling) will improve the performance of discharge prediction mod-

els. To test this hypothesis, we design experiments to compare the performance of identi-

cal Long Short Term Recurrent Neural Network (LSTM-RNN) models based on two data

modeling approaches, i.e., lumped vs. distributed/disaggregated modeling. We expect the

distributed modeling approach to outperform the latest state-of-the-art data assimilation

and lumpedmachine learningmodels in ungauged basins. Our proposed approach can po-

tentially improvemethods for predicting river discharge on a global scale and advance our

understanding of the cascading impacts of anthropogenic climate change on global water

resources. Additionally, this work sets the stage to examine the constraints of process-

based modeling approaches and be�er characterize how machine learning-based models

can be used to model physical processes in hydrology and other physical sciences.

1.1.2 Explainable Machine Learning for Hydrology

Li�le or no information exists about the majority of global water resources. Modern ma-

chine learning (ML) techniques can facilitate the transfer of hydrologic information across

regions with varying amounts of historical and current data. However, the black-box na-

ture of ML algorithms makes it di�cult to understand how they arrive at accurate predic-

tions, resulting in poor adaptation in traditionally �rst-principles-based hydrologic sci-

ences. In contrast, process-based hydrology models, partial di�erential equations (PDEs)

that characterize the properties of a particular system and its underlying processes, are

easy to explain and comprehend, making them ideal for discharge prediction. However,

process-based models are a simpli�cation of reality due to epistemic limitations and are

not rapidly scalable in the presence of new heterogeneous data. �e optimal solution

would be to use explainable machine learning to make accurate and timely predictions.

Our thesis contribution is as follows. First, using heterogeneous data, we train a series of

ML models to predict discharge in ungauged basins. �en, based on these models, we use

cooperative game theory tools to deconstruct the contribution of each feature towards an

4



ML model prediction. By replicating input features as coalition members, the marginal

contribution of each feature can be estimated as the sum of its contributions (Shapley val-

ues) across all possible combinations (coalitions). We hypothesize that these experiments

and results can demonstrate whether hydrology can bene�t from more accurate machine

learning predictions without sacri�cing the traditional physics-based empiricism.

1.1.3 Road�ality Prediction using Satellite Imagery

Critical infrastructure, such as roads and electricity, are core systems that enable eco-

nomic development. �ese crucial systems are frequently under-monitored in developing

regions, resulting in lost growth opportunities. Recent advances in remote sensing and

machine learning have made it possible to monitor and measure infrastructure faster and

more frequently than traditional methods. However, ground data is o�en unavailable,

resulting in a disconnect between labels and remotely sensed data. Although data from

industrialized regions can be used to transfer innate characteristics to regions with sparse

data, there exist di�erences in the concept of quality between regions. Additionally, con-

sistency in data and the complexity of ML models can introduce bias due to learned char-

acteristics across diverse regions, leading to inaccurate predictions and recommendations

for action.

In this part of the thesis, our contribution is threefold. In the �rst part, we develop a set

of convolutional neural network (CNN) models for monitoring the quality of road infras-

tructure using satellite imagery, enabling much larger scale and much lower costs than

are achievable with current methods. For this task, we harness two trends: the increas-

ing availability of high-resolution, o�en-updated satellite imagery. We train models for

intercity road quality prediction using a unique dataset of road quality measurement la-

bels (57 roads, total length is 7000km) throughout the Republic of Kenya combined with

corresponding 50cm resolution satellite imagery. Using a variety of neural network ar-

chitectures, we create and evaluate regression models for predicting road quality. Our
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results show a best-case '2 value of 0.79 for the regression problem using a standard train-

test split and an '2 value of 0.35 for the substantially harder heldout regression problem,

which has the added potential to generalize more readily to other contexts. In the second

part, we train traditional neural networks and cu�ing-edge vision transformers to predict

road quality from medium-resolution satellite imagery and apply them to realistic data

conditions: heterogeneous temporal-spatial resolutions. �ese models achieve AUROC

scores of 0.934 and 0.685 for binary and �ve-class classi�cation tasks, respectively, ex-

hibiting results appealing for inference in otherwise unmeasured areas. In addition, these

experiments and results show that accurate models can be derived from limited and low-

resolution data. Finally, we combine the best techniques from our previous experiments

to predict road quality in regions without ground observations, such as the Democratic

Republic of the Congo. We share these results with the World Bank, a major investor in

infrastructure development in the global south, to help them understand the impact of

large-scale infrastructure on peace and socioeconomic development. �is is a key step

towards developing data-driven socioeconomic policies.

1.1.4 Tools to support electricity demand stimulation: Converting FishingBoats

for Electric Mobility to Serve as Mini-grid Anchor Loads

1 �ough electricity access remains out of reach for roughly one billion, primarily rural

and low-income people, crucial strides have been made in developing new pathways for

connecting households and businesses to electricity supplies. Among these, decentralized

mini-grids – typically comprised of generation, storage, and a medium- and low-voltage

distribution network – have considerable technical promise for balancing recent advances

in decentralized generation and grid sensing and communication systems with the over-

whelming economies-of-scale enjoyed by electricity grids. However, low revenues and, in

1Aggrey Muhebwa was a second author on this work. �is work has been included in this thesis with
permission from the project lead and Main Author (June Lukuyu [jlukuyu@uw.edu]). �e contributions by
Aggrey Muhebwa have been outlined at the start of chapter 6.
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response, high tari�s necessary for cost recovery sti�e thewidespread development of this

promising pathway for electri�cation. In this thesis contribution, we study techniques for

addressing the principal challenge for sustainable mini-grids: demand stimulation among

rural customers. Speci�cally, we evaluate the potential for converting diesel-based �sh-

ing boats in Lake Victoria to electric motor and ba�ery-based systems that can provide

a crucial anchor load for a nascent 650 kWh�1 hybrid solar-ba�ery-diesel mini-grid. We

surveyed �shing boat operators (= = 69) to characterize the target population and deploy a

custom tracking system to measure �shing boat movement pa�erns. Using these primary

and secondary data on customer consumption, we select a candidate electric mobility

system, create synthetic loads of residential and business customers, and construct tech-

nical and �nancial models of the complete mini-grid system. We then use these models

to evaluate the excess capacity on the mini-grid for electric boats, evaluate the tradeo�s

among electric mobility and manufacturing on the mini-grid, and assess the impacts of

demand response capabilities for charging the boats. We �nd that electric boat charging

contributes to at least 17% more daily consumption, resulting in substantial technical and

�nancial value to the mini-grid system, though perhaps at the cost of additional use of

the system’s backup diesel generator. On the other hand, adding shi�ing capabilities to

electric boat charging can save up to 6% of diesel expenditures at li�le to no impact on the

system’s Net Present Value. Finally, we combine these mini-grid-scale evaluations with

design considerations for a future boat tracking system, providing guidance for mini-grid

designers and operators to incorporate the potentially a�ractive load class of electric mo-

bility systems.

1.2 Proposal Outline

�e rest of this thesis proposal is as follows: Chapter 2 reviews traditional and emerging

methods that harness arti�cial intelligence and big data to improve global river discharge

predictions, machine learning explainability, and the necessity of regular road quality
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measurement in achieving sustainable development goals. Chapter 3 reviews the current

river discharge prediction techniques, highlighting their limitations. We then introduce

new approaches combining machine learning with temporal and spatial hydrological data

to improve global river discharge predictions, focusing on ungauged basins. Chapter 4

outlines foundational techniques for adopting machine learning in hydrology. It centers

on statistical methods designed to improve the explainability of machine learning models

in hydrology, which can be extended to most applications in physical sciences. In Chap-

ter 5, we present an innovative method for road quality prediction using satellite imagery

and machine learning. �is approach makes use of both high and medium-resolution

satellite imagery. We conclude this chapter by assessing the World Bank’s road infras-

tructure investment in the Democratic Republic of Congo (formerly Zaire) to showcase

the methodology’s e�ectiveness. In Chapter 6, we focus on tools to promote sustainable

development initiatives. Here, we detail our contributions to creating so�ware tools to

stimulate electricity demand in o�-grid communities, with a case study on Lolwe Island,

Lake Victoria (East Africa). Finally, Chapter 7 summarizes the thesis contributions, sug-

gests possible applications in other areas, and discusses future work.

8



CHAPTER 2

RELATEDWORK

In this chapter, we provide a background on the transformative role of machine learning

(ML) in hydrology and physical sciences in general, highlighting the current applications

and the growing need for explainable machine learning. We then discuss ML’s contribu-

tions to sustainable development, focusing on existing literature about the role of good

quality roads in the socio-economic and political development of emerging economies.

Finally, we outline our vision for the future of ML applications across various facets of

hydrology and critical infrastructure assessment.

2.1 Is�ere a Need for Machine Learning in Hydrology?

Managing water resources and responding to hydro-meteorological extremes has become

increasingly important as mankind becomes aware of the cascading impacts of climate

change. �ere is, however, a lack of real-time data, especially in the global south, where

no infrastructure exists to collect hydrology data. �e lack of data makes it di�cult to

manage water resources e�ectively and respond to extreme events such as �oods and

droughts.

Machine learning (ML) techniques such as transfer learning, zero-shot learning, data aug-

mentation, and self-supervised learning can be used to address data gaps throughout the

world by transferring learned knowledge from regions with large amounts of data to those

with insu�cient data. Currently, ML models can be trained on large hydrological and

hydrometeorological data datasets to learn complex relationships between di�erent vari-

ables. For example, ML models can predict river discharge in ungauged basins using only
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remotely sensed data and basin physiography data. As a result, machine learning can be

an integral part of water resource management in developing countries and regions with

limited access to data.

Process-basedmodels are another tool that can be used tomanagewater resources. Process-

based models simulate the hydrological and hydrometeorological physical processes that

drive the hydrologic cycle. �is allows them to provide insights into the underlying mech-

anisms that control water movement and to predict how these systems will respond to

changes in climate and other factors.

Several studies have demonstrated the superior performance of ML models for river dis-

charge prediction over traditional process-based models, especially in ungauged basins.

For example, Kratzert et al. (2018) showed that ML models outperform traditional hy-

drological models in predicting river discharge in ungauged basins in the United States.

Similarly, Feng et al. (2021) found that ML models outperformed traditional hydrological

models in predicting river discharge in ungauged basins in China.

ML and process-basedmodels can be used together to improve the accuracy and reliability

of hydrologic predictions. For example, ML models can be used to calibrate process-based

models or to develop new process-based models that are more e�cient and computa-

tionally feasible. Additionally, ML models can post-process the output of process-based

models to improve their accuracy.

Machine learning (ML) is rapidly gaining traction in hydrology, potentially revolution-

izing water resources management. ML models can simulate climate change impacts on

the hydrologic cycle, assess �ooding and drought risks, and develop adaptation strate-

gies. Additionally, integrating ML with other advanced technologies, such as the Internet

of�ings (IoT) and blockchain, could facilitate real-time data acquisition, ensure data in-

tegrity, and foster collaborative decision-making among stakeholders.

To achieve sustainable water management outcomes, embracing a multidisciplinary ap-

proach, engaging with stakeholders, and tailoring solutions to local contexts will be es-
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sential. Furthermore, developing open-source ML platforms, frameworks, and tools will

likely catalyze innovation and foster a more inclusive and informed community dedicated

to tackling hydrological challenges. Finally, the continual exchange of knowledge and best

practices between the ML and hydrology communities will be pivotal in driving the fron-

tier of ML applications in hydrology, thus contributing to a more resilient and sustainable

water future.

2.2 What Role does Explainable Arti�cial Intelligence(XAI) Play

in Hydrology?

Machine Learning (ML) application in hydrology and the physical sciences in general

has gained increasing a�ention in recent years. Researchers have shown that machine

learning models can improve the predictions of many hydrologic processes, such as river

discharge, by leveraging more than one hundred years of historical data. However, the

hydrologic cycle is complex, dealing with multiple stochastic and non-linear processes

governed by natural laws. Hydrologists use process-based models to simulate the hydro-

logical cycle and predict river discharge. However, process-based models can be compu-

tationally intensive and challenging to parameterize for complex scenarios. Fortunately,

MLmodels can overcome these challenges by rapidly learning from large amounts of data,

o�ering more accurate predictions, and revealing many non-linear and dynamic interac-

tions between physical processes within the hydrologic cycle.

However, hydrologists accustomed to process-based modeling frequently exhibit skep-

ticism towards ML techniques, driven by their “black-box” nature and inherent lack of

transparency, which complicates interpretation and communication of results to peers and

the public. Additionally, ML techniques o�en overlook established physical laws govern-

ing the hydrologic system, which diminishes the understanding of the predictive accuracy

of these models in varied hydrological contexts.
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As such, Explainable AI (XAI) is increasingly important in the physical sciences, includ-

ing hydrology. XAI techniques can help hydrologists understand how ML models work,

identify their limitations, and build trust in their predictions. �ese techniques can pro-

vide insights into the inner workings of AI models and identify the factors most important

for making accurate predictions. �us, XAI can serve as a diagnostic tool, ensuring these

AI models are congruent with established physical principles or providing insight when

deviations arise. �is information can then be used to improve the design and use of AI

models in hydrology. Another advantage of XAI’s insights is the re�nement of AI models.

Discerning the salient features and their in�uence on model decisions allows for model

enhancement, data processing alterations, or integration of novel features.

While the application of XAI in hydrology is still emerging, there have been several stud-

ies and e�orts to improve the explainability and adaptability of ML models in hydrology.

Kratzert et al. (2019) developed a method for interpreting deep-learning predictions for

rainfall-runo� forecasting. �is method utilizes a technique called a�ention to identify the

input features that are most relevant for making a given prediction. Liu et al. (2021) devel-

oped a technique for explaining deep-learning �ood forecasting predictions. �e method

uses gradient-weighted class activation mapping (Grad-CAM) to identify the regions of

an input image most important for making a given prediction.

�e integration of ML in hydrology o�ers promising advancements but faces acceptance

challenges due to its “black-box” nature. However, Explainable AI (XAI) provides the

much needed transparency, enhancing trust and adaptability in ML models. As the �eld

evolves, XAI is set to be crucial in the future, merging accurate predictions with clarity in

hydrological and physical science modeling.
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2.3 How Can Machine Learning Transform Road Infrastructure

Measurement and Analysis?

�e United Nations Sustainable Development Goals (SDG) Report (2022) emphasizes the

importance of built infrastructure in achieving the Sustainable Development Goals by

2030. �e report notes that “investments in infrastructure are essential for boosting eco-

nomic growth, creating jobs, and reducing poverty.” Machine Learning (ML) has shown

signi�cant promise in facilitating the improvement of infrastructure measurement and

analysis. One of the most promising applications of Machine Learning in the context

of infrastructure measurement and analysis is using remote sensing data to predict road

quality. Road quality is essential for socio-economic and political development. How-

ever, traditional methods for measuring road quality are time-consuming, expensive, and

impractical for large road networks. Several studies, e.g., Cadamuro et al. (2019) and

Muhebwa et al. (2023), have demonstrated the e�cacy of ML in measuring road quality

from satellite imagery. Satellite imagery is a widely available and a�ordable data source.

ML algorithms can extract informative features from satellite images, such as road tex-

ture, color, and geometry. �ese features can then be used to train ML models to predict

road quality indicators, such as roughness, cracking, and potholes.

ML-based methods for measuring road quality from satellite imagery have several poten-

tial implications for sustainable development. First, these methods can help to improve

the e�ciency and e�ectiveness of road maintenance and rehabilitation programs. By pro-

viding timely and accurate information on road quality, ML-based methods can help to

identify and address road problems early before they become more serious and costly to

repair. Second, good quality roads, especially in rural areas, can help to reduce poverty

and inequality by improving access to markets and services. Additionally, they can also

help improve agriculture production and food security by making it easier for farmers

to transport their produce to market and acquire farm inputs such as fertilizers. Finally,

good roads can be seen as a good measure of good governance, peace, security, and po-
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litical stability. Indeed, a growing body of research suggests a correlation between good

roads and peace, especially in regions like the eastern Democratic Republic of Congo

(DRC)[232, 6, 243, 77, 12]. For example, a study by the World Bank in 2019 found that

a 10% increase in road density is associated with a 2% decrease in the likelihood of civil

con�ict. In the eastern DRC, road quality is a particularly important issue. �e region has

been plagued by con�ict for decades, and much of the infrastructure has been damaged.

As a result, many communities are isolated and have di�culty accessing essential ser-

vices. However, there is some evidence that improved road quality is helping to promote

peace and rehabilitation in the region.

Overall, ML has the potential to play a signi�cant role in measuring infrastructure and

achieving SDGs. ML-based methods for measuring road quality are particularly promis-

ing, as they can help to improve the e�ciency and e�ectiveness of road maintenance

and rehabilitation programs and promote peace and rehabilitation in regions a�ected by

con�ict. Additionally, ML for road quality measurement could be used to develop new

methods for assessing other types of infrastructure, such as bridges, railways, and power

grids.

Although the research into using ML to measure road quality from satellite imagery (and

fostering sustainable development) is still in its early stages, the results are promising.

ML-based methods have the potential to provide a more e�cient and a�ordable way to

measure and monitor infrastructure, which can support sustainable development, espe-

cially in the global south.
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CHAPTER 3

GLOBAL RIVER DISCHARGE ESTIMATION

3.1 Towards Improved Global River Discharge Prediction in Un-

gauged Basins Using Machine Learning and Satellite Observa-

tions

3.1.1 Motivation

Anthropogenic climate change and explosive population growth are straining already

scarce water resources, and the resulting impact is borne in many crucial sectors: Agri-

culture, renewable energy, and manufacturing, among others [110, 287, 288]. �erefore,

there is a need for near real-time and accurate systems to measure the direct impact of cli-

mate change on water resources. River discharge is the result of all hydrologic processes

within a river basin and, as such, can be used as a proxy for measuring increased surface

melting and runo�, temporary injection of meltwater to the bed of grounded glaciers,

and hydrofracturing, i.e., melt water-induced ice shelf collapse [66], all of which are key

indicators of an increase in global temperature. However, there is limited measurement

of river discharge on a global scale, which has hampered the ability to measure the true

depth, scale, and pace of climate change.

Traditionally, river discharge has been measured in situ using water gauges strategically

placed along the river. However, this approach does not scale well to the global level.

In a weather cycle, hydrometeorological variables combine to produce the �ow of water

in rivers (discharge) and, as such, can be used to estimate the amount of river discharge

in a hydrologic cycle. Fortunately, these variables are recorded globally using numer-

ous satellite constellations that rotate the Earth at regular intervals. Machine Learning
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approaches can encode domain knowledge and leverage the spatial-temporal relation-

ship between hydrometeorology variables (satellite data) and in situ discharge data. �is

opens up the opportunity for more accurate river discharge predictions on a global scale,

especially for the majority of the global rivers, which have no in situ data. In this work, we

demonstrate the improved performance of machine learning methods that leverage both

spatial and temporal information existing in hydrometeorological data to improve daily

discharge prediction. We demonstrate that using a Long short-term memory (LSTM) Re-

current Neural Network, we can achieve Kling-Gupta E�ciency (KGE) and Nash-Sutcli�e

E�ciency (NSE) 1 scores of 85% and 81% respectively on held-out discharge data drawn

from a di�erent distribution, outperforming the latest state-of-the-art process-based hy-

drology models in ungauged basins with limited to non-existing data.

�ese experiments and results demonstrate the impact of integrating spatial and tempo-

ral information in improving prediction of daily river discharge using modern machine

learning algorithms in a physical sciences �eld that relies heavily on both conventional

time-series and process-based models for analysis

3.1.2 Related Work

Discharge measurement: In situ measurements are the standard approach for measur-

ing daily river discharge where water gauges are strategically placed at gauge stations

along a river network. In places where gauge stations do not exist, process-based models,

for example, the Manning Equation (Eq. 3.1) for daily discharge, is used if the geomor-

phological characteristics of the river are known.

&C =
1
=
�5/3
8C ,

�2/3
8C (1/28C (3.1)

1 KGE and NSE are the common performance metrics for measuring accuracy of river discharge pre-
dictions in hydrology
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Where Q is discharge (<3(�1), A is the cross-sectional area (<2), W is width (<), S is

slope(unitless), the index 8 speci�es the cross section and C speci�es the day. However,

process-based models tend to degrade when trained on non-independent and identically

distributed data(i.i.d), i.e., data drawn from varying geographical regions. �is means that

it is di�cult to transfer hydrological information learned about one river basin to another

river basin, making it di�cult to predict discharge for basins with li�le to no data.

Machine Learning in Hydrology: �e success of machine learning has largely been

due to its ability to extract complex spatial and temporal pa�erns existing in the train-

ing data, thus overcoming the drawbacks of conventional time-series models. Long-

Short Term Memory (LSTM) Recurrent Neural networks [124] have demonstrated ex-

ceptional performance in predicting discharge in gauged basins [152, 151, 79] at both

local- and continental-scale. Models trained on over 100 years’ worth of historical data

have demonstrated the ability to extract inherent pa�erns in large hydrological datasets

whose dynamics are dependent on various direct and indirect interconnected phenomena,

thus opening up the possibility of solving a longstanding problem of regional modeling

via transfer learning [212]. However, machine learning models are stochastic and non-

deterministic in that they tend to encode correlation in the training data instead of cau-

sation. Furthermore, machine learning models require large training data to make be�er

predictions, which do not exist for a majority of the basins in the world. Finally, unlike

process-based models, ML models provide black box predictions, which are not easily ex-

plainable or interpretable. �ese make them less useful for modeling physics-driven pro-

cesses in which the interactions between the underlying variables must be interpretable

to enhance broader understanding.
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3.1.3 Methods

3.1.3.1 Dataset and Problem De�nition

Our ultimate goal is to predict the average amount of water �owing through a particular

gauge station per day. Our data is from 1980 to 2010. To achieve this goal, we leverage

in situ discharge values obtained from the Government of Canada [102], climate forcing

variables from Google Earth Engine [101], simulated discharge from the Princeton dis-

charge database [164], river reach widths obtained from Landsat images [82], and river

classes originally de�ned by C. B. Brinkerho� et. al [34].

Although 17 classes were initially de�ned in [34], we focus on the �ve largest classes

as a proof-of-concept for our proposed approach. We make the following data selection

decisions. First, although previous studies [96] have shown thatwidth is a strong predictor

of daily river discharge, Landsat4-8 have repeat cycles of 16 days, with some overhead

days being too cloudy to pick out river width outlines. As such, we use other features

to train an intermediate model to impute widths for the missing days. Secondly, we only

consider gauge stations with more than two years of in situ discharge data and at least

�ve upstream reaches. �is ensures su�cient data to quantify the impact of upstream

hydrometeorological factors on daily discharge at a given gauge station.

3.1.3.2 Sequential Learning

�e standard approach in machine learning is to train, validate, and test models on data

drawn from the same distribution (i.i.d); applications of these techniques for river dis-

charge predictions are common in the literature [79, 151, 152]. However, we focus on

training models that can perform well on previously unseen data (i.e., ungauged river

basins), which is needed for most basins where in situ data are unavailable. Section 5.1.4

reports results obtained via transfer learning. By modeling daily discharge prediction

as a sequential problem, we can utilize the full power of LSTMs and the historical con-

text of related physics of the hydrologic systems to improve predictions across time and
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space, both in gauged and ungauged basins. Our preliminary analysis led us to use a

Bi-directional LSTM model with 4 layers because additional layers showed no substan-

tial improvement in performance. Furthermore, we choose Swish [225] as the activation

function a�er comparison with existing state-of-the-art activation functions. Finally, we

train our Bi-directional LSTM model with L2 regularization to prevent over-��ing and

present the results in Section5.1.4. In practice, we train n models where n corresponds to

the number of classes selected.

3.1.3.3 Training and Evaluation Metrics

Both single and ensemble models [151, 79] trained on basin-wide datasets have demon-

strated remarkable results in predicting daily discharge. However, the Mackenzie River

basin (where we perform our analyses) has extreme variations in the average discharge

across its tributaries, and as such, a single model performed relatively similar to the cur-

rent state-of-the-art process-based models [111].

As stated in 3.1.3.1, we train �ve models, one for each class of rivers considered. Whereas

we designed multiple experiments with varying volumes of observations and meteoro-

logical variables to quantify the impact of data quantity and quality on the model per-

formance, we only report results for one experiment that combines dynamic and static

features at a particular gauge station and one upstream reach.

Consider a class with = stations; we can create all possible combinations of classes using

Equation( 3.2) that vary the type and volume of data available to the model.

=⇠: =
=!

:!(= � :)! ;: = 1, 2, ...,= � 1 (3.2)

�en, we train amodel on each of the selected sets and test on (=�:) held-out stations. For

large sets, we randomly select 20 sets at most. Our results consist of distributions across

these sets to reduce bias towards a single set of high-performing gauge station datasets.

Finally, we choose to report our results based on three major metrics used in hydrology to
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evaluate river discharge prediction performance: Nash-Sutcli�e E�ciency (NSE) [191],

Kling-Gupta E�ciency (KGE) [108], and Relative Bias (RBIAS).

NSE is a normalized statistic that determines the relative magnitude of residual variance

compared to the measured data variance. NSE ranges between (�1, 1] with #(⇢ = 1

being the optimal value. Values between 0.0 and 1.0 are generally acceptable, while values

 0.0 indicate that the mean of observed values is a be�er predictor than the predicted

value.

KGE is based on decomposing NSE into its constituent components (correlation, variabil-

ity bias, and mean bias). Like NSE, KGE ranges between (�1, 1] with  ⌧⇢ = 1 being the

desired value that indicates perfect agreement between observed and simulated values

while values  0.0 indicate that the mean of observed values is a be�er predictor than the

predicted value.. Finally, RBIAS quanti�es the relative systematic bias in the predicted

discharge values. A positive or negative value indicates a corresponding bias in predicted

values, respectively, while 0.0 shows no bias in the predicted values.

Overall, a stable performance should always have KGE values higher than NSE, although

it should be noted that NSE and KGE values cannot be directly compared [145].

3.1.4 Results

In Table 3.1, we report statistics of set combinations based on equation (3.2) of predicted

discharge across the �ve selected classes in ungauged basins (previously unseen data).

We compare our results to to the existing state-of-the-art process-based models [34] with

average scores of NSE and KGE in the range of 0.0 to 0.5. Class one performs poorly as

compared to other classes. �is is mainly a�ributed to the smaller widths for rivers in this

class compared to others. River width is a stronger predictor of discharge relative to other

features [96]. Overall, models across the remaining classes can generalize well across un-

gauged basins, as indicated by high values of NSE and KGE, and values of RBIAS close to

0.0, indicating less deviation of models’ predictions from the actual observations. �ese
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results strongly suggest that machine learning models are be�er at generalizing hydro-

logical information across ungauged basins than state-of-the-art process-based models.

Table 3.1: Statistical distribution of discharge prediction results in ungauged basins. With the
exception of class one, mean discharge across the remaining classes outperforms state-of-the-art
process-based model predictions, which report NSE and KGE values in the range of 0.0 to 0.5.

River class 1 2 3 4 5

KGE Mean 0.17 0.60 0.71 0.47 0.54
Median 0.26 0.61 0.72 0.47 0.58
Max 0.73 0.88 0.86 0.81 0.86
Min -1.05 0.41 0.31 -0.04 0.07

NSE Mean -0.28 0.58 0.72 0.27 0.47
Median 0.10 0.62 0.74 0.41 0.50
Max 0.62 0.84 0.87 0.84 0.81
Min -4.77 0.26 0.35 -0.72 -0.54

RBIAS Mean 0.23 -0.03 -0.06 0.01 0.09
Median 0.17 -0.03 -0.07 -0.01 0.07
Max 1.95 0.30 0.47 0.79 0.71
Min -0.57 -0.29 -0.42 0.77 -0.44

3.1.5 Conclusion

In this part of the thesis, we demonstrated the improved performance of machine learn-

ing approaches over process-based models for predicting discharge in ungauged basins.

However, it should be noted that categorizing basin-wide rivers into classes is a less e�-

cient method because of varying hydrometeorology characteristics across basins. Future

work will improve river classi�cation by adopting stream orders or Pfafste�er units since

these are more hydrologically-informed approaches for grouping rivers based on climatic

regions, geomorphological, and tributary characteristics. Furthermore, we hope to sta-

tistically quantify the impact of additional training data, both qualitatively and quantita-

tively, on model performance. Finally, this work sets the stage to enable the examination
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of constraints of process-based modeling approaches for predicting river discharge and

be�er characterizing how machine learning-based models can be used to model physical

processes, not only in hydrology but also in other physical sciences.

3.2 Improving River Discharge Prediction with Machine Learn-

ing via Distributed Learning of Hydrologic Information in Re-

motely Sensed Data

3.2.1 Motivation

Knowledge of rivers, in particular their discharge, can help us understand how climate

change is evolving and its manifestation on global water resources, agriculture, renew-

able energy generation, and the overall global economy [215, 147, 53, 201]. �e hydrologic

cycles that generate river discharge are stochastic, complex, and non-deterministic sys-

tems characterized by processes and events whose dynamics depend on various direct

(e.g., meteorological and environmental factors) and indirect (e.g., human interactions)

inter-connected phenomena [65, 310]. �is complexity ensures that in situ monitoring

via gauges is the best way to understand rivers: a direct measurement is best. However,

continuous in situ monitoring of global rivers is a di�cult challenge due to logistical dif-

�culties, expense, and politics [230, 95].

As a result of these challenges, process-based hydrology models are o�en deployed to

estimate river discharge. Models are rapidly scalable in response to changing hydro-

meteorological characteristics and can explain and interpret underlying model perfor-

mance to describe how they arrive at predictions. However, process-based hydrology

models are highly dependent on their calibrated parameters and degrade signi�cantly

when calibrated on rivers of di�erent average discharges, seasonal variations, riverwidths,

and geographical characteristics [280, 10, 220, 185, 18, 172], which is especially crucial with

the recent increase in intensity and frequency of hydrologic extremes. �is is important

for modeling discharge in remote and developing regions where many assumptions must
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be made to achieve accurate predictions [177, 270, 51, 218]. �e needs and bene�ts of

process-based models are an especially circular problem in ungauged basins between the

need for robust models to replace gauges and the lack of gauged data to calibrate them.

Watershed regionalization techniques such as spatial calibration, interpolation, and re-

gression of basin and hydro-meteorological characteristics are o�en used to adopt these

models and their parameters to ungauged basins [126, 210, 20]. Finally, models can sim-

ulate future projections based on physically realistic processes, i.e., “what if” scenarios

[185, 18, 172], which is especially crucial with the recent increase in intensity and fre-

quency of hydrologic extremes.

Although process-based models are widely adopted and trusted in hydrology, they have

several limitations. First, dominant physical processes depend on di�erent �uvial and

hydro-geomorphological characteristics [143, 252], and as such, it is di�cult to model

complete interaction among all processes. Second, equi�nality and model parsimony of-

ten obscure true process-based understanding for models with many parameters. �at is,

if a model represents dozens of processes with dozens of physical parameters, the model

likely cannot be calibrated to accurately represent those physical parameters without a

large volume of a priori knowledge. Finally, most process-based models are made for spe-

ci�c regions and conditions, making them less robust to fast-evolving temporal-spatial

variability in physical processes across scales [301, 49, 51]. To overcome these limitations,

heterogeneity and temporal-spatial variability of physical processes must be integrated

into modeling [204, 294, 275]. Remote sensing has emerged as a way to provide these data

to models.

Remote sensing has demonstrated a huge potential to improve discharge predictions on

a global scale [96, 271, 54, 29, 247, 81]. Previous studies have shown that river discharge

can be predicted purely from remotely sensed data [35, 205, 159, 9] or largely improved

by combining satellite observations with in-situ discharge data [120, 164, 59, 129, 134].

In addition, models improve when remotely sensed data is included to replicate complex
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hydrologic processes [137, 130]. �e recently launched NASA SWOT mission will pro-

vide surface water measurements (width, height, and slope) for all global rivers and lakes

greater than 50m in width [27], and a major component of its design is its expected river

discharge product. Although remote sensing is a fast and e�cient method for collect-

ing hydro-meteorological data, it still faces several limitations. Satellite orbits reduce the

chances of detecting high-frequency stream�ow dynamics, especially with optical sensors

obscured by clouds. Secondly, both optical and active sensors are prone to climate inter-

ference (e.g., storms and thick clouds), layover, and terrain interference, which reduces

data quality captured in each snapshot [99, 302, 70, 283]. Finally, although purely re-

mote sensing solutions produce excellent discharge dynamics [71, 88], the most accurate

remote sensing methods are calibrated to gauges. �us, as with models, high-accuracy

remote discharge sensing is limited by in situ data [94].

�erefore, gauges are the best means of monitoring rivers, but these are impractical glob-

ally. Hydrologic models and remote sensing, whether used separately or in combination,

are excellent tools but have unique challenges in ungauged basins. How, then, do we

best combine the richness of primary satellite data with process-based hydrologic knowl-

edge and sparse in situ data? We argue the answer can be found in machine learning.

�e earliest machine learning applications for discharge prediction were demonstrated by

training a feed-forward network to predict discharge across �ow regimes, which outper-

formed a calibrated process-based model [127]. Recent studies [207, 79, 81, 171, 150] have

demonstrated the ability of Long short-termmemory (LSTM) arti�cial neural networks to

outperform process-based models on improving predictions at continental scales and in

ungauged basins. Additionally, transfer learning [309, 264, 166, 304, 171], which is analo-

gous to regionalization [144, 298, 206, 284], shows promise in tuningML to well-measured

basins and applying it to ungauged basins. At its core, ML for hydrology involves au-

tomatically discovering inherent temporal-spatial pa�erns in historical hydrologic data.

Although current machine-learning approaches have demonstrated improved stream�ow
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predictions, they still have several limitations. First, ML models are still relatively non-

interpretable, i.e., while we can produce accurate hydrographs of stream�ow, we do not

learn how or why they were produced or which combinations of hydrologic processes

improved the model’s learning process. Second, ML models are complex and require ac-

cess to specialized computing, particularly GPU clusters. �ird, ML models typically re-

quire much more training data with stricter consistency requirements than hydrologists

are used to working with, and the amount of data needed for quality training far outstrips

the amount of data needed to calibrate a model or remote sensing technique [178, 246, 57].

ML is moving toward interpretability [175, 168, 169, 286], but for now, it remains a power-

ful predictive tool that o�en divides opinions in the traditionally process-based discipline

of hydrology.

Current ML for hydrology retro�ts ML techniques to hydrologic data. However, we ar-

gue that aspects of hydrologic modeling and remote sensing for hydrology can easily be

implemented in an ML-driven hydrology (herea�er known as hydroML) framework to

move toward a type of ML that is more hydrologically aware and purpose-built for the

discipline. For instance, hydrologists have long known that so-called distributed model-

ing - where inputs are spatiotemporally heterogeneous, outperforms lumped modeling

- where inputs are spatiotemporally homogenous [17, 199, 89, 274, 59], yet almost all

previous ML in hydrology has been lumped modeling. Moving to distributed hydroML

would allow known correlations between altitude and temporal-spatial variation in iso-

topic signatures of snow melt, glacier melt, and rainwater to express themselves in the

data [133, 219, 244, 90, 193, 214]. �is shi� would require changes to the input structure

of ML models but should improve them considerably. Further, since ML requires huge

quantities of training data, remotely sensed inputs are the best way of obtaining primary

data in ungauged basins [94] in conjunction with globally available climate model output

currently used in ML-driven hydrology modeling [159, 171, 79, 150, 207].
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�erefore, the goal of this work is twofold: �rst, we hypothesize that creating a distributed

LSTM model based on topologically organized geomorphologic and hydrologic informa-

tion should improve ML discharge estimation performance. To test this, we compare the

impact of aggregating LSTM training data over the entire upstream basin (lumped model-

ing) with separating upstream basin information based on the Pfafste�er Coding System

(distributed modeling) while holding the LSTM architecture and input data constant. Sec-

ond, we demonstrate this comparison in ungauged basins by training generalizable ma-

chine learning models in hydrologically similar basins to validation zones in ungauged

basins (transfer learning). We also compare to previous LSTM architectures. Ultimately,

we aim to show how tenets of hydrologic modeling and remotely sensed data improve

ML in ungauged basins as we move toward a future integrated hydroML framework for

predicting water resources.

3.2.2 Data and Methods

3.2.2.1 Data

We test our proposed ML approach on the Mackenzie basin (Figure 3.1). �e basin cov-

ers an area of approximately 1.8G106:<2 and encompasses a wide variety of climatic

conditions that include mountainous, cold temperate, sub-Arctic, and Arctic zones. �e

Mackenzie River drains approximately one-��h of the total land area of Canada (Rocky

andMackenzieMountains and the Canadian Shield) and contains over 39,000 river reaches

in the MERIT Basin river network [164] developed on the MERIT HYDRO topography

data [11, 296]. We select a subset of the gauge stations (= = 69) with at least 10 years of

consistent daily gauge data. �is data is publicly available, courtesy of the Environmental

and Climate Change Canada (ECCC).�ese gauge data form the basis of our training and

validation work

We include both static and dynamic variables in our training data. Static variables do not

change over timescales of a few decades, e.g., bed slope, sinuosity, and stream length. In
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Figure 3.1: A Map showing the location of gauge stations (red circles) in the Mackenzie basin
used in the study. �e insert shows a map of the 20 biggest basins in Canada and the Mackenzie
basin (shaded)
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contrast, dynamic features re�ect changing hydrologic processes. We gathered daily data

from 1981 to 2010 that include simulated discharge and runo� from the GRADES database

[164], reach averaged widths obtained from the Remotely-sensed Arctic Discharge Re-

analysis (RADR) database [81], and climate model data. Climate data are from the Global

Land Data Assimilation System (GLDAS)-2.1 model[235, 19] and include 3 hourly climate

data gridded at 0.25 x 0.25 degrees resolutionwhichwas downsampled to daily data. �ese

data were downloaded from the Google Earth Engine platform [101]. �is mixture of mod-

eled climate data and remotely sensed data gives us both primary and secondary data for

the basin. Previous studies have shown that stationary data are relatively easy to model

with ML [125, 63]. Appendix A gives all the variables used in this study.

Previous studies have shown that river width is a strong predictor of river discharge

[96, 111, 35, 83, 80]. However, Landsat-derived river widths have a frequency of 16 days

before considering cloud cover and seasonality. �is is not a problem for hydrology ap-

proaches, but LSTMs require training data without gaps [45, 162]. �erefore, we “impute”

a complete width record from the Landsat observations in the RADR dataset. Imputation

is a statistical process of determining and assigning replacement values for missing or

invalid data points in a multivariate dataset by leveraging possible correlation between

covariates [37, 135]. �us, we estimated missing width values using a regression model

��ed with the remaining covariates in the dataset. We have chosen this imputation ap-

proach to retain river widths as a strong predictor of discharge as important primary data.

Since our goal is to compare lumped and distributed ML, we only trained/tested at gauges

with at least �ve upstream reaches to ensure that there is su�cient data to quantify the

impact of upstream climatology factors toward daily discharge at a given gauge station.

Further, we limited our dataset to gauges with at least 10 years of daily discharge data as

preliminary tests indicated that this re�ected the scale of data that was needed to accu-

rately train an LSTM model without over��ing [240]. Finally, we select Pfafste�er orders

with at least 4 gauge stations, i.e., order 4 (25 gauge stations), order 5 (23 gauge stations),
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order 6 (13 gauge stations), order 7 (4 gauge stations), and order 8 (4 gauge stations) for a

total of 69 gauge stations.

3.2.2.2 Sequential Learning via LSTMs

Our machine learning models are based on Long-Short Term Memory Recurrent Neu-

ral Network (LSTM-RNN) model architecture. �is is a type of arti�cial neural network

originally proposed by [124] that is capable of processing sequential data. LSTMs have

been successfully applied to language modeling, video understanding, music transcrip-

tion, discharge prediction for hydrology, and other applications [73, 259, 93, 207, 79, 150].

Unlike standard neural networks that only understand the spatial context of data, LSTMs

can extract both the temporal and spatial context encoded in the training data [300, 292].

At a structural level, an LSTM network consists of a series of identical recurrent neural

networks where the previous neural network (ti-1) passes information to the current net-

work(ti). �is cascading architecture allows LSTMs to handle the sequential context en-

coded in historical data, e.g., hydrologic data. Unlike traditional RNNs, LSTMs can main-

tain information in memory over long periods of time, thereby overcoming the problem

of vanishing gradients [46, 128]. �is allows LSTMs to learn long-term temporal depen-

dencies, i.e., where the desired output depends on inputs presented at times far in the past

(lookback window), which is important when modeling physical processes that occur at

di�erent spatial resolutions. Consequently, the size of the lookback window determines

how much information a model learns about a particular physical process at any time.

�e LSTM network architecture can be either unidirectional or bidirectional [104, 251, 87].

Unidirectional LSTMs learn encoded features in a time-increasingmanner (forward chain)

i.e., information from each feature is derived at every timestep t = t[0], t[1], t[2], . . . , t[n],

but only information from previous timesteps (C8�1) is used to improve prediction at the

current timestep (C8 ). On the other hand, bidirectional LSTMs concatenate two unidirec-

tional LSTMs in opposite directions such that the model learns encoded features in both
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time-increasing (forward chain) and time-decreasing (backward chain) manners. �is is

important where information encoded at the next timestep(C8+1) can further improve pre-

diction at the current timestep (C8 ). Knowledge of river discharge at the next timestep can

improve our prediction at the current timestep, and as such, we adopted the bidirectional

LSTM network model architecture for our experiments.

Designing an optimal machine learning model requires a rigorous hyperparameter search

[22, 47, 303]. Hyperparameters are model con�gurations that cannot be learned from the

training data and, therefore, tunable to a speci�c predictive modeling problem. However,

�nding optimal hyperparameters is a complex and computationally expensive task. On

the other hand, a poor choice of hyperparameters can cause a model to over�t, i.e., the

model memorizes pa�erns in training data and as such, fails to generalize to previously

unseen data. �erefore, we use regularization techniques and deeper layers to prevent our

LSTM models from over��ing. Regularization [28, 92] constrains the model’s coe�cient

estimates (learned parameters), making it generalizable to new data. Layers are topolog-

ical structures of neurons that make up a neural network and are de�ned by weights and

biases. Weights are sharable in recurrent neural networks and de�ne how important a

given input is to the next neuron, while biases de�ne how easily a given neuron can get

�red. Layers ensure easy sharing of parameters and statistical strengths across di�erent

parts (temporal positions) of an LSTM model, making it more generalizable to sequences

not seen in training data [100]. Finally, the choice of an activation function [181, 3] impacts

how fast and e�ciently a neural network can extract contextual information in training

data. �us, we adopted Swish [225] as the output layer activation function based on its

superior performance over existing state-of-the-art activation functions on benchmark

datasets. Ultimately, our bidirectional LSTM network model had 4 layers, as additional

layers showed no substantial improvement in performance. Between each LSTM layer,

we added a dropout layer [119, 281] that randomly dropped 20% of the connections.
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3.2.2.3 Experiment design

We hypothesize that an ML model trained with topologically organized distributed geo-

morphologic and hydrologic information should outperform other discharge prediction

models that lump the same training data. To this end, we designed three experiments

with identical ML models per section 3.2.2.2 but di�erent organizations of the training

data. We also include a comparison to a state-of-the-art hydrologic modeling approach

for the basin that assimilates remotely sensed river widths (RADR- [81]) and a recently

published LSTM model (PUB-LSTM [153]).

3.2.2.3.1 Experiments and literature comparisons

1. At station experiment: We used both dynamic and geomorphological static vari-

ables in addition to climate data in a 25 km bu�er around a given gauge station as

input features to an ML model. �is is the least possible data we can use to train

any ML model that leverages temporal-spatial information encoded in historical

data around a gauge station.

2. Lumped experiment: Besides leveraging local information around the river outlet

(at station experiment), we included aggregated climate data from the largest pos-

sible upstream basin. �erefore, this experiment has static and dynamic variables

from the prediction reach and averaged upstream climatology. �is represents the

approach taken by [207, 79, 80, 171, 150] among others

3. Distributed Experiment: We took the static and dynamic variables at the prediction

reach as in the last two experiments but disaggregated the upstream climate data by

Pfafste�er level. �erefore, given a river with n orders of upstream sub-basins, we

generated (= ⇤ :) additional input features, where : = several modeled hydromete-

orological processes. �e data were averaged across all upstream basins per order

3.2
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4. Comparison datasets: We compare our approach against o�-shelf results fromRADR

and PUB-LSTM models. �e RADR [81] dataset was calibrated on data from 1984

to 1998 and assimilated with remotely sensed discharge data from 1984 to 2018

for the entire Arctic region (including the Mackenzie basin). Data assimilation in

process-based modeling provides time-dependent distributed estimates that are up-

dated whenever new data becomes available, i.e., the model’s states are updated in

response to how it performs at a given time [179, 50]. We also implemented the

PUB-LSTM model de�ned in [153] and trained it with data de�ned in the lumped

experiment but with two major changes to the training process; we have fewer

catchment (geomorphological) characteristics per our inputs described above and

use 7 stations (as compared to 12 stations in Kratzert’s work) for held-out data for

k-fold cross-validation

Our approach requires us to develop order-speci�c ML models given the rigid require-

ments for LSTM training. �at is, all three of our ML experiments each have �ve di�erent

LSTMs - one for each order from 8 to 4, as these orders contain su�cient training data.

In order to apply our model to an ungauged basin, we would need �rst to identify the

order of the river reach of interest and then select the appropriate order model to deploy.

�is means that our methods are unable to predict �ows in orders other than 4-8, but in

return for this compromise, we can estimate �ows quickly, e�ciently, and accurately in

ungauged basins, as proven below. Further, global datasets like those used to build our

models already identify all global rivers’ order, so there is no additional computational

burden on future users of these methods.

3.2.2.3.2 Validation design and applicability to ungauged basins Our goal is to

train ML models that can accurately predict daily river discharge in ungauged basins. A

standard approach in machine learning is to split the model’s input data into training and

validation sets by a particular ratio[293, 223, 249]. �is means that models are trained and
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validated on data drawn from the same distribution and are referred to as independent and

identically distributed data (8 .8 .3), whereby each random variable has the same probability

distribution as the others, and all variables are mutually independent. As such, it is easy

to train models that perform well on both the train and test data but cannot generalize

well to previously unseen data (over��ing). However, our goal is to transfer hydrologic

knowledge to ungauged basins. For this reason, we use cross-validation to evaluate the

performance of our ML models. Cross-validation is a machine learning technique [261,

228, 233, 23] where several ML models are trained on subsets of available input data and

evaluated on complementary subsets of the same data. �is introduces heterogeneity

in the training data by repeated resampling, thereby improving the ability of models to

generalize to previously unseen data.

Since we use stream order as a unifying concept to do our distributed modeling, we must

build, train, and validate models that function per order. Previous studies [80, 150, 263]

have either treated training data as a single entity, thereby making it easier to implement

out-of-sample testing using k-fold validation (dividing data into groups of approximately

equal sizes) or spli�ing training data by a given percentage (e.g., 70/30 split) for models

trained and tested on 8 .8 .3 data. Conversely, di�erent Strahler orders in our training data

have unequal gauge stations (Table 1), making it di�cult to implement an identical k-

fold validation strategy. �e imbalance in data across di�erent orders can result in model

uncertainties (e.g., inverse relationship between NSE and increase in the number of sub-

basins). We try to mitigate this by a combinatorial selection of training data for individual

models in each order and by maintaining an equal number of stations (:) in each train-

ing and validation subset. �is strategy of organizing training data maintains a relatively

consistent volume of training data across the entire data strata. Consider a stream order

with n stations; we can create sets of all possible combinations of stations in that order

where each set contains : stations where : is any arbitrary number less than =. We chose

: = 3 for our experiment as a tradeo� between the minimum number of stations in each
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order (orders 7 and 8 each have 4 stations) and the computation time to train models for

all subsets in each order. We then train a model on each subset and evaluate it on the com-

plementary subsets of the same order. �erefore, in a basin with = = 25 gauge stations,

we try all combinations of : = 3 training and (= � :) = 22 validation stations. For sta-

tions with a large number of subsets, i.e., orders 4 to 6 (Table 1), we randomly select 24 sets

from all possible set combinations in order to balance model compute time with statistical

representativeness. Preliminary experiments to increase the size of the sets from 24 to 50

and 100 had no substantial improvement/degradation in model performance. Our results

are presented as distributions of predictions across the complementary (validation) sets,

as opposed to reporting the results of individual or selected ML models that may perform

particularly well or particularly poorly at a gauge. �e width of these distributions, there-

fore, corresponds to the sensitivity of our three experiments to a particular combination

of training/validation data.

Table 3.2: Table showing the number of generated and contributed sets used for training in each
Strahler river order

Strahler
order

Number of
gauge sta-
tions (n)

Number
of training
stations
per set (k)

Number of
ungauged
validation
stations
per set
(n-k)

Possible
train-
ing/validation
combina-
tion sets (
nCk)

Number
of selected
sets used
to report
results

4 25 3 22 2300 24
5 23 3 21 1771 24
6 13 3 10 286 24
7 4 3 1 4 4
8 4 3 1 4 4

Note that orders 7 and 8 have su�cient data to train and test but insu�cient data to cross-

validate. Remember also that we build per-order ML models, and thus, the performances

here re�ect only rivers of that order, and we cannot predict in orders below 4 and above

8 given the available data in the Mackenzie.
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Ultimately, and importantly, all results represent an ungauged case where validation is

only done on the = � : stations not used in training and then tested in combination per

Table 3.2. �is represents a common hydrologic situation where there are some gauge

data in a basin but not in areas where you’d like them to be. Our methods would use

the gauge data in hand, per order, to estimate all ungauged reaches of the basin of the

same order. Here, we withhold gauge data to make that test, and each validation set is

completely independent of the others for a true ungauged case.

Figure 3.2: Schematic representation of a hypothetical order eight basin network. �e red circle
represents the location of a gauge station on the delineated basin’s outlet. At each hierarchical
level, a single-order basin and its lower-order basins are selected (�lled) while the remaining basins
on the same level or not upstream of the selected basin within that level are ignored (hatched). �is
topological representation (Strahler river order system) integrates the temporal-spatial variation
of physical processes at di�erent stages of a river network.
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3.2.2.4 Evaluation Metrics

We report our results based on four major metrics used to evaluate the performance of

discharge prediction models: Kling-Gupta E�ciency (KGE) (Gupta et al., 2009), Nash-

Sutcli�e E�ciency (NSE) [191], Relative Bias, and Normalized Root Mean Squared Error

(NRMSE). �ese standard hydrology metrics assess di�erent aspects of the hydrograph

and errors in both timing and volume of water [164, 111].

3.2.3 Results

Our experiments show that a distributed data modeling approach produces more accurate

models than at station and lumped approaches when training ML models for predicting

discharge in ungauged basins. Figure 3.3 shows key results of these experiments as cu-

mulative distribution functions(CDFs) for KGE and NSE across each of the experiments

de�ned in section 3.2.2.3.1 As a reminder, all results represent an ungauged case where

validation is only done on the n-k stations not used in training and then tested in combi-

nation per Table 3.2.

3.2.3.1 Predictions in ungauged basins

First, we compare results from at-station, lumped, and distributed experiments. Figures

3.3(I) and (II) show that increasing quantities of upstream basin gradually improves dis-

charge estimation. Here, we de�ne performance improvement as the ⇠⇡� curve of the

distributed experiment results shi�ing to the right of both at-station and lumped exper-

iment curves. Order level-speci�c models trained with the least possible data (at sta-

tion experiment) have 77% positive NSE predictions and 92% positive KGE predictions.

Both KGE and NSE values range between (1, 1]; in general, positive values are desir-

able; for instance, a negative NSE value indicates that the mean of observed values is a

be�er predictor than the predicted value. When aggregated upstream basin information

(lumped experiment) was included in the model training process, there was no signi�cant

improvement in performance (P-value > 0.05) although training the same models with
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Figure 3.3: Cumulative distributions functions (CDFs) of NSE and KGE for de�ned experiments
and selected benchmarks calculated from distributions across all Pfafste�er orders. Figures (I)
and (II) compare the performance of models in the at-station and lumped experiments against the
models trained with data from the distributed experiment. Figures (III) and (IV) compare the per-
formance of models in the distributed experiment against two literature models: [81]; [150]. A
shi� to the right indicates an improvement in model performance. Baseline models from the liter-
ature show lower skill than the ML here when all models perform poorly(�1<NSE&KGE0.0) but
be�er performance when all models have good predictions (0.5< NSE&KGE1.0). �e distributed
model outperforms the at-station and lumped models across the entirety of the results. CDFs are
preferred because they represent the overall model performance across the entire test dataset
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topologically organized data (distributed modeling) improved NSE by 9.6% and KGE by

4.6%, respectively.

Figure 3.4: Top to Bo�om: Distribution comparisons of selected metrics on held-out predictions
for at station (I-IV), lumped (V-VII), and distributed (IX-XII) experiments. Note that distributions
for seventh and eighth orders are not included due to limited gauge stations in the training set.
Figure S1 shows a distribution comparison across all experiments and literature models.

Figure 3.3 summarizes performance across individual experiments (inter-experiment dif-

ferences) but ignores order level intrinsic di�erences (intra-experiment di�erences). Fig-

ure 3.4 shows the model performance of order-level delineated models in each de�ned

experiment for orders with at least 20 validation %sets. First, we compared predicted dis-

charge metrics across individual experiments (rows in Figure 3.4) as follows: When ML

models were trained with the least possible data (at station experiment) i.e., Figure 3.4(I)-

(IV), we observed a signi�cant improvement in median KGE from 0.38 to 0.61 as basin size

increased from order 4 to order 6. When we included aggregated upstream information

(lumped modeling) in the training data, i.e., Figure 3.4(V)-(VIII), median KGE improved

linearly with an increase in the number of sub-basins (from 0.45 in the fourth order to

0.64 in the sixth order). Finally, when we trained ML models with hierarchically orga-

nized data (distributed modeling), i.e., Figures 3.4 (IX)-(XII), median KGE improved from
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0.56 to 0.69 from the fourth order to the sixth order. NSE, however, was relatively constant

across orders, with a noticeable increase in the interquartile range (IQR), the median, for

the largest order with 10 stations. When we compared similar spatial resolutions (orders)

across the three experiments (columns) at-station, lumped, and distributed experiments,

we observed an improvement in both NSE and KGE scores as orders increased and more

information was added to the data modeling process. Consider Figures 3.4(I), (V), and

(IX), KGE improved from 0.38 to 0.56 in the fourth order, 0.34 to 0.46 in the ��h order

and 0.61 to 0.69 in the sixth order, from at station to distributed experiments respectively.

Likewise, we observed an equivalent improvement in NSE, i.e., Figures 3.4(II), (VI) and (X)

from 0.42 to 0.48 in the fourth order, 0.34 to 0.47 in the ��h order and 0.29 to 0.60 in the

sixth order.

When we compared the performance of literature models on an order level basis, we

observed a much more substantial improvement in performance as the number of sub-

basins increased. �e RADR model [81] had the most noticeable improvement in skill

scores, with median KGE improving from 0.63 in the fourth order to 0.77 in the sixth

order, while median NSE improved from 0.47 to 0.58 in the corresponding orders. On

the other hand, the [150] model demonstrated an improvement in KGE from 0.68 in the

fourth order to 0.72 in the sixth order but a decline in NSE scores from 0.72 in the fourth

order to 0.56 in the sixth order. �e key takeaway is that more hydrological information

improves model certainty for both process-based and data-driven models but that the ML

introduced here has a more consistent performance.

Finally, we compare results of the distributed experiment against model predictions of

both an o�-the-shelf re-implementation of an ML model proposed by [150] with minor

modi�cation and o�-the-shelf results of a remote sensing data assimilation over the same

basin and time period from [81], i.e., Figure 3.3(III)-(IV). For all positive predictions, the

distributed experiment outperformed both literature models; 86.7% of NSE and 96.7% of all

KGE are positive as compared to 78.3% of all NSE and 92.8% of all KGE predictions for the
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Kratzert et al. (2019) model and 72.5% of all NSE and 86.7% of all KGE predictions from the

Feng et al. (2021) model. However, both literature models outperformed the distributed

experiment in areas where all models performed extremely well, i.e., KGE and NSE > 0.5.

Here, the Feng et al. model (59% of all NSE values and 71% of all KGE values) outperformed

both our proposed approach (53% of all NSE values and 58% of all KGE values) and the

re-implemented Kratzert et al. model (57% of all NSE values and 62% of all KGE values).

Interestingly, our methods outperform the literature models when all models perform

poorly (Figures 7 and S1): �e distributed modeling approach has 13% of all NSE values

and 3% of all KGE values as negative predictions across the entire experiment, the Kratzert

et al. model has 22% of all NSE values and 7% of KGE values as negative predictions across

all orders, and the Feng et al. model has 28% of all NSE values and 13% of all KGE values

as negative predictions across all Pfafste�er orders.

�e overarching result from Figures 3, 4, and 5 is that distributed models outperform

other de�ned discharge prediction models, which con�rms our hypothesis that integrat-

ing topologically organized geomorphological and hydrologic information improves the

performance of ML models for discharge prediction. Our results against literature models

are mixed, and as such, we explore the skill of all models next.

3.2.4 Discussion

We hypothesized that a distributed data modeling approach improves the performance of

ML models for discharge prediction. To this, we compared three experiments: At-station,

lumped, and distributed modeling approaches (section 3.2.2.3.1). In theory, comparison

between at-station and lumped experiments tells us the importance of including additional

hydrologic information in the model training data while comparison between at-station

or lumped experiment with the distributed experiments highlight the importance of inte-

grating information about varying temporal-spatial scales of physical processes (topolog-

ically guided training data) into the data modeling process i.e., Figure 3.3(I)-(II) and Figure
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3.4. Indeed, previous studies, e.g., [17, 89, 274, 59, 187] showed that both process-based

and data-driven models performed well when trained with spatially distributed data. �is

is because the distributed modeling approach assumes a non-uniform spatial in�uence of

both physical processes and anthropogenic drives in the upstream basin toward discharge

at the basin outlet (spatial-temporal heterogeneity), while lumped modeling assumes that

discharge at the basin outlet is a true representation of the integral response of all hydro-

logic process in the upstream (spatial-temporal homogeneity). �is is why, although we

observed performance improvement in both the lumped and disturbed experiments as we

added information by increasing the order (a result of added hydrologic information about

physical processes in the upstream basin), model performance was more pronounced and

consistent when training data was topologically organized (distributed modeling) than

when it was aggregated (lumped modeling).

When we compared results of the distributed experiment against model predictions of

both an o�-the-shelf re-implementation of anMLmodel proposed by [150] and the process-

based RADR model assimilation proposed by [81], we found both strengths and weak-

nesses of our approach. Our model outperformed the literature models when all pro-

duced poor hydrographs 3.6, and our skills scores have a much higher “�oor” than the

literature models. However, we have a lower “ceiling” as well- the literature models per-

formance exceeds ours when all models perform well, although the di�erence between

this study and the literature is much more pronounced at a lower skill (where our results

improve skill). We a�ribute the superior performance of Feng et al. RADR product at

the high skill areas to two factors: First, RADR was calibrated on remotely sensed data

drawn from the same distribution (independent and identically distributed data), and sec-

ond, the model was assimilated on heterogeneous data from the entire arctic region (as

compared to our models trained on data from only the Mackenzie basin). We a�ribute

the Kratzert[153] model’s be�er performance to a di�erent training strategy than the dis-

tributed experiment. Whereas models in the distributed experiment were trained and val-
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idated on order-speci�c training data, the Kratzert model used a k-fold validation strategy

and trained on the entire spectrum of data (all 69 gauge stations). �is strategy ensured

that the model was trained with more heterogeneous data, which improved its general-

ization to previously unseen data. �is also has the advantage of predicting �ows at all

river basins.

Figure 3.5: Representative hydrographs showing randomly selected models with 0.0<NSE0.6
in each of the experiments; At-station (le�), lumped (middle) and distributed (right) experiments
across the de�ned orders, i.e., from order 4 (top) to order 8 (bo�om). Here, we plot hydrographs
for the �rst 2.5 years.
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Figure 3.6: Le� to right: Representative hydrographs showing the worst performing ML models
in each of the experiments and the non-ML literature model; At station experiment, lumped ex-
periment, distributed experiment, and RADR model (Feng et al., 2021) across the de�ned orders,
i.e., from order 4 (top) to order 8 (bo�om). �e RADR model overestimates peak �ows and under-
estimates base �ows in lower orders. Here, we plot hydrographs for the �rst 2.5 years

Our distributed experiment, on the other hand, has two advantages. First, when all models

performed poorly (Figure 3.6), models in this experiment still performed be�er than liter-

ature models. In general, we a�ribute poor performance (poor generalization) to limited

training data, a reality for much of the world where training data are rare, nonexistent, or

proprietary [96]. Second, acknowledging the in�uence of physical processes on the hy-

drologic cycle, the existence of these processes at di�erent spatial resolutions, and their

varying dominance across di�erent geographical regions, order-speci�c models in the

distributed experiment �rmly integrate this hydrologic knowledge in the data modeling

process as compared to the literature models.

One possible explanation of why models in the distributed experiment perform be�er

when all models have low skill scores is that despite limited training data, these models
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are be�er than literature models at leveraging the high correlation between temporal-

spatial variability and physical processes to extract meaningful pa�erns in the training

data. �erefore, as we move towards understanding discharge on a global scale (as com-

pared to a few well-hydrologically mapped regions), it is su�cient to say that despite

the unique advantages that each of these models possess, a distributed data modeling

approach would be more applicable on a global scale, if not always more accurate.

Figure 3.5 shows hydrographs of randomly selected ML models in each of the orders 4 to

8 whose NSE scores lie between 0.0 and 0.60. Here, we use 0.0 < NSE  0.6 as a represen-

tative average performance range across the prediction distribution. Across individual

experiments, the models’ con�dence to re-create discharge increases as the number of

sub-basins increases. For example, absolute relative bias (|RBias|) improves from 0.24 to

0.007 in the station experiment, 0.80 to 0.002 in the lumped experiment, and 0.82 to 0.06

in the distributed experiments, as the number of sub-basins increases (i.e., from fourth

to eight order). However, there is a distinct di�erence in hydrographs across the de�ned

experiments. Consider the fourth order across the three experiments, normalized root

mean squared error (NRMSE) reduces from 0.17 in the at-station experiment to 0.09 in the

distributed experiment, indicating an improvement in model performance in response to

additional hydrologic information in the training data. Further, we observed that even

the best-performing models in the at-station experiment fail to recreate medium to high

peak discharges by a big margin in the lower orders. �is is not surprising, given that

peak discharges are a function of events in the upstream basin, e.g., a�er maximum rain

intensity or melting of accumulated snow [278, 138, 91, 139], information that is not in-

cluded in the training data. Indeed, the impact of the knowledge of events in the upstream

basin becomes more prevalent as more information is added to the training data. �is is

visible in the hydrographs of both the lumped and distributed experiments in Figure 3.5

(average-performing), in whichmodels recreate most of the peak discharges (or miss them

by a small margin). To verify this, we aggregated the top 10 peak �ows of each station
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and observed that the mean error of the best-performing models across each experiment

(de�ned as the average of the top 10 peaks in each order) reduced from 2901.58 <3B�1

in the lumped experiment to 2518.74<3B�1 in the distributed experiment and observed a

similar pa�ern between the same orders across the two experiments.

Di�erent geographical and climatic regions have di�erent dominant physical processes

that occur at di�erent temporal-spatial scales. Results in section 3.2.3.1 showed that inte-

grating this knowledge of temporal-spatial variations (distributedmodeling) improved the

discharge prediction of ML models. Earlier studies [140, 62] showed that longer lookback

windows with a longer “memory” of past hydrologic conditions improve model perfor-

mance. However, this performance improvement comes with increased computational

power and time. To further evaluate the impact of the lookback window on model perfor-

mance, we repeat experiments de�ned in section 3.2.2.3.1 with varying lookback window

sizes of 30, 90, 180 and 270 days. We hypothesize that longer lookback windows improve

model performance. Pairwise comparisons of distributions for both at-station and lumped

experiments indicate that the size of the lookback window has no impact on model per-

formance (P-value > .05). However, there is a signi�cant di�erence between distributions

of results for lookback pairs (30, 90), (30, 270) days of the distributed experiment (P-value

 .05).

We a�ribute the high correlation between pairs of lookback windows for both the at-

station and lumped experiments to the fact that both experiments ignore spatial variations

of events in the upstream basin (physical processes). On the other hand, we a�ributed

the di�erences across the lookback window pairs of the distributed experiment to the

integration of knowledge of both temporal and spatial variations of physical processes in

the data modeling process, indicating that the impact of dominant physical processes on

model performance is prevalent at di�erent temporal and spatial scales. We found that

at various temporal scales (with similar spatial scales), a lookback of as li�le as 90 days

was enough to capture temporal information encoded in the training data and as such,
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Figure 3.7: Le� to right: Pairwise comparison of KGE distributions with varying lookback win-
dow sizes and corresponding statistical signi�cance tests across the three experiments. Inter-
experiment comparisons show that distributions of lookback for at-station and lumped experi-
ments are similar, while there is an observable di�erence in distributions of lookback windows of
the distributed experiment

we saw no additional value in longer lookback windows, although this could be di�erent

for di�erent geographical regions and/or data.

We do not report individual skill scores of the seventh and eighth orders (Figure 3.4) due to

a limited number of gauge stations (Table 1). Further, data availability limits the minimum

number of gauge stations (:) to include in each subset, which reduces data heterogene-

ity for each order-speci�c model. For instance, on order 8, : = 3 represents 75% of the

data as training, while on order 4, : = 3 is only 12% (Table 3.2). We chose to keep :

constant instead of choosing a constant train/test ratio because this allows sharing model

hyper-parameters (and structure) and is easier to compare results of models trained on

the same number of gauge stations (:) across di�erent orders of the same experiment.

Finally, randomly selecting 24 subsets from all possible combinations for spatial resolu-

tions with many gauge stations (Table 3.2) is not the best representation of complete data

heterogeneity. Although we experimented with up to 100 validation sets and observed no

substantial change in model performance. Future work could explore all possible combi-

nations of training and testing and/or vary : to learn the e�ect of increasing the training

sample.
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Machine learning has demonstrated encouraging results in global river discharge predic-

tions and a potential to solve many of existing problems in hydrology[248, 192]. However,

up until now, these results have all been based on lumped data modeling techniques, ig-

noring temporal-spatial variations of physical processes that drive the hydrologic cycle.

We have demonstrated that integrating this knowledge into training data modeling (dis-

tributed experiment) can further improve the performance of ML models, more especially

for prediction in ungauged basins. Further, we have shown that even with limited data,

there is a possibility that a distributed modeling strategy could provide improved predic-

tions (especially in ungauged basins) than any of the benchmarked models. We acknowl-

edge that literature models from ML and hydrologic modeling represented by [150] and

[81] have unique advantages that can improve our understanding of global discharge as

a proxy for understanding cascading impacts of climate change on water resources and

as such, leveraging distributed modeling could further improve their performance and

applicability.

3.2.5 Conclusion

In this work, we have demonstrated the importance of distributed data modeling in im-

proving the performance of ML models for discharge prediction in ungauged basins. Fur-

ther, we leveraged topologically guided river hierarchies as a proxy for understanding the

contributions of di�erent physical processes at varying spatial resolutions and showed

that as spatial resolution increases, model performance improves in response tomore �ne-

grained hydrologic information. Finally, we compared our distributed approach against

two literature models, i.e., [150] and [81], and showed that when all models performed

poorly on previously unseen data, the models trained with the distributed modeling ap-

proach demonstrated be�er performance. �is makes our proposed approach more appli-

cable for predicting discharge for most global river basins with limited to no data.
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Our experiments and results demonstrate the importance of integrating hydrologic and

geographical di�erences in the datamodeling process, a notion that has, up until now been

largely ignored when building data-driven hydrology models. With the upcoming launch

of the SWOTmission that will provide more consistent and �ne-grained hydrologic infor-

mation on global rivers, our proposed approach can improve methods for predicting river

discharge on a global scale, and as a result, our understanding of the cascading impacts of

anthropogenic climate change on global water resources. However, we did not speci�cally

discover which physical processes are dominant at varying spatial scales, but this opens

up questions in future work in which we will aim at quantifying the temporal-spatial con-

tribution of distinct features towards model performance and overall interpretability and

explainability of ML models in hydrology and physical sciences in general.
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CHAPTER 4

EXPLAINABLE MACHINE LEARNING FOR RIVER DISCHARGE
PREDICTION

Machine learning has emerged as a powerful tool for predicting river discharge, but its

black-box nature raises concerns about the underlying mechanisms driving these pre-

dictions. To bridge the gap between data-driven models and traditional physics-based

hydrology, it is crucial to develop explainable ML approaches that can demystify the rea-

soning behind their predictions. Chapter 3 demonstrated the e�ectiveness of ML in pre-

dicting river discharge, particularly in ungauged basins. However, the black-box nature

of these algorithms raises concerns among hydrologists who rely on explainable models

to derive physical insights. Addressing these concerns, this chapter introduces statisti-

cal techniques to explain the internal workings of these ML models (explainable ML). By

unraveling the decision-making process of these complex algorithms, this approach can

foster trust in ML models and pave the way for their seamless integration into hydrolog-

ical practice. �e ability to statistically explain ML predictions presents an opportunity

to bridge the divide between data-driven and physics-based hydrology, paving the path

towards more holistic and reliable river discharge prediction models.

4.1 ExplainableMachine LearningModels forRiverDischarge Pre-

diction Using Remotely Sensed Data

4.1.1 Motivation

Reliable water supply is the most vulnerable natural resource to anthropogenic climate

change. Changes in water cycles due to global warming and other anthropogenic cli-
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mate change factors have a wide range of environmental and socio-economic impacts:

increasing sea levels, shi�s in precipitation pa�erns, changes in groundwater recharge,

salinization of freshwater sources and ocean acidi�cation, changes in bio-eco systems, as

well as impact on agriculture and clean energy generation (e.g., hydropower), all of which

are a resulting of rising global temperatures[148]. As such, continuous monitoring of the

cascading e�ects of anthropogenic climate change on water resources is critical to address

the intricate interplay of environmental, political, and socio-economic challenges arising

from shi�ing water dynamics- critical to ensuring the long-term survival of the global

population, a majority of whom live in the global south. However, such a real or near-

real-time monitoring system is unavailable for most regions worldwide. It is, therefore,

di�cult to obtain accurate data on the quantity and quality of water available for hu-

man consumption, agricultural and industrial use, and clean energy generation, among

others[197, 215, 147]. �is means that a major disaster, such as a hurricane, storm, or

drought, can devastate an economy, including the loss of millions of lives and billions

of dollars worth of property[113]. As a result, there is an urgent need for continuous

monitoring of global water resources for which there are limited historical and current

data.

Recent advances in machine learning (ML) such as deep learning, transfer learning, re-

mote sensing integration, feature learning, and AutoML and neural architecture search,

among others, havemade it possible to transfer hydrologic information fromwell-mapped

regions to those with li�le to no historical data with superior performance compared to

centuries-old process-based techniques [248, 152, 79, 67]. Machine learning methods can

“learn” intrinsic pa�erns in hydro-meteorological data and exploit this hydrologic knowl-

edge to generate new predictions with greater precision than existing process-based mod-

els. However, ML models are still black-box, without a comprehensive knowledge of how

they arrive at predictions. In other words, it is di�cult to fully understand an ML model’s

processes, decisions, and predictions. �is has led to skepticism and slow adoption in hy-
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drologic sciences: the discipline emerged from civil water infrastructure management in

previous centuries and has a strong tradition of the classical physics-based “proof” from

conservation of mass, momentum, and energy. Hydrology does have a strong empirical

tradition (e.g., Manning’s Equation and Darcy’s Law), but hydrologic empiricism always

assigns physical meaning to empirical parameters and expects any solution to be trace-

able, repeatable, and have a physical meaning. Further, process-based models are in�exi-

ble to novel conditions (such as novel climate change scenarios) and struggle to adapt to

conditions di�erent from those under which they were calibrated. �is results in an em-

pirical abstraction of complex and unknown physics, resulting in lower-skill predictions

and forecasts as an empirical representation of a physical system. �is also makes it di�-

cult to identify dominant physical processes automatically because hydrologic responses

frequently exhibit threshold behaviors due to sensitivity to varying physical phenomena

happening at distinct temporal-spatial scales, leading to regions of state space (multi-

dimensional space that encompasses all possible combinations) where some processes

and their parameters are negligible (Ogden 2021). Consequently, physics-based models

are frequently highly tailored for speci�c applications (e.g., speci�c watersheds and cli-

matic regions). In addition, the number of model parameters increases with the number of

di�erent physical processes that are represented, making process-based models complex

and computationally costly and ultimately equi�nal- the empirical parameters abstracting

the physics end up absorbing uncertainty in non-physical ways (Wagener and Montanari

2011; Arsenault and Brisse�e 2014). Because of this simpli�ed depiction of reality due to

epistemic limitations, process-based models o�en fail to capture non-linear interactions

and emergent phenomena, especially in the wake of cascading climate change, making

them neither easily transferrable to new regions with unique hydro-meteorological char-

acteristics nor rapidly scalable in the presence of new and heterogenous data, rendering

them less useful for real-time learning and insightful information sources.
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Process-based models in hydrology [78, 185] are a set of mathematical equations that

model natural laws that govern physical processes (e.g., mass conservation, energy, and

momentum in hydrologic cycles). �is is especially signi�cant considering that dominat-

ing physical processes are speci�c to geographical or climatic locations [25]. As a result,

the ability of process-based models to adjust their parameters in response to the changing

dynamics of the prevailing physical processes makes themmore useful, particularly in sit-

uations with limited to no training data. �e simplicity with which process-based models

represent and mimic physical processes allows users to understand how the underlying

physical processes in�uence the model’s prediction consistent with the established un-

derstanding of hydrologic processes. However, not all physical processes are known in

hydrology, which makes them di�cult to model at scale and in di�erent environmental

and climatic conditions[280, 10].

Fortunately, with their data-driven nature, ML models [160, 182] hold the premise to

bridge these gaps through adaptivemodeling capabilities and provide timelier and context-

speci�c insights into hydrologic systems. �ese models assume that their input-output

relationship can be explained by a set of mathematical equations, eliminating the need to

understand the underlying physical processes and how they interact. �erefore, this begs

the question for the hydrologic sciences: Is it possible to leverage the predictive prowess

of machine learning models while maintaining the transparency of their internal working

mechanisms? �is would allow for higher-skill predictions of ML that match the tradition

of physically based empiricism of hydrology.

In this work, we propose an explainable arti�cial intelligence (explainable AI) methodol-

ogy to improve the interpretability of machine learning models for river discharge pre-

diction. Our goal is to bridge the gap between traditional process-based models and the

emerging domain of machine learning. Starting with traditional machine learning meth-

ods, we use linear regression to explain the global relationships between the input and

output variables, focusing on how to use the model’s coe�cients to interpret the sen-
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sitivity of the output in response to each input variable. To address the limitations of

linear regression, we use a combination of cooperative game theory and ensemble learn-

ing methods to learn local relationships between inputs and output variables. Conse-

quently, we can identify the most predominant variables across di�erent temporal-spatial

contexts. Due to the sequential nature of hydrometeorological data, we incorporate a�en-

tion mechanisms [307, 198, 44]in Long-Short Term Recurrent Neural Networks (LSTMs)

to learn long-term temporal dependencies in the data. As a result, our models become

adept at focusing on critical segments (speci�c temporal points) of the input sequences,

allowing us to understand the physical processes that drive the hydrologic cycle in time

and space. Our proposed methodology had several advantages over process-based mod-

eling methods. First, it is inherently data-driven, meaning we can garner insights from

various data sources. Secondly, explainability emphasizes the internal workings of ma-

chine learning models by building on simple and easy-to-explain principles like model

coe�cients and Shapely values. Machine learning can overcome some of the limitations

of process-based modeling. �us, we believe that this shi� towards explainable machine

learning can improve the adaptability of machine learning models in hydrology, leading

to the development of more accurate, reliable, and fair models that can help us manage

and understand the impact of anthropogenic climate change on water resources.

4.1.2 Data and Methods

Building upon the foundational work presented in Chapter 3, this chapter employs the

same dataset and methods outlined in Section 3.1.3.1 to train machine learning models

for river discharge prediction, as a basis for explainable AI in hydrology. By applying

advanced analytical techniques to uncover deeper insights into the data, this chapter pro-

vides critical evidence for the thesis arguments in the subsequent chapters.
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4.1.2.1 River Discharge Prediction

River discharge is the volume of water per unit of time passing through a given cross-

section in a river. �is is the most important measurement for human and ecosystem

services for any river[97]. �e most accurate method for measuring river discharge is

in situ, which is impractical at scale. �erefore, most river discharge records are derived

from continuous measurements of river elevations or stages transformed empirically to

discharge via a ‘rating curve’ rather than direct discharge measurements[122]. A rating

curve is a mathematical model that estimates the relationship between discharge (�ow

rate) and river stage (water level) by ��ing a curve through a set of measurements at a

single place in a river[180]. �is is the most accurate method for estimating water �ow in

a river or stream at a speci�c point in time based on the water level or stage measurement.

�is processmust be repeated for each point of interest along the river, which is expensive,

time-consuming, and not feasible globally. �us, other means of estimating discharge are

needed.

In the hydrologic cycle, river discharge is an integral function (outcome) of various inter-

actions and physical processes (e.g., precipitation evapotranspiration) that occur within a

watershed (or water catchment basin). As such, these processes and interactions can be

used as proxies to estimate discharge emanating from a given land area (watershed) by uti-

lizing process-based hydrology models such as VIC, SAC-SMA, and HyMOD[161, 38, 31],

which are deployed in static and operational global assessments like GRADES, GLDAS,

and GloFAS[164, 235, 121]. Process models can update their internal working mechanisms

(empirical parameters) in response to the underlying changing phenomenon of the forc-

ing variables, o�ering insights into how di�erent components of the hydrologic systems

interact and in�uence each other. However, these models have varying parameters that

introduce equi�nality into the �nal solutions, degrading their physical meaning. Further,

many of these parameters are not directly measurable and must be estimated. �is can

introduce uncertainty and the potential for over��ing: the model performs well on cal-
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ibration data but fails to reproduce the same pa�erns on new data. Finally, they do not

easily transfer hydrologic information across watersheds, making them less applicable for

prediction in ungauged basins (PUB) with limited to no historical data.

4.1.2.2 Machine Learning in Hydrology

Machine learning has been applied to various problems in hydrology for several decades.

Early ML applications in hydrology (e.g., [112, 141, 48, 58]) focused on developing models

for predicting various hydrological variables such as stream�ow. ML algorithms, par-

ticularly Long-Short Term Memory neural networks [152, 79, 294], have demonstrated

be�er discharge prediction performance than process-based models in recent years. �is

is because neural networks are universal approximators that can simulate linear and non-

linear systems without any major underlying assumptions, making them be�er suited for

solving huge and complicated issues with su�cient and insu�cient data[32, 285].

However, ML models assume a direct causal relationship between hydrological processes

and discharge, which is not necessarily correct. �is is because numerous factors, in-

cluding geographical and climatic characteristics of a given watershed (water catchment

basin), contribute to a high degree of temporal and spatial variation in hydrologic pro-

cesses. In other words, dominant physical processes di�er by region, which might bring

uncertainty into the assessment of model parameters. Additionally, hydrologic processes

are governed by physical laws, which are challenging to integrate into ML models un-

less explicitly designed to do so (e.g., physics-driven ML models). Without incorporating

these constraints, ML models can produce physically inconsistent or unrealistic predic-

tions. Further, machine learning models are computationally costly and require volumi-

nous training data, which does not exist for most of the world’s basins or is expensive and

di�cult to collect over a long period of time across di�erent geographic regions. Finally,

unlike process-based models, ML models produce black-box predictions that are di�cult

to explain or comprehend. �e lack of transparency(explainability) is a massive concern in

55



hydrology, where understanding the underlying processes is extremely important. �ese

drawbacks reduce their utility for modeling physics-driven processes, where the relation-

ships between underlying factors need to be interpretable to improve global acceptance

and comprehension.

4.1.2.3 Explainable Machine Learning

In machine learning, explainability (explainable AI) is the extent to which machine learn-

ingmodels’ internal workingmechanisms (decision-making processes) can bemade inter-

pretable, transparent, and understandable to non-domain experts. Hydrologic systems are

inherently complex, with multiple interacting processes and non-linear relationships. Al-

thoughMLmodels can capture these complex interactions, understanding how they do so

is very important for experts and policymakers to trust, validate, and use the predictions

and recommendations provided by these models. Additionally, hydrologic systems are

o�en region-speci�c, varying widely across regions and scales. �us, by understanding

how ML models work in one context, hydrologists can be�er understand their suitabil-

ity and adaptability to other contexts. Further, hydrologic observations and predictions

o�en come with uncertainty due to measurement errors, incomplete data, or inherent

variability. Hydrologists can understand, quantify, and address these uncertainties using

explainable AI when ML models are used for discharge prediction. Finally, critical de-

cisions like �ood prediction, drought monitoring, and water resource management have

signi�cant socio-economic and political(hydro-politics) implications. As such, explainable

and transparent ML models can give policymakers and decision-makers the con�dence

to act on AI-driven insights and recommendations. While there have been a�empts to

explain the performance of LSTMs (e.g., [149]), explainability in hydrologic ML is still

largely unexplored. Model explainability can be achieved through various methods, such

as counterfactual explanations, feature importance, Local Interpretable Model-agnostic

Explanations (LIME), Shapley Additive explanations (SHAP), A�ention Mechanisms for
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sequential models such as LSTMs and transformers, feature visualization and activation

maximization, and probing in�uential training data, among others. [26, 107].

In this work, we use model-speci�c and model-agnostic methods to improve explainabil-

ity of ML models [114, 157, 158, 170]. Model-speci�c methods are designed for speci�c

types of ML models (usually neural networks) and require access to the internal details or

architecture of the model. As such, they can o�en provide deeper insights into the overall

functioning of these models at a deeper scale. On the other hand, model-agnostic methods

apply to any type of model, ranging from traditional ML models such as linear regression

to the latest state-of-the-art models like time-series transformers. Model-agnostic meth-

ods don’t rely on the internal works of the model but focus on the model’s inputs and

outputs. As such, they are mostly useful in scenarios where the model’s internal details

may be unknown or too complex to analyze directly. Although model-agnostic methods

are more broadly applicable, they do not provide as deep or more detailed insights into

the model’s internal workings as model-speci�c methods might for that particular model.

As such, exploring the applicability of both explainability methods provides a wide set of

options that hydrologists can choose from, depending on the task.

�erefore, As ML becomes more integrated into data-driven decision-making in hydro-

logic sciences, it is of utmost importance to have explainable and interpretable models

that can justify their predictions simply and concisely.

4.1.2.4 Equitable Machine Learning in Hydrology

Equity in machine learning refers to the just and fair distribution of bene�ts, risks, and re-

sponsibilities associated with developing and deployingMLmodels, thereby ensuring that

no group is unfairly disadvantaged or marginalized. In the context of hydrology, equitable

ML refers to the development of ML models in a manner that ensures fairness, inclusivity,

and justice across di�erent regions and time periods while recognizing the diverse hydro-

logic challenges faced by di�erent geographic and climatic regions and seeking to ensure
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that these challenges are addressed without bias. In physical science and hydrology, fair-

ness is an important issue that needs to be addressed, as it can a�ect the accuracy and

reliability of decisions and recommendations made by these ML models. Understanding

the extent to which models are biased or a�ected by external factors is essential to en-

sure equitable outcomes are realized. �is work focuses on temporal and spatial equity

concerning ML models for predicting river discharge.

Temporal equity emphasizes consistent performance (prediction accuracies) of ML mod-

els across di�erent time frames (e.g., seasons and years). Since hydrometeorological data

is inherently time-series, models trained on this data should be robust to temporal vari-

ables. Over time, river systems change due to climate variations, anthropogenic impacts,

and land use changes. As such, an ML model that o�ers accurate predictions for a certain

timeframe might have lower accuracies in the next if it doesn’t account for these temporal

dynamics. Conversely, spatial equity emphasizes that if data is collected frommultiple lo-

cations, it is essential to ensure that the model trained on this data performs equally well

(or within acceptable margins) across all these locations. Historically, data-rich regions

(e.g., the conterminous United States), which have robust infrastructure, have dominated

the datasets used for model training (e.g., CAMELS dataset). �is imbalance in data di-

versity can result in models that produce biased predictions when validated in regions

with limited data (predictions in ungauged basins), usually regions in the global south.

ML techniques such as transfer learning, where models are trained on one region and

�netuned for another region, can bridge data gaps and ensure region-speci�c accuracy.

Additionally, tailoring models to local conditions using a hybrid of ML and physics-based

models (physics-driven ML) can enhance regional relevance, ensuring that models per-

form well across diverse geographic regions.

Implications of neglecting temporal and spatial equity can be signi�cant. If le� unchecked,

temporal-spatial inconsistent predictions can lead to poor long-term water management

strategies if the models fail to recognize emerging temporal pa�erns, resulting in inad-
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equate preparedness for extreme events like �oods and droughts, serious environmental

and socio-economic consequences, including increased water pollution, damage to in-

frastructure, decline in agricultural productivity and cleaning energy generation as well

as loss of lives.

4.1.3 Experimental design

To demonstrate the internal decision-making process of ML models and how they arrive

at given predictions, we train a series of ML models with increasing complexity: Linear

regression, random forests, and Long-Short Term Memory (LSTM) recurrent neural net-

works with an a�ention mechanism [262, 245, 124]. �is section focuses on making the

outcomes of these models more understandable to non-domain experts by breaking down

the “black box” nature of these models, thereby making them transparent and their pre-

dictions more interpretable. Linear regression is a traditional ML model that assumes a

linear relationship between the inputs (independent variables) and the outputs (depen-

dent variables). �is relationship between the inputs and outputs can be represented by

equation (4.1), for multiple linear regression (multiple independent variables).

~ = V0 + V1G1 + V2G2 + . . . + V=G= + Y (4.1)

where~ is the dependent variable; G1, G2, . . . , G= are the independent variables; V0 is the

y-intercept (constant term); V1, V2, . . . , V= are the coe�cients of the independent variables;

Y represents the error term.

Linear regression operates on several assumptions, which makes it one of the simplest

and most interpretable ML models. �ese assumptions include linearity,�e relationship

between the independent and dependent variables is linear; Independence: �e observa-

tions (model instances) are independent of each other; homoscedasticity,�e variance of

errors is consistent across independent variables, and the absence of multicollinearity, i.e.,

the independent variables are not highly correlated with each other.
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Equation 4.1 is a straightforward representation of how each feature a�ects the prediction

y. �e coe�cients of the equations (Beta) indicate the strength and direction of the rela-

tionship between the independent variables G1, G2, . . . , G= and the dependent variable ~. A

positive coe�cient indicates a direct relationship: as the independent variable increases,

the dependent variable increases, while a negative coe�cient indicates an inverse rela-

tionship. �e magnitude of the coe�cients indicates the importance of the corresponding

features: large values suggest a stronger impact on the dependent variable (predicted

value). To explain the linear regression, randomly select a subset (: = 4) of stations from

the entire dataset (= = 89) and concatenate them into a single dataset. We then randomly

shu�e the data (since each observation is independent of the other) and split it into train

and test sets in the ratio of 80% to 20%, respectively. We repeat this procedure several

times (k-fold cross-validation) to ensure consistency in our results and report the average

of the coe�cients across these experiments. Finally, we examine the direction and mag-

nitude of the model’s coe�cients, indicative of the interaction between the inputs and

outputs.

However, hydrological processes are o�en complex, non-linear, and interdependent, mak-

ing it di�cult to model them based on linear regression assumptions accurately. �is is

because hydrometeorological interactions involve many variables, such as the e�ects of

climate change, land use, and population dynamics. �ese factors can all have a signi�cant

impact on the dynamics of river discharge. As a result, more complex models are required

to capture the interactions between hydrological processes accurately. �us, while linear

regression is inherently interpretable, its assumptions of linearity, independence, and ho-

moscedasticity can limit its real-world applicability, potentially leading to oversimpli�ed

or misleading explanations.

Random Forests (RF) is an ensemble algorithm that combinesmultiple decision trees to im-

prove prediction. �is enables the model to capture complex and non-linear relationships

between the input(independent) and output(dependent) variables, resulting in higher ac-
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curacy and, subsequently, more trustworthiness in the predictions the model provides.

RF is especially useful in applications where the data is high-dimensional and the rela-

tionships between the variables are complex. Although RF models are powerful predic-

tors, they are considered black-boxmodels, especially considering themany trees(decision

steps) involved in arriving at the correct decision. �erefore, interpreting RF models can

improve both themodel’s robustness and build trust among non-technical users and stake-

holders. In this work, we use SHAP (Shapley Additive exPlanations) to provide a uni�ed

feature importance measure by distributing the prediction value across the input vari-

ables(features) by leveraging the SHAP framework.

q9 =
’

(✓# \{ 9}

|( |! · ( |# | � |( | � 1)!
|# |! (5 (( [ { 9}) � 5 (()) (4.2)

where # is the set of all features; ( is a subset of # that does not include feature 9 ;5 (()

is the prediction of the model for the instance with only the features in ( active.

�is uni�edmodel-agnostic Python framework uses corporate game theory [279, 208, 202]

to calculate each feature’s marginal contribution (Shapley value) toward overall model

accuracy. �e Shapley method is a statistical method for allocating payouts to players

based on their marginal contribution to the overall payout. Shapley values conform to

the natural axiomatic a�ributes of a fair allocation: e�ciency, anonymity, proportionality,

and dumminess.

Regarding explainability, the SHAP framework considers each predictive task as a single

game, input features as players, and the model’s prediction as the overall payout. �us,

the Shapley value of a given input feature can be de�ned as its contribution to the total

payout (prediction), weighted and summed over all possible combinations (coalitions).

However, the computational cost of calculating Shapley values across all possible feature

combinations grows exponentially with the number of features. Tree SHAP is a faster and

more e�cient method for estimating SHAP values for tree-based models, which reduces

computational demands without sacri�cing accuracy.
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Although Random Forest models are powerful predictors, they are not naturally designed

to handle the inherent temporal dependencies in time series data like river discharge. �is

limitation makes them less adept at capturing the sequential order and relationships be-

tween observations over time. Additionally, their use requires extensive feature engineer-

ing to address seasonality and non-stationarity. Finally, the model’s complexity can lead

to computational challenges and a risk of over��ing speci�c timeframes or anomalies.

Long Short Term Recurrent Neural Networks (LSTMs) are a type of arti�cial neural net-

work (ANN) originally proposed by Hochreiter & Schmidhuber (1997), capable of process-

ing sequential data. LSTMs have been successfully applied to language modeling, video

understanding, music transcription, discharge prediction for hydrology, and other appli-

cations. Unlike standard neural networks that only understand the spatial context of data,

LSTMs can extract both the temporal and spatial context encoded in the training data. At

a structural level, an LSTM network consists of a series of identical recurrent neural net-

works where the previous neural network C8�1 passes information to the current network

C8 . �is cascading architecture allows LSTMs to handle the sequential context encoded in

historical data, e.g., hydrologic data. Unlike traditional RNNs, LSTMs can maintain in-

formation in memory over long periods, thereby overcoming the problem of vanishing

gradients. �is allows LSTMs to learn long-term temporal dependencies, i.e., where the

desired output depends on inputs presented at times far in the past (lookback window),

which is important when modeling physical processes that occur at di�erent spatial res-

olutions. Consequently, the lookback window size determines how much information a

model learns about a particular physical process.

In this work, we use a bi-directional LSTM with four layers and an a�ention mechanism.

Bidirectional LSTMs concatenate two unidirectional LSTMs in opposite directions such

that the model learns encoded features in both time-increasing (forward chain) and time-

decreasing (backward chain) manners. �is is especially important where information

encoded at the next timestep(ti+1) can improve prediction at the current time (ti). Knowl-
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edge of river discharge at the next timestep can improve our prediction at the current

timestep, and as such, we adopted the bidirectional LSTM network model architecture

for our experiments. �e a�ention mechanism is a computation technique that enables

the network to selectively focus on segments of the input sequence when generating a

prediction. For each output time step C , it computes scores for every input time step C 0

based on the model’s hidden states, score(⌘C 0,⌘C ). �ese scores are then transformed into

a�ention weights using a so�max function, UC,C 0 =
exp(score(⌘C 0 ,⌘C ))Õ
C 00 exp(score(⌘C 00 ,⌘C )) . �e weighted sum

of the input hidden states, based on these a�ention weights, produces a context vector

2C =
Õ
C 0 UC,C 0⌘C 0 for the decoder. �is context vector, combined with the current hidden

state of the decoder, determines the �nal output for that time step, allowing the LSTM to

focus adaptively on di�erent parts of the input for each output. By allowing the model

to focus selectively on signi�cant past events or pa�erns, a�ention mechanisms enhance

the LSTM’s ability to capture long-term dependencies and o�er increased interpretability.

Hydrologists can then visualize which past timesteps in each sequence were deemed most

in�uential by the model for a given forecast.

4.1.4 Evaluation Metrics

To compare explainability across di�erent models, we use three di�erent metrics: coe�-

cients of linear regression, feature importance scores, and shapely values. Linear regres-

sion coe�cients represent the change in the dependent variable for a one-unit change

in the independent variable, ceteris paribus. On the other hand, feature importance is

represented as a relative value between 0 and 1, indicating the proportion of predictive

power a�ributed to each independent variable. Finally, Shapely values provide a contri-

bution score for each feature (independent variable), indicating its marginal contribution

to the model’s prediction for a speci�c instance relative to the average prediction for all

dataset instances. Further, we report prediction results based on four major metrics used

to evaluate discharge predictionmodels: Kling-Gupta E�ciency (KGE) (Gupta et al., 2009),
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Nash-Sutcli�e E�ciency (NSE)[191], Relative Bias, and Normalized Root Mean Squared

Error (NRMSE). �ese standard hydrology metrics assess di�erent aspects of the hydro-

graph and errors in both timing and volume of water[164, 111].

4.1.5 Results

In this section, we present the results of our comparison of three data-driven (ML) mod-

els for predicting river discharge: linear regression, random forests, and long-short-term

memory networks. We evaluated the models using standard hydrology performance met-

rics: NSE, KGE, and RBIAS, and explainable ML techniques: regression coe�cients, fea-

ture importance, Shapley value, and a�ention mechanisms. Overall, our results suggest

that linear regression, random forests, and LSTMS can all be utilized to improve the ex-

plainability of ML models in hydrology and the physical sciences in general.

Table 4.1 shows the results of three ML models evaluated for river discharge predic-

tion: linear regression, random forest, and LSTM. Linear regression, a simple and inter-

pretable model, achieved an NSE of 0.78 and KGE of 0.77, suggesting a well-balanced

representation of the observed river discharge dynamics. Random forest, a more complex

model, achieved the same NSE of 0.78 but a slightly superior KGE of 0.86, indicating its po-

tential to capture intricate statistical characteristics of the observed data accurately. Both

models exhibited a near-negligible underestimation bias. On the other hand, the LSTM

model achieved an NSE of 0.68 and a KGE of 0.8, suggesting a satisfactory �t. Although

random forest and linear regression seem to outperform LSTMs in terms of mean met-

rics, it is important to understand the performance of the respective models beyond mean

metrics. For example, it is important to consider the models’ ability to capture extreme

events and their performance on di�erent sub-basins of a river network.

Ultimately, the choice of explainability technique depends on di�erent factors, including

the complexity of the data and the desired level of explainability. �e remaining part of
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Table 4.1: Mean of KGE, NSE and RBias across the threemodels: Linear regression, random forests
and LSTMs

Model Name NSE KGE Rbias
Linear Regression 0.78 0.77 -0.008
Random Forests 0.78 0.86 -0.008
LSTM 0.68 0.80 0.050

this section presents a detailed description of our �ndings, highlighting the comparison

of performance and potential shortcomings of each method.

(a) (b)

Figure 4.1: predicted discharge vs. observed discharge curves for Linear regression and Random
Forest models. LR yields an '2 = 0.75 while RF yields an '2 = 0.83. �is shows that the RF model
�ts the data more accurately than the LR model

First, we compare predicted discharge vs. observed discharge curves for Linear regression

and Random Forest models (Figure 4.1). As a reminder, we randomly shu�e training and

testing data (k=4). �is is because both LR and RF models assume that individual observa-

tions (data points) are independent of each other, and as such, unlike LSTMs, there is no

need to maintain temporal dependence in the dataset. �e LR model (Figure 4.1a) yields

an '2 of 0.75, indicating that the model can explain 75% of the observed river discharge

variability. '2(coe�cient of determination) is the proportion of the variation in the de-

pendent(output) variable explained by the independent(input) variables. '2 can take on
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any value between 0 and 1, with a higher value indicating a be�er �t of the model: an

'2 of 1 indicates that the model perfectly �ts the data, while a value close to 0 indicates

that the model fails to �t the data. On the other hand, the random forest model (Figure

4.1b) shows a higher '2 value of 0.83, indicating that the RF model can explain 83% of the

variability in the observed data on average.

(a) (b)

(c) (d)

Figure 4.2: Comparative feature importance across three models: (a) Coe�cients from a multi-
linear regressionmodel, (b) Feature Importance from the RandomForestmodel, (c) SHAP summary
plot from the Random Forest model, and (d) SHAP summary plot from the LSTM model. Here, we
display the top 14 most important features
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Next, we compare the in�uence of the input (independent) variables on the model predic-

tion as captured by the two models across all dataset instances (Figure 4.2). �e features

are ranked in their order of in�uence, starting with the most in�uential ones. �is is also

known as global explainability since the in�uence is represented as an average across the

entire dataset. Global explainability allows us to identify which input variables have the

largest in�uence on model predictions. �e length of each bar represents the magnitude

(importance) of the corresponding feature. Linear regression coe�cients can be negative

or positive, indicating the direction of the relationship between the feature and the target

variable. A positive coe�cient value means that as the predicted value increases, the in-

put feature also increases. Conversely, a negative coe�cient means that the input feature

value increases as the predicted variable decreases. However, to compare feature impor-

tance across the three models, we opt to represent the regression coe�cients as absolute

values, thereby focusing on the magnitude of the in�uence rather than the direction.

Based on this, the LR model (Figure 4.2a ) ranks the mean width of the river reach as the

most important feature, followed by upstream basin area and net short-wave radiation

�ux, while traditional hydrometeorological processes like precipitation and soil moisture

are ranked least important. However, it should be noted that LR assumes a linear rela-

tionship between the input and output variables and, as such, may fail to capture complex

non-linear relationships that are inherent in hydrologic processes. �e RF model (Figure

4.2b) ranks the Snow depth water equivalent as the most in�uential feature, followed by

soil temperature at the depth of 10cm and Root Zone soil moisture. Soil depth water

equivalent and root zone soil moisture are the amount of water stored in the snowpack

and soil layer where plant roots extract water, respectively. In theMackenzie basin, we ex-

pect both factors to have a major in�uence on river discharge. �e random forest model

captures this in�uence be�er than the Linear regression model. �is demonstrates the

RF model’s ability to capture non-linear interactions between features and suggests that
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the in�uence of a given input feature on the prediction may be multi-faceted, potentially

interacting with other features in ways that a linear model fails to capture.

Figure 4.2c shows the SHAP values of the features as represented by the RF model. SHAP

values provide a more granular value decomposition of all predictions in the dataset.

SHAP values, which are an extension of Shapley values, achieve this by a�ributing por-

tions of the interaction to each feature while simultaneously considering all interactions.

Given that there is high consensus between feature importance and SHAP values of the

random forest model, i.e, the top 6 most important features (snow depth water equiva-

lent, soil temperature at 10cm, root zone soil moisture, slope, and base�ow ground water

runo�), it can be said that RF inherently captures non-linear and complex interactions

between the features be�er than regression.

�e SHAP values calculated using an LSTM model ( Figure 4.2c) show the order of im-

portance of the input features on river discharge prediction. �e LSTM model considers

snow depth water equivalent, longwave radiation �ux, soil and skin temperatures, and

snow depth as the most in�uential features. Interestingly, the model captures both snow

depth and snow depth water equivalent, which are critical drivers of river discharge in

regions like the Mackenzie basin, which are covered by snow for most of the year. Despite

having lower mean metrics (KGE and NSE) than the linear regression (LR) and random

forest (RF) models, we observe that the LSTM model can capture the complex non-linear

interactions between features and themost in�uential features that impact river discharge

be�er than the LR and RF models.

Figure 4.2 - global explainability provides insights into the overall behavior of the RF

model in predicting river discharge as an average of individual data instances across the

entire dataset. However, this representation can limit the ability to explain why a model

makes speci�c predictions at speci�c periods in speci�c climatic regions. On the other

hand, local explainability (Figure 4.3) focuses on the model’s prediction for speci�c in-
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Figure 4.3: �ree plots showing the impact of the same features on the model’s prediction
across di�erent instances (di�erent dates/seasons of the year): December is typically winter in
the Mackenzie basin, mid-March is early spring while mid-May is early summer

stances (days). �is makes local explainability ideal for understanding why the model

makes speci�c predictions at speci�c time periods, river basins, or geographic regions.

Starting with the base value, ⇢ (- ), which denotes the average discharge prediction across

all instances, each feature’s contribution is highlighted with corresponding SHAP values.

To compare the impact of each feature across di�erent seasons, we represent the SHAP

values as magnitude, thereby focusing on how much impact each feature has on model

prediction rather than the direction of the impact, i.e., negative or positive impact. �e

magnitude and order of features, represented by the length and position of bars, respec-

tively, help prioritize the most in�uential factors. Finally, by summing all these SHAP

values with the base value, we can compute the model’s precise prediction for that in-

stance, thereby ensuring a comprehensive and transparent interpretation.

From Figure 4.3, we observe that Snow depth water equivalent (SWE) consistently exerts

the most signi�cant in�uence on the model’s predictions throughout the three seasons.

�is in�uence is particularly pronounced during winter and summer. As the seasons tran-

sition from winter to summer, the model’s sensitivity to temperature, slope, root zone soil

moisture, and transpiration increases. Conversely, parameters like soil moisture at a depth

of 10 cm, bare soil evaporation, and canopy water evaporation (PlantCanopyWater) dis-

play an inverse relationship to the model’s performance. �e e�ects of these features

are most pronounced during winter and less pronounced during summer. Overall, we
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observe the multi-facet and complex interactions between the physical processes, result-

ing in the interpretation we observe in Figure 4.3: during the summer, evaporation, and

transpiration are higher, resulting in less soil moisture, bare soil evaporation, and canopy

water evaporation. As such, these parameters become less important in the model’s per-

formance during the summer.

Figure 4.4: Dependence plots showing the relationship between a single feature (x-axis) and the
SHAP values (or model output) for that feature (y-axis). �e coloration is based on a second “inter-
action” feature, which captures interaction e�ects, i.e., how the primary feature’s impact changes
with varying values of another feature

Figure 4.4 shows dependence plots for six features in the dataset. Dependence plots vi-

sually represent how a speci�c feature a�ects a model’s predictions by plo�ing feature

values against SHAP values. Additionally, they explain both directly and indirectly in�u-

enced e�ects. Direct e�ects are observed through the general trend of the plots: as the
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feature value changes, how does its impact (SHAP) value on prediction change? On the

other hand, interaction e�ects are highlighted in two ways: by coloring data points based

on the value of the second (interacting) feature, which shows how the primary feature’s

in�uence varies with another feature, and by observing the vertical dispersion of SHAP

values at a single feature value. �e interpretation is that if data points for a speci�c fea-

ture value are dispersed vertically, it suggests that other features also play a signi�cant

role in the prediction, indicating signi�cant interactions.

Figure 4.4 (1) shows the dependence plot for the slope (river slope) and its interaction

with soil temperature at a depth of 10cm. Five clearly de�ned vertical segments represent

di�erent segments of piecewise linear relationships. Each segment represents a di�erent

range of river slope values. Within each segment, the spread of values is relatively binary,

implying that slope has relatively li�le impact on prediction across segments. �e color

of dots in each of the clusters suggests that for data instances in which the river slope

segment has low values (most likely in higher orders: orders 6, 7, and 8 in the Mackenzie

basin), the soil temperature is more signi�cant. �e model’s prediction is least a�ected by

soil temperature in regions with steep slopes.

Figure 4.4 (II) shows the dependence plot for snow depth water equivalent (SWE) and

its interaction with the river slope bed slope. We �nd that the higher the snow water

equivalent (SWE), the lower the impact of SWE on the model’s prediction. �is means

that the more water stored in the snowpack, the less water runs into rivers. Addition-

ally, we �nd that a combination of high SWE and low slope has a lower impact on the

model’s performance. �is means the river discharge is low in low-lying areas with high

SWE. We observe the same relationship in Figure 4.4 (iv), which demonstrates the impact

of evapotranspiration on the model’s prediction and its interaction with the soil temper-

ature. We observe that, on average, as evapotranspiration increases, its impact on the

model’s prediction reduces. Furthermore, moderate soil temperature and relatively low

evapotranspiration positively impact the model’s prediction.
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Figure 4.4 (III) shows the dependence plot for the soil temperature at a depth of 10cm and

its interaction with the river width. We observe that on average, there is a positive rela-

tionship between soil temperature and its impact on the model’s performance. In other

words, as soil temperature increases, its impact on themodel’s performance also increases.

Further, we observe that, on average, wider rivers and low soil temperatures have a neg-

ative impact on the model’s prediction while wider rivers and high temperatures have a

positive impact on the model’s prediction.

In Figures 4.4 (IV), (V), and (VI), evapotranspiration, longwave radiation �ux, and soil

moisture all seem to have a constant e�ect on the model’s prediction.

Figure 4.5: Distributions of a�ention weights across LSTM models per river order (based on the
Strahler River order system. We ignore order 1 statins due to limited data (= = 1)

A�ention weights visualize which part of the time-series sequence (e.g., �rst, or last k

timesteps) the model is paying a�ention to. Figure 4.5 illustrates the average a�ention

weights for orders 2 through 8 of a Strahler River order system. Streams of order 1 are

small streams without tributaries, usually found in high mountains. When two streams
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of the same order meet, they form the next higher stream. �erefore, rivers in order 1 are

the headwaters (sources), while rivers in order 8 drain their water into large water bodies,

such as the ocean.

Accordingly, we observe that a�ention weights for higher orders (orders 8 and 7) are

evenly distributed across a wide range of time lags. �is indicates the e�ect of multiple

hydrologic processes over short (immediate e�ects like rainfall) and long (snowmelt in

highmountains) time spans. It is possible that the distinct peak in interest at the beginning

of the study is due to seasonality e�ects, which may be a re�ection of snowmelt in the

high mountains. �e relative decline in a�ention early in the input sequence (roughly

between the �rst and third months) suggests a bu�ered response to precipitation, typical

of large catchment areas, where runo� processes are more distributed over time.

We observe a noticeable shi� in average a�ention weights towards more immediate lags

in intermediate orders (6 and 5). �is indicates that rivers in these order systems are re-

sponding more rapidly to recent precipitation events. �e non-negligible weights across

a broad range of time lags suggest the in�uences of past hydrologic events, which indi-

cates that rivers in these older systems o�en retain the memory of past rainfall, perhaps

a result of processes such as delayed surface runo�, soil moisture dynamics, and slower

groundwater contributions.

We observe an overwhelming focus on the most recent lags in the lower orders (orders

4, 3, and 2), indicating that they respond rapidly to local hydrologic processes such as

precipitation. �e a�ention mechanism’s focus on immediate time lags indicates that

these rivers experience a more direct and immediate hydrologic response with minimal

in�uence from upstream processes. �is is due to the fact that rivers in these orders are

characterized by small catchments and reduced bu�ering capacities.
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4.1.6 Discussion

Our results suggest that explainable AI methods can provide valuable insights into the

“black box” nature of machine learning models for predicting river discharge. By com-

paring the plots of predicted vs. actual discharge curves of LR and RF models, we observe

that RFs are more adept at capturing the complex interplay of hydrometeorological factors

that drive the hydrologic cycle. Further, we observed that LR coe�cients are more useful

for explaining simple linear relationships between input features and output predictions.

However, they fail to capture the potentially complex interactions between inputs and

outputs. RF feature importance and Shapley values provided complementary informa-

tion about the relative importance of di�erent features for model predictions. LSTMs, in

general, are more di�cult to explain. However, we were able to understand how LSTM

models were learning temporal dependencies in the dataset using a combination of Shap-

ley values and a�ention mechanisms.

�e predicted vs. observed plot for the LR model (Figure 4.1a) exhibits a reasonably good

�t, with most data points clustered around the 1:1 line. �e 1:1 line represents the perfect

�t between the predicted and observed values of the dependent variables. �e closer the

data points (pair of observed vs. actual river discharge for each day) are to the 1:1 line,

the be�er the predictions, and the further the spread of points away from the 1:1 line,

the more discrepancies in the data. However, we observe deviations, especially for high

discharge values. �ese deviations could be a�ributed to various hydrometeorological

phenomena inherent in the data, which the linear model fails to capture. On the other

hand, the predicted vs. observed plots for the RF model (�gure 4.1b) display a tighter �t,

with points densely clustered around the 1:1 line across diverse pairs of discharge values.

Such improved performance underscores the ability of RFs to capture intricate, complex,

and non-linear relationships in hydrometeorological data. Such interactions may include

precipitation, evapotranspiration, soil moisture, and other river discharge variables.
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the linear regression coe�cient i.e, Figure 4.2a underscore the importance of the mean

width of the river reach and the size of the upstream catchment area by ranking them as

the most in�uential features towards river discharge. In both the continuity equation for

open channel (& = � ⇥+ ) �ow and the manning equation for discharge in open channel

(& = 1
=�'

2
3(

1
2 ), � is cross-sectional area, which is a product of the river width and slope.

As such, when river width is combined with �ow velocity, it has a direct impact on river

discharge. Likewise, �e size of the upstream catchment area has a signi�cant impact on

river discharge. In general, larger catchment areas produce higher river discharges than

smaller ones. �is is because larger catchment areas have more surface area to collect pre-

cipitation and more time for rainfall to runo� into the river system. However, traditional

hydrologic processes like precipitation and evapotranspiration are considered less rele-

vant, although this might not be the case. We a�ribute this to the fact that the LR model

fails to understand the non-linear interaction between the discharge and these processes,

deeming them less critical.

�e RF model, i.e., 4.2b can capture non-linearities and interactions between features. �e

model considers Snow Depth water equivalent, soil temperature at the depth of 10cm,

and root zone soil moisture as the most in�uential features towards discharge prediction.

Snow DepthWater Equivalent represents the water content within snow. �is water con-

tributes directly to river runo�, especially if the ground is frozen or saturated. �e tem-

perature of the soil at a depth of 10 cm in�uences river discharge by a�ecting processes

like freezing/thawing (which prevents in�ltration) and evaporation/transpiration rates.

Finally, Root Zone Soil Moisture determines how much rainfall or snowmelt is absorbed

by the soil versus how much runs o� into rivers: saturated soils lead to higher runo�,

while unsaturated soils may allow water to percolate down, replenishing groundwater

that slowly feeds into waterways. Together, these factors shape river discharge pa�erns.

SHAP values: �gures 4.2c and 4.2d for both RF and LSTM models concur with the RF

model feature importance, reiterating the dominant in�uence of SWE and soil tempera-
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ture on hydrological outcomes. �is consistency ampli�es the role of snow depth water

equivalent (SWE) and soil temperature at a depth of 10cm in shaping water movement

and distribution within the hydrometeorological system. �ese e�ects on water move-

ment and distribution are further magni�ed by the fact that both SWE and temperature

can evaporation and evapotranspiration, which can have an even more profound impact

onwater movement. Indeed, we observe that slope, speci�c humidity, and air temperature

in�uence model prediction most, suggesting their consistent in�uence across individual

predictions. In the hydrological cycle, these two factors can dictate moisture available

phase changes, a�ecting various processes ranging from cloud formation to evapotran-

spiration.

Global Explainability (Figure 4.2) can provide insights into the overall importance of dif-

ferent features in predicting river discharge. �rough this, we can identify important

features common to all predictions. However, this holistic view provided by global ex-

plainability does not provide information on how models make decisions for individual

data points. �is can be a limitation in hydrology (and physical sciences in general), where

river discharge is in�uenced by hydrometeorological processes that are dependent on a

speci�c season (e.g., winter/summer vs. dry/wet season), climatic region, geographic re-

gion, or a combination of all three. Local explainability can address this limitation by

providing insights into how the model makes predictions for individual data points across

di�erent temporal-spatial conditions. �is can be useful for understanding why the model

predicted a speci�c river discharge value and identifying the most in�uential features in

making that decision.

�us, from �gure 4.3, we observe that Snow depth water equivalent (SWE) is the most im-

portant feature for predicting river discharge in the Mackenzie basin across all three sea-

sons. However, its importance is highest in winter (and summer- reverse in�uence). �e

Mackenzie basin is a large, cold region with a long winter season. As a result, snowmelt

is the primary source of runo�. �us, SWE is most important in winter when snowmelt is
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the only source of runo�. In spring, SWE is still important, but its importance decreases

as other sources of runo�, such as rainfall, become more critical. In summer, SWE is still

important: it negatively impacts the model’s performance, as evapotranspiration becomes

the dominant loss term.

�e in�uence of soil temperature increases from winter to summer. �is is because tem-

perature is a major driver of snowmelt and evapotranspiration. In winter, temperature

is less important because snowmelt rates are low. However, snowmelt rates increase as

temperatures increase in spring and summer, and temperature becomes a more important

factor in predicting river discharge.

Slope is most important in winter, while root zone soil moisture and transpiration are

most important in spring and summer. Slope a�ects the rate of runo� by in�uencing

the �ow velocity of water. In winter, when the ground is frozen, and in�ltration rates

are low, slope signi�cantly impacts runo�. In spring and summer, when the ground is

thawed, and in�ltration rates are higher, slope has a lesser impact on runo�. Root zone

soil moisture a�ects the availability of water for plant transpiration. In spring, when

plants are beginning to grow, the moisture in the root zone is more important because

it limits the amount of water available for transpiration. Addtionally, transpiration, the

process by which plants release water into the atmosphere, is a major loss term in the

summer months. In winter and spring, transpiration rates are low, so transpiration is a

less important factor in predicting river discharge ads compared to summer.

Finally, Soil moisture at a depth of 10 cm, bare soil evaporation, and canopy water evap-

oration are most in�uential in winter, decreasing their in�uence from winter to summer.

In summary, local explainability provides insights into how input features for each data

instance (day) in�uence discharge under speci�c conditions (e.g., winter, summer, anthro-

pogenic climate change). As a result, local explainability can be used to identify hydrom-

eteorological anomalies, such as �ash �oods, extreme weather events, such as landslides,

and areas and times of potential drought. Greenland’s sudden ice melt in 2019 (July 30
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- Aug 3) is an example of such an anomaly where ice melting occurred over �ve days

across 90% of the continent’s surface. Finally, Local explainability can help incorporate

local knowledge to improve river discharge prediction: Many local communities deeply

understand river behavior through traditions or experiments. �is knowledge can be used

to align model predictions with local experience - ensuring scienti�cally rigorous predic-

tions match the local reality.

Local explainability methods (Figure 4.2) are useful for understanding how an ML model

makes predictions for individual data points. However, they do not show how the inter-

action of di�erent features a�ects the model’s prediction. Dependence plots can visualize

these relationships and interactions between individual input features while marginaliz-

ing the other input features. In river discharge predictions, dependence plots can be used

to understand how the model’s predictions change in response to changes in speci�c in-

put features such as precipitation, air temperature, and speci�c humidity, among others.

Furthermore, dependence plots can identify non-linear relationships between inputs and

the model’s output. For example, a dependence plot might show that the model’s predic-

tion of river discharge increases rapidly with an increase in air temperature up to a certain

point and then decreases more slowly at high-temperature levels. �is information can

then be used to develop strategies for mitigating the impacts of climate change on water

resources as well as data-driven decisions for water resources management.

Figure 4.4 (I) shows the impact of the river slope and its interaction with soil tempera-

ture at a depth of 10cm on the model prediction. In the context of the Mackenzie basin,

the river slope and soil temperature play intertwined roles in in�uencing river discharge.

River slope is the measure of the steepness of a river and dictates the speed and volume

of water �ow: steeper slopes lead to faster movement of water and potentially higher

discharges, especially a�er precipitation events. On the other hand, soil temperature can

a�ect the timing and amount of water that reaches rivers. For example, in the spring,

warmer soils can cause snow to melt faster, leading to increased river discharge. Addi-
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tionally, warmer soils can increase evapotranspiration, reducing river discharge. �us, the

exact relationship will vary depending on several factors, including soil type, vegetation,

climate, and the time of year. In tandem, areas with steeper river slopes, o�en moun-

tainous regions, experiencing low soil temperatures can signi�cantly impact the model’s

prediction, potentially forecasting rapid and signi�cant decreases in river discharge due

to the compounded e�ects of terrain, cold temperatures, and atmospheric moisture. How-

ever, it should be noted that the Mackenzie basin is very large and covers a wide range

of climates and geomorphologies. �us, the impact of the interaction between slope and

soil temperature on the model’s prediction might di�er depending on the basin’s gauge

station’s location.

Figure 4.4 (II) shows the impact of snow depth water equivalent (SWE) and its interaction

with the river slope on model prediction. SWE refers to the amount of water contained

within a snowpack, expressed as the depth of water produced if all the snow melted.

�e value of SWE determines how much water enters rivers and streams when snow

melts. A high SWE indicates signi�cant potential for runo�, leading to increased river

discharge when temperatures rise. Conversely, a low SWE suggests limited water avail-

ability from snowmelt, potentially leading to reduced river �ows during the melt season.

River slope, meanwhile, modulates how water �ows, with steeper slopes usually promot-

ing quicker water movement and increased river discharge. When these factors converge,

areas with steep slopes experiencing low SWEmight see accelerated snowmelt and runo�,

amplifying river discharge. In predictive modeling, such combined e�ects can manifest as

heightened sensitivities in discharge forecasts, especially in regionswhere rapid snowmelt

events are expected.

4.4 (III) shows the impact of soil temperature and its interaction with the upstream catch-

ment basin area on model prediction. Soil temperature in�uences river discharge through

various mechanisms. Warm soil can hasten snowmelt, leading to quicker runo�, while

frozen soil can inhibit in�ltration, causing increased surface runo�. Soil temperature
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also impacts evapotranspiration rates, groundwater �ow, and vegetation growth pa�erns.

�ese pa�erns canmodify the amount and timing of water contributing to rivers. In colder

climates, the temperature of in�owing water, a�ected by soil conditions, can further in�u-

ence river ice dynamics and potential �ooding. �ese soil temperature-driven hydrologic

processes collectively shape river discharge dynamics and the broader hydrological cycle.

In some cases, large catchment areas might not contribute as much to river discharge as

expected because a signi�cant portion of the water is returned to the atmosphere before

it reaches the river. However, it should be noted that the speci�c relationship between

soil temperature and basin area can vary depending on several factors, including climate,

land cover, and topography, which is especially true of the Mackenzie basin.

�e consistent e�ect of longwave radiation �ux and soil moisture i.e., Figures4.4 V and

VI on the model’s prediction suggests that these variables have a stable and predictable

in�uence on river discharge across various conditions. Longwave radiation �ux a�ects

surface energy balance and evaporation rates, while soil moisture determines water avail-

ability for runo� and evapotranspiration. �e uniform impact of these variables implies

that the hydrological processes they drive operate consistently within the observed range

of the dataset. In addition, the Mackenzie River basin’s characteristics might inherently

dampen variability in response to changes in these factors, resulting in a more predictable

discharge outcome.

Figure 4.5 shows the average a�ention weights of LSTM models trained across dif-

ferent Strahler River order systems. Visualizing the a�ention weights of LSTM models

trained on data from each Strahler order can help determine the speci�c input features

most relevant to the model’s predictions. Additionally, this can help identify pa�erns in

the data that are not immediately obvious to the human eye. For example, it may be possi-

ble to identify pa�erns in how di�erent Strahler orders respond to di�erent environmental

factors.
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Order 8 rivers are typically large in the Mackenzie basin, found in valleys, and �owing

into the ocean. �e plot shows relatively widespread a�ention weights across the entire

sequence. �is suggests that models trained on order 8 data consider a broad range of past

and present events when predicting discharge from these large rivers. �e widespread at-

tention is consistent with the idea that large rivers accumulate water over vast areas and

long timescales, thus having a memory of past events. Additionally, processes such as

groundwater base�ow, channel storage, and the cumulative e�ects of multiple tributaries

signi�cantly in�uence river discharge in order 8 rivers. Groundwater, for instance, can

have a long lag time before in�uencing river discharge. �is is especially true for large

basins. Furthermore, large-scale weather systems such as prolonged rainfall or snowmelt

events in the watershed’s upper reaches have downstream e�ects that manifest days or

weeks later (lagged in�uence). �e widespread a�ention suggests that the models recog-

nize delayed contributions from these processes.

�e a�ention weights for order 7 rivers are also relatively spread out but seem to peak in

the �rst month and last 3 months. �is suggests that while past and recent events ma�er,

events from the intermediate past (a few months back) might be more in�uential for this

code. �is could be due to the accumulation of �ows from multiple tributaries, each with

its own response time. �is is because n-1 orders (order 7 in theMackenzie basin) still have

signi�cant channel storage and receive water from lakes or wetlands upstream, which can

introduce delayed response to precipitation events.

�e a�ention mechanism in intermediate orders (orders 6 and 5) seems to focus more on

recent events, but past events are still weighted, especially at the start of the sequence.

�e in�uence of direct runo� becomes more pronounced in these orders (transitions be-

tween high mountains and lowlands), but there is still an element of delayed response due

to storage areas like small wetlands, ponds, or localized groundwater contributions. How-

ever, the models pay some a�ention to historical conditions, which re�ect the system’s

memory of past events such as rainfall or snowmelt.
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�e a�ention mechanisms in the lower orders (4, 3, and 2) seem skewed towards the most

recent timesteps. �is is consistent with the rapid response of smaller streams to precip-

itation events. �ese streams can react quickly to rainfall or snowmelt in mountainous

areas, leading the models to focus on recent events when predicting discharge. O�en

found in steeper terrains, these streams have a rapid hydrological response. Here, the

in�uence of direct surface runo� is more pronounced. Furthermore, groundwater in�u-

ence is minimal, and any groundwater contributing to discharge is usually from shallow

aquifers with quick response times. From a hydrologic perspective, short-duration and

high-intensity rainfall events o�en lead to �ash �oods in these streams. �ese explain

why models heavily skew a�ention towards recent timesteps.

Local explainability in river discharge prediction is a powerful tool for understanding and

managing rivers. While global explainability shows the general importance of features

towards prediction, local explainability provides insights into how these features in�u-

ence discharge under speci�c conditions, such as winter, summer, anthropogenic climate

change, and extreme weather events. Local explainability can be used to identify anoma-

lies, such as �ash �oods, potential risks associated with landslides, areas and periods of

potential drought, and human activities contributing to climate change. For example, lo-

cal explainability could have been used to identify the sudden ice melt in Greenland in

2019, where melting occurred across 90% of the continent’s surface – dumping 55 billion

tons of water over 5 days. Further, local explainability can show which factors are the

most in�uential at speci�c times of the year, allowing targeted and more e�ective inter-

ventions. For example, local explainability could be used to identify the most important

factors contributing to �ooding in a particular region during the monsoon season. �is

information could then be used to develop targeted interventions to reduce �ooding risk,

such as building �ood defenses or improving drainage systems. Finally, local explainabil-

ity can help to incorporate local knowledge into river discharge prediction models. O�en,

local communities possess traditional or experimental knowledge of the behaviors of the
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rivers. Local explainability can help to align model predictions with this knowledge –

ensuring that predictions are scienti�cally rigorous and resonate with local experiences.

4.1.7 Conclusion

Recent advances in machine learning (ML) have revolutionized the �eld of hydrology, en-

abling accurate and timely predictions of river discharge even under complex and chang-

ing hydrometeorological conditions. However, the black-box nature of ML models has

limited their adoption and usage, particularly in the hydrologic sciences, where trans-

parency and interpretability are crucial. In this part of our thesis, we addressed this

challenge by leveraging explainable AI (XAI) techniques to investigate ML models’ inner

workings for river discharge prediction. Our comparative analysis revealed that di�erent

ML algorithms have varying strengths and weaknesses in capturing di�erent aspects of

hydrological dynamics. For example, Linear Regression (LR) e�ectively highlights energy

balance dynamics, while Random Forests (RF) adeptly capture intricate hydrometeorolog-

ical interactions, and Long Short-TermMemory (LSTM)models re�ect varied hydrological

responses across di�erent spatial scales.

Notably, XAI techniques helped us identify the speci�c features and interactions that drive

the predictions of eachMLmodel. �is enabled us to discern speci�c seasonal and regional

in�uences on river discharge. �is helped us identify hydrological anomalies and shed

the potential to align ML models’ recommendations with traditional local knowledge.

Additionally, we uncovered nuanced interactions between di�erent hydrometeorological

variables, such as the synergy between river slope and speci�c humidity, underscoring

their combined impact on discharge predictions.

Our �ndings underscore the importance of explainable AI in elucidating intricate hydro-

logical dynamics, o�ering invaluable insights for adaptive water resource management.

In the face of climate change, the need for accurate and interpretable discharge projections

is more critical than ever. �us, by leveraging the power of ML and XAI, we can develop
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robust and reliable water management strategies in response to evolving anthropogenic

climate change.

4.1.8 Future Work

In this chapter, we have demonstrated statistical techniques to improve the explainability

and interpretability of di�erent ML algorithms for river discharge prediction. Going for-

ward, we will explore incorporating explainable XAI techniques directly into the model

design process. �is approach, known as physics-driven machine learning, lies at the

intersection of ML and physics-based modeling and incorporates a feedback component

that ensures that ML models learn the physics dynamics of the underlying hydrologic

processes. Additionally, we plan to conduct explainability assessments across diverse

river basins in varying geographical and climate regions, crucial for elucidating climate

change’s local and global drivers. �rough this, we hope to identify common pa�erns

and trends contributing to climate change by comparing the explainability results from

di�erent regions. �is valuable information can then be utilized to develop more e�ective

climate change mitigation and adaptation strategies. As we face the increasing challenges

of climate variability, the demand for explainable ML models in hydrology will only grow

more pressing. By fostering a deeper understanding of ML model behavior, we can en-

hance the reliability and trustworthiness of these powerful tools, ultimately enablingmore

e�ective and sustainable water resource management practices.
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CHAPTER 5

ROAD QUALITY PREDICTION USING SATELLITE IMAGERY

5.1 Road �ality Prediction using High Resolution Satellite Im-

agery

5.1.1 Motivation

High-quality roads are among the foremost infrastructure for hastening societal develop-

ment. Roads enable goods, people, and ideas to travel easily, leading to be�er equity in

service provision, faster economic development, and, ultimately, be�er human outcomes.

�ough enormous sums are spent on roads – for example, in sub-Saharan Africa, 1.5% of

total GDP is spent on roads [267] – funds for road maintenance consistently fall short, a

problem arising from an inability to prioritize investments [24]. �is is partially due to

limited road quality measurement, which requires large amounts of labor, time, and ex-

pensive equipment. As Lord Kelvin famously said: “If you cannot measure it, you cannot

improve it.”

In urban developing se�ings, where road usage is heavier and increasingly more peo-

ple travel with sensor-laden smartphones, crowdsourcing data on road quality is possi-

ble [282]. However, rural se�ings are not as conducive to smartphone-based solutions. In

this work, we present a viable alternative for measuring road quality in rural, resource-

constrained se�ings: models for predicting road quality from remote sensing imagery.

Our models leverage recent advances in two areas: satellite technology and computer

vision. A proliferation of satellite companies has resulted in increasingly higher resolu-

tion images collected more frequently; in developing regions, this imagery is as high as

30-50cm resolution and some urban areas are imaged near-daily. Meanwhile, advances in
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computer vision have produced techniques for creating and applying sophisticated neural

network-based models with thousands to millions of training examples. Further, we can

explore the potential for domain adaptation, where we can apply our models trained in

one se�ing to another, a capability that has huge potential bene�ts in cost-constrained

contexts.

Our training dataset consists of road roughness measurements collected by specialized

equipment over 7000 km of interurban roadways through diverse terrain in Kenya. We

employ this unique dataset to train a regression engine to produce estimates of road qual-

ity based solely on observing satellite imagery. �is learning task is well-suited to de-

veloping regions, where sensing approaches using �xed infrastructure, expensive mobile

equipment, and even smartphone-based systems may be infeasible. Our models are built

upon convolutional neural network architectures [131, 154, 253] with modi�cations to ac-

commodate our regression task. We focus on the particular domain adaptation challenge

of prediction for held-out roads, which have been explicitly excluded from the training

set to evaluate whether our model can accurately predict road quality using imagery at

places or times that it has never seen before. To exhibit the potential of our approach to

road quality measurement, we present a case study on the positive correlation between

road quality and town prosperity, as measured by satellite nigh�ime illumination.

5.1.2 Background and Related Work

Road quality measurement: �e road quality measure used throughout our study is called

the International Roughness Index (IRI), developed by the World Bank in 1986 [241]. IRI

measures the cumulative vertical displacement of a vehicle along a stretch of road due to

the roughness of the road surface, is typically provided in units of</:<, and is commonly

collected using a specialized vehicle with a mounted laser. IRI values can be any positive

real number, where higher IRI values imply worse road quality and typical values fall
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between 0 and 30. While not explicitly a measurement of road quality, in practice, IRI has

been found to have a very high correlation with user perception of road smoothness.

�e equipment used for measuring IRI is high precision, complex, and expensive. Govern-

ments in developing countries with oversubscribed budgets for infrastructure can seldom

a�ord to pay for these equipment and carry out this procedure on a regular basis [109].

�e result is that developing countries either conduct road quality surveys as infrequently

as once every few years or even do not conduct full, accurate road quality measurements.

Some researchers are leveraging cheap accelerometers and gyroscopes that are ��ed with

mobile phones to measure road quality [86], but these cheap sensors are incapable of han-

dling continuous acceleration and vibration intensity formore than a fewminutes without

losing calibration. In addition, smartphones typically use Assisted GPS, which relies on

nearby cell towers for be�er GPS accuracy, but due to poor cellular network systems in

developing regions, this process is quite expensive in terms of data and ba�ery consump-

tion that are required to maintain the accuracy of GPS.

CNNs and LSTMs on satellite imagery. �e increasing application of convolutional neural

networks (CNNs) and long short-term memory/recurrent neural networks (LSTM-RNNs)

to satellite imagery has been partly due to faster and cheaper computational power [242],

e�cient and less computationally intensive algorithms, increasing availability of satellite-

gathered image datasets in the public domain, and transfer learning.

As a result, these algorithms are being applied to satellite imagery for more compli-

cated tasks such as large-scale damage detection a�er calamities [106], land use classi�-

cations [5], and generating human-like descriptions of satellite images [250]. �is means

that highly accurate algorithms trained on traditional images can be used to evaluate

satellite images via transfer learning.

Another related and popular area of work is road detection using satellite imagery, which

has spawned substantial research [183, 258], competitions [60], and even companies. �e

road detection problem seeks to identify the locations of road infrastructure, and while
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most work focuses on industrialized regions, there are examples of work that target more

challenging unpaved roads [16]. Nonetheless, while the two problems – road detection

and road quality estimation – have some complementarity (for example, the la�er problem

can leverage outputs of road detection algorithms), in most cases, systems solving these

problems are independent and employ entirely di�erent algorithms and metrics.

Traditionally, LSTMs have been applied to recognize pa�erns in sequential data such as

speech, text, and video [239, 306, 276]. Previous work on using LSTMs on satellite imagery

includes temporal vegetation modeling for crop identi�cation [238]. However, we take a

di�erent approach by leveraging the spatial characteristics of individual image patches

and the sequential nature of a single stretch of a road (road patches in a sequence) to

harness the advantages of LSTMs. Essentially, by adapting sequences of patches to imitate

a time series of images, we create image frames in succession that act as inputs to an LSTM.

Figure 5.1: �ree di�erent roads highlighting the challenging diversity of our dataset. Le�: an
urban environment along the A104 highway. A104 is a major highway in Kenya, and the selected
road tile is of “great” quality. Center: the C47 minor road. It passes through an arid environment,
and the road segment has “poor” quality. Right: the C67 minor road. It passes through large forests
and cropland, and the road segment in the image has “good” quality.

�is paper builds upon previous work by the authors on the topic of measuring road qual-

ity using satellite imagery, recently published in aworkshop [39]. While the input datasets

for both pieces of work are the same, in this work, we explore many additional methods

to improve prediction performance (recurrent neural networks and auto-encoders), per-

form regression analysis instead of classi�cation, and conduct a novel and signi�cant case
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Figure 5.2: Roads with labeled quality data as collected by the Kenya National Highway Author-
ity (KenHA). Indicated are the original dataset and a dataset that has been �ltered to match the
availability of concurrent satellite imagery.

study to demonstrate the unique value of our road quality measurement techniques for

studying economic activity in a developing region.

5.1.3 Methodology

5.1.3.1 Datasets

Our intent is to ultimately predict the quality of a road seen in satellite imagery. Towards

this goal, we employ two main datasets: one set of road quality measurements and a

corresponding set of satellite imagery, both for Kenya.

�e dataset of road quality measurements used to train our models consists of IRI mea-

surements conducted at a resolution of 10m along a diverse set of 57 roads throughout

Kenya, resulting in samples over a total length of 7000km. A map of the dataset is avail-

able in Figure 5.2. �is dataset was collected as the result of a partnership between the

Kenya National Highway Authority (KenHA) and the Japanese International Cooperation
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Agency (JICA). Each measurement is tagged with a latitude and longitude (“lat-lon”) and

a date of survey (during 2013-2015). �e roads can vary from tens to several hundred

kilometers in length and, as we show in Figure 5.1, span a wide variety of road sizes, ter-

rain types, and land usage. Additionally, IRI measurements are o�en bucketized into 5

road quality classes: great (0-7), good (7-12), fair (12-15), poor (15-20) and bad (20+). Fig-

ure 5.1 also shows examples of roads falling into these categories. Roads in our data can

also be split into three administrative classes: Class A, linking centers of international

importance; Class B, linking national centers within the country; and Class C, linking

provincially-important centers. �ese roads comprise the fabric of Kenya’s road trans-

port system, serving as the primary interlinkage between major towns throughout the

country.

�e satellite imagery we use is the DigitalGlobe Basemap+Vivid product [64] and the

coverage is the entirety of Kenya. We employ two iterations of this imagery product, each

of which is a mosaic of roughly 6300 tiles that forms the illusion of a continuous map by

stitching together several images collected at di�erent points in time by multiple di�erent

satellites. �e +Vivid product is post-processed to account for orthorecti�cation, color

correction, and cloud cover, though the la�er is still a problem in some remote areas. �e

�rst mosaic, compiled in November 2014, consists of imagery from the�ickBird-02 and

WorldView-02 satellites, and is composed of tiles with collection dates ranging from 2002

to 2014. �e second mosaic, compiled in September, 2017, consists of imagery from the

�ickBird-02, GeoEye-1, WorldView-02, andWorldView-03 satellites, and is composed of

tiles from 2002 to 2017. �e typical resolution of the tiles is roughly 50 cm per pixel, and

each of the two image mosaic datasets is 7 � 8)⌫.

While the satellite imagery and road quality datasets are both impressively large, the wide

range of dates covered by the tiles of each mosaic coupled with the range of dates of the

IRI measurements creates a mismatch. �is issue o�en appears when learning on satellite
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Road
Length
(km)

Bad
(%)

Poor
(%)

Fair
(%)

Good
(%)

Great
(%)

A104 269.2 2.2 1.1 1.5 6.3 88.9
A109 86.54 0 0 1.9 10.5 86.6
A23 10.31 44.9 17.9 12.6 24.2 0.3
B8 47.56 3.4 9.8 18.3 50.5 17.9
B9 16.64 13.6 31.9 21.3 31.1 2
C31 39.33 0 0 0 1.5 98.5
C32 30.03 61.7 20.5 8.8 7.9 1.2
C33 44.79 0.1 1.0 2.4 19.3 76.2
C36 23.05 11.2 9.5 8.3 21.5 49.6
C42 40.88 31.9 13.5 6.7 9.9 38.0
C47 104.92 40.3 35.8 14.8 8.9 2.4
C51 40.89 2.1 3.8 4.9 16.3 72.9
C54 27.62 4.4 1 2.8 13.9 77.8
C67 37.86 90.3 4.4 3.1 2.3 0
C68 16.94 56.3 20 15.1 8.6 0
C69 95.07 0 0.1 1.7 26.1 72.0
C76 41.89 79.5 16 4.4 0 0
C77 110.40 22.2 16.6 21.8 36.1 3.2
C78 28.71 16 20 17 39.3 8
C83 21.38 100 0 0 0 0
C96 19.07 5 23 29 39 4
All 1153 19.2 9.5 7.6 16 47.7

Table 5.1: A summary of the diverse set of roads in our labeled and �ltered data set recording
both the length and distribution of road quality labels. For each road, the modal road quality class
is in bold. �e set ranges from �rst-class highways (e.g., A104) to rough dirt roads (e.g., C67) and
includes roads with signi�cant internal variation (e.g., C77).
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imagery [136], but is particularly acute in our scenario since road quality can experience

sudden and potentially substantial changes (i.e., due to weather or construction) in a way

that only a serious emergency may impact other a�ributes commonly predicted via satel-

lite imagery (like wealth). In an ideal data-collection scenario, the maximum time period

requirement would be a month or even a week, though given the reduced frequency of

data collection in developing regions, this is untenable. Ultimately, to ensure that imagery

reasonably matches the condition on the ground when the IRI sample was collected, we

decided to restrict our label dataset to only those samples where the di�erence between

the two dates was 12 months or less. Selecting any period of time shorter than 1 year for

the maximal time discrepancy would have signi�cantly decreased the amount of labeled

data. �is le� us with a tradeo� between not having enough data to properly train a deep

net and possibly having some incorrect labels. Our ideal scenario of using data no more

than one month out of date would have le� us with only 340 kilometers of road and 40% of

the unique roads in our 1-year set. Given that anything more than three months already

entails a possible shi� between seasons it was decided that the extra data provided by a

maximal discrepancy of 1 year was tolerable. �is design decision results in a subset of

the samples from the larger IRI dataset used for training; this subset consists of samples

covering 1153km over 21 roads, as detailed in Table 5.1, which also includes a breakdown

of the classes of labels for each road. Additionally, a map of the �ltered dataset is available

in Figure 5.2. �is set of roads includes paved and dirt roads, consistently high-quality and

consistently low-quality roads, and roads with high variability in quality.

One nuance of the data set is deciding what the fundamental unit of training data will

be. We de�ne this unit as a patch and de�ne it as a quadrilateral such that the length of

the patch is parallel to the course of the road and the width is perpendicular as seen in

Figure 5.3. Our IRI measurements are at intervals of approximately 10 meters (20 pixels

in our imagery data), so possibilities for length are bounded below by 20 pixels. Argu-

92



ments for a smaller patch size include greater granularity and the road forming a greater

proportion of the patch’s area. However, patches of lesser dimensions may sometimes

not include some or all of the road due to random noise in the latitude-longitude pairs

associated with IRI values. We se�led on a compromise of 64x64 pixels, which was robust

enough to account for this noise and also neatly covers 3 IRI measurements per patch.

5.1.3.2 Training and metrics

�e IRI data set is su�ciently �ne-grained as to allow several di�erent choices for what

exactly to predict. In the �rst case, IRI is a numeric measure (again, note that lower values

imply higher quality) but is o�en broken down into the 5 road quality classes. One could

either predict the underlying IRI number of a length of road directly or instead a�empt

to classify which of the �ve aforementioned classes it falls into. �is work pursues the

former approach for the reason that this is both informative and avoids corner cases with

stretches of roads falling near the threshold between two di�erent labels.

As such, our work focuses on a regression problem and will record results in terms of the

mean square error (MSE) and the '2 coe�cient. MSE gives us an absolute averaged error

while '2 explains howmuch of the total variance in the IRI is explained by our prediction.

Instead of directly using the IRI values ~⇤8 , we establish a maximum threshold ) = 30 and

train on the labels ~8 =
<8=(~⇤8 ,) )

) . We feel this is justi�ed since anything above an IRI of

20 is already bad and the visual/practical di�erence between a tile of IRI 30 and another

with IRI 40 is minimal. Note that since any predicted IRI value can easily be mapped to a

prediction of one of the �ve road quality classes, we can also measure the accuracy of our

predictions if they were used for a classi�cation task instead of a regression. We report

these accuracies throughout our results for comparative purposes even though we do not

at any time train for classi�cation accuracy.

A �nal consideration is de�ning the train and test sets in this scenario. Since the train-

ing data has a sequential nature, randomly spli�ing the data into train and test sets (as is
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Figure 5.3: An example of how a road segment can be separated into tiles. �e top segment
shows a road divided into overlapping 64x64 squares; this generates the tiles shown in the middle
segment. �e tiles are always aligned in the direction of the road (red arrow). �e bo�om shows
the same segment if divided into 224x224 tiles instead. Note that the road constitutes a much
smaller proportion of each tile relative to the 64x64 case.
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usually done) would result in cases where patches that appear next to each other in the

satellite imagery might be in both the training and test sets. In addition to the problem of

test data contamination, this testing scenario would be very di�erent from the use case

that we are targeting, where one would seek to predict on an entirely unseen road. As

such, we devise two more appropriate methods of generating training and test sets. �e

�rst is done by spli�ing the entire set into 1-kilometer long “runs” which are then ran-

domly assigned to the train or test set with proportion 70%-30% – we call this the standard

method since it more closely resembles the random train-test split. �e second method

is to assign an entire road to the test set and the remaining 20 roads to the train set and

average the result over the 21 possible splits (one with each road held out): we call this

the held-out split procedure. �ough this very closely approximates a real application, we

note that this method breaks an o�en central assumption of machine learning methods:

that the train and test sets are drawn from the same distribution. As the held-out problem

is much harder to predict, results reported using the held-out methodology are signif-

icantly worse than those reported using the standard methodology. However, held-out

predictions are potentially more impactful, as results can generalize to unseen contexts.

5.1.3.3 Convolutional neural nets and auto-encoders

Convolutional Neural Networks (CNNs) are a class of machine learning models that have

shown excellent promise in several visual processing tasks. �ough initially focused on

classifying images into many categories (such as ImageNet [237]), these models have also

been applied successfully on satellite imagery. Sometimes, complex pre-trained models

can be re-purposed on another task with less data through a process known as transfer

learning. However, with enough training data, the structure of successful nets can be re-

used while all the parameters are re-learned. We experimented with both approaches but

went with the la�er a�er noting that we had a su�ciently large data set to train networks

from scratch. �us, we began with Resnet, AlexNet and VGG-11 [116, 155, 254] as initial
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network structures and then simply replaced the last layer of fully connected layer nodes

with a single sigmoid function instead. We then trained using our 64x64 tiles scaled to

224x224 pixels.

While our labeled dataset is already fairly large, we discussed in Section 5.1.3.1 that this

only represents 15% of the total of the roads in our dataset; the remainder had to be dis-

carded since the labels might be out of date. However, auto-encoders provide an alterna-

tive to supervised CNNs that allows us to leverage that large set without relying on the

labels. Convolutional auto-encoders consist of two parts: an encoder, which compresses

the images down to : features, and a decoder, which a�empts to reverse the encoding

back to the original image. Training this network to a�empt to recreate the original im-

age as closely as possible should ideally lead to a :-dimensional representation of the

image that preserves as much information as possible. We can leverage this by training

the auto-encoder over the larger, complete set of roads to learn a very e�cient representa-

tion of any given tile and then doing an L2-regularized regression of these features on our

training set. We perform this with a 2-convolution auto-encoder with : = 1000 alongside

retraining the aforementioned CNNs.

5.1.3.4 Sequence learning via LSTMs

Another avenue for exploration is how much the sequential structure of roads can be

leveraged to more accurately predict road quality. In the simplest sense, we can keep the

same fundamental aim of predicting ~8 , but instead of using only the tile image xi, one

can use the last B {xjk8 � B < 9  8}. Slightly more complex would be the case where we

use the same segments of satellite imagery but a�empt to instead predict the average IRI

of the entire segment ~̄8 =
Õ8
9=8�B ~8 .

We handle both of these cases by �rst using the auto-encoder to featurize all the roads

and grouping them into contiguous sequences of length B . We will use the same simple

1-layer LSTM with 500 internal nodes, changing only the objective to optimize between
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5-class accuracy Regression '2
Model Standard Held-out Standard Held-out
ResNet 0.69 0.44 0.79 0.24
VGG-11 0.71 0.47 0.78 0.26
AlexNet 0.73 0.49 0.66 0.21

Autoencoder 0.65 0.41 0.78 0.31

Table 5.2: 5-class accuracy and regression R-squared results under standard train-test and held-
out conditions for the single-tile regression problem.

the two. �e LSTM is then trained with L2 regularization to prevent over��ing, and we

record the held-out results in Section 5.1.4.2.

5.1.4 Results

5.1.4.1 Single tile regression

We �rst compare how di�erent network structures and the auto-encoder regression per-

form under the aforementioned standard and held-out testing methodologies in Table 5.4.

Resnet andAlexNetwere retrained from scratch, while VGG-11was transfer-learned, with

only its classi�er component being retrained. All the CNNs were trained over 10 epochs

of the data, augmented by random horizontal and vertical �ips, and completed within a

few hours when trained on a GPU cluster. We found that a�er around 10 epochs, the

training loss was roughly �at, and continuing to train would likely only result in over-

��ing. �e auto-encoder was trained overnight on the unlabelled dataset for 20 epochs

and then simply regressed with an L2 penalty. �ough training the auto-encoder itself is

time-consuming, this is only a one-time task and can be later used to quickly featurize

any road.

One immediate observation that can be made is that the more realistic held-out test case

is signi�cantly harder than the standard scenario. However, the results are encouraging,

given that achieving even the baseline result (accuracy of 0.20 and an '2 of 0.0) is not

guaranteed when the train and test sets are entirely di�erent. �is proves the problem is

indeed approachable using standard machine learning techniques. �e second observa-
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tion we wish to highlight is that accuracy is fairly good for a 5-class problem even though

we do not directly optimize for accuracy. �is is a consequence that estimating the IRI

value fairly accurately will translate to a correct estimate of the road quality class and

seems to bolster the idea that directly regressing the IRI and then transforming it to less

granular measures as the application calls for it is a viable idea. We note that measuring

accuracy does not distinguish between one error mistaking a “fair” tile for a “good” tile

and another error mistaking a “poor” tile for an “excellent” tile, thus potentially under-

stating the predictive quality of the CNNs.

We �nd li�le to separate between the di�erent CNN classes regarding performance. Sim-

ilar initial learning rates and dropout rates were used in all, though VGG-11 had more

problems with over��ing compared to the other two and did not move beyond transfer

learning. In terms of the key regression metric, we found that the auto-encoder regres-

sion outperformed the other CNNmethods. �is is likely due to its superior generalization

performance on unseen roads. In this we �nd a notable advantage of leveraging the entire

set of roads; the feature representation from the auto-encoder was much more stable in

the held-out scenario than it was on the other CNNs. �is was likely because the auto-

encoder could look at a much more diverse set of roads to determine how to featurize a

patch, as opposed to the only 21 roads that a CNN could use. Figure 5.4 illustrates this

by comparing the results on individual roads for Alexnet to those of the auto-encoder

regression. In addition to be�er overall performance, the auto-encoder has fewer roads

with very high error: this is important for real-world application as we would like to be

con�dent of some guarantee of predictive power.

5.1.4.2 Tile sequence regression

A�er the single-tile regression results, we wished to explore whether incorporating the

sequence of tiles leading up to the �nal one would improve our predictive quality. As

discussed in Section 5.1.3.4, we wished to explore this for both the average and last tile
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Figure 5.4: Figures showing the distribution of Mean square errors (y-axis, lower indicates be�er
predictive power) of di�erent roads using a Resnet CNN (le�) and auto-encoder regression (right).
�e x-axis is a measure of the heterogeneity of the road, the color provides the average road
quality, and the circle size indicates the relative sizes of the roads. Comparisons to VGG-11 and
Resnet yield similar results.

IRI. Based on the earlier results in Section 5.1.4.1, we focused our e�orts only on the

held-out test scenario since the standard method already had strong results for single-tile

regression, and the former is in any case a more representative approximation of real-

world applications. We also decided to focus on the autoencoder features instead of using

the CNN features since the two-step featurization/sequence training makes the strong

generalization performance of the former an important asset.

5-class accuracy Regression '2
Sequence length Last Mean Last Mean

1 0.41 0.41 0.31 0.31
10 0.42 0.43 0.34 0.35
25 0.43 0.43 0.35 0.32

Table 5.3: Results for LSTMs in the held-out test scenario as a function of the length of sequence
trained on. Regressing on the �nal tile value (last) is compared to regressing on the average tile
value (mean).

Our results are summarized in Table 5.3. �ese show amodest improvement over the non-

sequential LSTM, though these initial experiments do not suggest much improvement

when increasing the sequence length over 10. However, this is likely in�uenced by the
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well-known di�culties of training on longer sequence LSTMs and may not re�ect the

actual limit of this technique. Further investigation into both the structure of the LSTM

as well as its training will be important.

5.1.5 Future Work and Conclusions

In this work, we describe a methodology to infer the quality of intercity roads in devel-

oping regions, with the primary goal of enabling useful and practical applications. To

do this, we trained models using satellite data and road roughness data from Kenya and

demonstrated that the models performed well in some cases in locations previously un-

seen while remaining cognizant of remaining challenges. We saw that while the normal

train-test paradigm can be approached readily, achieving reliable results on the held-out

case is signi�cantly harder. We also demonstrated a novel use case of our road quality

measurement at a larger scale than traditional methods would feasibly allow.

�ere are several machine-learning aspects that could be explored further. �ough we

have shown that auto-encoders are greatly bene�cial in this scenario where there is a

plethora of unlabelled data, understanding the ideal setup will take further investigation.

What sort of convolutional structure, whether it should have any regularization, and how

far to compress each tile will all need to be rigorously investigated. Likewise, for the re-

current neural network structure. In this vein, further investigation of the LSTM structure

is possible, as is the idea of using an entirely di�erent type of RNN to model the continu-

ous sequential nature of this data. �is would be an interesting novelty compared to the

discrete sequential nature of data, such as words in a sentence or frames in a video.

More germane to potential use cases, we can further explore the ability of di�erent mod-

eling decisions and methods on the ability to generalize to di�erent contexts, especially

those further a�eld. We can also consider the e�ects of improved or degraded satellite

imagery quality on results and measure performance improvements from including other
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features available from further remote sensing data (e.g., land use data or multispectral

imagery).

In general, more accurate and granular measurement of road quality can lead to reduced

road maintenance costs, allowing expensive rehabilitation e�orts to be replaced by tar-

geted repairs. Further, these capabilities can empower governments, donors, and poli-

cymakers to identify particularly hazardous roads and monitor the short- and long-term

performance of construction �rms and contractors, improving public safety and enabling

more e�cient public investments. Additionally, these models can enhance the work of

economists and others researching public policy in a variety of domains, ideally leading

to a clearer understanding of the levers of societal development in a diverse array of con-

texts.

5.2 Using Vision Transformers to Improve Road �ality Predic-

tions from Medium Resolution and Heterogeneous Satellite

Imagery

5.2.1 Motivation

In section 5.1, we discussed the fundamental importance of high-quality roads for societal

development. Furthermore, we discussed the challenges associated with traditional meth-

ods for measuring road quality, especially when resources are limited. Building upon this

work, this section examines the opportunities for using more advanced machine learning

techniques, notably, Vision Transformers (ViTs) to improve road quality measurement

using medium-resolution satellite imagery. Vision Transformers have marked a break-

through in machine learning, particularly in the analysis of low-resolution images. Un-

like traditional convolutional neural networks (CNNs), which rely on local connections

between pixels, ViTs employ a global a�ention mechanism that allows them to e�ectively

capture pa�erns across the entire image, even if the pa�erns are only a small fraction of

the image. Consequently, ViTs are extremely valuable for tasks like road quality assess-
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ment using low-resolution satellite images when roads are only a small part of the image

patch. Here, we make a trade-o� between resolution, accessibility frequency, and acquisi-

tion cost. Although both Google Earth Pro and Planet Data have relatively low resolution,

they are frequently accessible and available in the public domain either at a cheaper price

or for free. Furthermore, Planet Data has daily imagery for most economies (geographic

locations), including the global south. We show that when our models are validated with

previously unseen (held-out) medium-resolution and sparse data, signi�cant results can

be achieved without degrading region-speci�c characteristics or introducing bias due to

inconsistencies in the data quality. Finally, to illustrate the practical applicability of our

approach to road quality measurement, we present a case study examining the relation-

ship between infrastructure quality and the average household asset wealth index. �e

results of the case study demonstrate that a positive correlation exists between improve-

ment in road quality and an increase in asset wealth.

5.2.2 Background and related work

Impact Evaluation of Infrastructure: Despite the importance of measuring road qual-

ity (built infrastructure) regularly and the role that infrastructure will play if we are to

achieve sustainable development goals by 2030 [4, 174, 55, 1], there is a paucity of liter-

ature available on the topic. �is is because road quality is frequently overlooked when

discussing sustainable development goals since more emphasis is placed on topics such as

poverty eradication, health, and education. However, infrastructure plays a crucial role

in improving productivity, allowing access to services such as education, healthcare, and

the market for goods and services, thus reducing socioeconomic barriers and stimulat-

ing economic growth, all of which are critical components of sustainable development.

By regularly measuring road quality, governments can assess the e�cacy of their previ-

ous investments in infrastructure and determine whether these investments are having

the desired e�ect (positive socioeconomic impact). �is information can inform future
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investments and ensure they are made most e�ciently and e�ectively. Furthermore, un-

derstanding the quality of infrastructure (roads and beyond) allows government and the

private sector to generate lock-in pa�erns of social and economic development as well

as understand the impact of investing in quality infrastructure[269, 1], allowing develop-

ment opportunities to be maximized, e�ectively improving regional planning (e.g., where

to construct commercial airports and industrial parks) and allocating resources that power

economic developments and, subsequently, creating a domino e�ect of economic growth.

Vision Transformers: Vision Transformers (ViTs) [69, 142] are a type of neural network

architecture designed for image recognition tasks. ViTs are based on the transformer ar-

chitecture [277], which was originally developed for natural language processing (NLP)

tasks [189, 123]. ViTs adapt to image tasks by breaking up an image into smaller patches

that are then treated as being analogous to the words making up a natural language input.

In the context of image recognition, Vision Transformer (ViT) models have been shown

to be competitive with state-of-the-art convolutional neural network (CNN) models on

various benchmark datasets.ViTs can perform vision-related tasks directly from raw pixel

data, without the need for manual feature engineering. Unlike traditional CNNs that rely

on convolutional layers, ViT models use an a�ention mechanism [14], a computational

technique for relating di�erent parts (small patches) of a given image to improve under-

standing of the visual contents of the image. �e a�ention mechanism allows the model

to focus on the most relevant parts of the input when making predictions. �is can be

especially useful for image classi�cation tasks, such as road quality prediction from low-

resolution satellite imagery, where the road may make up only a small part of the satellite

imagery, where the object of interest may only occupy a fairly small portion of the to-

tal image. Transformers have also been shown to have strong generalization capabilities,

which means that they can perform well on a wide range of tasks without the need for

task-speci�c architectural modi�cations. �is is important for image classi�cation, where

it is o�en di�cult to design a model that can handle a diverse set of images. Regarding
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training capabilities, ViTs are more e�cient to train and can be easily scaled to larger

models simply by increasing the number of transformer layers. However, ViTs are gen-

erally more computationally expensive to run than CNNs and require more training data

and computation resources, which is a�ributed to convolutional inductive bias. In con-

trast to CNNs, which are translation invariant, ViTs lack translation invariance (i.e., the

model’s output is una�ected by the object’s location in the image). As a result, the output

of the model can be in�uenced by the location of the object in the image. Additionally,

ViT models are di�cult to interpret because they do not separate the di�erent “layers” of

the model. Finally, transformers tend to perform poorly on tasks that require �ne-grained

localization, such as object detection and segmentation [167, 190, 224].

5.2.3 Methodology

5.2.3.1 Dataset

Our ultimate goal is to predict road quality based on medium-resolution satellite imagery.

We use two sources of satellite imagery: Planet Labs imagery (PLD) and satellite imagery

scraped from Google Earth Pro (GEP). PLD [266] has a resolution of 3 meters per pixel,

while GEP [72] has a resolution of approximately 1.6 meters per pixel. We use the same

label data de�ned in section 5.1.3.1.

We consider only the earliest available 3m/pixel resolution imagery from Planet Labs,

taken between July 2015 and January 2016, in order to align the satellite imagery with our

label data. As a result, the number of road segments is reduced from 57 to 36. Addition-

ally, becausewematch the labels to relatively lower spatial resolution satellite imagery, we

down-sample the measurements to 50m and then calculate the average coordinates (lat-

itude/longitude) and IRI within the sampling window. Downsampling IRI measurements

lowers the probability of matching measurements to overlapping patches. As a result, the

correlation between di�erent but adjacent classes is reduced when regressive IRI mea-

surements are converted to class labels based on a prede�ned threshold. Finally, we run
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Figure 5.5: A Series of roads from two data sources; Planet Labs(top) at 3m/pixel and Google Earth
Pro (bo�om) at ⇠1.6m/pixel. �e di�erent sizes, visibility and resolutions of the road images high-
light the heterogeneity of our dataset. �e red rectangle indicates the range of the road segment
over which the IRI measurements are averaged.

experiments on binary and multiclass classi�cation problems. We follow the same ap-

proach de�ned in Section 5.1.3.1 to discretize IRI measurements into two and �ve classes.

Considering the geographical location of our study area, we selected the earliest available

cloud-free images obtained during the period of July 2015 to January 2016. �is choice

of image selection is based on the assumption that changes in road quality during this

period are insu�cient to change quality predictions from one class to another (e.g., from

good to bad).

Finally, we scrape publicly available satellite imagery from GEP using custom data scrap-

ing tools. We strive to keep all images at a resolution of ⇠ 1.6m/pixel. It should be noted,

however, that Google Earth Pro aggregates the highest quality images from various data

sources (Maxar, Airbus, etc), and as such, the quality and pre-processing strategy of the

images is variable.

5.2.3.2 Training and metrics

Measurements of the International roughness index (IRI) are recorded as continuous val-

ues. As a result, it is di�cult to train models that can be deployed across a wide range

of geographical regions where the measure of goodness is relative. It is possible, for ex-
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ample, for an “excellent” quality road in developing regions to be visually equivalent to a

“good” quality road in industrialized regions. �is combination of IRI measurements and

satellite imagery can introduce bias when training models in one economic region and

deploying them in another.
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Figure 5.6: Histogram showing the 5-class dis-
tribution of labels in the dataset. �e dataset
is heavily imbalanced. Labels associated with
“great” road quality contributed the largest dis-
tribution percentage.

�us, we focus on a classi�cation prob-

lem whereby we de�ne classi�cation cat-

egories (binary, multi-class) in accordance

with prede�ned criteria. �is is mainly

because it is di�cult to infer exact IRI

values as compared to prede�ned classes.

With this reconceptualization of road qual-

ity measurement, we bound the IRI values

within the same range to be categorized

under similar categories. By doing so, we

can predict roads with similar characteris-

tics with more precision. Furthermore, the

class thresholds can be adjusted according

to the user’s needs.

In light of the availability of IRI measurements and the limitation of the measurements

to measurements collected in 2015, our dataset is highly imbalanced. We observed labels

from 0 to 7 being the most frequent (Fig 5.12). �ere are various ways to handle im-

balanced data in machine learning, including reweighting class labels, oversampling the

smaller distribution and undersampling the larger distribution, and data enhancement,

among others. Considering the various models, we used various strategies to increase the

label size of minor classes without over��ing. When training the baseline model (CNN),

we explored two approaches: sampling distribution of the majority classes in relation to

the size of the minority classes (over/under sampling) and assigning signi�cant weight to
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minority classes and small weights to majority classes (class weighting). Ultimately, we

adopted the former approach, as it resulted in be�er prediction results. For all models,

we perform data augmentation, arti�cially increasing the amount of data by generating

new data points from existing data or making small modi�cations to data (such as �ipping

images or reducing their contrast) to increase the size of minor classes in the distribution.

In terms of evaluating model performance, we record the results in terms of both area un-

der the receiver operating characteristic (AUROC) [76] and accuracy. �e AUROC curve

is a metric for measuring the performance of binary classi�cation problems. It can also

be used to measure the performance of multiclass classi�cation problems by applying

statistical techniques such as 1-vs-the-rest. Given the optimal threshold, AUROC can cal-

ibrate the trade-o� between sensitivity and speci�city of the prediction. �e AUROC is

calculated by plo�ing the true positive rate (TPR) against the false positive rate (FPR) for

di�erent threshold se�ings of a binary classi�er and calculating the area under the curve.

In contrast to accuracy, AUROC is not sensitive to the choice of probability thresholds,

making it a useful metric when evaluating the performance of models trained on imbal-

anced data. In particular, any AUROC score above 0.5 represents a predictive value added,

whereas amodel that trivially predicts themajority class would always obtain an accuracy

score greater than 50%.

In traditional machine learning, data are divided into train and test sets according to a

prede�ned ratio (e.g., 70: 30) (herea�er referred to as the standard split). However, this

approach has two disadvantages. First, since the road patches are spatially sequential,

inter-class di�erences are not absolute, which means that train and test patches might

be close to each other. �is could contribute to over��ing of the model [236], a process

in which a machine learning algorithm memorizes pa�erns in training data and fails to

generalize the learned information to new data from a di�erent distribution. Our goal is

to evaluate how these models would perform if deployed in economic regions in which

roads may di�er from those with available data. �is is a common scenario, given that
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developing regions rarely have reliable or available data. �erefore, we use an additional

train-test strategy. Consider our dataset with = roads (==36) and : as the number of roads

in each group, where : is the number of roads used to train the prediction models. For

each percentage split, we randomly sample subsets of size : from the entire set of = roads.

We refer to this data split strategy as “held-out.” We then train a model on each of the

subsets and test it on the (= � :) roads that were excluded from the training set. We

report our results in table 5.4 and Figure 5.9 as the average of the distributions in these

sets. �is training strategy ensures that the trained models are not biased towards a single

set of roads. Note that while this sampling strategy is much more realistic and useful for

real-world applications, it signi�cantly increases the di�culty from a machine learning

perspective, as it means that the train and test set are no longer drawn from the same

distribution.

5.2.3.3 From Convolutional Neural Networks to Vision Transformers

Convolutional neural networks (CNNs) [105, 203] have achieved great success in solving

computer vision and image classi�cation tasks, including remote sensing [136, 213, 217].

�is is largely a�ributed to spatial feature preservation through a series of convolution

functions. Vision transformers [69, 105, 142] have recently shown promise in solving sev-

eral visual challenges. Vision transformers use self-a�ention mechanisms to process an

entire image as a sequence of image patches, as compared to convolutional operations

synonymous with CNNs. �is enables visual transformers to focus on the most pertinent

features of an image for a given task and might be of particular use in this application

given the relatively small proportion of a satellite image that a road might cover. Despite

their superior performance over CNNs, vision transformers require a signi�cant amount

of training data, are computationally expensive, and are o�en large in size[224, 15]. Con-

sequently, they are not always suitable for solving tasks related to sustainable develop-

ment in the global South, where data can be scarce or completely unavailable. �ere are,
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however, several disadvantages associated with CNNs, including di�culty capturing re-

lationships in sequenced input data, over��ing, sensitivity to hyperparameters, and �xed

input sizes, all of which can result in information loss when working with low-resolution

satellite images.

In order to experimentally determine which model be best for our task, we train a mix-

ture of CNN and Vision transformer models; ResNet[117], ViT[69], Data-E�cient Trans-

formers (DeiT)[273] and ConvNext[165] on identical data and road classi�cation tasks.

First, we train a ResNet model as our baseline model. �is baseline builds on previous

work by [40], who demonstrated that CNNs could perform well on high-resolution satel-

lite imagery. Next, we use a pre-trained vision transformer available through the hug-

ging faces model repository[291]. �is vision transformer was pre-trained on ImageNet-

21k, a dataset of one million natural images across 21,843 classes, and �netuned on Im-

ageNet 2012, a dataset of one million natural images across 1,000 classes[61]. Further

�ne-tuning (using lower-/higher-resolution satellite imagery) did not result in signi�cant

performance gains. A major issue when applying machine learning to solve problems re-

lated to developing regions is data availability (both on the ground and remotely sensed

data). As such, vision transformers may not have the necessary data. �erefore, we train

and evaluate Data E�cient Transformers (DeiT) based on di�erent train/test data splits.

Data e�cient transformers are a variation of the vision transformer that allows computer

vision tasks to be performed on smaller datasets.

Consequently, they are suitable for computer vision-related tasks that target developing

regions. In this work, we use a DeiT model pre-trained and �netuned on ImageNet-1K,

one million natural images across 1000 classes, available on the hugging face model hub.

Further �ne-tuning using satellite imagery did not yield a signi�cant performance im-

provement. Finally, we use the new Convnext method that combines elements of both

CNNs and vision transformers. �us, we evaluate the performance of ConvNext models

against ViT, DeiT, and Resnet models. �e initial layers are e�ective at extracting local
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features from input data (inspired by CNNS), while the last layers are designed to capture

global dependencies and relationships in the data, leading to improved performance, par-

ticularly on low-resolution and heterogeneous training data. Here, we use a ConvNext

model pre-trained on ImageNet-224, 14 million natural images across 21841 classes. Fi-

nally, we report our �ndings in Section 5.2.4.

5.2.4 Results and Discussion

�e primary objective of this study is to predict the quality of roads based on medium-

resolution satellite imagery. To achieve this, we trained a series of machine learning mod-

els de�ned in section 5.2.3.3 and reported the results in table 5.4. �e data included in

table 5.4 includes average AUROC scores for both models trained using both completely

held-out data (non-IID) and standard train/test split data (IID). All models were initially

trained on ImageNet data [61] and then �ne-tuned using Planet or GEP satellite imagery.

We wanted to compare the performance of both models when trained on non-IID and IID

data. We trained all models on a single NVIDIA Tesla A100 GPU with 512 GiB of RAM.

�e vision transformer-related models were trained for 15 epochs, as we found that, on

average, additional epochs did not produce any notable performance improvement (Fig-

ure 5.7). On the other hand, we trained the baseline CNN for 50 epochs as additional

epochs yielded no further improvements in model performance.

�e data in table 5.4 indicate li�le appreciable di�erence between the three vision trans-

former models. We see similar results for all three when we compare results for the same

classi�cation tasks: 2-class classi�cation and 5-class classi�cation; data split strategies;

standard and held-out; and data sources; GEP and Planet Lab. In contrast, the base-

line CNN model (ResNet) performs worse on binary and �ve-class classi�cation tasks.

Given that previous research (e.g., [40]) demonstrated that CNNs could performwell when

trained on high-resolution satellite imagery (50 cm), we a�ribute the poor performance to

the low resolution of our current dataset, rather than the computational technique or the
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Figure 5.7: Model Accuracy and loss curves across training and validation data splits (at 50% of
all roads ) for the ViT model. Performance measurement curves follow the same trend across all
transformers models de�ned in section 5.2.3.3 and data split percentages.

amount of data. Our current data is, on average, three times (GEP) - six times (PLD) lower

in resolution than the data used in [40]. Consequently, we are con�dent that increasing

the resolution of the dataset would signi�cantly improve the performance of all models,

and particularly the base CNN model.

2-class 5-class 2-class 5-class
Planet Lab Planet Lab GEP GEP

Model I.I.D Held-out I.I.D Held-out I.I.D Held-out I.I.D Held-out
ResNet (CNN) 0.626 0.574 0.502 0.500 0.608 0.503 0.500 0.499

ViT 0.872 0.741 0.661 0.525 0.934 0.680 0.685 0.505
ConvNext 0.869 0.732 0.630 0.529 0.932 0.670 0.687 0.501

DeiT 0.870 0.739 0.685 0.527 0.925 0.660 0.702 0.504

Table 5.4: 2-class & 5-class mean AUROC for preduction results under standard train-test
and held-out conditions for original CNN (ResNet), CNN inspired by Vison transformers (Con-
vNext)and, and vision transformer models trained on Planet Lab and GEP Datasets.

Focusing on transformer models, we see another few trends emerging. �e results for i.i.d

data splits are superior to those of the held-out case since, in the la�er, the distribution

of the train and test set are no longer the same. However, given how fundamental this
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assumption is to machine learning methods, the results (particularly for binary classi�-

cation) are very strong. Another interesting trend is that while the i.i.d results for GEP

data is stronger than Planet, the opposite is true when looking at the case with fully held-

out roads. �is can be explained by considering the fact that GEP has, on average, be�er

resolution, but the distribution of image sources is location-dependent. As such, when an

equal amount of training data is available from all places, the transformers can take ad-

vantage of this higher resolution, but in the held-out scenario, there may be cases where

one imagery source is only available in the train or test set. �is would generalize much

harder and probably result in the lower scores we see. Conversely, models trained on

Planet imagery have a much more modest reduction in quality when going from i.i.d. to

held-out scenarios.

5.2.4.1 Impact of data size on model performance

Next, we set out to empirically determine the impact of data scarcity on the performance

of di�erent models. Knowing the sensitivity of models to data constraints is particularly

important for developing region applications where large sets of label data can be hard to

come by. We compared the performance of di�erent models trained on the same amount

of data from our two data sets to see if di�erent resolutions (⇠1.6m/pixel vs 3m/pixel)

impacted the degradation in performance. We hypothesized that the lower the resolution,

the more signi�cant the degradation in performance caused by data scarcity. We also

wanted to determine the amount of data necessary to create satisfactory predictions, both

when the data was IID (identically and independently distributed) and non-IID.

To do this, we compared the performance of models with di�erent train/test ratio splits.

According to Figures 5.8 and 5.9, both standard (IID) and held out (non-IID) data splits

yielded similar AUROC scores. Based on both �gures, we observed that performance

improved linearly as training data percentages increased from 10% to 70%. As would be

expected, this is particularly evident in the standard data split (Fig 5.8), where there is an
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Figure 5.8: Graphs showing AUROC scores for 2-class and 5-class classi�cation results on I.I.D
roads from the identical road segments. Top: Planet Lab imagery (3m/pixel) and bo�om: Google
Earth Engine scrapped Imagery (⇠1.6m/pixel). �e X-axis on all graphs represents the number of
roads (as %) used for training the models.
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Figure 5.9: Graphs showingAUROC scores for 2-class and 5-class classi�cation results on held-out
roads from the identical road segments. Top: Planet Lab imagery (3m/pixel) and bo�om: Google
Earth Engine scrapped Imagery (⇠1.6m/pixel). �e X-axis on all graphs represents the number of
roads (as %) used for training the models
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identical distribution of locations and labels across both the training and testing data. �e

same positive trend can still be seen in the held-out data but is less recognized since the

fact that entire roads are held out in the test set remains true regardless of the amount of

data.

One interesting pa�ern that emerges is the di�erences between the models as a function

of data size: we see some of the transformer models performing much worse when the

data size decreases. �is is particularly noticeable for the 5-class classi�cation problem

(which is signi�cantly harder than the two-class problem), where convNext and ViT are a

li�le be�er than random guessing until we use more than 30 or 40% of the data for training

purposes. Notably, we observe that the DeiT model (explicitly designed to operate with

low levels of data) does not su�er from this problem. �is validates the hypothesis that

DeiT might be more robust in a data-poor environment and that the relative di�culty

of the problem (e.g., 2 class vs 5 class) mediates the impact of data scarcity. Based on

these observations, we conclude that large amounts of low- to medium-resolution satellite

imagery can produce more accurate vision models than small amounts of high-resolution

and heterogeneous satellite imagery.

5.2.5 Case Study 1: Correlation between roadquality andhousehold assetwealth

In Section 5.2.4, we demonstrate that ML models trained on medium-quality satellite im-

agery could produce high prediction accuracies when applied in previously unseen set-

tings. To demonstrate the potential applications of these �ndings on a scale, we performed

a further analysis to examine the relationship between infrastructure quality and house-

hold wealth in a developing region. Speci�cally, we are interested to see how changes

in infrastructure quality correlate with changes in household asset wealth. A household

asset wealth measure consists of a household’s ownership of items such as televisions

and bicycles, building materials, types of water access, and sanitation systems, among

others. We recognize that road quality is only one of the potentially many factors that
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Figure 5.10: Comparison of change in road quality metric against change in Household Asset
Wealth Index between 2016 and 2020. A line of best �t ('2 = 0.14) is plo�ed to represent the
relationship between the two metrics. �ere is a weak positive correlation between changes in the
predicted quality of good roads and changes in asset wealth within this period. In general, small
changes in road quality are associated with small changes in asset wealth, whereas large changes
are highly correlated with substantial changes in asset wealth.

may correlate with or even in�uence asset wealth, so we do not expect perfect agreement

between the two measures. Furthermore, we acknowledge that asset wealth is one of

many di�erent potential measures of income, consumption, and wealth of communities

that can indicate economic activity; we have selected this particular measure because of

the availability of data sources documented below.

For the case study, we randomly sample a subset of all towns throughout the Republic

of Kenya (n=85) having road location data available in OpenStreetMaps as of 2016. A

signi�cant amount of infrastructure development is carried out in major cities and towns

regularly; consequently, the results cannot be easily quanti�ed. �erefore, we exclude

major towns and cities from our analysis. To obtain household asset wealth information,

we use an Asset Wealth Index (AWI) layer from Atlas AI. �e dataset consists of annual

estimates of individual household asset wealth based on asset ownership at a resolution
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of 2 km/pixel and is produced from a deep learning model that predicts survey-based

estimates from satellite imagery [299, 136]. �is dataset is crucially available at both a high

spatial resolution and periodic temporal resolution, making it appropriate for considering

longitudinal changes. For satellite imagery, we select all roads within a radius of 2km of

these towns and sample: image patches (: = 30) for each road segment within this radius.

We then select the highest quality cloud-free images, at 3m/pixel resolution, collected

between the months of July and August across two years: 2016 and 2020. �is provides a

before-and-a�er view of roads needed for our model’s inference.

In order to perform inference, we select the model with the highest AUROC score for

binary class classi�cation predictions on Planet Imagery (3m/pixel resolution) from Table

5.4. Following that, we calculate the di�erence in the percentage of roads classi�ed as

“good” in each town between 2016 and 2020. In our opinion, this metric score can indicate

either improvement or deterioration in road quality. Finally, we compare the change in

the percentage of roads predicted as “good” with the change in the asset wealth index

over the same period of time.

Figure 5.10 illustrates the relationship between the change in road quality and the asset

wealth index for this set of towns. Our analysis reveals that there is a small but statisti-

cally signi�cant positive correlation between changes in road quality and changes in asset

wealth between 2016 and 2020. Generally, a small change in road quality is associatedwith

a small change in asset wealth, while a large change is highly correlated with a substantial

change in asset wealth. Despite this, it should be noted that we cannot claim the existence

of a causal relationship between changes in road quality and changes in asset wealth. Sev-

eral factors may contribute more to asset wealth than roads, such as education, access to

markets and �nancial services, the quality of the workforce in the selected towns, other

nearby economic activities, and the presence of other infrastructure. Nonetheless, even

though this relationship is not perfect, it can still serve as a useful indicator of the extent
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to which high-quality roads may contribute to improving the livelihoods of citizens living

in low-income regions since they provide access to markets, jobs, and other services.

5.2.6 Conclusion and Future Work

We have demonstrated that under realistic data conditions, such as heterogeneous data

sources and intermediate spatial resolution, traditional convolutional neural networks

and cu�ing-edge vision transformers can predict road quality from medium-resolution

satellite imagery that is becoming broadly available. Furthermore, we found that with

as li�le as 3 roads (10% of the data set), these models can achieve substantial accuracies,

demonstrating that it is possible to train accurate models with limited and relatively low

spatial resolution satellite imagery. �ese experiments and results suggest that by using

the right combination of models and data sources, it is possible to predict road quality

from remote sensing imagery accurately.

�ere are several aspects we hope to explore in the future. �ese include assessing infras-

tructure damages a�er natural disasters, facilitating logistical support for activities like

last-mile vaccine delivery, and evaluating the performance of vision transformers when

trained on satellite imagery at low resolution, Sentinel and LandSat imagery at 10m/pixel,

and 30m/pixel, respectively, and exploring alternative machine learning approaches that

perform be�er when trained on data from limited and heterogeneous data sources. �is

is because, while satellite imagery is increasingly available in the public domain, it re-

mains di�cult to acquire high-resolution imagery of developing regions. As a result, we

can assume that these will be the only true temporal-spatial datasets available for many

years to come, which makes them extremely valuable for longitudinal studies. Conse-

quently, improving the ability to gain insight from low-resolution imagery could provide

governments with much-needed evidence-based input in the short term to assist them in

achieving sustainable development objectives.
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Machine learning and remotely sensed data can enable us to monitor, track, and address

complex environmental, economic, and social issues related to sustainable development.

By utilizing machine learning and remotely sensed data, governments and policymakers

can accurately map and measure key infrastructure, such as roads and bridges, to assess

and understand their location, condition, and connectivity, as well as the roles they play in

the socio-economic development of certain regions. �ese data can then be used to inform

decisions about investments in infrastructure, as well as track their impact on the local

economy and environment. By investing in infrastructure improvements, governments

can create jobs, reduce poverty, and improve access to health care, education, and other

services.

5.3 Evaluating Road�ality over Time Using Satellite Imagery to

Assess the Long-term E�ects of Infrastructure Investments in

Eastern Democratic Republic of Congo

5.3.1 Motivation

Based on the lessons learned in sections 5.1 and 5.2, we select the best of the ML tech-

niques and apply them to a real-world case study; predicting road quality from satellite

imagery in regions where we do not have ground observations. Speci�cally, we train the

latest state-of-the-art vision transformers on data from di�erent economies (the Repub-

lic of Kenya and the Republic of Liberia) within the global south that share signi�cant

commonalities in their road infrastructure. We then use these trained models to predict

road quality (using the scale from the International Roughness Index) in regions without

ground labels, focusing on four multi-year road construction and rehabilitation projects in

the eastern provinces of the Democratic Republic of Congo (formally Zaire). Our experi-

ments and results demonstrate the e�cacy of combining ML and remote sensing to assess

progress towards the Sustainable Development Goals in a low-cost manner. �is insight

can guide future research and applications that use satellite imagery, especially in the
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Global South, where datasets are typically scarce or available only at poor spatiotemporal

resolutions.

5.3.2 Background and Related Work

�e Democratic Republic of Congo (DRC) has been subject to longstanding and devastat-

ing con�icts, triggering a humanitarian crisis of staggering proportions [52, 260, 173]. �e

Eastern regions of the country (de�ned as the provinces of North and South Kivu, Ituri,

Katanga, Maniema, and Tanganyika), are some of the most mineral-rich regions [188] of

sub-Saharan Africa and have been the site of con�icts between government forces and

various armed groups since DRC (formally Zaire) gained independence from Belgium in

1960. �e area’s strife is deeply rooted in complex socio-political factors, including ethnic

tensions, competition over access to rich mineral resources, and a power vacuum from

weak state control. Armed groups, both local and foreign, leverage these factors to cre-

ate a state of constant instability, resulting in widespread violence, forced displacement

of communities, and gross human rights abuses. �e impact on the civilian population

is profound and multifaceted, leading to acute food insecurity, limited access to essential

services such as education and healthcare, and disrupted economic activities. �us, the

persistent con�ict in Eastern DRC presents a signi�cant challenge to regional peace and

stability and critically impedes the nation’s progress towards sustainable development

and a�aining human security for its population.

�e World Bank has invested billions of dollars in infrastructure in the Eastern part of

the Democratic Republic of Congo (DRC) to boost the region’s socioeconomic recovery

substantially [6, 56, 118]. Improved infrastructure: roads, bridges, ports, and utilities have

enhanced connectivity within the region and the neighboring countries, fostering trade,

facilitating the movement of people and goods, and opening up isolated communities to

new opportunities. �ese developments have signi�cantly boosted local economies by

stimulating sectors such as agriculture and small-scale (artisanal) mining, making them
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more productive and e�cient and creating job opportunities crucial for poverty reduc-

tion. Consequently, these investments have upgraded essential services such as water,

sanitation, and electricity, profoundly impacting public health and quality of life, reduc-

ing disease, and raising living standards. Finally, building and investing in good qual-

ity infrastructure has provided immediate bene�ts, o�ering employment opportunities,

spurring demand in related industries, and injecting money into local economies. Given

the backdrop of the Eastern DRC’s con�ict-impacted landscape, these investments con-

tinue to have the potential to be not just an economic lifeline but also a cornerstone of

peace-building and social stability.

However, large-scale infrastructure investments in Eastern DRC pose considerable barri-

ers and disadvantages, mainly tied to the region’s ongoing con�ict and instability. First,

with proper infrastructure, militias, and armed groups can smuggle weapons across bor-

ders and set up roadblocks to extort traders and the local population, thereby se�ing up

a steady source of income to sustain these armed groups. Second, with improved infras-

tructure, there are signi�cant environmental considerations, with the risk of large-scale

projects causing or exacerbating environmental degradation or loss of biodiversity as large

companies now have access to the hinterland. �ird, without proper planning and com-

munity engagement, these projects can lead to forced displacement, local opposition, and

exacerbation of social inequalities, as bene�ts may not be equitably distributed. Finally,

without strengthening the local capacity for operation and maintenance, the sustainabil-

ity of these investments could be compromised, leading to a cycle of disrepair and re-

quiring further investments for refurbishment. �erefore, the inherent challenges make

large-scale infrastructure investment a complex proposition for the Eastern DRC.
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5.3.2.1 Road�ality Measurement

Given the scale and depth of investment that the World Bank undertakes in the global

south, it is paramount to regularly measure and monitor these investments’ performance

and their overall socio-economic impact across time and space.

In the context of the Eastern Democratic Republic of Congo, regular monitoring and mea-

surement of infrastructure becomes even more vital. �e region, marred by years of con-

�ict and instability, must ensure its infrastructure investments yield maximum bene�ts.

Regular monitoring and measurement can aid in maintaining the functionality and safety

of the roads, which is critical in a regionwhere transportation networks can be lifelines for

communities cut o� by con�ict or geography. �is process can help prevent the deterio-

ration of roads due to weather conditions or heavy use, which is crucial for uninterrupted

access to markets, healthcare, and other essential services. In a region where resources

are scarce and the need for development is high, data from regular monitoring can guide

policy-makers and donors in making informed decisions on where to channel their in-

vestments. It can also foster transparency and accountability in using funds, a signi�cant

factor in a region where corruption can be challenging. Finally, regular monitoring and

measurement of infrastructure can contribute to peace-building e�orts, as well-managed

and equitable infrastructure development can help alleviate some of the socio-economic

tensions that feed into the region’s con�ict.

5.3.3 Methodology

5.3.3.1 Dataset

We aim to predict road quality across four major road construction and rehabilitation

projects in the EasternDemocratic Republic of Congo (see Figure 5.11): Project 112009iati23316

(herea�er referred to as Project 1), Project P101745 (herea�er referred to as Project 2),

Project 46231 (herea�er referred to as Project 3), and Project P120709 (herea�er referred

to as Project 4). However, we do not have ground truth data, i.e., International Rough-
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ness Index (herea�er referred to as IRI) measurements. As such, we train a set of machine

learningmodels with data from di�erent economies within the Global South (the Republic

of Kenya and the Republic of Liberia) that share signi�cant commonalities in their road

infrastructure and then use these trained models to perform temporal-spatial inference

based on satellite imagery.

To accomplish this objective, we matched patches of satellite imagery with spatial loca-

tions of IRI measurements across the three countries. �ese measurements were recorded

across di�erent years and climatic conditions. �ese IRI measurements represent the di-

versity and heterogeneity in road quality common to the Global South. By doing this, we

can compare the before and a�er images to be�er understand how road quality changes

over time and how it is a�ected by di�erent environmental factors. �is approach al-

lows us to more accurately measure the impact of road quality on economic outcomes in

these countries. For satellite imagery, we use publicly available data scraped from Google

Earth [72] (herea�er referred to as GEP) at 0.6m/pixel. Satellite imagery, particularly GEP,

is derived from diverse data sources (Maxar, Airbus) with varying spatiotemporal reso-

lutions, sizes, and visibility. �ese inherent characteristics re�ect the realistic conditions

under which most remotely sensed data, especially in the Global South, is acquired and

made available.

To validate the model predictions in DRC, we use a combination of monthly reports by

Humanitarian Organizations such as the World Food Program (WFP) and International

Peace Information Services (IPIS). �ese organizations provide a wealth of reliable data

encompassing areas like impacted communities, new roadblocks, locations of new arti-

sanal mining sites, and the intensity of con�ict, empowering us to verify the precision of

our predictive models. Furthermore, implementing a human-in-the-loop strategy permits

identifying and rectifying any inaccuracies or inherent biases present within the predic-

tive outcomes of our model.

123



Figure 5.11: Map of Democratic Republic of Congo showing the location of the four projects used
in the study
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5.3.3.2 Transfer Learning

Our ultimate goal is to predict the quality of roads across four major road construction and

rehabilitation projects in the eastern part of the democratic republic of Congo from satel-

lite imagery. However, we do not have ground data (IRI measurements) to validate our

predictions. We train and validate machine learning models on data from regions with

satellite data and ground observations, i.e., Kenya and Liberia. �en, using the learned

characteristics, we perform inference via transfer learning. Transfer learning[211, 309]

is a machine learning technique that allows us to use the knowledge learned from a task

to improve the performance of a model on a related task. In road quality prediction, we

can use transfer learning to train a model on a large dataset of road imagery of roads in

one region and then �ne-tune the model on a smaller dataset of satellite imagery of roads

in a di�erent region [33, 295]. �is can help improve the model’s performance on the

new dataset, even if the two datasets are not drawn from the same data distribution(non-

I.I.D). In the context of road quality prediction, where we do not have ground observa-

tion, transfer learning is useful because it can help overcome the challenges of collecting

ground observations. Road quality-related datasets (i.e., IRI) are o�en expensive and time-

consuming to collect across time and space. As such, transfer learning can help to address

these challenges by allowing us to train models on smaller, more easily obtained datasets.

However, the performance of transfer learning models o�en depends on the similarity be-

tween the source and target tasks. If the two tasks di�er, the transfer learning model may

not perform as well as a model trained from scratch. Secondly, transfer learning can be

computationally expensive, requiring training twomodels (the source and the target mod-

els). Despite these limitations, transfer learning is especially applicable for road quality

prediction from satellite imagery without ground data and can improve the performance

of machine learning models even when there is limited data available.
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Figure 5.12: Graphs showing the distribution of labels in the Kenyan(le�) and Liberia(right)
dataset. Both datasets follow the same distribution. We observed that Labels associated with
“great” road quality contributed the largest percentage of the distribution.

5.3.3.3 Handling Imbalanced Data

Both of our reference datasets (Kenyan and Liberia) are highly imbalanced in light of the

availability of IRI measurements and the limitation of the measurements to measurements

collected in 2015 and 2016, respectively. We observed that the most frequent labels are

0 to 7 (Figure 5.12). However, there are various ways to handle imbalanced data in ma-

chine learning, including re-weighting class labels, oversampling the smaller distribution,

under-sampling the more signi�cant distribution, and data enhancement, among others.

We will use a combination of di�erent strategies to increase the label size of minor classes

without over-��ing. Speci�cally, we will explore two approaches: sampling distribution

of the majority classes in relation to the size of the minority classes (over/under sampling)

and assigning signi�cant weight to minority classes and small weights to majority classes

(class weighting). Additionally, we will perform data augmentation: arti�cially increasing

the amount of data by generating new data points from existing data or making minor

modi�cations to data (such as �ipping images or reducing their contrast) to increase the

size of minor classes in the distribution. It’s important to note that our data extraction

from GEP didn’t yield a consistent number of images for each year we performed infer-

ence. Consequently, we represent the predictions as percentages across the de�ned classes

to ensure a consistent interpretation.
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Figure 5.13: Bar plots showing the count of images used for inference in each of the four projects
over several years. �e number of images �uctuates annually, stemming from the temporal-spatial
variability in image availability on Google Earth Pro (our data source)
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5.3.4 Results and Discussion

�e primary objective of this study is to predict the change in road quality across six ma-

jor road construction and rehabilitation projects in the eastern part of the Democratic Re-

public of Congo (DRC) from satellite imagery. Given each project’s start and end date, we

analyze changes in road quality across time from satellite imagery. �e predictions were

made using a Data E�cient Transformer (DEiT) machine learning model that was �ne-

tuned on the road quality-related data (Section 5.3.3.1) from two countries: �e Republic

of Kenya and the democratic republic of Liberia. �is section o�ers a broader context of

road infrastructure development in the eastern DRC, o�ering insights, discussions, impli-

cations for future development, and quanti�able metrics to analyze the impact of good

quality infrastructure on peace, rehabilitation, and the socio-economic well-being of peo-

ple in the eastern DRC.

We performed road quality assessments using two classi�cation methods: binary (Fig-

ure 5.14) and �ve-class (Figure 5.15). Our primary assessment, using binary classi�cation

– identifying good segments and bad segments – shows that road quality consistently

improved during the construction period for all six projects, with most roads classi�ed

as “good” by the end of each project duration. Our �ve-class classi�cation assessment

method provides more granular insights but shows the same trends as the binary ap-

proach. While the �ve-class method o�ers additional nuances, the binary method will be

central to our further interpretation, as it is easier to interpret and has shown be�er ac-

curacy in classi�cation relative to ground truth in past experiments in Kenya and Liberia.

Across the six projects (Figure 5.14), we observe a signi�cant transition from a larger

proportion of “bad quality” road predictions to an increase in “good quality” predictions

across time (pre-project inception, project duration, and project completion).

�e predictions for Project 1 reveal that the road construction and rehabilitation project

started with the road in poor condition, as evidenced by a high percentage of “bad” clas-

si�cations at the project’s outset. �roughout the project, there is a notable shi� in road
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Figure 5.14: Graphs showing binary classi�cation predictions for selected projects. �e y-axis
indicates the percentage of image patches classi�ed as “good” or “bad”. �e shaded area marks the
project’s timeline from inception to completion. A noticeable trend reveals improvement in road
quality throughout individual project durations, with higher percentage of patches predicted as
“good” towards and beyond project completion
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Figure 5.15: Bar plots showing the �ve-class classi�cation predictions across the six projects. �e
distribution of predictions among the �ve classes is depicted on the vertical axis for one year. A
consistent uptick is observed in the percentage of patches categorized as “great” over time. �is
trend is especially evident in projects 2 and 4. In contrast, project 3 exhibits a relatively consistent
road quality throughout the project duration.
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improvements. �e initial years highlight a pressing need for road quality enhancement,

which appears to have been progressively addressed throughout the project’s span.

�e predictions for Project 2 are slightly oscillatory but indicate a general improvement

in road quality over time. �e oscillations could be indicators of periodic phases of devel-

opment, other internal/external factors, or noise resulting from image variability. Such

variations could correspond to funding cycles, political shi�s (e.g., changes in the ruling

parties), political instability (wars), changes in climate variables (e.g., longwet seasons), or

unforeseen challenges encountered a�er project inception. In regions such as the eastern

Democratic Republic of Congo, these variations are a�ributed to political transitions, the

discovery of newmining sites, or even environmental variations (e.g., long rainy seasons).

On the other hand, such variations could indicate that this was a pilot project. Lessons

from this project could be invaluable for understanding the dynamics of short-term in-

terventions and their impacts on the socioeconomic and political dynamics of countries

with similar pa�erns.

�e predictions for Project 3 show a relatively stable temporal change in road quality with

minor �uctuations in the percentage of road patches predicted as “good” and “bad.” �e

temporal consistency suggests a stable phase in the project duration, likely pointing to the

fact that the project was either building upon an already established infrastructure (e.g.,

road upgrades/asphalt pavement rehabilitation) or that the project interventions did not

signi�cantly alter the existing road quality. �e relative stability observed across Project 3

could also indicate that the road had reached a plateau regarding road quality. �is could

indicate that while maintaining existing standards is necessary, future investments in this

region (or regions within the same socio-economic and political context) could focus on

more innovative solutions (e.g., stronger bridges and multi-lane roads) to improve road

quality.

Taking a deeper look, we separated the length of Project 4 into three physical stretches for

which we had speci�c duration data for construction phases: Uvira to Kelemie (385Km),
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Kelemie to Kambu (146Km), and Kambu to Kasemero (619Km). By overlapping the con-

struction periods of the phases, predictions for Project 4 indicate a signi�cant increase in

road patches predicted as “good quality,” starting with the later years of the project dura-

tion phase. �is change could have resulted from possible interventions or developments

during this period. A combination of a more substantial change in the road quality at the

project inception and the extended period of the entire project suggests the possibility

that the project was potentially either building up a relatively higher quality unpaved road

(e.g., grading a Murram road) or the project potentially aimed to upgrade the pavement

material (e.g., to an asphalt road). �e consistent positive trajectory indicates sustained

e�orts and successful intervention.

Projects 1 and 4 demonstrate a clear improvement in road quality across the respective

project time spans. Such trends have been observed in other infrastructure projects in the

Global South [21, 68], where initial investments yield signi�cant improvements in road

quality over time. �is signi�cant improvement is a�ributed to the initial low-quality

infrastructure ge�ing major upgrades. �e upward trend could be a strong indicator that

the region is on the cusp of socio-economic and political stability, most likely driven by

improvement in infrastructure. As such, the World Bank and other stakeholders could

study the strategies for these projects to replicate their successes in similar contexts across

other regions.

High-quality roads are pivotal in any region’s socioeconomic and political development.

�is is especially important for regions in the Global South, such as the eastern part of the

Democratic Republic of Congo, which has faced economic hardships and political instabil-

ity since gaining independence in the 1960s. As such, the upward trends in Projects 1 and

4 might indicate successful infrastructure investment, potentially leading to positive eco-

nomic outcomes, peace, and political stability in the region. Additionally, the pronounced

improvement in some projects indicates the importance of targeted interventions, pol-

icy changes, or substantial investments during these periods. As such, understanding the
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Figure 5.16: �e images from Project ID: P101745 depict the condition of various roads before and
a�er construction and rehabilitation. �ese examples highlight situations where the model saw
the most substantial changes in road quality. �e model e�ectively highlights the transformations,
including the transition from murram to asphalt and the grading and widening of the murram
roads.

speci�cs of these interventions could provide insights into successful strategies for road

infrastructure development.

Further, the relative stability in predictions of Project 2 could be indicative of either consis-

tent road quality or consistent methodologies. �e former suggests that roadmaintenance

and rehabilitation maintained a consistent quality across time. In contrast, the la�er sug-

gests upgrading the prediction methods, such as increasing the data quantity (as shown

in Figure 5.13) to capture the evolving road conditions the model has failed to capture.

Finally, validating these predictions, such as visual inspection (Figure 5.16), on-ground

assessments, and liaisoning with local communities and non-governmental organizations

that work in the regions where these projects have been implemented, is paramount to

provide a more holistic picture of the change in road quality across time as well as the

resulting impact of these infrastructure changes on the socioeconomic development and

political stability of the local communities. Delving deeper into each project’s speci�c de-

tails: budget, interventions, technologies, funding policies, and other contextual factors
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can provide a richer understanding of the observed trends. �is is especially important if

these predictions and recommendations will in�uence future policies and funding oppor-

tunities that directly impact the socioeconomic well-being of the local communities.

Ourmethod provides unprecedented detail on road quality in both spatial and temporal di-

mensions. �is can be especially valuable to policymakers, investors, business operators,

and researchers for many purposes, including but not limited to monitoring construction

quality and contractor performance, assessing the e�ects of seasonal weather on degra-

dation, recomputing travel times to assess market access, and quantifying the impact of

road quality on economic or social outcomes. However, it is important to recognize the

limitations of our approach – while our previous work has shown the performance of

our binary and �ve-class techniques to be strong enough for a wide array of applica-

tions, we note that those results were obtained in the same country as the training data

(though in di�erent regions that were “held out” from the training sample). In this work,

we use observations from other countries to predict in an entirely unseen country – this

“transfer learning” approach cannot be quantitatively evaluated in the absence of local

ground truth data (i.e., from DRC); instead, we resort to validation using imagery (such as

in Figure 5.16. Further, the availability of imagery is another notable limitation – in this

study, we a�empted to obtain imagery every 1 to 2 years for each project. While there

may be additional images that can produce further data points for analysis, we do not

expect to have substantially more than one image per year for each of the road segments.

Ultimately, this limits the ability of our method to quantify seasonality e�ects on a spa-

tially granular basis. Despite these limitations, we believe that we have demonstrated a

truly novel capability that can have valuable impacts on the monitoring and evaluating

of transportation projects in remote regions.
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5.3.5 Conclusion

Road quality prediction is more than just a measure of infrastructure; it is a cornerstone of

socio-economic development and a potential harbinger of peace, particularly in theDemo-

cratic Republic of Congo, which has been marred by political instability for over 60 years.

A well-maintained road network fosters connectivity, facilitates trade, and can deter re-

gional con�icts by enhancing accessibility and mutual dependencies. However, roads are

susceptible to degradation due to the vagaries of climate, especially in tropical regions

like the Eastern part of the Democratic Republic of Congo. Recognizing this, institutions

like the World Bank allocate millions of dollars annually towards constructing and reha-

bilitating infrastructure in these regions. Given the profound impact of road quality on

socio-economic metrics and peacekeeping, it becomes imperative to monitor road quality

across time accurately. �is foresight enables timely maintenance, repairs, and rehabilita-

tion, ensuring the continued bene�ts of a robust infrastructure. �e selection of projects

highlighted in this study was driven by their political and socio-economic implications,

geographical diversity, and varied project durations. �e insights and lessons learned

from these projects can guide the World Bank and other stakeholders in cra�ing strate-

gies for infrastructure planning, execution, and adaptability across diverse economies in

the Global South. In order to maximize the e�cacy of future infrastructure projects, com-

bining these insights with other political and socio-economic indicators is crucial. �is

integrated approach can hopefully be instrumental in shaping the infrastructure endeav-

ors of the World Bank and emerging economies.
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CHAPTER 6

CONVERTING FISHING BOATS FOR ELECTRIC MOBILITY TO
SERVE AS MINI-GRID ANCHOR LOADS

6.1 Motivation
1Electricity is an increasingly indispensable ingredient to modern lifestyles. While gov-

ernments, donors, non-pro�ts, and private companies have made enormous strides in

recent decades in improving electricity access around the world, over 1 billion people still

remainwithout access to electricity at their homes [132]. Historically, the only pathway to

electri�cation was extension of existing grids, but the emergence of decentralized genera-

tion and storage, coupled with sensing and communication technologies for be�er system

management, have enabled a variety of electri�cation pathways beyond grid extension.

Chief among these are solar home systems – typically comprised of an individual solar

panel paired with a ba�ery and a captive set of appliances – and minigrids – typically a

microcosm of a centralized grid but with a smaller footprint, obviating the need for high

voltage transmission. While solar home systems have recently gained substantial traction,

with tens ofmillions of systems deployed globally already and an acceleratingmarket [98],

this electri�cation pathway faces a ceiling in providing for high-power “productive uses”

of electricity. On the other hand, minigrids aim to �nd the “sweet spot” between the

scalability of centralized grids and the decentralization of solar home systems. In fact,

1�e thesis contributions in this chapter are a result of long term project on which Aggrey Muhebwa
was the second author. �is information has been included with permission and full cooperation from the
�rst author (June Lukuyu [jlukuyu@uw.edu]. Aggrey Muhebwa’s role on the project included; designing
and implementing the so�ware used for monitoring and tracking the location of �shing boats, assembling
and deploying the tracking devices on the �shing boats, collecting data and rese�ing the devices daily,
and analyzing the collected data. Aggrey Muhebwa also assisted June Lukuyu in conducting surveys and
liaisoning with stakeholders during the two weeks deployment on Lolwe Island in Lake Victoria)
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Figure 6.1: Example �shing boat on Lolwe Island. Inset: boat tracking device a�ached to the boat
before deployment.

the International Energy Agency (IEA) projects minigrids to be the linchpin for meeting

universal electri�cation goals by 2030, as laid out in United Nations Sustainable Develop-

ment Goal #7. In their World Energy Outlook 2017, the IEA’s “Energy for All” scenario

for 2030 calls for 450 million people to receive access via nearly 200,000 minigrids, out-

pacing both grid extension and solar home systems as the most common source of new

access [132]. Despite this rosy outlook, minigrids continue to face critical headwinds in

gaining widespread traction. At present, the World Bank estimates that 47 million people

are connected to 19,000 minigrids, most of which are hydro- or diesel-powered [75]. Few

of these are privately owned, which is the primary ownership structure likely needed to

enable such expansive scale [290]. �e foremost impediment to achieving this scale is a

lack of investment capital, driven by concerns about high costs for construction and op-

eration as well as low demand for electricity, limiting revenue potential of these systems.

In this paper, we focus on techniques for one strategy towards making private minigrid

business models viable: demand stimulation. Encouraging growth in electricity consump-

tion has crucial bene�ts to each stakeholder: electricity service companies increase rev-

enues that allow for lower per-unit costs of electricity (ideally further increasing demand
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for electricity) and electricity consumers can apply electricity towards improving liveli-

hoods, both for household uses as well as for productive uses that grow income. While

the research community has not yet been able to prove a causal link between electricity

and economic growth [209], the correlation is undeniably strong; these measures track in

lock-step worldwide: there are no low-consumption, high-income economies [36].

While demand stimulation has long historical precedent (as described in Section 6.2.2),

advances in technology and changes in behavior are pushing demand stimulation tech-

niques to evolve. In this paper, we study demand stimulation on aminigrid via electrifying

�shing boats for a hybrid 600 :,? solar-ba�ery-diesel minigrid on an island in Lake Vic-

toria.

While our systems study deeply examines a particular se�ing and its a�endant design and

deployment challenges, we believe that our work has generalized utility. Minigrids have

long sought anchor loads (e.g., telecom towers or irrigation pumps [226, 234]) to provide

predictable demand and increased revenue. We extend this line of inquiry by studying

tradeo�s among the multiple load classes that a �nancially-sustainable minigrid may en-

counter. Using this lens, our study maps to a variety of demand stimulation strategies

that can be applied to the great range of se�ings where minigrids are found. Addition-

ally, we characterize electric boats, a previously unstudied electric mobility load class that

o�ers substantial promise for strengthening the electric systems of coastal communities

worldwide.

Our study proceeds as follows: 1) We conduct surveys among �shing boat operators and

out�t a set of �shing boats with custom tracking devices to understand the potential for

adoption of this relatively new electricity technology and be�er understand boat usage

pa�erns. 2) We use the insights from this in-the-�eld activity to size and identify an elec-

tric outboard motor and ba�ery pack candidate, which we then incorporate into a model

of electric mobility that embodies the range of usage pa�erns derived from our dataset.

3) We then evaluate electric mobility both technically – understanding the ability of this
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system to meet user needs – as well as �nancially – characterizing the payback of such

a system within the context of a privately-operated minigrid in our target environment,

as both of these perspectives are crucial for adoption in such a se�ing. 4) We examine

tradeo�s in incorporating this demand stimulation technique with the rest of the mini-

grid, which includes a range of domestic and small commercial customers as well as an

ice manufacturing operation. 5) Having modeled the operation of the entire minigrid, we

also consider the bene�ts of demand response via scheduled charging of boat ba�eries

and the implications of an alternative target depth of discharge a�er charging. 6) We then

discuss design considerations for a boat monitoring system given our observations from

the target environment and conclude the study.

6.2 Background and Related Work

In this section, we present background on the challenges of minigrid business models and

demand stimulation and discuss some of the prior work on electric mobility as �exible

loads and demand response strategies for optimizing grid operations.

6.2.1 Minigrids – Financial and Operational Challenges

While there is substantial research literature on minigrids, the grand majority considers

only grid-connected minigrids, which have few overlaps with the characteristics of grid-

disconnected minigrids used in energy access scenarios like those we consider.

Despite the growing popularity of minigrids as an a�ractive alternative to grid expansion

for providing power to rural and underserved communities, the long-term operation and

management of minigrids to provide electricity to the poor faces considerable �nancial

and operational challenges. A sustainable minigrid business model would require that

the capital expenditure (CapEx) and the operating expenses (OpEx) be recovered from

either initial connection costs, cost-re�ective tari�s, or subsidy schemes. However, to

date, there are few examples of established minigrids that are operating sustainably in
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Africa [216]. Since most non-electri�ed households are poor and located in rural areas,

minigrid business models typically must involve low connection costs. With the chal-

lenge of high capital costs and limited to non-existent �nancing and subsidy schemes for

minigrids, this leaves only one pathway for minigrid developers – charging signi�cantly

higher “cost-re�ective” tari�s to recover their investments, at levels that only around 10 to

15% of rural customers can a�ord [222]. Given the already diminished consumption lev-

els of newly-connected customers, the high tari�s exacerbate the problem of low capacity

utilization.

6.2.2 Why Demand Stimulation?

�e main goal of electri�cation is to enable activities that use power. However, to achieve

this goal, electricity service must be reliable and a�ordable. In addition, customers should

be able to access and a�ord domestic and commercial appliances that make use of the

electricity provided. Electricity access programs in sub-Saharan Africa have made great

strides in increasing electricity generation and customer connections. However, many

newly-connected customers consume limited amounts of electricity, with limited growth

over time [85], resulting in cumulative demand that is far less than supply. Some of the key

reasons why new customers are unable to grow their consumption is that they o�en have

limited access to and/or cannot a�ord appliances that consume electricity and have lim-

ited income to support electricity purchases. To alleviate this chicken-and-egg problem,

it is imperative to implement demand stimulation programs that either facilitate new cus-

tomers to organically grow their consumption over time or develop ancillary businesses

that consume electricity directly from the grid/minigrid, such as the strategies consid-

ered in this study. Adding consumption to the system creates a virtuous cycle whereby

developers are able to recoup system costs from increased revenue, and can therefore af-

ford to lower the unit cost of power, enabling customers to a�ord to further grow their

consumption, and ultimately realizing the intended bene�ts of electricity access.
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Demand stimulation has a rich history. With the rapid increase in the rural electri-

�cation rate in the US in the 1930s, the government paired grid extension and supply

expansion with demand stimulation programs through the Electric Home and Farm Au-

thority, providing �nancing for farmers to purchase home appliances and equipment [42].

More recently, demand stimulation e�orts in sub-Saharan Africa have gained traction. As

an example, in 2016, JUMEME Rural Power Supply Ltd., a minigrid developer in Tanzania,

provided �nancing for 12 of their business customers to purchase appliances. In 2018, they

identi�ed a new business opportunity on Ukara island in Lake Victoria that involves us-

ing their own electricity to run a �sh freezing and delivery system to serve local markets,

which improved capacity while providing an additional revenue stream [7].

6.2.3 Electric Mobility as Flexible Demand

Use of electric mobility loads as �exible demand is a well-studied topic in the literature.

Previous work has used a variety of techniques for improving use of this �exible resource,

including be�er predictions of arrivals using �uid dynamic models [13], optimal charging

schedules when faced with unknown future demand [265], a Markov Decision Process

(MDP) framework for making charging decisions [305], heuristic algorithms for an NP-

hard construction of the EV charging problem [308], genetic algorithms that consider

grid parameters [8], model-free reinforcement learning techniques to coordinate multiple

charging stations [156], and a technique based on Distributed Resource Allocation for

smoothing grid operations using EVs [186]. While some or all of these techniques may

be applicable for our scenario, they have been largely evaluated on centralized electricity

grids, which exhibit substantially di�erent constraints than decentralized minigrids, and

for electric cars, which have di�erent usage pa�erns and requirements as compared to

boats.

In minigrids, demand response (DR) may be used for optimizing grid operations through

load scheduling and load control to achieve higher e�ciencies, saving fuel for backup
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needs, decreasing operation expanses, providing grid resilience, and delaying the need

for further investments [194]. Various DR strategies using EV charging have been ex-

plored, such as in�uencing the behavior of the users by reducing the EVs’ trip distance

and/or trip time shi�ing [256], day-ahead planning of EV schedules due to �uctuations

in daily renewable generation [41], time-varying pricing intended to shi� load from peak

to o�-peak periods [196], incentive-based DR programs that support vehicle-to-grid for

load shi�ing and congestion management [229] and controlled EV charging DR programs

[255].

6.3 Data and Methodology

In this section, we describe our modeling approach, shown in Fig. 6.2. We begin by de-

scribing our data collection process and describe the datasets collected in Section 6.3.1.

Next, in Section 6.3.2, we discuss our methodology in sizing an electric outboard motor

and ba�ery based on �shing boat movement pa�erns. We then describe the components

of the electric load on the island in Sections 6.3.3, and 6.3.4, from residential and small

commercial connections and the ice factory respectively. We then present an iterative

minigrid operation model with a stochastic electric boat charging load algorithm devel-

oped to determine the maximum electric boat charging load each day over a year, while

minimizing the charging infrastructure based on the capacity constraints of the minigrid,

as well as an economic analysis of the system in Section 6.3.5.

6.3.1 Data collection and description

Our study takes place on Lolwe Island, which is situated in Lake Victoria in Eastern

Uganda and has an estimated population of 14,841 people. Fishing is the major economic

activity on the island, home to a vibrant �shing hub of over 1,000 boats. Figure 6.1 shows

an example �shing boat. Currently, the minigrid developer for Lolwe Island is planning

for a minigrid with an installed capacity of 600 :,? of solar PV, 650 :,⌘ of lithium-ion
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Figure 6.2: Flowchart of the study methodology.
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ba�ery bank capacity, and a 120 :, backup diesel generator [221] 2. �e developer is

also se�ing up an industrial park on the island to mitigate the challenges of �sh storage.

It will include an ice factory to provide a�ordable ice for preserving Nile perch and a �sh

drying factory to enable e�cient drying of Silver �sh, which is currently done under the

sun or using �rewood [221]. For this study, we limited our power demand model of the

industrial park to the ice factory only.

Survey data. We conducted a surveywith 69 respondents in three villages on the island as

part of our study to learn more about the socioeconomic and demographic characteristics

of the �shing community, as well as their �shing habits3. Fishing boat owners on the

island on average have a �eet of 3 - 4 boats and amajority of them handle the management

of their �eets and the marketing of their catch, as opposed to �shing themselves. Instead,

they hire young men to �sh and operate their boats. �e island depends on diesel to

power �shing boats. On average, each boat consumes about 20 liters of fuel per trip,

which translates to approximately 20,000 liters of fuel for the entire island for every boat

to make a �shing trip. On average, �shing takes place during 6 days each week. �is is

expensive, unreliable, and has a negative impact on the environment.

�e �shing boats in use on the island are v-shaped bo�om boats (see Figure 6.1), locally

constructed with wood, which has a density of 440 :6/<3. We measured three random

boats, whose lengths ranged between 9< and 13<, with a width of 1.85<. Based on these

dimensions, the shape of the boat and density of the wood, we estimated that the boats

weigh between 1,209:6 and 2,156:6 unloaded. At the beginning of each �shing trip, we

observed that each boat was loaded with �shing gear and two male �shing boat operators

and on return, there was additional weight from the �sh caught. Fishing boat operators

in two of three villages we surveyed �sh Nile perch, whose peak season is from July

to December. �ey catch an average of 16 :6/30~ on a day with sparse catch and an

2�e planned minigrid is slated for commissioning in 2020.

3We obtained approval for our study from our university’s Institutional Review Board.
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average of 98 :6/30~ when there is bountiful catch. Fishing boat operators in the third

village catch Silver �sh. Peak Silver �sh season is between March and June, during which

operators reported catching on average about 35,000 basins of Silver �sh and as few as

900 basins during low season. We therefore estimated a maximum weight,,1>0C , of about

3000kg for a loaded �shing boat.

Boat owners in the Nile perch villages reported to purchase between 30 and 1500 :6 of ice

a day. We therefore estimated an average of 10,000 - 15,000 :6/30~ per day of ice demand,

&824,3 , on the island. Transporting ice from the mainland to the island and storing it before

use results in substantial ice loss and embodied energy consumption. Typically, 20% of

any ice that is purchased is lost before use for �sh preservation.

Boat movement data. To collect information about boat movements and the communi-

cations environment, we constructed 20 custom boat tracking devices. Each device con-

sisted of a custom mobile application on a low-cost mobile phone (Motorola G5) to sense

and log di�erent metrics including GPS location coordinates, accelerometer and gyro-

scope readings, and cellular signal strength. �e mobile phone was sealed in a water-tight

enclosure for deployment. We favored a low-cost mobile phone for its con�gurability over

an o�-the-shelf micro-controller device, the Particle Electron IoT suite, because the Par-

ticle system is designed to store data in the cloud as it is collected. However, the cellular

network on the island and in the lake is slow and unreliable, and thus a constant uplink

to upload data was unavailable. While we could have stored data locally, the expansion

slots on the Electron do not provide a direct way of expanding the memory storage. For

our deployment, we also planned to extract logged data on a daily basis, which was eas-

ier to do from the mobile device than the Electron. A third reason is that the Electron

typically uses an external 1, 800<�⌘ ba�ery, which we projected would not have been

able to last the duration of a 12-16 hour �shing trip. On the other hand, the Motorola G5

uses a 2, 800<�⌘ ba�ery, which can last up to 24 hours when the phone’s functions are

limited to the core requirements. Finally, the mobile phone provided all the required sen-
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sors already assembled and a readily available application programming interface (API) to

interact with them, compared to the Particle Electron. Note that we made these decisions

given our limited deployment purpose, size, and timeline – we discuss design considera-

tions for a longer-term deployment in Section 6.5.

�e data collection device was a�ached to a �shing boat at the start of a �shing trip with

the mobile application (app) running in the foreground, as seen in Figure 6.1. Pu�ing

into consideration the hardware constraints and so�ware delays, the app continuously

logged sensor data by sampling at 30 second intervals. We limited data logging to only

the required sensors tomaintain the privacy of boat operators. Over the course of six days,

boat owners and operators were randomly approached each day to host the devices on

their boats for the duration of their upcoming �shing trip. On each day, we deployed the

devices at the start of the �shing trips in the a�ernoon. We then returned the nextmorning

to detach and collect devices at the end of each �shing trip to recharge and deploy them

in a di�erent village in the a�ernoon. Deployment took place twice in each village. While

we initially aimed to deploy all 20 devices each day, the number of devices deployed each

day varied depending on a number of logistical factors such as the turnaround time of

charging the phones, which was limited to about three hours each day when the island’s

diesel generator was running. We logged the departure time and level of fuel in the boat’s

fuel containers at the beginning of each �shing trip and the arrival time as well as the

corresponding level of fuel on arrival at the end of the trip.

We tracked 77 �shing trips in total. Figure 6.4 shows the probability distribution func-

tions of the departure times, 53 (`3 ,f3), and arrival times 50 (`0,f0) of the 77 �shing trips.

We can see the distinct di�erences of times based on the type of �sh pursued: Silver �sh

boats tend to operate for shorter journeys in the pitch dark of the night. Additionally,

we can see that the window for departure times is narrow, while arrival times are more

spread out. �is has positive implications by enabling fewer charge stations to charge all

of the boats. Due to challenges with environmental conditions, logistics, and a so�ware
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bug, we only captured near-complete GPS traces of 27 �shing trips. Figure 6.3 shows a

select number of traces that we captured. �e three distinct origin points on the island

are the shores of the three participating villages.

Figure 6.3: Select daily traces of �shing boats. �ree departure villages are each denoted with an
X.

We utilize the GPS data to calculate the distance travelled by each boat between subse-

quent coordinates using Vincenty’s solution for the distance between points on an ellip-

soidal earth model [268]. We calculated that the longest �shing trip, 3<0G covered 62:<

round trip and the shortest trip covered 12:<. Despite the Nile perch �shing trips lasting

longer than the Silver �sh �shing trips, we do not observemuch di�erence in the distances

covered. �e mean distances of the Nile perch and Silver �sh �shing trips are 24.8:< and

24.5:< respectively, with 80% of the �shing trips covering under 35:<. We also see a
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distinct portion of the trip before the return trip begins which we surmise is when �shing

is taking place. We unfortunately were not be able to determine whether the engine was

on or o� during this period due to noisy inertial measurement unit data.

We calculated the speeds of the boat over the course of the �shing trips based on the

GPS coordinates data at a one-minute resolution using Eq. 6.1.

s(t) =
nt’
i=1

(d_1q1,_2q2)i ⇤ 60 (6.1)

During the times when the boats were travelling to and from the �shing grounds we

calculated a range of maximum speeds, (<0G between 4.5 </B and 5.2 </B . In between

these two portions of the trips, we calculated speeds lower than 0.5</B , which could be

indicative of a stationary or dri�ing boat.

Figure 6.4: Probability distributions of the arrival and departure times of all 77 recorded �shing
trips.
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6.3.2 Sizing of an electric outboard motor and battery system

�e �rst step in the sizing an electric outboard motor is determining the required power

output of the electric motor. A number of resources [184, 231] explain in detail how to

calculate the force/thrust required to propel a boat based on the ship resistance model.

However, for the purpose of this study we used a simpli�ed estimation of the power re-

quirement of the propulsion system. We utilize a simpli�ed thrust-to-weight relation-

ship [30] to estimate the thrust requirement based on the calculated maximum weight of

the boats.

�ough the thrust of the electric motor is important, the range of the ba�ery is equally

important and o�en overlooked when choosing an electric motor. We therefore also con-

sider the range estimates of ba�eries compatible with the list of potential electric motors.

�e �nal selection of an electric outboard motor has su�cient thrust to propel the boat,

and is compatible with a ba�ery that has su�cient capacity and range to cover the dis-

tance of the longest �shing trip measured in our dataset.

6.3.3 Residential and commercial demand estimation

A crucial step in the deployment of any minigrid is the assessment of electricity demand

prior to implementation. Although electricity demand is hard to predict, especially in a

village that has never had access to electricity, di�erent methodologies are used to carry

out electricity demand assessment of minigrids to provide a baseline for a well-founded

project design. Two fairly common practices have been used in previous studies; using

primary data collected through pre-electri�cation surveys [115] and second, using exist-

ing demand data from other minigrid projects in a similar socioeconomic and cultural

context [146, 289].

We utilize the second approach to estimate the load pro�les of prospective minigrid cus-

tomers on the island using electricity consumption data from customers of existing min-

igrids in East Africa because we did not have the primary data collected for the island.

149



�ese customers are categorized based on three main connection types: residential cus-

tomers, small commercial customers, and residential customers who run businesses in

their homes. We begin by determining the daily load pro�le pa�erns of the existing min-

igrid customers, by applying a :–means clustering approach to the normalized hourly

consumption readings of customers in each of the three mentioned categories. �e con-

sensus among a number of studies [227, 84, 297] is that it is the best known and most

frequently applied partitioning clustering technique to analyze daily load pro�le pa�erns

of electricity consumers. �e objective of clustering is to improve the accuracy of the

predicted load pro�le of the prospective minigrid customers. �e clustering technique

divides the customers, (G1, G2, ..., G=) in each connection type, 9 , into : clusters such that

such that similar load pro�le pa�erns are placed in the same cluster G8 ;G 9 2 ⇠: and dis-

similar load pro�le pa�erns are grouped into di�erent clusters. We determine the optimal

number of clusters, : , in each dataset using the NbClust approach [43]. Next, we get the

average load pro�le of each cluster, %:,0E6 using Eq. 6.2.

%:,0E6 =

Õ
8; 92⇠: (G8 ;G 9 )
#⇠:

(6.2)

We then use a weighted allocation method to allocate the number of prospective cus-

tomers in each connection, #9 to each cluster and then calculate the total hourly load of

each cluster, ⇠: , in each connection, 9 , which we sum up to generate an aggregate load

pro�le, %2DBC for all the prospective minigrid customers using Eq. 6.3.

%2DBC,1...%2DBC,24 =
3’
9=1

’
⇠:2 9

%:,0E6 ⇤ #⇠:
#9 ⇤ #?2, 9

(6.3)

6.3.4 Modeling ice factory power demand

Wemodeled the ice factory as a series of similar small ice machines, which operate during

hours of PV supply – that is, between the hours of 9 am and 6 pm. Assuming perfect

knowledge of the next day’s demand for ice &824,3 , we calculate the number of machines
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started up for the day to meet this demand. We also assume that there is enough storage

for all the ice produced for at least 24 hours. We use the technical data of one ice machine,

including its capacity&C>C , in kg/day, and power drawn by the compressor, %2 , in addition

to the number of hours in a day themachines run,⌘< to determine the number ofmachines

required, #<02⌘ , to meet demand, &824,3 . Lastly, we generate the demand pro�le of the ice

machine for various levels of ice demand as summarized in Eq. 6.4

(P9, P2..., P18) = Pc ⇤ [#<02⌘ =
&824,3
&C>C

⇤ 24
⌘<

] (6.4)

6.3.5 Minigrid operation model considering stochastic electric boat charging

load

We present an iterative dispatch and control model for the proposed minigrid over a 24-

hour period for each day over a year considering the stochastic nature of electric boat

charging and PV supply in Algorithm 1. While Markov Chain models have been widely

used in the stochastic generation of EV charging load [103, 257], it is a decision-based

time and state model that models vehicle tra�c �ows and as such, not applicable to the

boat movement pa�erns in this study. We therefore propose a stochastic method based on

Monte Carlo simulations that considers the boat movement pa�erns we observe in our

data. �is method has many advantages such as possibility of simultaneous considera-

tion of many probabilistic factors and ease of implementation. �e boat movement data

collected is processed to identify the probability distribution functions of ba�ery State of

Charge (SoC), 5B>2 (`B>2,fB>2), hours of boat arrival, 50 (`0,f0) and hours of boat departures,

53 (`3 ,f3).

We initialize the algorithm with three charging stations, #2⌘ one at each shore in each

village. We assume that the charging stations are fast charging and the power output

from the chargers, %2⌘ is constant. We run the simulation for an entire year. During each

day, : , we estimate the charging demand of the electric boats during the charging win-

dow determined by the boat arrival and departure times. We use 1 hour as the sampling
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interval time. At each time step of the day, we consider the total load from the ice factory,

%824 , customer connections, %2DBC and the charging stations, %2⌘0A64 as well as the total gen-

eration from the PV array, %0AA0~ , minigrid ba�ery bank storage, &10CC and backup diesel

generator, %64= . We used HOMER so�ware’s algorithm [74] to generate synthetic hourly

solar data for Lolwe Island for an entire year by combining monthly averaged solar inso-

lation data and the clearness index for the coordinates corresponding to Lolwe averaged

over a 35-year period, from 1983 - 2018, available from NASA’s Prediction of Worldwide

Energy Resource (POWER) project [2]. �e PV supply is �rst used to meet the total load

at each hour, and any excess PV supply is used to recharge the ba�ery bank if needed.

Any excess PV supply a�er this is curtailed. During hours of insu�cient PV supply, the

ba�ery bank is discharged to meet the remaining load. �e Depth-of-Discharge (DoD) is

limited to 80%. When the ba�ery bank reaches its DoD, the backup generator then ramps

up to meet the remaining load.

If there is still additional minigrid capacity during the least sunny day of the year, the

number of charging stations at each shore is incremented by one during each iteration to

allow for additional boats to charge until themaximum capacity of theminigrid is reached.

�e model therefore minimizes the charging infrastructure required to maximize boats

charging within the constraints of the charging window and capacity of the minigrid.

In addition to the technical operation of the minigrid, we estimate the pro�tability of the

system characterized by Net Present Value (NPV), a parameter that expresses the initial

capital investment and all future cash �ows arising from operating the system over its

lifetime as an equivalent amount at present time, summarized by Eq. 6.5.

NPV =
n’
t=0

At

(1 + d)t (6.5)

where �C is the project’s revenues minus costs in time C , from year 0 to year = and 3 is

the discount rate. We calculate the NPV over a period of 20 years, which is the average

lifetime of a PV system and discounted at a rate of 14%, which is the reported discount
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Algorithm 1: Minigrid dispatch and control algorithm with stochastic boat
charging load
Result: Maximum number of boats charged in a day, #1,<0G , Annual diesel

consumption from backup generator, Annual excess PV
generation,&4G24BB

foreach day of year, k do
Initialize #1 = #2⌘;
foreach charging station, #2⌘, 9 do

1. Arrival time,)0,8 = np.random(`0,f0,=). = Connection hour of �rst boat,
)2>==,8 ;
2. Ba�ery state of charge on arrival, ⌫B>2,8 = np.random(`B>2,fB>2,=).;
3. Departure time, )3,8 = np.random(`3 ,f3 ,=).;
4. Charging duration, )2⌘,8 = [0.8 � ⌫B>2,8] ⇤&1>0C/%2⌘ ;
5. Disconnection hour )38B2,8 = )2>==,8 +)2⌘,8 ;
6. Available charging time, )0E08; = )3,8 �)38B2,8 ;
while )0E08; ¿ 0 do

a. )2>==,8+1 = )38B2,8 ;
b. )3,8+1 = np.random(`3 ,f3 ,=).;
c. ⌫B>2,8+1 = np.random(`B>2,fB>2,=).;
d. )38B2,8+1 = )2>==,8+1 +)2⌘,8+1 ;
e. )0E08; = )3,8+1 �)38B2,8+1;
f. Populate connection and disconnection matrices to keep track of the
number of electric boats in charging status at every given hour, #1,⌘A .

end
7. Total charging load, %2⌘0A64,⌘A = %2⌘ ⇤ #1,⌘A ;

end
Sum all boats charged: #1 = #1 + #1,2>==;
foreach hour, i do

%C>C,⌘A = %824,⌘A + %2DBC,⌘A + %2⌘0A64,⌘A ;
if %0AA0~,⌘A > %C>C,⌘A then

%4G24BB = %0AA0~,⌘A � %C>C,⌘A � [650 �&10CC ] ;
else

if [%C>C,⌘A � %0AA0~,⌘A ] < ([10CC&10CC ) then
&10CC = &10CC � [%C>C,⌘A � %0AA0~,⌘A ]

else
[%C>C,⌘A � %0AA0~,⌘A �&10CC ] = %64=

end
end

end
If %64=,A4@D8A43 > %64=,<0G , decrease number of boats charged per day, #1 and
rerun algorithm.

end
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rate for Uganda [195]. For this study, we assumed that the system without infrastructure

for ice production and electric boat charging has a zero NPV, which means that the project

breaks even.

6.4 Analysis

In this section we present a techno-economic feasibility analysis of adding electric boat

charging and ice factory load to the proposed minigrid, the impact of infrastructure plan-

ning on the maximum electric boat charging load, the �nancial bene�t to the boat owners

and �nally the impact of demand response on the operation of the minigrid.

6.4.1 Residential and small commercial demand pro�le

We began by analyzing the hourly electricity consumption data of customers of 18

minigrids in East Africa, including those described in previous work [289]. 56% of these

customers have a residential connection, 36% have a small business connection, and the

remaining 8% run a business from their residential premises. From the results of the clus-

tering algorithm, we found three distinct load pa�erns for each category as shown in

Figure 6.5.
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Figure 6.5: Average daily load pro�le of clusters among (a) small business, (b) residential, and (c)
home business customers.

�e minigrid developer estimates a total of 3000 prospective residential connections and

700 small commercial connections on Lolwe island [221]. Of the residential connections,

using data from the Kenya Integrated Household Budget Survey [200], which indicates

a proportion of rural households that run business out of their homes, we estimate 68%

prospective residential connections and the remaining 12% as residential connectionswith

businesses on their premises. Figure 6.6 shows the resulting demand pro�le of all prospec-
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tive customers. We observe high demand during the evening hours of 8pm - 10pm, with

a peak of 75:, at 9pm.

Figure 6.6: Daily load pro�le of residential and small business customers.

6.4.2 Electric outboard motor and battery sizing

Based on the estimated weight of a loaded �shing boat we calculated the required thrust to

be 458;1B , which results in about 11:, (15�% ) of propulsive power at themaximum speed

of 5.2</B . �e 15 - 30 HP electric outboard motors were not compatible with ba�eries

with su�cient capacity to last the duration of the longest trip, 62:<. �e 40�% Torqeedo

Deep Blue 25 RL electric outboard motor, with a propulsive power of 16:, , met our

requirements [272]. It is compatible with two 9.1:,⌘ BMW i8 lithium ion ba�ery packs

connected in parallel. �is ba�ery setup has a range of between 32:< and 86:< at a speed

of 12</B and 2</B respectively. It draws 3.7:, at a 240+ fast charging station. Based on

these characteristics, we calculated that the total ba�ery capacity is su�cient to last the

duration of all monitored trips, with 90% of the trips using less than 65% of the ba�ery

capacity as shown in Figure 6.7. It is necessary to slightly oversize the ba�ery to prevent

stranded boats.
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Figure 6.7: Cumulative distribution of boat ba�ery usage from two 9.1:,⌘ BMW i8 lithium ion
ba�ery packs connected in parallel.

6.4.3 Impact on minigrid operation

�e ice factory comprises of multiple 5000 :6/30~ �ake ice machines with compressor

power of 17.5:, , each costing $15,000 [163]. We assume that the machines operate ev-

eryday between the hours of 9am and 6pm. In our simulation of minigrid operations,

we assume that ice production takes precedence over recharging the electric �shing �eet

ba�eries. It is becoming common practice to limit EV ba�ery depth-of-discharge to about

20% (i.e., SoC to 80%), which reduces ba�ery degradation and increases longevity. Our

simulations therefore limit the electric boat ba�ery charging to 80%, which we observed

in Figure 6.7 to be su�cient for over 95% percent of the trips.

�e average daily ice demand on the island was estimated as 13,000 :6/30~. At this

level of ice production, the minimum number of charging stations required to maximize

boat charging on the day of the year with minimum PV supply was determined to be

15. �is is the most risk averse charging infrastructure plan, where the minigrid opera-
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tor would install just enough charging stations such that on any given day of the year,

all the charging stations are in use during the entire available charging window with-

out resulting in inadequate supply to meet the charging demand. During the charging

window, a maximum of 102 boats are able to charge in a day, adding 466 :,⌘ of load to

the system (17% of total load), in addition to 1,350 kWh from ice production (51% of total

load). As shown in Figure 6.8, the capacity utilization of the minigrid increases, reducing

the amount of curtailed PV supply by about 20%. However, generation from the backup

diesel generator increases.

Total loadPV outputBattery output Diesel genset output

Hour of day Hour of day

(a) (b)
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w
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Figure 6.8: Minigrid supply and demand curve on an average day of the year (a) without ice
factory and electric boat charging load and (b) with ice production of 13,000 :6/30~ of and 102
boats charged at 15 charging stations.

We also carried out a sensitivity analysis, to observe how the maximum daily charging

load that the minigrid can serve at di�erent quantities of ice production between 5,000:6

and 30,000:6 is impacted by charging infrastructure planning. As shown in Figure 6.9,

we �nd that a more audacious charging infrastructure plan that increases the number

of charging stations to 51, increases the maximum daily boat charging demand by about
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240%. We also observe that below 60 charging stations, the number of charging stations

limit the maximum daily charging demand on days with high PV supply, therefore we

see very li�le variation with the quantity of ice produced. Above this, the quantity of ice

production is pivotal to the number of boats that can recharge in a day. For example, we

observe that when 126 charging stations are installed, almost 3 times as many boats can

be charged when ice production is decreased from 30,000:6 to 5,000:6. �ese results help

to elucidate some of the load tradeo�s between ice manufacturing and electric mobility,

as well as charging infrastructure planning.

88  boats

322 boats

876  boats

Figure 6.9: Change in maximum daily electric boat charging demand a function of number of
charging stations and ice produced

6.4.4 Impact on economics of minigrid project

Technical performance by itself is insu�cient for the viability of this system; �nancial

sustainability is also crucial for system viability. We quantify the impact of ice factory

and charging demand on the economics of the system, as well as capacity utilization. For

the NPV calculation, we made a number of assumptions:
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• �e base case system, i.e., without ice production and boat charging, has an NPV of

zero

• A standard tari� of $0.40 per kWh is charged for electric boat charging

• Each charging stations costs $200 to install

• We assumed that all the ice produced is sold at $0.068 per :6, which is the average

cost of ice quoted by the boat owners.

• Lastly, we did not account for the operating costs of maintaining the ice machines

and the charging stations.

�e aforementioned cost assumptions are competitive numbers based on discussions with

mini-grid developers in the area. �e price of diesel on the island is reported to �uctuate

between $1.08 per liter and $1.32 per liter. We used the highest price ($1.32 per liter) to

calculate the costs associated with the fuel consumption of the backup generator.

As shown in Figure 6.10, there is a tradeo� between maximizing the NPV of the sys-

tem, and minimizing both the diesel fuel consumption from running the backup generator

and the amount of PV supply that is curtailed. We observe that any level of ice produc-

tion, planning the charging infrastructure to accommodate the charging of more boats

per day would increase the NPV and improve capacity utilization but would also require

higher usage of the backup generator. �e planning of charging infrastructure ultimately

depends on the goal of the minigrid developer. Preference for a higher NPV, while ensur-

ing adequate charging infrastructure to service a large �eet would mean compromising

by adding diesel consumption, which is vulnerable to price �uctuations, not to mention

the environmental costs of fossil fuel use.
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Figure 6.10: Net Present Value, annual diesel consumption and annual excess PV supply as a
function of number of charging stations and daily ice production. Note that the number of boats
are maximized in each scenario.

6.4.5 Economic impact for boat owners

To consider the potential bene�t of converting diesel-powered �shing boats to electric

for the boat owners, we consider the payback period, which is the amount of time it

takes to recover the cost of an investment. We consider the cost of purchasing the engine
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and ba�ery system through an asset �nancing scheme with a loan term of 24 months,

a 10% down payment and a monthly interest rate of 2.55% per month. �ese terms are

comparable with other asset �nancing programs in East Africa. As part of the survey, we

also examined �shing boat owners’ willingness to participate in asset �nancing. 90% of

owners have access to either a mobile money platform or a bank account. 25% of owners

reported to have requested for a loan within the past year, mainly for expenses related to

their �shing boat, with a majority of those reported to have borrowed from family/friends

or from a savings group. However, only 45% reported to have completed loan repayments.

�ey all reported a willingness to take a loan in the near future for further investment in

their �shing business.

We also consider the cost of recharging the ba�ery at $ 0.40 per kWh. We compare

these costs to the savings from not purchasing diesel at $1.32 per litre and the cost of

maintaining a diesel engine which we determined to be $50 per month from the survey.

�e repayment amount on a 40 �% Torqeedo Deep Blue engine with the corresponding

18.2 kWh lithium ion ba�ery system and charger, which costs $ 26,200 [176] would there-

fore be $38,766. As shown in Figure 6.11 , a boat owner with an average round-trip of 25

km per �shing trip, using an average of 200 litres of fuel per week would recover the cost

of their investments a�er about 3 years and by 5 years they could potentially see about

$ 20,000 in savings. Shortening this payback period would entail exploring cheaper or

pre-owned options for an electric engine/ba�ery system that still meet the requirements

of the boat owners.
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Figure 6.11: Payback period on purchase of 40 �% Torqeedo Deep Blue electric outboard motor
and 18.2 :,⌘ lithium-ion ba�ery system.

6.4.6 Demand response

Figure 6.12: Impact of shi�ing electric boat charging load.
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Considering that the charging window of the electric �shing �eet does not coincide with

peak demand hours of residential and commercial load, the approach we took with regard

to DR is to restrict electric boat charging to the hours of PV production (7am - 6pm). �is

means that early boat arrivals delay connection of their ba�eries to charging stations until

7am. �is DR strategy would require up to 56% increase in the charging infrastructure to

serve the same number of boats as shown in Figure 6.12, which reduces the NPV by at

most 1%. However, about 5% of fuel can be saved. �is DR strategy would be useful to

a minigrid operator whose main goal is decreasing fuel consumption from running the

backup generator.

Controlling the level towhich EV ba�eries charge is also a commonDR strategy. While

we have established an 80% charging baseline for the electric boats in this study, we eval-

uated how the economic and operational performance of the grid would change if the

charging limit was relaxed to allow boats to charge to 100%. We expect the number of

boats that charge in a day to decrease, given all the other factors that in�uence the number

of boats charged remain unchanged. �is hypothesis is validated as shown in Figure 6.13.

We observe that there is minimal di�erence in NPV between the two cases. However,

we �nd that between 5000:6 and 15000:6 ice production, there is between 5 - 10% in fuel

savings. Based on these results, it would seem favorable to the minigrid developer to limit

charging to 80% as this allows up to 60% more boats to be charged at a minimal cost to

their �nancial and operation goals and with li�le (but nonzero) risk for stranded boats.
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Figure 6.13: Impact of charging electric boats to 100% vs. 80%.

6.5 Discussion and Future Work

To test this project at scale there is need to explore the potential for charging station net-

works on other surrounding islands to address range anxiety. We are also yet to explore

the potential for a boats-to-grid and boat-to-boat demand response strategy. �e risk

factors a�ecting adoption of this project, such as policy and political factors, have to be

detailed and strategies to mitigate these risks explored. Real-time boat monitoring could

be explored, as it allows for predictive management of boat charging, improving the op-

erational e�ciency of the minigrid. To that end, we leverage our deployment experience

to discuss design considerations for a long-term electric boat monitoring system:

While a low-cost mobile phone is a be�er solution for collecting data in the short-term, it

may not be feasible in the long run. A �shing expedition can last up to 72 hours. As such,

even a 2800<�⌘ ba�ery that can hold up to 24 hours of ba�ery charge would not su�ce

for this application. �erefore, an additional power bank that can potentially store up to

threefold the phone ba�ery power would be an ideal back-up. Second, a mobile device

is susceptible to being tampered with and used otherwise, thus, building an embedded
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device would be a be�er solution in the long run. �ird, while storing data on the device

is a be�er solution because of network unreliability, data can easily be lost when the device

comes into contact with water or gets stolen, thus, by routinely monitoring the cellular

signal, the data collected can be backed up to a secure cloud service each time the device

is within a be�er signal range. Fourth, while the rest of the world has embraced 4G and

is gearing towards 5G, most places in rural sub-Saharan Africa oscillate between EDGE

and 3G. �us, the device to be deployed should cater for typically unreliable networks,

and adapt accordingly. For example, from our deployment, Figure 6.14 shows that the

signal strength quickly deteriorates with increasing distance from the island. �ere is

an option of using LAN beacons atop buoys, which would then upload data to the cloud

via a satellite link. �ese are more reliable, albeit expensive. �erefore, this approach

would only work if the project is to be scaled beyond a single island. Finally, some of the

mobile sensors (e.g., gyroscope and accelerometer) are very sensitive to small changes in

the movement of �shing boats. �e data collected by these sensors is noisy as the sensor

readings are a�ected by weather changes, boat dri�ing, and other uncoordinated boat

movements. Going forward, we could explore using commercial-grade, albeit expensive

sensors, if there is a need to collect certain metrics whose sensors are prone to noise.
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Figure 6.14: Distribution of signal strength as a function of distance from the island. High signal
strength = 4; No signal strength = 0.

6.6 Conclusion

To summarize our contribution, we studied the potential for electric �shing boats to pro-

vide valuable and �exible load to a decentralized minigrid system on an island in Lake

Victoria, with the potential to improve outcomes for �shing boat owners and operators as

well as minigrid developers alike. We applied a survey, a low-cost boat tracking system,

and substantial system modeling to create a large-scale model for understanding techni-

cal and �nancial tradeo�s in the minigrid. Our work shows the signi�cant scale of load

possible from amodest deployment of electric boats and the crucial value from adding rel-

atively trivial control to the boat charging system. We also outline the considerations for

a future boat tracking system, laying the groundwork for a much larger future operational

deployment. We intend for this e�ort to serve as unique guidance to minigrid developers

for incorporating electric mobility to ensure the technical and �nancial viability of their

systems, paving the way for sustainable progress towards universal electri�cation and its

associated economic empowerment.
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CHAPTER 7

CONCLUSION

In this thesis, we developed data-driven methods and techniques to support critical in-

frastructure measurement and sustainable development. We focused on three key infras-

tructures: rivers, roads, and electricity access.

In Chapter 3, we proposed a new approach for global river discharge prediction based

on Long Short-Term Memory (LSTM) Recurrent Neural Networks (RNNs) and spatiotem-

poral hydrologic knowledge. Our approach outperforms the latest state-of-the-art data

assimilation and lumped machine learning models in ungauged basins. Our work is espe-

cially important in hydrology, a �eld that has traditionally relied on process-basedmodels.

�is is because our technique incorporates the topological physics of river �ows into the

data modeling phase, which improves the generalization of models in ungauged basins

and improves the overall performance of the models. �is work can potentially improve

methods for predicting river discharge on a global scale and advance our understand-

ing of the cascading impacts of anthropogenic climate change on global water resources.

Finally, this work sets the stage to examine the constraints of process-based modeling

approaches and be�er characterize how machine learning-based models can be used to

model physical processes in hydrology and other physical sciences.

In Chapter 4, we proposed a new approach for explaining machine learning models for

river discharge prediction, which can be extended beyond hydrology to other areas of

physical science. In order to understand how machine learning models work, we use sta-

tistical methods, such as cooperative game theory tools, to analyze the internal workings

and how they make their predictions. �is is especially important in hydrology, a �eld
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that uses physics-based models and has been reluctant to adopt machine-learning tech-

niques due to their opaque nature (black box models). In high-stakes applications such as

water resource allocation and �ood forecasting, the inability to explain ML models makes

it di�cult to trust their predictions. Using explainable machine learning, hydrologists can

be�er understand how ML models make predictions and use this knowledge to improve

river discharge predictions. Additionally, explainable machine learning can help hydrolo-

gists identify and address the limitations of physics-based models: physics-based models

are not able to accurately capture all the complex processes that occur in a hydromete-

orological cycle. Finally, explainable machine learning can help hydrologists to identify

the processes that physics-based models are not accurately capturing and to develop new

physics-based models that are more accurate. �us, explainable AI has the potential to

improve the accuracy and reliability of machine learning models, which could be bene�-

cial for a variety of applications, such as �ood forecasting, water resource management,

and climate change research.

In Chapter 5, we proposed a new temporal-spatial road quality prediction approach using

satellite imagery. Our approach uses convolutional neural networks (CNNs) and vision

transformers to predict road quality from high-resolution and medium-resolution satel-

lite imagery. Combining these techniques, we achieve substantial predictions even in

regions with limited and low-resolution data. Road quality measurement is critical for

socio-economic and political development. Good roads can lead to increased economic

activity, improved access to education and healthcare, and reduced poverty. �ey can

also help to promote political stability and democracy. Predictions and recommendations

by our models are currently used by policymakers, such as the World Bank, to in�uence

policies geared towards funding for the construction and rehabilitation of infrastructure

in developing countries, which could lead to several bene�ts for socio-economic and po-

litical development.
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In chapter 6, we proposed tools to support sustainable development initiatives. Here, we

detail our contributions to creating so�ware tools to stimulate electricity demand in o�-

grid communities, with a case study on Lolwe Island, Lake Victoria (East Africa). �ese

tools can help optimize electric boats’ charging schedules and reduce diesel fuel use. Con-

verting diesel-based �shing boats to electric motor and ba�ery-based systems can be a

valuable way to stimulate demand for sustainable mini-grids and reduce environmental

pollution. Electric boat charging can contribute at least 17% more daily consumption, re-

sulting in substantial technical and �nancial value to the mini-grid system while reducing

greenhouse gas emissions and other forms of environmental pollution.

Machine learning (ML) is rapidly transforming society, becoming an essential tool for ad-

dressing global challenges, such as climate change on water. ML can decipher complex

pa�erns and predict future scenarios, providing actionable insights that empower us to

make informed decisions and policies to support socio-economic and political develop-

ment, especially for countries in the global south. However, ML is still a relatively new

�eld with much room for growth and innovation. �us, this thesis has focused on ar-

eas where such innovations will play a critical role in bene�ting society and humanity,

particularly in the global south. �ese methods have the potential to help us make more

informed decisions and policies, which can lead to a more sustainable and equitable future

for all.
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