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Abstract
Aim: Preventing the spread of range-shifting invasive species is a top priority for miti-
gating the impacts of climate change. Invasive plants become abundant and cause 
negative impacts in only a fraction of their introduced ranges, yet projections of inva-
sion risk are almost exclusively derived from models built using all non-native occur-
rences and neglect abundance information.
Location: Eastern USA.
Methods: We compiled abundance records for 144 invasive plant species from five 
major growth forms. We fit over 600 species distribution models based on occur-
rences of abundant plant populations, thus projecting which areas in the eastern 
United States (U.S.) will be most susceptible to invasion under current and +2°C cli-
mate change.
Results: We identified current invasive plant hotspots in the Great Lakes region, mid-
Atlantic region, and along the northeast coast of Florida and Georgia, each climatically 
suitable for abundant populations of over 30 invasive plant species. Under a +2°C 
climate change scenario, hotspots will shift an average of 213 km, predominantly to-
wards the northeast U.S., where some areas are projected to become suitable for up 
to 21 new invasive plant species. Range shifting species could exacerbate impacts of 
up to 40 invasive species projected to sustain populations within existing hotspots. 
On the other hand, within the eastern U.S., 62% of species will experience decreased 
suitability for abundant populations with climate change. This trend is consistent 
across five plant growth forms.
Main Conclusions: We produced species range maps and state-specific watch lists from 
these analyses, which can inform proactive regulation, monitoring, and management of 
invasive plants most likely to cause future ecological impacts. Additionally, areas we 
identify as becoming less suitable for abundant populations could be prioritized for 
restoration of climate-adapted native species. This research provides a first compre-
hensive assessment of risk from abundant plant invasions across the eastern U.S.
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1  |  INTRODUC TION

Invasive species – non-native species capable of reaching high abun-
dances and causing ecological harm (Richardson et al., 2000) – are 
among the most ubiquitous threats to managed landscapes and na-
tive ecosystems, causing widespread ecological and economic im-
pacts that include losses to biodiversity, ecosystem function, and 
crop yields (Pimentel et al., 2000, 2005; Pyšek & Richardson, 2010; 
Vilà et al., 2011). Climate change is projected to exacerbate these 
impacts by facilitating the spread of invasive species (Allen & 
Bradley, 2016; Bradley et al., 2010; Hellmann et al., 2008). Species 
distribution models based on invasive species occurrences (i.e., an 
observation of the species at any level of abundance) have been used 
to predict invasion risk under current and future climate conditions 
(e.g., Allen & Bradley, 2016; Hulme, 2006; O'Donnell et al., 2012). 
While risk of an invasive species occurrence can be useful for guid-
ing management via early detection and rapid response (EDRR), the 
areas where species can occur are broader than areas that support 
abundant populations (Beaury et  al.,  2023; Bradley,  2013). Hence 
species distribution models using all species occurrences can over-
estimate invasion risk (Bradley,  2013). For management, overesti-
mating invasion risk leads to hundreds of ‘high risk’ taxa in any given 
area – many more than are feasible to monitor and manage within 
time and monetary constraints (Beaury et  al.,  2020; Kuebbing & 
Simberloff, 2015). With limited management resources, identifying 
areas where invasive species can occur at high abundance is criti-
cal for informing proactive natural resource management as these 
are likely to be where ecological impacts are the greatest (Bradley 
et al., 2019; Parker et al., 1999; Pearse et al., 2019).

Invasive species that reach high abundance have a greater 
chance of maintaining their current distribution, have greater capac-
ity to extend their ranges (Verberk, 2011), and have a greater po-
tential to cause negative ecological and economic impacts (Bradley 
et al., 2019; Parker et al., 1999; Pearse et al., 2019). Larger popula-
tions also have greater evolutionary potential, and therefore may re-
spond and adapt more rapidly to changing environmental conditions 
(Verberk, 2011). Despite the critical role of abundance in supporting 
existing and expanding invasions, species distribution models that 
incorporate abundance data remain rare in the literature – in part 
due to the lack of high-quality, georeferenced abundance records 
(Bradley et  al.,  2018; Johnston et  al.,  2015). Unfortunately, spe-
cies distribution models based on all occurrences (hereafter occur-
rence-based models) often fail to accurately predict areas that can 
support abundant populations (O'Neill et al., 2021). Instead, species 
distribution models based on abundant occurrences (i.e., locations 
where populations of invasive species achieve high local abundance) 
may serve as a better proxy for invasion risk (Beaury et al., 2023; 
O'Neill et al., 2021). To better prioritize monitoring and management 

decisions in a landscape with limited management resources, we 
need to leverage existing abundance data to understand the current 
and future distribution of habitats that can support abundant popu-
lations of invasive plants.

The more widespread or abundant a species is, the more ex-
pensive management actions like suppression and removal become 
(Latombe et al., 2022; Rejmánek & Pitcairn, 2002). If future changes 
result in more favourable habitat for species to establish or spread 
(Allen & Bradley, 2016; Bradley et al., 2009), these taxa likely pose 
expanded invasion risk and should be prioritized for proactive 
management (Westbrooks,  2004). However, climate change could 
induce species ranges to not just expand or persist, but also poten-
tially contract (Allen & Bradley, 2016; Bezeng et al., 2017; Bradley 
et al., 2009). Highlighting contractions in invasion risk allows us to 
prioritize sites for restoration (Bradley et al., 2009). For a few taxa, 
distribution models that incorporate abundance have proved useful 
for refining geographic assessments of potential expansion and con-
traction of invasion risk (Beaury et al., 2023; Jarnevich et al., 2021). 
Yet, despite the management implications, how climate change may 
affect the distribution of abundant populations of invasive plants re-
mains unknown for most species in the United States (U.S.).

Comparisons across models have also highlighted the complex 
relationship between the geographic distribution of abundant popu-
lations and environmental space (Catford et al., 2011, 2016; Ricciardi 
et  al.,  2021). Drivers of such species-specific variation are largely 
uncertain but may be associated with life history strategies, includ-
ing plant growth form (Bonser & Geber, 2005; Rowe & Speck, 2005). 
Plants of different growth forms vary in morphological and physi-
ological adaptations, and hence are likely to vary in their sensitiv-
ity and response to changes in environmental conditions (Bonser 
& Geber, 2005; Rowe & Speck, 2005). As a result, the geographic 
distributions of abundant populations likely differ between plant 
growth forms, which in turn will affect the structure and biodi-
versity of invaded native communities (Guerin et al., 2019) as well 
as the type and effectiveness of different management strategies 
(Weidlich et al., 2020).

Here, we compiled occurrences of abundant populations for in-
vasive plants across the eastern U.S. We used these data to predict 
areas that are climatically suitable for abundant populations, (here-
after defined as a species' abundance habitat), under current and fu-
ture climatic conditions. To support climate-informed management 
of invasive species we asked the following questions: (1) what areas 
are currently climatically suitable for abundant plant populations? 
(2) how are hotspots of abundance habitat (where the abundance 
habitat for multiple species overlaps) projected to shift with climate 
change? and (3) do current and future projections of abundance 
hotspots differ based on plant growth form? We predict that future 
areas that are climatically suitable for abundant populations will shift 

K E Y W O R D S
biogeography, habitat suitability, invasion hotspot, invasive plant, invasive species, proactive 
management, range shift, species distribution model
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northward, mirroring range shifts observed in previous distribution 
models (Allen & Bradley, 2016) as species track suitable climatic con-
ditions. We also predict that abundance hotspots will differ between 
the major plant growth forms, with the greatest shifts in abundance 
hotspots will be observed in shorter-lived growth forms such as vines 
and herbs that are often able to produce seeds or propagules within 
one growing season, compared to more long-lived growth forms like 
trees that typically require several seasons to reproduce and spread 
(Giorgis et  al., 2016). Using results from species distribution mod-
els, we created management products, including state watch lists of 
species projected to maintain or expand abundance habitat under a 
+2°C climate change scenario. By compiling and standardizing plant 
abundance data and using the subset of abundant occurrences to 
model areas climatically suitable for abundant populations for a large 
number of plant taxa, our study highlights areas at higher risk of in-
vasive species spread and potential impact – a much better proxy 
for invasion risk than occurrence-based distribution models alone.

2  |  METHODS

2.1  |  Data processing for candidate taxa

We compiled georeferenced records of plant species with abundance 
data (reported as percent cover) in the U.S. from 14 data sources 
(Appendix  S1). These data repositories represent contributions 
from hundreds of natural resource managers and include manager 
reported observations (e.g., EDDMapS), standardized vegetation 
services (e.g., NPS, FIA), and state data depositories (e.g., CalFlora). 
From these sources, we used the USDA PLANTS database (USDA, 
NRCS, 2022) to identify plant species that were introduced to the 
contiguous (lower 48 states) United States. For each species we re-
tained occurrences that included measures of plant percent cover or 
average plant cover class (a range of percentage cover values); re-
placing average cover class values with the median percentage cover 
value within the reported range (e.g., 15%–20% cover was replaced 
with 17.5%). We removed cover values that fell outside of 1%–100% 
range, locations outside of the contiguous U.S., and duplicate re-
cords across the pooled data sources. For most data sources, no ad-
ditional information was available on the scale or methods used to 
collect plant cover data and few species had sufficient coverage of 
abundance values (i.e., 0%–100% cover across a range of habitats) to 
support models of continuous abundance. For these reasons, we did 
not aim to predict continuous abundance, electing instead to pre-
dict areas climatically suitable for abundant populations, defining an 
abundant population as any recorded occurrences of a species with 
≥5% plant percent cover (see reasoning below). This approach al-
lowed us to include a large number of invasive plants with existing 
abundance data and provided an important refinement of existing, 
hotspot analyses based on non-native species occurrences. While 
plant abundance data span the contiguous U.S., we focused on the 
eastern U.S. due to biogeographic differences between the eastern 
and western regions, and hence likely differences in plant-climatic 

associations (Bailey, 2009; Omernik & Griffith, 2014). Because we 
wanted to include as many species as possible, we included any spe-
cies with at least one abundant population east of 100°W (Seager 
et al., 2018), assuming this indicated the species could establish and 
become abundant within the eastern U.S.

To define areas where species can become abundant, previous 
studies have selected abundance points associated with percent 
cover thresholds near or below 10% cover for defining populations/
occurrences as abundant (Bradley,  2016; Jarnevich et  al.,  2021; 
O'Neill et al., 2021), but recent analyses suggested little difference 
between suitability predicted from 5% and 10% cover thresholds 
(Beaury et al., 2023). Therefore, we selected points with a ≥5% cover 
or average cover class to define a species as having established an 
abundant population in a given location (hereafter, abundance re-
cord). To increase the likelihood of robust model performance, we 
only fitted models to species with over 100 abundance records or 
with 50 records after pre-processing (see below). This resulted in an 
initial set of 175 candidate taxa that had sufficient total abundance 
records and at least one record in the eastern U.S., with a total of 
455,455 abundance records to use in species distribution models.

2.2  |  Species background data

For each candidate species we predicted potential distributions 
of abundance populations under current and +2°C climate projec-
tions using the Software for Assisted Habitat Modelling library in 
the Vistrails (v. 2.2.3) scientific workflow system (sahm; Morisette 
et  al.,  2013). To reduce spatial bias in the abundance records and 
avoid pseudoreplication, we followed preprocessing steps out-
lined in Morisette et  al.  (2013), thinning each species' abundance 
data by 4 km using the ‘spThin’ package (v.0.2.0; Aiello-Lammens 
et al., 2015) in R (v.4.1.2; R Core Team, 2021) to match the resolution 
of our predictors. Following methods outlined by Young et al. (2020) 
and Jarnevich et al. (2021), we used a target background approach 
(Phillips et  al.,  2009) to generate pseudo-absence data to mimic 
sampling biases in abundance location data (Appendix  S1). The 
target background approach reduces the effect of spatially biased 
abundance records by drawing background points with the same 
sampling biases (Young et al., 2020). For each species we randomly 
selected up to 10,000 target background points from the full set 
of abundance records (e.g., Appendix S1), subset to the target spe-
cies' growth form from within a 99% kernel density estimate isopleth 
(an isopleth is a line representing a constant value, as in a contour 
line on a topographical map) around the focal species' point loca-
tions. The number of background points varied based on the size 
of the isopleth and number of points found within it (sample size in 
Appendix S1).

Growth form data were assigned based on the USDA PLANTS 
database. For taxa with more than one growth form recorded (e.g., 
Subshrub/Vine), we chose the most representative growth form 
based on information from the primary literature on plant ecology. 
When generating background points, we grouped growth forms 
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likely to be searched for and recorded together to reduce spatial bi-
ases associated with small groups. We combined vines with forb/
herbs to generate background points, assuming both would be 
found when searching understory communities. Likewise, we com-
bined shrub, subshrub, and shrub/tree growth forms, assuming all 
three would be a focus of understory woody plant surveys. As a 
result, plants were grouped into one of four growth forms for tar-
geted background sampling: tree, graminoid, vine/forb/herb, and 
shrub/subshrub/shrubtree (Appendix S1). For 11 candidate species, 
small sample sizes and/or disjunct distributions of points prevented 
us from generating background points; for these species, we ex-
tended the spatial extent of the kernel density estimate isopleth 
(Calenge, 2006) to ensure background point generation.

2.3  |  Environmental variables

We selected eight environmental predictor variables from a candi-
date set of 78 variables created by Engelstad et al. (2022) that en-
compassed a suite of temperature and precipitation metrics that are 
known to influence the establishment and spread of invasive plant 
taxa. We based our environmental variable selection on the fol-
lowing criteria: (a) availability of future climate projections for the 
variable and (b) importance for explaining the spatial distributions 
of 62 invasive plants on our candidate list that were also examined 
in recent models based on invasive species occurrence (Engelstad 
et al., 2022). The final eight environmental variables included in our 
models were as follows: Minimum winter temperature, Mean diurnal 
temperature range, Maximum summer temperature, Precipitation 
seasonality, Mean summer potential water deficit, Mean evapotran-
spiration between April and October, Isothermality, and Mean an-
nual precipitation (Appendix S2). These current climate variables are 
averaged over ~30 years of data spanning 1981–2018 and derived 
from BioClim and ClimateEngine (Appendix S2). Hence, our models 
focused on predicting areas with climatic suitability for invasive pop-
ulations (abundance habitat), although other factors, such as forest 
cover and soil characteristics, may restrict distributions further (see 
Discussion).

For each variable, we downloaded +2°C future climate projec-
tions from TerraClimate (Abatzoglou et al., 2018) and used the ‘terra’ 
package (v. 1.5-21) (Hijmans et al., 2022) in R to create our future 
environmental variable output rasters. TerraClimate integrates 23 
CMIP5 global climate models to create future projections (see Qin 
et  al.,  2020). The future climate variables are built on the current 
climate interpolations, making them directly comparable. For each 
climate dataset (current and +2°C), all environmental variables 
were processed to the same extent (contiguous U.S.), spatial reso-
lution (4 km2) and coordinate reference system (Alber's Equal Area) 
using nearest neighbour resampling. To reduce collinearity among 
predictor variables, for each species we retained all environmental 
predictors with ≤ |0.7| correlation (Dormann et al., 2013), using the 
maximum absolute value across Pearson, Spearman, and Kendall 
coefficients. When a pair of variables exceeded a 0.7 correlation 

coefficient, we retained only the variable with the highest variable 
importance in the model based on the amount of deviance explained 
by a univariate generalized additive model produced in sahm (Young 
et al., 2020).

2.4  |  Modelling climatically suitable 
abundance habitat

For each species and climate dataset, we predicted potential abun-
dance habitat using five species distribution modelling algorithms: 
Boosted Regression Trees (BRT), Generalized Linear Model (GLM), 
Multivariate Adaptive Regression Splines (MARS), Maxent (v. 3.4.4), 
and Random Forests (RF). To maximize the amount of data for model 
fitting for each candidate taxa we used all abundance records in the 
contiguous U.S. All models were fit using the default parameters 
within SAHM outlined in Young et al.  (2020). For each species, we 
randomly split abundance records into a training data set (70%) and 
testing data set (30%). Models were internally evaluated on the 
training dataset using 10-fold cross validation (Young et al., 2020). 
Despite the utility of spatial cross validation for overcoming potential 
modelling problems associated with spatial autocorrelation between 
training and testing datasets, we did not use spatial cross-validation 
splits in this study. This is because we have encountered issues 
with spatial splits when modelling invasive taxa with highly disjunct 
populations (e.g., species occurring primarily in the northeastern and 
northwestern U.S.) when using SAHM for modelling. We checked for 
overfitting by examining differences in area under the receiver op-
erating characteristic curve (AUC-ROC) values between training and 
average cross-validation split datasets, using an a priori criteria of 
>±0.05 and visual inspection of response curve complexity. When 
overfitting was identified, we adjusted model-specific parameters 
(e.g., Maxent beta multiplier value, MARS penalty, BRT learning rate, 
etc.; see Appendix S2) to improve model fit. We excluded the out-
put of individual model algorithms when the null model (no environ-
mental predictor variables) was selected (n = 1). We evaluated the 
final model fit for each algorithm using the True Skill Statistic (TSS), 
AUC-ROC value, and Boyce Index (Hirzel et al., 2006). We checked 
model fit and selected the best fit model for each algorithm prior to 
applying the models to our future climate variables. Of our 175 can-
didate species, we excluded 30 species that had fewer than 50 abun-
dance records following pre-preprocessing and spatial thinning as 
we have encountered issues with model fit when modelling invasive 
taxa with fewer than 50 records post-thinning and previous studies 
have suggested 50 data points as a minimum for species distribution 
models (Santini et al., 2021; Wisz et al., 2008). We also excluded one 
species (Anthoxanthum odoratum) because three of the five model 
algorithms were substantially overfit and unable to be optimized. As 
a result, we modelled the current and future projections of climatic 
suitability for abundant populations across the contiguous U.S. for 
144 of our initial 175 candidate species. Details of climate variables 
retained, model optimization parameters, and model fit statistics for 
the final 144 taxa are reported in Appendices S2 and S3.
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2.5  |  Abundance hotspot analysis

To identify current and future hotspots where the abundance habi-
tat for multiple species overlaps, we employed an ensemble ap-
proach. We opted for an ensemble approach over individual model 
outputs as recent work comparing models from several algorithms 
for species found that ensembles of carefully constructed models 
can outperform single algorithms (Valavi et al., 2022). In our study, 
we carefully constructed models by evaluating each individual 
model contributing to the ensemble and revised model algorithm 
parameters as needed, hence our methods closely resemble those 
of Valavi et al. (2022). For our ensemble approach, for each species 
(n = 144), we binned the five algorithms' continuous mapped outputs 
using three thresholding measures (first percentile [threshold that 
classifies the 1 percent of training data with the lowest suitability 
predictions as unsuitable], tenth percentile [threshold that classi-
fies the 10 percent of training data with the lowest suitability pre-
dictions as unsuitable], and the maximum of sensitivity-specificity 
(Freeman & Moisen,  2008) where sensitivity is the true positive 
rate and specificity is the true negative rate. The resulting binary 
maps for each algorithm and threshold were summed to create an 
ensembled map with model agreement values ranging from 0 (no 
predicted climatic suitability for abundant populations) to 15 (all five 
model algorithms × three threshold measures predicted climatic suit-
ability for abundant populations). Each ensemble was geographically 
reduced by a Multivariate Environmental Similarity Surface (MESS; 
Elith et al., 2010) to limit the effect of environmental extrapolation, 
where locations with environmental conditions outside the range of 
those found in the model training data are masked out. We used an 
additional threshold of ≥11 of 15 model agreement to identify the 
areas with the highest climatic potential for supporting abundant 
populations for each species (i.e., ‘abundance habitat’).

We summed the maps of abundance habitat for each species to 
create a map of abundance hotspots across the eastern U.S. for both 
current and future climate conditions. The values of these hotspot 
maps ranged from 0 to 144, reflecting the total number of candi-
date taxa with abundance habitat projected for each map pixel. We 
also created aggregated hotspot maps for individual growth forms 
(Forb/Herb, Graminoid, Shrub, Tree, and Vine). While several of the 
modelled species have abundant populations in the western U.S., 
we limited our hotspot analysis to east of 100°W because species 
with abundant populations only in the west were excluded from 
our initial species selection, creating an incomplete picture of inva-
sion hotspots in the western U.S. We used these hotspot maps to 
generate watchlists for eastern U.S. states, listing the species with 
predicted abundance habitat under current and future climate sce-
narios (Appendix S4). We then compared the area of abundant hab-
itat under current and +2°C climate predictions and categorized the 
differences based on whether habitat is maintained (areas predicted 
as climatically suitable in both current and future climate conditions), 
increases (currently climatically unsuitable areas predicted to be cli-
matically suitable in the future) or decreases (currently climatically 
suitable areas that are predicted to be climatically unsuitable in the 

future) given projected climate change. To further explore the dif-
ferences in shifts of abundance habitat, we calculated the distance 
and direction of geographic shift based on the shift in the centroid 
(mean latitude and longitude of abundance habitat) between the 
current and future areas climatically suitable for abundant popula-
tions for each species. The direction of geographic shift measure-
ment was described as shifting towards northeast (bearing 0° ≥ 90°), 
southeast (bearing 90° ≥ 180°), northwest (bearing 180° ≥ 270°), or 
southwest (bearing 270° ≥ 360°). We used two-way analysis of vari-
ance (ANOVA) to test whether distances between current and fu-
ture centroid locations differed significantly between plant growth 
forms, direction of geographic shift, or the interaction between the 
two. We also employed circular one-way ANOVA using the package 
‘circular’ (v. 0.4-95; Lund et al., 2017) to test whether plant growth 
forms differ in the direction of geographic shift.

3  |  RESULTS

Across the 144 invasive plants modelled here, the areas climati-
cally suitable for abundant populations (i.e., ‘abundance habitat’; 
classified as suitable by ≧11/15 models) varied from 14,560 km2 
to 4,394,738 km2 (mean 1,292,743 km2, analogous to ~13% of U.S. 
land area; Appendices S5 and S6). Silktree (Neyraudia reynaudiana 
(Kunth) Keng ex Hitchc.) had the smallest area of abundance habi-
tat and tree of heaven (Ailanthus altissima [Mill.] Swingle) had the 
largest, which covered roughly 45% of the land area in the con-
tiguous U.S. Given the inherent variance in species distribution 
model projections, and our additional, conservative 11/15 model 
threshold cutoff for classifying climatically suitable habitat it is 
possible for that species with few eastern U.S. records that the 
models could predict no abundance habitat in the eastern U.S. at 
the 4 km × 4 km scale of our study. Indeed, for six species, all future 
abundance habitat was west of 100oW longitude while for four 
species (Colocasia esculenta, Paederia foetida, Paulownia tomentosa, 
and Sansevieria hyacinthoidea), there were no projected areas of 
future abundance habitat in the contiguous U.S. (Appendix  S5). 
For the remaining 134 species, under current climate condi-
tions abundance habitat in the eastern U.S. varied from 0 km2 to 
2,675,763 km2 (mean 794,371 km2) and future eastern abundance 
habitat varied from 215 km2 to 2,916,080 km2 (mean 755,574 km2) 
(Appendix  S5). One of these species (Brassica nigra) had future 
abundance habitat but no current abundance habitat projected 
for the eastern U.S. On average, abundance habitat in the eastern 
U.S. is projected to decrease slightly with a +2°C climate scenario 
(Appendix  S5). However, our analysis reveals numerous invasion 
hotspots that are largely maintained.

Current hotspots of abundance habitat center around three loca-
tions in the eastern U.S.: the northeast coast of Florida and Georgia, 
the Great Lakes region, and the mid-Atlantic region of the U.S. 
(Figure 1a); habitat in each of these regions is predicted to be cli-
matically suitable for abundant populations of at least 30 of the 144 
modelled species. Future hotspots of abundance habitat show an 
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46  |    EVANS et al.

overall shift northward, with +2°C hotspots concentrated along the 
eastern Georgia coastline, the upper mid-Atlantic region, and in the 
lower New England area (Figure 1b). Given 2°C climate change pro-
jections, areas in the eastern U.S. are projected to become climat-
ically suitable for abundant populations of an average of four new 
invasive species, with New England states becoming climatically 
suitable for abundant populations of up to 21 new invasive plant 
species (Figure  3a). On average, 18 invasive plants per 4 km2 grid 
cell will maintain abundant populations in the eastern U.S., with up 
to 40 species projected to maintain abundance habitat in the north-
east regions off the Great Lakes and New England (Figure  3b). In 
contrast, across the eastern U.S. conditions are projected to become 
climatically unsuitable for an average of five species with abundant 
populations, with regions such as the eastern Midwest projected to 
become climatically unsuitable for up to 22 invasive species due to 
climate change (Figure 3c).

The centers of abundance habitats for the 134 invasive plant 
species with abundance habitat east of 100°W longitude are pro-
jected to move between 17.5 and 1585.5 km, (average of 212.5 km, 
Figure  2, Appendix  S5). For these 134 species, the centroids of 
abundance habitat are projected to show a significant directional 
geographic shift (Rayleigh t-statistic = 0.521, p < .001), shifting 
predominantly towards the Northeast (n = 65 species, 49%) or 
Northwest (n = 45 species, 34%) region of the U.S. In contrast, rel-
atively few species show centroid shifts towards the Southeast (19 
species, 14%) and Southwest (five species, 4%) (Table 1, Figure 2). 
Species moving towards the Northwest tend to experience the 

furthest shift in abundance habitat centroids – moving an average 
of 243.6 km (SD = 258.9 km), followed by species shifting towards 
the Northeast (204.8 km, SD = 158.4 km), Southeast (183.8 km, 
SD = 113.9 km), and Southwest (142.0 km, SD = 71.3 km) (Figure 2, 
Appendix  S5). Actual evapo-transpiration between April and 
October was most frequently included as a predictor variable – 
being included in 97% (139/144) of species models – and was also 
the most frequently included predictor variable for all directional 
shifts, particularly Northeast range shifting taxa. Precipitation 
seasonality was also important for species with abundance hab-
itat shifting towards the Southeast and Southwest while maxi-
mum summer temperature and minimum winter temperature were 
frequently included in models for species shifting towards the 
Northwest (Appendix S2).

Current and future abundance habitat projected by ≧11/15 
models varied substantially across taxa and across the eastern U.S. 
region (Figure 3e,f). On average, 16% (range 0%–63%) of current 
abundance habitat will remain climatically suitable for abundant 
populations of our candidate taxa under future climatic conditions 
(Appendix S5). In contrast, an average of 3.9% of the eastern U.S. 
is reclassified from either unsuitable or unknown (masked) to suit-
able for abundant populations given 2°C warming, while 5.6% of 
the eastern U.S. is reclassified from suitable to unsuitable under 
future conditions. The majority of species (81%, n = 109/134) are 
projected to maintain at least 1% of their current abundance habi-
tat east of 100°W (range: 1%–63%, average: 19%), and 38 species 
are projected to maintain at least 25% of their current abundance 

F I G U R E  1  The number (N) of invasive plant species with habitat identified as climatically suitable for abundant populations (≥5% cover) in 
the eastern contiguous United States given (a) current climatic conditions, (b) +2°C climate warming scenario and (c) the difference between 
+2°C and current climatic conditions.
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    |  47EVANS et al.

habitat given the +2°C warming scenario. As a result, one third of 
species (51/134) will see an overall increase in abundance habitat 
in the eastern U.S., with the area identified as climatically suit-
able projected to increase between 215 and 786,463 km2 (mean 
164,922 km2). In contrast, 83 species (62%) are projected to experi-
ence a decline in abundance habitat, with the overall area of abun-
dance habitat decreasing by an average of 163,973 km2 (reductions 

range from 1752 to 577,118 km2) (Appendix  S5). Across the 134 
species, an average of 35% of land in the eastern U.S. was masked 
due to climate dissimilarity, meaning predicting climatic suitability 
under future conditions would require extrapolating beyond the 
environmental space covered by the model training for a species. 
For individual states, Missouri is projected to become climatically 
suitable for abundant populations of the most novel plants (n = 86). 

F I G U R E  2  Direction of change in the centroids of abundance habitat identified for 134 invasive species with future eastern United 
States (U.S.). distributions. Arrows are drawn from the current centroid location (black dots) to the future centroid location (grey dots) given 
predictions from a +2°C warming scenario. Centroid locations display the mean latitude and longitude value calculated from the latitude and 
longitude values for all pixels of abundance habitat identified for each species within each climate scenario. For this reason, some average 
centroid locations appear located outside of the bounds of the contiguous U.S. landmass.

TA B L E  1  The number and proportion (percentage) of the 134 invasive plant species with climatically suitable abundance habitat east of 
100°W longitude, categorized by growth form, that are projected to shift the centroid of their abundance habitat towards the Northwest 
(NW), Northeast (NE), Southeast (SE), and Southwest (SW) given a +2°C warming scenario. Mean and standard deviation (SD) of range shift 
distance (in kilometres) is based on change in centroid location between current and future abundance habitat for taxa within each growth 
form.

Growth form NW (%) NE (%) SE (%) SW (%) Mean distance (SD) Species total

Forb/herb 15 (27) 28 (50) 10 (18) 3 (5) 215.8 (161.6) 56

Graminoid 8 (29) 13 (50) 5 (18) 1 (4) 170.1 (145.6) 28

Shrub 13 (45) 13 (45) 2 (7) 1 (3) 195.8 (115.1) 29

Tree 5 (56) 4 (44) 0 (0) 0 (0) 256.8 (211.3) 9

Vine 4 (33) 6 (50) 2 (17) 0 (0) 303.4 (424.6) 12

Total 45 (34) 65 (49) 19 (14) 5 (4) 212.5 (191.9) 134
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North Carolina will become climatically suitable for abundant 
populations of the largest total number of plants (n = 127); this 
includes species that currently have abundant populations in the 
state (Appendix S4).

Most models showed moderate to high performance with TSS 
values >0.4 for 84% of models based on train data and 80% of mod-
els based on test data, and AUC values ≥0.7 for 93% of models based 
on train data and 88% of models based on test data (Appendices S2 
and S3). The Boyce Rho values for training data were all positive, 
indicating model predictions of abundance habitat matched abun-
dance records. Three eastern U.S. species (Imperata cylindrica 
[IMCY], Xanthosoma sagittifolium [XASA2], Pastinaca sativa [PASA2]) 
had Boyce Rho values close to or below 0 for based on testing 
data, indicating poor model predictive performance for these taxa 
(Appendix S2).

3.1  |  Plant growth forms

Across the contiguous U.S., current abundance habitat varied 
substantially across growth forms; the 10 invasive trees covered 
an average of 791,962 km2 (range 39,069–4,394,738 km2) while 
the 28 graminoids covered an average of 1,573,319 km2 (range 
14,560–3,797,870 km2) (Appendix  S5). Current and future abun-
dance hotspots also varied by plant growth form (Figure 4). Current 
abundance hotspots for forb/herbs and graminoids are located in 
the Great Lakes and northeastern regions of the U.S. whereas hot-
spots for shrubs, trees, and vines are located in the lower Midwest 
and southeastern U.S. (Figure  4). The overall directional shift in 
abundance habitat towards the Northeast and Northwest was 
consistent across growth forms (F4,135 = 1.454, p = .220, Table  1, 
Appendix S7). The mean shift in the centers of abundance habitat 

F I G U R E  3  The number of invasive plant species across the eastern United States that (a) increase, (b) are maintained, or (c) decrease 
abundance habitat with +2°C climate warming. The amount of abundance habitat for invasive plants also changes in the eastern United 
States given +2°C climate warming. Distribution models may predict (d) range expansion (wine berry, Rubus phoenicolasius Maxim.), (e) range 
maintenance (kudzu, Pueraria montana [Lour.] Merr.), or (f) range contraction (alligatorweed, Alternanthera philoxeroides [Mart.] Griseb.). 
Abundance data points shown by black dots. Arrow indicates the average direction of abundance range shift from the centroid of current 
abundance habitat (yellow circle) to the centroid of future abundance habitat (yellow star).
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also did not significantly differ between growth forms (F4,123 = 1.216, 
p = .308), despite average shifts in abundance habitat varying from 
170 km (SD = 146 km) in graminoids to 303 km (SD = 425 km) in vines 
(Table  1). The interaction between the distance and direction of 
abundance habitat shifts was significantly different across plant 
growth forms (F9,123 = 2.576, p = .009). The overall greatest direc-
tional shift in distance between current and future abundance habi-
tat centroids was observed in vines with an average shift of 651 km 
(SD = 624 km) towards the Northwest. This trend appears largely 
driven by one species (Dioscorea bulbifera; DIBU), which is projected 
to shift 1585.6 km towards the Northwest under our +2°C climate 
scenario (Appendix S5).

Across growth forms, we observed similar trends in the pro-
jected change in the area that is climatically suitable for abundant 
populations (Appendix  S5). Graminoids had the largest mean area 
maintained as abundance habitat under both current and future con-
ditions (768,347 km2; 19.8%), followed by forbs/herbs (716,011 km2; 
18.4%). The mean overlap in current and future abundance habi-
tat for trees, shrubs, and vines was less than 12%, meaning these 
growth forms maintain the least amount of current abundance 
habitat given projected climate change. Trees, in particular, have 
the lowest overlap between climate scenarios (285,948 km2; 7.4%). 
Approximately half (55%) of forbs/herbs species showed an overall 
decrease in abundance habitat, which was slightly lower than the 
relative proportion (66%–68%) of species observed across the other 
growth forms (Appendix S5).

4  |  DISCUSSION

Invasive species movement and range expansion are a top threat to 
successful adaptation of ecological communities to climate change 

(Mainka & Howard, 2010; Peters et al., 2018; Walther et al., 2009). 
Our study uses occurrences of abundant populations in species 
distribution models to refine spatial projections of invasion risk 
and proactively identify potential shifts in abundance habitat with 
climate change. Under current environmental conditions, we iden-
tified three regional abundance hotspots: (1) the northeast region 
of Florida and Georgia, (2) the Great Lakes region, and (3) the 
mid-Atlantic region of the eastern U.S. These areas could support 
abundant populations of up to 40 different invasive plant species, 
with the centroids of these hotspots projected to shift by hun-
dreds of kilometres with climate change. By modelling abundance 
habitat under current and future climate, our study provides tar-
geted species lists that can be used by managers to focus limited 
resources for early detection and rapid response on areas where 
invasive species have the greatest potential to reach high abun-
dance and have the greatest impacts (O'Neill et al., 2021; Vander 
Zanden & Olden, 2008; Yokomizo et al., 2009).

Proportionally the number of range shifting taxa identified 
in our study (15%, n = 21/144 taxa) is similar (11%, n = 100/896 
taxa) to that identified in models using occurrence-only data by 
a previous hotspot analysis, conducted at a similar spatial scale 
(5 km × 5 km) by Allen and Bradley  (2016). Our use of abundance 
rather than occurrence-only data allows us to focus on a smaller 
number of species of potentially high impact because abundance 
is correlated with ecological impact (Bradley et al., 2019). This may 
explain why the number of range shifting abundant taxa identified 
by our study (up to 21 novel species with abundance habitat) is 
substantially smaller than the number of range shifting taxa (up to 
100 novel species) identified by Allen and Bradley (2016). Different 
modelling approaches could influence the differences between 
observed hotspots in this study versus Allen and Bradley (2016), 
who mainly identified invasion hotspots in northeastern U.S. 

F I G U R E  4  The number of invasive plants per location likely to have habitat suitable for abundant populations (≥5% cover) given current 
climatic conditions (a–e) and +2°C warming climate scenario (f–j) for each of five major plant growth forms.
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50  |    EVANS et al.

states. However, O'Neill et al.  (2021) found distinct hotspots for 
occurrence versus abundance habitat under current climate, sug-
gesting that the different hotspots are not simply a modelling ar-
tefact. The taxa in our study represent those commonly reported 
as abundant in the eastern U.S. by natural resource managers via 
online repositories. Leveraging information on abundance habitat 
will prevent both the overinvestment of management resources 
on areas or species unlikely to become abundant as well as the un-
derinvestment on areas or species likely to increase in abundance 
and lead to the greatest future impact (Bradley et al., 2019; Pearse 
et al., 2019). For example, areas projected to gain abundance habi-
tat could contain ‘sleeper’ populations of species that are currently 
limited by climate but could become invasive with climate change 
(Spear et al., 2021); these existing populations are priority targets 
for eradication. Previous studies that focus on non-native occur-
rence data alone cannot predict potential changes in the areas 
climatically suitable for abundant populations (Bradley,  2016; 
Jarnevich et al., 2021; O'Neill et al., 2021) and therefore would fail 
to identify sleeper populations. Similarly, abundance habitat pro-
vides a more targeted estimate of risk from range-shifting invasive 
species, − information that could be used to build more proactive 
state regulations against the continued propagation of high-
risk species as ornamentals (Beaury, Patrick, & Bradley,  2021). 
Expanded efforts to collect and use abundance data as part of 
current invasive species monitoring would improve our ability to 
inform risk for management activities (Bradley et  al.,  2018). We 
consider species already well established within the U.S., yet there 
may be novel invaders previously excluded by climate that may be 
able to establish in southern regions. Currently, only 10% of land 
managers in eastern North America monitor for new invasive taxa 
(Beaury et al., 2020) due to lack of funding and personnel (Beaury 
et al., 2020; Kuebbing & Simberloff, 2015). Proactively managing 
novel range-shifting taxa via early detection and rapid response 
will require managers to split time and resources between both 
current and future invasive taxa. This task will be more feasible 
given the narrower list of range-shifting invasive plants (average 
of four per 4 km2 grid cell) – a resource commonly requested by 
invasive species practitioners to inform prevention and manage-
ment within jurisdictions ranging from protected areas to states. 
Additionally, the data from abundance habitat projections available 
in Appendices S4 and S6 of this study have been incorporated into 
county-based mapping tools by Early Detection and Distribution 
Mapping Systems (EDDMapS; Wallace & Bargeron,  2014) to fa-
cilitate access and utilization by practitioners. Given that obser-
vations of novel establishment and spread of invasive taxa are 
typically reported by the general public, practitioners could use 
these species watchlists and interactive online maps to develop 
educational materials for high-risk taxa to facilitate public involve-
ment in early detection and rapid response efforts.

Our analyses highlight substantial potential shifts in the dis-
tributional patterns of abundant invasive plant populations across 
the eastern U.S. with changing climate. Such changes lead to mark-
edly different management strategies. For example, species with 

maintained abundance habitat in a given area are likely already being 
managed and these efforts will need to continue, although some as-
pects such as the timing of management and efficacy of control mea-
sures are likely to be affected by climate change (Bradley et al., 2010; 
Hellmann et  al.,  2008). Species with expanded abundance habitat 
in a given area will require either a new focus on monitoring for 
range-shifting invasions and/or a new focus on eradicating sleeper 
populations (Spear et al., 2021). Areas with predicted future contrac-
tions in non-native species abundances could be further screened 
for microhabitat features, such as soil type and topography, which 
may allow them to become candidate sites for restoration. This will 
likely require developing climate-informed restoration practices fo-
cused on warm-adapted, fast developing, and functionally diverse 
native plants that can resist further invasion (Hess et  al.,  2019; 
Yannelli et al., 2020).

Variation in species abundances reflect variation in underlying 
population dynamics, which are driven by both demographic and 
environmental processes (Waldock et al., 2022). While not feasible 
without information on community biodiversity and structure, other 
analytical approaches such as joint species distribution models and 
mechanistic distribution models could improve future predictions 
for species or areas. These alternative modelling approaches could 
refine predictions of abundance habitat by accounting for traits and 
interspecific interactions, which may enable or prevent taxa from 
maintaining abundant populations despite potentially suitable envi-
ronmental conditions (O'Reilly-Nugent et al., 2020). Similarly, other 
important predictors, which can influence invasive plant distribu-
tions, such as forest cover or human landscape modifications, were 
unaccounted for in our study (Mod et al., 2016). Baer and Gray (2022) 
showed that biotic predictors improve the performance of species 
distribution models at finer spatial scales (1 km), and in the eastern 
U.S., the majority of management efforts occur at relatively small 
spatial scales – either within single or a network of properties within 
a single state (Beaury et al., 2020). Yet, future projections for biotic 
and many abiotic predictors at this scale are currently lacking. While 
many modelling improvements are possible, outputs from correla-
tive climate models in our study serve as an important first step in 
assessing current and future invasion risks using existing abundance 
data. For example, by combining correlative mapping products with 
site-specific knowledge on field conditions and processes that affect 
invasion success, such as the magnitude and type of human activi-
ties, distance to roads, dispersal pathways, and soil characteristics 
(Catford et al., 2011), managers and researchers can tailor broad lists 
of range shifting taxa to local or regional scales at which early detec-
tion and rapid response management actions are undertaken.

Abundance hotspots may pose even greater risk if native and 
invasive plants are shifting their ranges at different rates. Most na-
tive plants are moving more slowly, at about half the pace of climate 
change. For example, Beckage et al. (2008) found that forest trees 
in Vermont's Green Mountains had shifted about 100 m up slope 
between 1964 and 2005, whereas climate warming would predict 
an upward shift of over 200 m. Similarly, Ash et al.  (2017) showed 
that understory plants in Wisconsin had shifted 49 km northward 
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between 1950 and 2000, whereas climate warming would predict a 
northward shift of 90 km. In contrast, invasive plants are more likely 
to keep up with our projections of a northward expansion of abun-
dance habitat centers of 213 km (Table  1). Invasive plants benefit 
from human-mediated dispersal, as many continue to be deliberately 
planted and spread through the ornamental plant trade into warmer 
climate conditions (Beaury, Patrick, & Bradley, 2021; Van der Veken 
et al., 2008). Indeed, 91% (123 of 134) of the species in our study 
are ornamental species that were deliberately introduced to the U.S. 
(Lehan et al., 2013). With the growth of relatively unregulated online 
plant sales (Beaury, Patrick, & Bradley, 2021; Humair et al., 2015), 
coupled with inconsistent regulations of invasive plants across state 
borders (Beaury, Fusco, et  al.,  2021; Lakoba et  al.,  2020), human 
activities will likely continue to facilitate long distance dispersal of 
invasive plants, which may enhance the invasion success of these 
species, particularly long-lived, slow growing taxa such as trees, by 
enabling them to better track suitable climatic conditions and realize 
larger portions of their abundance habitat. Ornamental introduced 
plants projected to remain or become abundant with climate change 
are prime candidates for state regulation.

Invasion success varies across plant growth forms (Ni et al., 2021) 
and differential invasion success of growth forms alters the com-
position and structure of native invaded communities (Guerin 
et  al.,  2019). Forbs/herbs represent the dominant growth form of 
abundant invasive plants in the eastern U.S., making up 42% of our 
dataset. Similarly, they are also the dominant growth form of estab-
lished invasive plants in the U.S., contributing 51% (452/896) of spe-
cies in Allen and Bradley  (2016)'s analysis of occurrence hotspots. 
Fast-growing growth forms, such as forbs/herbs and grasses are 
associated with shifts in native communities away from woody 
growth forms, potentially as these invasives suppress native seed-
ling regeneration (Guerin et  al.,  2019). This suggests that eradica-
tion and control of forbs/herb species will remain a high priority for 
mitigating negative effects of these invasive species on native eco-
systems across the U.S. The other growth forms in our study make 
up similar proportions of the occurrence versus abundance species 
assemblages observed by Allen and Bradley (2016) with the notable 
exception of vines. Vines are proportionally rare when we focus on 
occurrences alone (3% or 30/896 species) but are proportionately 
more common when we focus on abundance data (9% or 12/144 
species). Our analyses show vines are also projected to have the 
largest average climate-driven shift in abundance habitat centers 
of 300 km (Table 1). Vines often have functional traits important to 
invasion success and impact, including high relative growth rate or 
above-ground biomass, which in turn correlates with higher fecun-
dity or competitive ability (Díaz & Cabido, 1997; Giorgis et al., 2016; 
Ni et al., 2021). For example, the air potato vine (D. bulbifera L.), which 
our study projected to have the greatest average shift in the center 
of current and future abundance habitat, can grow up to 25 cm per 
day, producing vines up to 51 m in length (Rayamajhi et al., 2016). 
In comparison to Allen and Bradley (2016), our results suggest that 
vines might have a proportionally higher risk of becoming abundant 
and hence invasive in new areas than other growth forms.

Given the caveats associated with correlative distribution mod-
els (Jarnevich et al., 2015), the spatial predictions of abundance hab-
itat expansions or contractions reported here should be treated as 
hypotheses, particularly for species projected to show large reduc-
tions in abundance habitat and those with fewer abundance records. 
Previous work by Sofaer et  al.  (2018), showed that despite good 
model performance metrics, multi-taxa occurrence distribution mod-
els were highly variable and often failed to accurately predict future 
range expansions and contractions among taxa. This uncertainty also 
extended to metrics of changes in the magnitude and direction of 
abundance habitat, although models showed more accurate predic-
tions of habitat that was always or never suitable for a species (Sofaer 
et al., 2018). The extent to which this uncertainty affects our results 
remains unknown; however, our conservative threshold approach for 
assessing climatically suitable abundance habitat (based on ≧11/15 
model agreement), combined with our ensemble approach that aggre-
gated a large number of species distribution models, may reduce some 
of these projection inaccuracies (Naimi et al., 2022).

5  |  CONCLUSIONS

Spatial analyses of invasive plant range shifts can inform proactive 
management (Allen & Bradley, 2016; Bellard et al., 2013). However, 
with limited management resources and hundreds of invasive species 
potentially shifting into new areas, it is imperative that we find ways 
to identify and prioritize the range shifting species likely to have 
the greatest impacts on native ecosystems. Using species distribu-
tion models, we show that current abundance hotspots in the east-
ern U.S. are projected to shift an average of 213 km predominantly 
towards the northeast. Our results suggest that changes in climate 
suitability could facilitate the establishment of abundant populations 
of up to 21 new invasive plants, with forbs/herbs remaining the most 
common invasive plants in the eastern U.S. Our study provides the 
first comprehensive assessment of changing invasive plant risk for 
the eastern U.S. across a large number of abundant taxa. By identify-
ing areas of high potential risk and impact, our abundance habitat 
maps can inform early detection and rapid response in areas where 
invasive plants are expanding as well as identify candidate sites for 
restoration in areas where invasive plants are contracting.
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