
University of Massachusetts Amherst University of Massachusetts Amherst 

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst 

College of Education Faculty Publication Series College of Education 

2023 

Examining Appropriacy of CFI and TLI Cutoff Value in Multiple-Examining Appropriacy of CFI and TLI Cutoff Value in Multiple-

Group CFA Test of Measurement Invariance to Enhance Accuracy Group CFA Test of Measurement Invariance to Enhance Accuracy 

of Test Score Interpretation of Test Score Interpretation 

Craig S. Wells 

et. al. 

Follow this and additional works at: https://scholarworks.umass.edu/education_faculty_pubs 

Recommended Citation Recommended Citation 
Wells, Craig S. and et. al., "Examining Appropriacy of CFI and TLI Cutoff Value in Multiple-Group CFA Test 
of Measurement Invariance to Enhance Accuracy of Test Score Interpretation" (2023). Sage Open. 345. 
https://doi.org/10.1177/21582440231205354 

This Article is brought to you for free and open access by the College of Education at ScholarWorks@UMass 
Amherst. It has been accepted for inclusion in College of Education Faculty Publication Series by an authorized 
administrator of ScholarWorks@UMass Amherst. For more information, please contact 
scholarworks@library.umass.edu. 

https://scholarworks.umass.edu/
https://scholarworks.umass.edu/education_faculty_pubs
https://scholarworks.umass.edu/education
https://scholarworks.umass.edu/education_faculty_pubs?utm_source=scholarworks.umass.edu%2Feducation_faculty_pubs%2F345&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1177/21582440231205354
mailto:scholarworks@library.umass.edu


Original Research

SAGE Open
October-December 2023: 1–11
� The Author(s) 2023
DOI: 10.1177/21582440231205354
journals.sagepub.com/home/sgo

Examining Appropriacy of CFI and TLI
Cutoff Value in Multiple-Group CFA Test
of Measurement Invariance to Enhance
Accuracy of Test Score Interpretation

Abdolvahab Khademi1,2 , Craig S. Wells1, Maria Elena Oliveri3, and
Ester Villalonga-Olives2

Abstract
The most common effect size when using a multiple-group confirmatory factor analysis approach to measurement invar-
iance is DCFI and DTLI with a cutoff value of 0.01. However, this recommended cutoff value may not be ubiquitously
appropriate and may be of limited application for some tests (e.g., measures using dichotomous items or different estima-
tion methods, sample sizes, or model complexity). Moreover, prior cutoff value estimations often have ignored conse-
quences resulting in using measures that more accurately estimate countries’ or learners’ proficiency for some countries
or groups versus others. In this study, we investigate whether the cutoff value proposed by Cheung and Rensvold (DCFI
or DTLI . 0.01) is appropriate across educational measurement contexts. Specifically, we investigated the performance of
DCFI and DTLI in capturing LOI at the scalar level in dichotomous items within item response theory on groups whose
test characteristic curves differed by 0.5. Simulation results showed that the proposed cutoff value of 0.01 in DCFI and
DTLI was not appropriate to capture LOI under the study conditions, which may result in the misinterpretation of test
results or inaccurate inferences.
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Introduction

A desirable property of a measurement instrument is that
individuals with the same measurement scores should
have the same standing on the construct measured by the
instrument (Millsap, 2012; Schmitt & Kuljanin, 2008).
Stated mathematically, the distribution of the observed
scores Y should be a function of the trait h and indepen-
dent of the irrelevant construct s (Millsap, 2012):

f Y jh, sð Þ= f Y jhð Þ ð1Þ

In social sciences, measurement invariance is studied
on a set of items administered to people from different
groups, such as race, gender, or age, and it is expected
that those items should behave the same across those
groups (Wells, 2021). Establishing measurement invar-
iance (MI) is part of evaluating measurement quality
and accuracy. Violation of MI assumptions threatens the

substantive interpretation of the observed scores
(Vandenberg & Lance, 2000). Measurement non-
invariance or lack of invariance (LOI) is a type of sys-
tematic error introduced in the relationship between the
latent factor and the manifest indicator (Vandenberg &
Lance, 2000). One commonly used method within struc-
tural equation modeling (SEM) framework to assess MI
is multiple group confirmatory factor analysis (MG-
CFA). Within MG-CFA, one general criterion to deter-
mine LOI is the magnitude of change in comparative fit
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index (CFI) or Tucker–Lewis index (TLI) across hier-
archically constrained nested models. Cheung and
Rensvold’s (2002) proposed change of a DCFI or DTLI
.0.01 has been widely used in the applied SEM litera-
ture and operational psychometrics as a cutoff value to
flag LOI.

There are several limitations on the proposed cutoff
values, however. First, the cutoff values have been rec-
ommended without considering the context and the pur-
pose of the assessment or in a context that differs from
large-scale educational assessments as the ones we con-
sider in this article. For example, previous studies in this
area have examined MI for indicators that are based on
many categories where the items are treated as continu-
ous. However, large-scale educational tests or question-
naires in quality-of-life evaluation are often comprised of
multiple-choice items that are categorically (e.g., dichot-
omously) scored.

Second, when developing cutoff values, previous
studies have ignored the consequences of LOI, and
questions such as whether the presence of LOI would
lead to practically important consequences have been
left unexamined. The importance of examining conse-
quences using large-scale educational tests has been
highlighted in Oliveri et al. (2018). The authors explain
that examining consequences of educational tests is
critical to the meaningful use of such assessments.
Because large-scale educational tests are used to make
important decisions related to educational policy and
practice, resource allocation, and comparisons in per-
formance across groups, the identification of cutoff
values that work well within our focal type of tests is
important. In addition, consequences of measurement
invariance violation manifest in other fields, such as in
racial equity in health services. The study of the lack of
measurement invariance is a significant opportunity to
advance the way we measure health inequalities with a
particular focus on race differences. It is crucial to eval-
uate the assumptions that guide quantitative associa-
tions with health variables, and racial equity in the
policy options that are considered as a result of quanti-
tative findings. Psychometric work can help us better
understand whether there are potential race differences
in the concept under study so that we can develop new
measures or correct existing ones. Without such investi-
gations, threats to validity may be introduced through
overlooked cross-cultural differences among groups,
which may threaten valid score interpretation. To ela-
borate, Oliveri and von Davier (2017) pointed out that
when assessments are administered internationally,
such as with the Program for International Student
Assessment (PISA) administered across countries, LOI
may emerge in relation to differential exposure to the
item types used in PISA, how close the participating

countries’ language is to the original language in which
the tests were developed, and differences in exposure to
the curricula or difference in opportunity to learn
across countries or groups within countries. Because
DIF is used as a step to flag this type of differences,
accurate estimation of DIF is important when using
educational tests.

One way of statistically measuring the effect of conse-
quences is through the impact of MI on test scores. For
example, if the MI resulted in examinees with the same
proficiency but from different groups (e.g., based on test-
ing mode, gender, or race) received a sufficiently different
expected raw score, then the MI may result in conse-
quences such as differential ranking of examinees based
on test scores, differential admission rates for some
groups versus others, or adverse impact in the use of tests
for employment or hiring purposes.

In the present study, non-negligible LOI was opera-
tionally defined as the difference in expected raw scores
equal to 0.5 on the item response theory (IRT) scale. The
difference in the expected raw scores can be determined
by comparing test characteristic curves (TCC) across
groups within an IRT framework. In this study, non-
negligible LOI was operationally defined as the difference
in the TCCs between two groups equal to 0.5 for any
proficiency value. The rationale for the selection of a
TCC difference of 0.5 is that such a difference would
result in a one-point difference in raw score due to round-
ing error.

Third, although previous studies have examined sev-
eral fit indices across multiple conditions, they have
not addressed the effect of several important factors
(including the percentage of LOI items, the IRT model
used, the values of the a and b parameter values, and
the sample sizes used in the simulation) on the change
in fit indices when determining an appropriate
cutoff value. For example, is the change in fit indices
(e.g., DCFI) influenced by item discrimination?
Therefore, one of the purposes of the present study is
to examine the impact of several important factors that
may influence the distribution of the change in fit
indices in assessing MI.

To address these three major limitations of previous
studies, the present research employs a simulation to (a)
evaluate the appropriateness of the proposed cutoff value
of DCFI and DTLI .0.01 (Cheung & Rensvold, 2002) in
an educational measurement context, and (b) examine
the effects of several relevant factors on the change of fit
indices for assessing MI using MG-CFA (the percentage
of LOI items, the IRT model used, the values of the a
and b parameter values, and the sample sizes used in the
simulation). This exploration is not new as several stud-
ies (e.g., Jin, 2020; Khojasteh & Lo, 2015; Sass et al.,
2014) have shown that Cheung and Rensvold’s (2002)
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general cutoff value may not be appropriate in certain
measurement design conditions. The present study fur-
ther corroborates the findings of the foregoing authors
by introducing a priori non-negligible LOI. In the pres-
ent study, it is hypothesized that Cheung and Rensvold’s
(2002) proposed cutoff values of a DCFI and DTLI
.0.01 is not applicable to dichotomous items under
study conditions.

To address these objectives, first an overview of MI
and the MG-CFA approach to evaluating LOI is pre-
sented. Then, a description of the relevant fit indices
commonly used in MG-CFA will be provided. Next,
our simulation study in which we describe how we eval-
uated Cheung and Rensvold’s (2002) proposed cutoff
value in the presence of a predetermined 0.5 TCC dif-
ference will be presented. The paper is concluded by
presenting the results, implications, and future research
recommendations.

Measurement Invariance and Multiple-Group
Confirmatory Factor Analysis

MG-CFA is an extension of the common factor CFA. It
is one of the most frequently used methods in assessing
MI in applied research and operational measurement
(Schmitt & Kuljanin, 2008). In the MG-CFA framework,
to establish MI, different (nested) tests are conducted,
each testing one aspect of the measurement model, which
is based on the following two equations:

X
g
k = t

g
k +L

g
k jg + d

g
k ð2Þ

S
g =L

g
XF

gL
g0

X +Yg
d ð3Þ

where X
g
k refers to the vector of item responses 1, ., k,

in group g, t
g
k is the vector of regression intercepts, L

g
k

refers to the matrix of regression slopes, jg is the com-
mon factor, d

g
k refers to the vector of unique factors, S

g

refers to the variance-covariance matrix among the k
items in each group, L

g
X refers to the matrix of factor

loadings, Fg is the variance-covariance matrix for inter-
factor relationship, and Yg

d is the diagonal matrix of
unique variances.

Based on the number of parameters being estimated,
eight different invariance tests can be performed, of
which the first five assess MI (relationships between
measured variables and latent factors); the last three
test structural invariance (tests about latent factors
themselves; Byrne et al., 1989; Schmitt & Kuljanin,
2008). Because in this study we are concerned only with
MI, only the first four tests are briefly elaborated
below.

Covariance Matrix Invariance. In this equality test, the
researcher attempts to establish the conditional equality
of the variance-covariance matrices derived from the dif-
ferent subpopulations. Failure to reject the null hypoth-
esis that S

g =S
g0 shows the equality of measurement

equivalence and allows the researcher to dispense with
further MI tests.

Configural Invariance. In this equality test, the goal is to
establish the equality of the factor structure across
groups. The null hypothesis is that the a priori pattern of
free and fixed factor loadings is equal across groups.

Metric Invariance. In this equality test, the aim is to
establish the equality of the factor loadings across
groups. In the metric invariance analysis, one indicator
factor loading is fixed to 1 as a referent indicator and
regarded invariant.

Scalar Invariance. In this equality test, we test if the vec-
tor of item intercepts or thresholds are invariant across
groups. In psychometrics literature, scalar non-
invariance is also known as differential item functioning
(DIF). In this article, we use DIF and scalar LOI inter-
changeably. If scalar invariance is established, any differ-
ences in observed scores between groups can be
attributed to their differential constructs (Millsap &
Olivera-Aguilar, 2012). This test also allows the estab-
lishment of the equality of factor means across groups
(Schmitt & Kuljanin, 2008).

CFA Model Fit Indices

The root mean squared error of approximation
(RMSEA; Steiger, 1990), comparative fit index (CFI),
and Tucker-Lewis index (TLI) are some of the most
common fit indices used to interpret CFA fit results.
These fit indices are also used in assessing MI.

RMSEA is a standardized index that indicates the
degree of agreement or discrepancy between the observed
(empirical) and model-based (theoretical) item character-
istic curves. A value of zero indicates a perfect model-
data fit because there are no differences between the
empirical and theoretical item characteristic curves.
Higher RMSEA values indicate poorer model-data fit
estimates because there are larger gaps between the
model and observed item characteristic curves. The
RMSEA is parsimony-adjusted measure of model discre-
pancy in the population and is computed as,

e=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d

df (N � 1)

s
ð4Þ
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where d is the non-centrality parameter, df is the degree
of freedom, and N is the sample size. d is defined as
follows:

d=max(x2 � df , 0) ð5Þ

RMSEA penalizes free parameters through dividing
them by df. It also rewards a large sample size because N
is in the denominator. Previous research has adopted an
RMSEA value of 0.1 as indicative of fit (Oliveri & von
Davier, 2014, 2017).

CFI is another model discrepancy fit index based on
the non-centrality measure that compares the fit of the
model with a baseline (independence) model. CFI is
derived as:

CFI = 1� d̂M

d̂B

ð6Þ

The d’s are calculated for the researcher’s model (M)
and the baseline or null model (B). The baseline model is
a null or independence model in which the covariances
among all input indicators are fixed to zero. A CFI
.0.95 is commonly used to indicate good fit (Brown,
2006; Hu & Bentler, 1999).

TLI is another model discrepancy fit index which
compares the fit between the target and baseline models,
which is calculated as follows:

TLI =

x2
B

dfB
� x2

M

dfM

x2
B

dfB
� 1

ð7Þ

TLI is a function of the average correlation among the
indicators. A TLI . .95 is commonly used to indicate
good fit (Brown, 2006; Hu & Bentler, 1999).

Present Study

In this study, MG-CFA was used to investigate the per-
formance of the CFI, TLI, and the RMSEA model fit
indices in detecting scalar non-invariance in the presence
of non-negligible MI induced by 0.5 difference in test
characteristic curve (TCC) between the focal and the ref-
erence groups on a simulated one-dimensional IRT-cali-
brated test with 40 dichotomous items. The purpose of
the study was to evaluate the appropriateness of Cheung
and Rensvold’s (2002) proposed effect size criterion
(DCFI. 0.01) in capturing scalar invariance when the
items are dichotomous and parameters are estimated
using robust weighted least squares. In addition, the
effect of five factors on change in the CFI, TLI, and the

RMSEA model fit indices was investigated, including the
percentage of DIF items (10% and 20%), IRT model
used (2PL and 3PL), the a (0.5, 1.0, and 1.5) and the b
(21 and 0, 1) parameter values, and the sample size
(500, 1,000, and 2,000). Overall, 108 conditions were
simulated and investigated.

Data Generation

Dichotomous item responses were generated for a 40-
item test under five crossed factors: IRT models (2PL
and 3PL), percentage of LOI items (10% and 20%), the
a-parameter value for DIF items (0.5, 1.0, and 1.5), the
b-parameter value for LOI items (21, 0, and 1), and sam-
ple size per group (500, 1,000, and 2,000 responses).

To generate the item responses, two IRT models were
used: the 3PL and the 2PL models. The 3PL model speci-
fies the probability of a correct response given three item
characteristics and a person parameter, and is formulated
as the following logistic function:

P(uj)= ci +(1� ci)
e1:7ai(uj�bi)

1+ e1:7ai(uj�bi)
ð8Þ

where b represents the item difficulty, a represents the
item discrimination, and c represents the pseudo-
guessing parameter. The 2PL model dispenses with the c
parameter.

To generate responses, parameters from a real profi-
ciency test were used. In order to produce new para-
meters for the DIF items, parameters in the focal group
were manipulated for each fixed parameter of the refer-
ence group.

The simulation steps for the present study proceeded
as follows:

1. Item parameters estimated through an IRT model
from a real test were obtained. The 40-item para-
meters were duplicated, one set for the reference
group and the other set for the focal group.
Previous research has similarly been conducted
using a fixed test length of 40 binary items and
calibrated IRT-based parameters using an educa-
tional test (Oliveri et al., 2013, 2014).

2. Each study condition was set according to the a
and the b parameter values, the number of DIF
items, the IRT model, and the sample size (108
conditions).

3. Once the parameters for a study condition were
set, the value of the b parameter was manipulated
only in the focal group to produce an amount of
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LOI that resulted in a 0.5 difference TCC value
between the reference and the focal groups.

4. Next, item responses were simulated based on the
changed parameter values in the original 40-item
sets.

5. Finally, the obtained item responses were used in
the Mplus (Muthén & Muthén, 2015) software
for MG-CFA study to investigate the effect of
different conditions on the obtained effect sizes
(CFI, TLI, and RMSEA).

Table A1 in Appendix A shows different b values in
the focal group used to simulate DIF items for different
conditions.

Before proceeding to examine the distributions for
each of the changes in goodness-of-fit indices, the
Mantel-Haenszel (MH) DIF procedure was used to flag
items for a few select conditions to ensure the data were
generated appropriately. If the simulation was correct,
we expected the DIF items to be flagged at a much
higher rate than the non-DIF items and the average
effect size to be greater for the DIF items compared to
the non-DIF items. Also, we expected the non-DIF
items not to be flagged much beyond a nominal alpha
level of .05. The MH DIF procedure was applied to

three conditions where the a parameter varied (i.e.,
a=0.5, 1.0, and 1.5) when generating data using the
2PLM and a sample size of 1,000. Table A2 in
Appendix A shows the proportion of replications that
each simulated DIF item was flagged as DIF and the
mean effect size, DMH for the selected conditions.
Because the MH DIF method was able to detect the
DIF items with reasonable power, it seems that the
items were generated appropriately. Furthermore, the
average DMH across the items was reasonably large for
all of the DIF items.

Model Fitting

Sequential equality constraints were imposed on factor
structure, factor loadings, and indicator thresholds for
the purpose of testing measurement invariance at config-
ural, metric, and scalar levels, respectively, and calculated
sequential differences in CFI, TLI, and the RMSEA fit
indices. Parameters were estimated using the Mplus soft-
ware (Muthén & Muthén, 2015) using robust diagonally
weighted least squares (WLSMV) estimation method
(Muthén et al., 1997). One non-DIF item was selected as
the referent indicator for scaling the latent variable in
both groups.

Table 1. Change in Equal Loadings Equal Threshold (Scalar Invariance) CFI, TLI, and RMSEA Across Conditions for N = 500 and
IRT = 3PL.

Percent DIF (%) Index

b = 21 b = 0 b = 1

a = 0.5 a = 1.0 a = 1.5 a = 0.5 a = 1.0 a = 1.5 a = 0.5 a = 1.0 a = 1.5

10 CFI 20.002 20.001 20.000 20.003 20.001 20.000 20.002 20.001 20.000
TLI 20.003 20.001 20.000 20.003 20.002 20.000 20.003 20.001 20.000
RMSEA 0.007 20.001 0.001 0.005 0.003 0.001 0.004 0.002 0.001

20 CFI 20.001 20.000 20.000 20.001 20.000 20.000 20.001 20.000 20.000
TLI 20.001 20.000 20.000 20.001 20.000 20.000 20.001 20.000 20.000
RMSEA 0.001 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.000

Table 2. Change in Equal Loadings Equal Threshold (Scalar Invariance) GFI’s Across Conditions for N = 1,000 and IRT = 3PL.

Percent DIF (%) Index

b = 21 b = 0 b = 1

a = 0.5 a = 1.0 a = 1.5 a = 0.5 a = 1.0 a = 1.5 a = 0.5 a = 1.0 a = 1.5

10 CFI 20.001 20.000 0.000 20.001 20.000 0.000 20.000 20.000 20.000
TLI 20.005 20.002 20.001 20.005 20.003 20.001 20.004 20.001 20.000
RMSEA 0.001 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.000

20 CFI 20.000 0.000 0.000 20.000 0.000 20.011 20.000 0.000 0.000
TLI 20.002 20.001 0.000 20.002 20.000 20.012 20.001 0.001 0.001
RMSEA 0.000 0.000 0.000 0.000 0.000 0.010 0.000 0.000 20.000
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Data Analysis

The mean, standard deviation, skewness, and kurtosis
for each fit index change (DCFI, DTLI, and DRMSEA)
for 1,000 replications were calculated. In addition, a five-
way ANOVA was run to determine the important factors
that may have influenced the means of the distributions.
An effect size based on partial eta-squared was used to
identify effects that were practically meaningful. Because
the conditions were the same with respect to the conse-
quences of including LOI in the assessment, for the fit
indices to be useful, their expected value should remain
the same across the conditions.

Results

Performance of DCFI, DTLI, and DRMSEA

Table 1 includes change values in CFI, TLI, and
RMSEA fit indices for sample size 500 and the 3PL IRT

model. Although the MH test procedure showed the
presence of DIF items in the simulated test scores, the
CFI, TLI, and the RMSEA fit indices seem to fail in
capturing model fit deterioration due to the existence of
measurement non-invariance at the scalar level. As the
different fit index change values show, they are much
smaller than the recommended 0.01 cutoff value sug-
gested by Cheung and Rensvold (2002). At a given value
of b, we can see that as the a parameter increases, the
changes in both the CFI and the TLI become smaller,
indicating the offsetting contribution of the a parameter
in the presence of DIF. A similar change can also be
observed for the RMSEA index. For instance, at b=0,
the RMSEA change decreases from 0.005 to 0.003 and
to 0.001 for a parameter values of 0.5, 1.0, and 1.5,
respectively. However, the change is positive, which is
unexpected. We do not see any noticeable change from
one condition to another. However, change is largest at
the lowest level of the discrimination parameter. This

Table 3. Change in Equal Loadings Equal Threshold (Scalar Invariance) CFI, TLI, and RMSEA Across Conditions for N = 2,000 and
IRT = 3PL.

Percent DIF (%) Index

b = 21 b = 0 b = 1

a = 0.5 a = 1.0 a = 1.5 a = 0.5 a = 1.0 a = 1.5 a = 0.5 a = 1.0 a = 1.5

10 CFI 20.003 20.001 20.00 20.003 20.001 20.000 20.002 20.001 20.000
TLI 20.006 20.003 20.002 20.006 20.004 20.002 20.004 20.002 20.001
RMSEA 0.004 0.002 0.001 0.004 0.002 0.001 0.002 0.001 0.001

20 CFI 20.00 20.000 20.000 20.000 20.000 20.000 20.000 20.000 0.000
TLI 20.003 20.001 20.000 20.003 20.001 20.003 20.002 20.001 0.000
RMSEA 0.001 0.000 0.000 0.001 0.000 0.000 0.001 0.000 20.000

Table 4. Five-Way ANOVA on CFI Change Across the Five Factors.

Source of variation Sum of squares df Mean square F p
Partial eta

squared

Sample size 0.007 2 0.003 3,145.0 \.001 .06
IRT model 3 percent DIF 0.009 1 0.009 8,262.1 \.001 .07
IRT model 3 parameter ‘‘a’’ 0.009 2 0.004 4,153.3 \.001 .07
Percent DIF 3 parameter ‘‘a’’ 0.007 2 0.003 3,207.9 \.001 .06
Sample size 3 parameter ‘‘a’’ 3 parameter ‘‘b’’ 0.009 8 0.001 1,011.4 \.001 .07
Sample size 3 IRT model 3 percent

DIF 3 parameter ‘‘a’’
0.008 4 0.002 1,799.4 \.001 .07

Sample size 3 IRT model 3 parameter
‘‘a’’ 3 parameter ‘‘b’’

0.009 8 0.001 1,105.4 \.001 .08

Sample size 3 percent DIF 3 parameter
‘‘a’’ 3 parameter ‘‘b’’

0.010 8 0.001 1,107.0 \.001 .08

Sample size 3 IRT model 3 percent
DIF 3 parameter ‘‘a’’ 3 parameter ‘‘b’’

0.009 8 0.001 1,017.2 \.001 .07

Error 0.116 107,892 \0.001
Total 0.297 107,999
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once again shows the offsetting role of the a parameter
in the presence of DIF.

Table 2 shows the results of simulation when the sam-
ple size increased to 1,000, and the IRT model was the
3PL. A close examination of Table 2 confirms the effect
of the a parameter value on the magnitude of the CFI,
TLI, and RMSEA changes, especially on the TLI. The
changes are more pronounced when the percentage of
DIF is 10%. When the percentage of DIF increases to
20%, we can see that the small changes are consistent
across conditions except for the TLI index. One interest-
ing pattern in these observations is the CFI, TLI, and
the RMSEA changes at DIF=20%, b=0 and a=1.5.
Only in this condition do these fit indices reflect the
change associated with scalar invariance similar to the
Cheung and Rensvold’s (2002) recommended threshold
of 0.01. Nevertheless, we can arrive at the same conclu-
sion that none of these fit indices were able to capture
the simulated scalar non-invariance, questioning the
appropriateness of the cutoff value of 0.01 in all mea-
surement settings.

Table 3 exhibits the simulation results for sample size
2,000 and the 3PL IRT model. Similar to the results in
other sample sizes, the effect of the a parameter on the
changes in fit indices is present. The unrevealing changes
in the fit indices show that they have failed to capture the
simulated scalar non-invariance in the data.

Similar results were obtained with the 2PL IRT, show-
ing that the change in CFI/TLI fit indices was much
lower than the commonly used 0.01 threshold for asses-
sing MI (see Tables A3–A5 in Appendix A for the simu-
lation results for the 2PL IRT model.)

ANOVA Results

A five-way ANOVA was performed to investigate if
there were any differences between the factors in terms
of their effect on the amount of change in each fit index.
ANOVA Table 4 shows that the differences were statisti-
cally significant, though it is more appropriate to refer to
the partial eta squared values to evaluate the effect of the
factors and their interactions. Relying on effect size sta-
tistic, only factors and interactions with a partial eta
squared value ø .06 are included in the following table
(ANOVA tables for change in TLI and RMSEA are pro-
vided in the online supplement).

The results of ANOVA on the TLI and RMSEA are
presented in Tables A6 and A7 in Appendix A.

Discussion

In the CFA framework, a commonly suggested criterion
used to evaluate MI is DCFI (or DTLI) \0.01 (Cheung

& Rensvold, 2002); that is, if the CFI for the invariant
model is less than 0.01, then the LOI is considered trivial.
This criterion, however, was derived from situations
where items were not intended for educational measure-
ment. Several simulation studies (e.g., Jin, 2020;
Khojasteh & Lo, 2015; Sass et al., 2014) have shown that
Cheung and Rensvold’s (2002) general cutoff value may
not be appropriate in certain measurement design
conditions.

The results from our research also showed that a cutoff
value of 0.01 for DCFI or DTLI was not appropriate in
situations where items are dichotomous and calibrated
through an IRT framework. The results of the study
showed that although the MH procedure detected the
presence of DIF items, using the practical effect size criter-
ion proposed by Cheung and Rensvold (2002) for the CFI
and TLI fit indices failed to support the inference that the
LOI was non-negligible (i.e., the simulated 0.5 difference
between the focal and the reference groups). In other
words, one cannot solely rely on the proposed cutoff value
in all contexts and under all conditions, as was ostensibly
suggested in the results of the present study. Although the
MH procedure confirmed the presence of DIF (scalar
noninvariance), Cheung and Rensvold’s (2002) cutoff
value could not determine a non-trivial LOI.

One explanation could be the small effect from the
differences between the values of the b parameters in the
focal and the reference groups. Because the difference
between the b parameters of the DIF items in the refer-
ence and focal groups was dependent on the value of the
a parameter, the occurrence of a few DIF items when the
a parameters are high may not affect the summary fit
indices in the CFA analysis. In the CFA framework, the
fit indices are summary statistics and may be influenced
by the majority of the item parameters to the effect of
missing on the performance of some DIF items. This pat-
tern is seen in this study, where the MH procedure on
the individual items can detect the DIF items while sum-
mary statistics such as the CFI, TLI, and the RMSEA
seem to fail to indicate the characteristics of the study
items if the flagging criterion used is that of the Cheung
and Rensvold (2002) of DCFI .0.01. Therefore, a cutoff
value based on summary statistics, such as CFI, TLI,
and RMSEA, needs to be determined in the specific mea-
surement context and preferably complimented by other
summary statistics and also item-level DIF measures,
such MH test, logistic regression, and IRT-based DIF
indices.

Future Research

The present study can be expanded in several ways. In
the present study, the non-negligible difference in the
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TCC between the reference and the focus groups was set
at 0.5. At this DTCC value, the fit indices criteria (partic-
ularly the DCFI and DTLI) failed to detect fit deteriora-
tion across the simulated DIF items. Therefore, one
interesting factor to take into account in a future study
would be to introduce different magnitudes of DTCC
(e.g., 1.0 and 1.5).

Another factor that may be interesting to investigate is
the DIF patterns. In the present study, uniform DIF was
simulated to study the behavior of the fit indices and the
adequacy of the cutoff value in detecting MI. An advan-
tage of using the IRT estimation framework in this study
is that non-uniform DIF patterns can be easily simulated
and studied with respect to their effect on model fit indi-
cators. In addition, mixed DIF patterns and their pro-
portion in a set of items can also be simulated and added
to the model complexity to evaluate the appropriateness
of the present CFI, TLI, and RMSEA criteria in detect-
ing violation of MI.

Items used in the present study were dichotomous.
It would be interesting to investigate how the results
would be affected if the items were polytomous and
estimated through an IRT model. Because in polyto-
mous items more than one b parameter value is esti-
mated, therefore in simulating DIF items and defining
a minimally interesting DIF impact different strategies
need to be adopted. In the polytomous case, the TCC
is calculated as in the dichotomous case but with an
additional step. While in dichotomous IRT, the TCC is

the sum of the ICC’s, in polytomous IRT the TCC is
the sum of the summed ICC of individual categories.
So, in conducting a study similar to the present one but
on polytomous items, the TCC will be not only a func-
tion of simulated thresholds, but also the number of
items. This may cause a difficulty if the minimal DIF
impact is kept small because one polytomous item
could produce that impact and when the study condi-
tion requires more than one simulated DIF items, the
degree of DIF in thresholds may need to be reduced to
achieve the minimally interesting DIF impact.

Because DIF may threaten the accurate and valid inter-
pretation of scores from educational assessments when
tests are administered across diverse groups, the investiga-
tion of DIF deserves attention. Such investigations are
particularly needed when tests are administered across
populations with differing abilities, such as higher versus
lower performing countries (e.g., such as in the case of
PISA and other assessments administered internationally),
where one country’s proficiency may be much lower than
another country and the validity of any resulting score for
a lower performing system could be compromised.
Without accurately interpreting the results and controlling
LOI, unintended negative consequences may follow from
the inaccurate interpretation of tests such as inappropriate
allocation of resources or instructional interventions for
the most-needy populations. Consequently, additional
research on the accurate and appropriate analysis of data
from educational tests is needed.
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Appendix A

Table A2. Proportions of Simulated DIF Items Detected by Mantel-Haenszel Test When IRT Model = 2PL, DIF Percentage = 20%.

Item

a = 0.5, b = 0 a = 1.0, b = 0 a = 1.5, b = 0

Proportion flagged Mean delta MH Proportion flagged Mean delta MH Proportion flagged Mean delta MH

1 .74 0.52 .49 0.47 .35 0.45
2 .72 0.51 .49 0.47 .33 0.44
3 .72 0.51 .50 0.48 .36 0.45
4 .77 0.52 .50 0.47 .31 0.43
5 .75 0.52 .49 0.48 .35 0.45
6 .75 0.52 .51 0.48 .36 0.46
7 .74 0.52 .50 0.48 .36 0.45
8 .74 0.52 .50 0.47 .35 0.44
9–40 .02 20.17 .01 20.13 .01 20.11

Table A3. Change in Equal Loadings Equal Threshold (Scalar Invariance) CFI, TLI, and RMSEA Across Conditions for N = 500 and
IRT = 2PL.

Percent DIF (%) Index

b = 21 b = 0 b = 1

a = 0.5 a = 1.0 a = 1.5 a = 0.5 a = 1.0 a = 1.5 a = 0.5 a = 1.0 a = 1.5

10 CFI 20.000 0.000 20.000 20.000 20.000 20.000 20.000 0.000 20.000
TLI 20.000 0.000 0.001 20.000 0.000 0.001 20.000 0.001 0.002
RMSEA 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000

20 CFI 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000
TLI 0.002 0.000 0.002 0.002 0.002 0.002 0.002 0.003 0.003
RMSEA 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000

Table A1. The b Parameter Values Used to Obtain DIF Items in the Focal Group.

aReference = aFocal bReference

2PL model 3PL model

10% LOI 20% LOI 10% LOI 20% LOI
bFocal bFocal bFocal bFocal

0.5 21.00 22.000 21.501 22.263 21.630
0.00 1.006 0.501 1.260 0.630
1.00 20.006 1.501 2.263 1.630

1.0 21.00 21.502 20.750 21.629 20.687
0.00 0.503 0.250 0.631 0.313
1.00 1.502 1.250 1.629 1.313

1.5 21.00 20.664 21.167 20.579 21.209
0.00 0.335 0.167 0.420 0.209
1.00 0.664 1.167 0.579 1.209
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Table A5. Change in Equal Loadings Equal Threshold (Scalar Invariance) CFI, TLI, and RMSEA Across Conditions for N = 2,000 and
IRT = 2PL.

Percent DIF (%) Index

b = 21 b = 0 b = 1

a = 0.5 a = 1.0 a = 1.5 a = 0.5 a = 1.0 a = 1.5 a = 0.5 a = 1.0 a = 1.5

10 CFI 20.003 20.002 20.001 20.003 20.000 20.001 20.003 20.000 20.001
TLI 20.002 20.001 20.001 20.003 20.002 20.001 20.003 20.001 20.001
RMSEA 0.006 0.004 0.003 0.007 0.000 0.003 0.007 0.000 0.003

20 CFI 20.000 20.000 20.000 20.000 20.000 20.000 20.001 20.000 20.000
TLI 20.001 20.001 20.000 20.001 20.006 20.000 20.001 20.001 20.000
RMSEA 0.000 0.001 0.001 0.000 0.002 0.001 0.003 0.001 0.006

Table A4. Change in Equal Loadings Equal Threshold (Scalar Invariance) GFI’s Across Conditions for N = 1,000 and IRT = 2PL.

Percent DIF (%) Index

b = 21 b = 0 b = 1

a = 0.5 a = 1.0 a = 1.5 a = 0.5 a = 1.0 a = 1.5 a = 0.5 a = 1.0 a = 1.5

10 CFI 20.002 20.001 20.001 20.002 20.001 20.001 20.002 20.001 20.000
TLI 20.002 20.001 20.000 20.002 20.001 20.001 20.002 20.003 20.001
RMSEA 0.004 0.002 0.002 0.004 0.003 0.001 0.004 0.003 0.001

20 CFI 20.001 20.000 0.000 20.001 20.000 0.000 20.001 20.000 0.000
TLI 20.003 20.000 0.000 20.001 20.002 20.000 20.001 20.000 0.000
RMSEA 0.002 0.001 0.000 0.001 0.001 0.000 0.001 0.000 0.000

Table A6. Five-Way ANOVA on TLI Change Across the Five Factors.

Source of variation Sum of squares df Mean square F Sig Partial eta squared

Sample size 0.041 2 0.021 6,082.8 \.001 .10
Parameter ‘‘a’’ 0.029 2 0.015 4,332.5 \.001 .07
Sample size 3 Percent DIF 3 Parameter ‘‘a’’ 0.021 4 0.005 1,565.0 \.001 .06
Sample size 3 IRT model 3 Percent

DIF 3 Parameter ‘‘a’’
0.022 4 0.006 1,663.8 \.001 .06

Error 0.364 107,892 \0.001
Total 0.668 107,999

Table A7. Five-Way ANOVA on RMSEA Change Across the Five Factors.

Source of variation Sum of squares df Mean square F Sig Partial eta squared

Sample size 0.029 2 0.015 4,124.2 \.001 .07
IRT model 0.031 1 0.031 8,822.5 \.001 .08
Percent DIF 0.026 1 0.026 7,308.1 \.001 .06
IRT model 3 percent DIF 0.027 1 0.027 7,528.1 \.001 .07
Sample size 3 IRT model 3 parameter ‘‘b’’ 0.003 4 0.001 201.4 \.001 .08
Error 0.380 107,892 \0.001
Total 0.782 107,999
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