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1.  Introduction

The Kondo effect is one of the most studied phenomena 
in strongly correlated condensed matter systems [1] and con-
tinues to be a subject of great interest. The effect is character-
ised by the emergence of a many-body singlet ground state 
formed by the impurity spin and the conduction electrons 
in the Fermi sea. The binding energy of this singlet is of the 
order of the characteristic Kondo temperature TK below which 
the effects of the ‘screening’ of the impurity spin manifest 
themselves in different physical properties. The first observed 
manifestation of the Kondo effect was the logarithmic increase 
of the resistivity as the temperature is decreased in systems of 
magnetic impurities in metals [2]. The same type of behav-
iour is present in systems with orbital degeneracy but no spin 
degeneracy [3]. In recent decades, the research has moved to 
nanoscopic systems with semiconducting [4–7] or molecular 
[8–10] quantum dots (QDs), with a single ‘impurity’, in which 

different parameters like on-site energy and hybridisation of 
the impurity with the conduction electrons can be controlled 
very well.

In recent years there has been research on Kondo systems 
in which in addition to the spin degeneracy, there is also 
degeneracy in other ‘orbital’ degrees of freedom such that 
the complete symmetry of the system is very high, corre-
sponding to the SU(4) Lie group [11–31]. Some examples are 
quantum dots in carbon nanotubes [15–22], silicon nanow-
ires [23], and organic molecules deposited on Au(1 1 1)  
[25, 26].

More recently a double QD with strong interdot capacitive 
coupling, and each QD tunnel-coupled to its own pair of leads 
has been experimentally studied [28, 32]. The occupation of 
one QD or the other plays the role of the orbital degree of 
freedom, and behaves as a pseudospin. The pseudospin regime 
of the Kondo transport in similar devices had been demon-
strated experimentally previously [33, 34]. The occupations, 
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the tunneling matrix elements (coupling to the leads) and the 
voltages at the four leads can be controlled independently. In 
this work we concentrate on the regime in which starting with 
the ground state for an even number of electrons in both QDs, 
assumed a singlet, an additional electron or hole is added 
to one QD resulting in a spin doublet ground state. For two 
added electrons the system also displays some rich physics 
[35]. The changes in the occupation, Kondo temperature and 
other properties when the same gate voltage is applied to both 
QDs is discussed in [36].

Theoretically, the system was studied, among others, by 
Trocha using scaling, slave bosons and equations of motion 
out of equilibrium [37], by Büsser et al [27], who proposed 
it for controlling spin-polarised currents, and is now a subject 
of intense research [28–31, 38, 39]. Comparing experiment 
with numerical-renormalisation-group (NRG) calculation, 
Keller et al found evidence of SU(4) Kondo behaviour [28]. 
However, using renormalised perturbation theory (RPT) with 
parameters obtained from NRG, Nishikawa et al concluded 
that the experimental system is not in the SU(4) regime, par-
ticularly because of the relatively small value of the interdot 
repulsion U12 in comparison with other parameters [30].

In addition, in spite of the great tunability of the param-
eters, it is difficult to reach the SU(4) condition Γ = Γ1 2, where 
Γ = Γ + Γi Si Di and Γνi is the coupling of the source (ν = S) or 
drain (ν = D) lead with dot i. The total coupling of dot i, Γi, 
corresponds to the line width of the local spectral density of 
dot i in the absence of Coulomb repulsion and is inferred from 
experiment with the aid of theory [28]. Instead, the energy of 
the relevant partly occupied level at each dot Ei is easier to 
control directly by the different applied voltages, as described 
in the supplementary material of [32].

The purpose of the present work is to study to what 
extent the loss of SU(4) symmetry caused by unequal cou-
plings Γ ≠ Γ1 2 can be restored by tuning the energy difference 
δ = −E E2 1 in a regime of parameters in which intrasite Ui 
and intersite U12 repulsions are much larger than the Γi. This is 
related to the concept of emergent symmetry, i.e. the fact that 
new symmetries not realised in the Hamiltonian describing 
the system can emerge at low energies [40].

We use the non-crossing approximation (NCA), which has 
proved in the past an excellent technique to deal with large 
Coulomb interactions and has the advantage of been easily 
extensible to the non-equilibrium case of finite bias voltages 
[23, 29, 41–44]. It reproduces well the scaling relations with 
temperature T and bias voltage in the Kondo regime [45] and 
was, for example, also successfully used to interpret experi-
mental results on a controlled crossover between SU(4) and 
SU(2) Kondo states driven by a magnetic field in a nanoscale 
Si transistor [23], as well as quantum phase transitions 
involving singlet and triplet states in molecular quantum dots 
[9]. Using NCA we have previously studied the conductance 
of the system of two capacitively coupled quantum dots in 
the general case of different finite bias voltages Vi applied to 
each dot [29]. We have discussed the conditions to observe 
an SU(4) → SU(2) crossover under an applied pseudo-mag-
netic field δ, and non-trivial crossed effects of changes in the 
conductance through one QD as a voltage being applied to 

the other [29]. Recently the general non-equilibrium case has 
been studied using equations of motion [39]. However, as in 
most previous theoretical studies of the system, Γ = Γ1 2 was 
assumed. An alternative to studying the non-equilibrium case 
for small Vi might be to use RPT [30, 46–48], but its extension 
to the two-dot case and finite Vi seems difficult because of the 
presence of many parameters [30].

In this paper we calculate the spectral densities ρi of each 
dot. They can be addressed experimentally in a situation with 
very asymmetric coupling to the source and drain leads for 
each dot i, changing only the voltage to the less coupled lead. 
In fact, a ratio Γ Γ =/ 10Si Di  or 0.1 is enough for the differential 
conductance I Vd /d  to represent accurately ρi [29, 44], and a 
ratio 12 has been used in some experiments [32]. The main 
effect of the different total couplings of both dots Γ ≠ Γ1 2 is 
to introduce an effective pseudo-Zeeman splitting δeff. This 
can be understood by a straightforward generalisation of the 
scaling treatment of Haldane [49] for the simplest impurity 
Anderson model (corresponding to the one-dot case) [37]. 
This δeff can be compensated by tuning the gate voltages so 
that δ δ= − = −E E2 1 eff leading to an SU(4) behaviour at low 
energies.

This paper is organised as follows. The model is explained 
in section 2. In section 3 we explain the main differences in 
the spectral densities in the regimes of SU(4) or SU(2) sym-
metry and the ‘transition’ between them. Section 4 describes 
the effect of different total couplings to the leads Γ ≠ Γ2 1.  
In section  5 we describe how tuning the energy levels can 
compensate the effect of different couplings in a restricted 
energy range. Section 6 contains a summary and a discussion.

2.  Model

The system is described by an Anderson model which con-
tains as localised configurations a singlet ∣ ⟩s  with an even 
number of particles in each dot and two spin doublets σ∣ ⟩i  
(i   =   1 or 2) with one additional electron (or hole) in QD i. 
In general, it is cumbersome to express these states in fully 
second quantised form. One exception is the singlet-triplet 
model used to describe the observed quantum-phase transi-
tion in C60 devices [9], for which the ‘translation’ is explicitly 
given in [50].

There are four conduction bands which correspond to sepa-
rate source and drain leads for each dot. The Hamiltonian is

∑ ∑

∑

σ σ ϵ

σ

= ∣ ⟩⟨ ∣+ ∣ ⟩⟨ ∣+

+ ( ∣ ⟩⟨ ∣ + )
σ ν σ

ν ν σ ν σ

ν σ

ν
ν σ

H E s s E c c

V s c

i i

i H.c. ,

s i

i k

k k k

k
i k

i
i

†
i

i

i

� (1)

where ν σc ki
†  creates conduction states at the source (ν = S) or 

drain (ν = D) lead, and νVi  is the hopping between the lead ν 
and dot i, assumed independent of k. Since other charge con-
figurations are excluded, the model assumes infinite on-site 
repulsions Ui and interdot repulsion U12.

The tunnel couplings of each QD to the leads are 
π δ ω ϵΓ = ∑ ∣ ∣ ( − )ν

ν
νV2i i kK

2 , and we take the unit of energy 
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Γ = Γ + Γ = 11 S1 D1  unless otherwise stated. We assume (without 
loss of generality) Γ ⩽ Γ2 1

3. The SU(4) → SU(2) crossover

For future comparison, in this section we review briefly the 
well-known effect of Zeeman or pseudo-Zeeman splitting on 
the spectral density of the SU(4) Anderson model [11, 14, 17, 
21, 23], and the effects of temperature. In particular, in [17] 
four different theoretical approaches were used to study both 
the linear and nonlinear conductance for different values of 
the symmetry-breaking field.

In figure 1 we show the spectral density of states per spin at 
each dot ρ ρ=1 2 (the spin subscript is dropped) in an SU(4)-
symmetric case = = −E E 41 2  and Γ = Γ = 11 2 . We take the 
half band width D   =   10 for all the calculations presented 
here. The density ρi corresponds to the operators σ∣ ⟩⟨ ∣i 0  (see 
[43] for details). The density of states shows two peaks. The 
charge-transfer one is broad. Its half width at half maximum 
is near Γ1 (two times that in the non-interacting case [44]). 
The Kondo peak near the Fermi level has a half width at half 
maximum of the order of the Kondo temperature TK. As a con-
sequence of the increase of degeneracy, the Kondo effect is 
stronger than for the usual SU(2) case. We remind the reader 
that the Kondo temperature for the infinite-U SU(N) Anderson 
model is π≈ [ ( Δ)]T D E Nexp /K 1 , where D is half the band width 
and Δ = Γ/21  [1]. The NCA reproduces correctly this result 
[51].

From half the width of the spectral density we obtain 
=( )T 0.012K

SU 4 . In comparison with the SU(2) case with the 
same TK, the Kondo resonance is displaced to higher energies 
and the maximum is clearly above the Fermi energy, which we 
set as the origin of energies (ϵ = 0F ). In fact, the SU(4) case is 
characterised by a high derivative of ρ ω( )i  at the Fermi level, 
leading to a large thermoelectric power [24].

Although the symmetry is broken immediately when even 
a tiny pseudo-Zeeman splitting δ is introduced, the changes in 

physical quantities like conductances for each dot and occupa-
tions are not appreciable until δ becomes of the order of ( )TK

SU 4  
[14]. This is expected and has been discussed previously in 
the context of NRG calculations of thermodynamic proper-
ties [52]. In particular, the Kondo temperature δ( )TK  obtained 
from the width of the Kondo peak displays initially a plateau 
and then decreases strongly for δ > ( )TK

SU 4 . We have noticed 
previously that our NCA results for δ( )TK  can be very well 
represented by a simple equation derived from a variational 
wave function

δ π δ δ= {( + ) [ ( Δ)] + } −T D D Eexp / 2 /4 /2.K 1
2 1/2� (2)

times a factor of the order of 1 (0.606 for the parameters used) 
[21].

For δ > ( )TK
SU 4  the changes in the spectral density at low 

temperatures are dramatic, as shown in figure 2 (the inter-
acting part of the NCA self energy remains well behaved at 
the relevant frequencies3). The density of the dot that cor-
responds to the lowest lying level (1 in our convention) dis-
plays two peaks: one at energy near δ−  which corresponds 
to a splitting of the SU(4) Kondo peak due to a pseudomag-
netic field, in analogy to the splitting of the ordinary SU(2) 
Kondo peak under a magnetic field [53, 54], and another 
one at the Fermi energy, which corresponds to the SU(2) 
Kondo peak associated with the remaining spin degeneracy. 
With increasing δ, the SU(2) Kondo peak narrows (fol-
lowing equation  (2)), and shifts towards the Fermi energy. 
The density of the dot that corresponds to the highest lying 
level (ρ2) displays only a peak near δ+  but no peak near the 

Figure 1.  Density of states at each dot as a function of energy at 
low temperature T   =   5.10−3   =   0.42 TK in the SU(4) case E1   =   −4 
and Γ = Γ = 11 2 . The inset is a detail close to the Fermi level.
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Figure 2.  Density of states of dot 1 (main figure) and dot 2 (inset) 
as a function of energy at low temperature = × −T 1.8 10 4 for 
E1   =   −4, δ= +E E2 1  with δ = 0.5 and Γ = Γ = 11 2 .
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3  The interacting part of the self energy, which for our problem is diagonal 
in the dot index can be defined as ω ω ωΣ ( ) = − + Δ − [ ( )]E Gi 1/i i i

int , where 
ω( )Gi  is the Green function for dot i. We have verified that ω[Σ ( )]Im 1

int  is 
positive ( ωΣ ( )1

int  is causal) for all parameters used in figures 2 and 3. Instead, 
ωΣ ( )2

int  is slightly negative at the smallest temperature used ( =T 0.000 18)  
for frequencies between  −0.36 and 0.31. However, as it is clear from 
figure 3, the spectral density of dot 2 is negligible in this region. Thus, this 
failure of causality does not affect the peak in ρ2.
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Fermi energy. We find that the width of both inelastic peaks 
is of the order of ( )TK

SU 4  for small δ (but δ > ( )TK
SU 4  in order 

to ensure that the inelastic peaks are split from the SU(2) 
Kondo peak) and increases with increasing δ. This behaviour 
is reminiscent of the evolution of the peaks of the ordinary 
SU(2) Kondo model under an applied magnetic field, which 
has been studied by Bethe ansatz techniques [54]. We note 
that the simplest mean-field slave-boson approximation used 
in similar problems [24, 37, 55] renormalises in the same 
fashion the widths of the peaks related to both levels, and 
therefore does not reproduce correctly the width of the ine-
lastic peaks in the spectral densities.

It is interesting to see the evolution of the side peaks at 
δ±  with temperature. This is shown in figure 3. At high tem-

peratures δ>T  both spectral densities are similar. As the tem-
perature is lowered below δ the side peaks start to develop. 
In addition, as the total occupation of dot 1, = +↑ ↓n n n1 1 1 , 
increases and that of dot 2 (n2) decreases, the charge transfer 
peak of dot 1 (2) increases (decreases). In the figure, due to 
the restricted energy range, only the tail of this peak is visible, 
but the above mentioned effect is clear. The changes in ni as 

a function of δ were studied before [14, 30]. At temperatures 
of the order of δ( )TK  and below ( ( ) ∼ × −T 0.5 4.4 10K

4 in the 
figure), the Kondo peak develops in ρ1. The width of both side 
peaks is of the order of ( ) = ( )T T0K K

SU 4 .
It is important to recall that in general, in the presence of 

both Zeeman and pseudo-Zeeman splitting, the spectral den-
sity at the Fermi level at zero temperature for dot i and spin σ 
is related to the corresponding occupation by the Friedel sum 
rule generalised for orbital degeneracy [56]. We assume that 
the Γi and the unperturbed densities of conduction states are 
independent of energy. Since δ( )TK  is always much smaller 
than typical scales of variations of these parameters, this 
assumption is realistic. In this case, the Friedel sum rule sim-
plifies to [21, 56]

ρ ϵ
π

π( ) =
Δ

( )σ σn
1

sin .i F
2

i� (3)

At δ = 0 the four occupations σni  are slightly below 1/4 
(the total occupation is below 1 because of a finite small occu-
pation of the singlet ∣ ⟩0 ). For finite δ and high temperatures 
in comparison with δ, also all σni  are slightly below 1/4. As 
the temperature decreases below δ, with δ large in compar-
ison with ( )T 0K , σn1  increases towards 1/2 while σn2  decreases 
towards 0. The Friedel sum rule implies that at T   =   0, π ρΔ σi  
is slightly below 1/2 in the SU(4) case, while well inside the 
SU(2) regime, π ρΔ →σ 11  (or slightly below) and π ρΔ →σ 02 . 
The NCA has an error of the order of 15% in the Friedel sum 
rule, but the tendencies are well reproduced [21].

4.  Effect of different couplings for degenerate levels

Starting from degenerate levels = =E E Ed1 2 , the main effect 
expected from different total hybridisations Γ ≠ Γ1 2 is to gen-
erate an effective pseudo-Zeeman splitting δ = * − *E Eeff 2 1 , 
where *Ei  are renormalised energy levels [37]. This can be seen 
generalising the theory used by Haldane based on poor man’s 
scaling to find *E  for the case of one level [49]. One proceeds 
by integrating out the states near the top (with energy   +   D) 
and bottom (energy  −D) of the conduction band. The local-
ised state can be empty with energy e0 or occupied with 
energy σei . After renormalisation, the energy necessary to add 
one localised particle is * = −σ σE e ei i 0. The renormalisation is 
caused by the possible processes of destroying an electron in 
the localised level and creating it in the conduction band, or 
vice versa. When being integrating out, each state near the 
bottom of the conduction band contributes to lowering the 
energy of the empty state e0 by

∑
+σ

σV

E D
.

di

i
2

� (4)

Similarly, the states near the bottom of the conduction band 
lower the energy of the occupied state σei  by

−
σV

D Ed
.i

2

� (5)

Scaling down to a cutoff C one obtains

Figure 3.  Density of states of (a) dot 1 and (b) dot 2 as a function 
of energy for different temperatures. Parameters as in figure 2.
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∑
π

* = Γ − Γσ
σ

σ σ
′
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⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎛
⎝

⎞
⎠E

D

C

1

2
ln .

j

ji i� (6)

In our case, in which the couplings are independent of spin, 
this leads to an effective splitting

δ
π

= (Γ − Γ) ⎜ ⎟
⎛
⎝

⎞
⎠

D

C

1

2
ln .eff 2 1� (7)

This equation has been obtained before by Trocha [37].
In figure  4 we display the spectral density of states for 

three cases with Γ > Γ1 2. A comparison with the results of the 
previous section  indicates that the effects of different total 
coupling to the leads for both dots are similar to those of a 
splitting of the energy levels. The Kondo peak at the Fermi 
energy narrows and displaces towards the Fermi energy and a 
side peak appears for each dot, at negative (positive) energies 
for the more (less) coupled dot. For the case Γ = 0.92 , only 
10% less than Γ1, the side peak in ρ1 appears as a shoulder to 
the left of the Kondo peak rather than being well separated, 
because the effective splitting δ ≈ 0.029eff  is of the order of 
the Kondo temperature for Γ = 1i , =( )T 0.012K

SU 4 . The results 
shown in this figure are consistent with previous calculations 
using NRG (figure 5 of [17]) in which the total density of 
states is presented [17]. The difference is that the side peaks 
look broader in the NRG results. This may be caused by the 
well known lack of resolution of NRG calculations at finite 
energies [57, 58].

The positions of the side peaks allow us to infer the values 
of the effective splitting within the NCA. They are listed 
inside figure 4 as δ̃ and represented in figure 5 together with 
the result of equation (7) with a cutoff = ∣ ∣C E /2d . In his scaling 
calculation, Haldane used a cutoff of the order of Γi [49], while 
in a recent detailed study of the prefactor of the Kondo tem-
perature of the SU(4) case, Filipone et al used α= ∣ ∣C E /d  
with α of the order of 1 [31]. We obtain a better agreement 
with the NCA results using the latter choice. The good agree-
ment between both approaches (in spite of the corresponding 

limitations of each one) seems to confirm the physical picture 
of the main effect of different couplings.

5.  Restoring SU(4) symmetry

After the results of the previous section, the question arises 
as to whether on introducing a real splitting δ = −E E2 1 such 
that it compensates the effect of different couplings (so that 
δ δ+ = 0eff ), the SU(4) symmetry can be restored in the 
low-energy properties tested by conductance measurements. 
Clearly the symmetry remains broken at the Hamiltonian 
level, so that one cannot expect a higher symmetry at all ener-
gies. Therefore, we search for indications of a low-energy 
emergent symmetry [40].

In figure 6 we show the temperature dependence of the total 
occupations (adding both spins) at each dot for a splitting such 
that δ δ+ ≈ 0eff  according to the results of the previous sec-
tion. At high temperatures, of the order of Γ, ≈n n1 2, although 
n2 (the occupation of the less hybridised doublet lying at lower 
energy) is slightly larger. As the temperature is lowered by two 
orders of magnitude, the situation is similar, although −n n2 1 
first increases slightly and then decreases. At temperatures 
below ( )TK

SU 4 , −n n2 1 changes sign and increases in magni-
tude, signaling a complete loss of SU(4) symmetry for →T 0. 
However, it is possible to tune δ so that the condition =n n2 1 
(implied by SU(4) symmetry) is satisfied at any given temper-
ature. Conversely, for a given δ, T can be varied so that =n n2 1 
at δ= ( )T Tocc . In fact, the choice δ δ= − eff with δeff extracted 
from the position of the satellite peaks is a good initial guess, 
but tuning δ, δ( )Tocc  can be reduced by orders of magnitude, 
as shown in figure 7. This tuning is very time consuming for 
our numerical procedure used to solve the self-consistent set 
of NCA equations (for details see for example [43]) because 
the whole procedure has to be repeated for several ‘guessed’ 
values of δ near δc, where δc is defined by δ( ) =T 0occ c . In addi-
tion, the NCA cannot reach arbitrarily small temperatures. 
It is interesting to note that we find that δ( )Tocc  has a nearly 
exponential dependence near δc. As δ is varied between  −0.13 
and  −0.131, Tocc decreases from 10−2(of the order of ( )TK

SU 4 ) to 
10−4. Note that for sufficiently negative δ (δ δ< c), n2 remains 
larger than n1 and there is no crossing point with =n n1 2.

Figure 4.  Density of states of dot 1 (full lines) and dot 2 (dashed 
lines) as a function of frequency for low temperatures (T   =   5.10−5), 

= = −E E 41 2 , Γ = 11 , and several values of Γ2. The inset shows a 
detail near the Fermi energy.
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If =n n1 2 at T   =   0 (for δ δ= c), the Friedel sum rule equa-
tion  (3) also implies that the spectral densities at the Fermi 
energy are equal: ρ ρ( ) = ( )0 01 2 . This is difficult to test in a con-
ductance measurement, because the conductance through dot i 
is proportional to the asymmetry factor = Γ Γ (Γ + Γ )A 4 /i Si Di Si Di

2, 
and these factors are not easy to be determined precisely [28, 
32]. However, as we have explained, the line shape of the 
spectral densities are very different in the SU(4) and SU(2) 
regimes, not only because of the presence of the satellite peaks 
but also due to the different shape of the Kondo peak, which in 
turn implies, for example, a different temperature dependence 
of the equilibrium conductances [17, 24, 28].

In figure  8 we show the evolution of the low-tempera-
ture densities of states with δ, as the crossing point =n n1 2 

is approached lowering δ from 0. The first rather obvious 
change is that as n1 decreases and n2 increases, the weight 
of the corresponding charge-transfer peaks near ω = = −E 4d  
changes roughly proportionally to ni until they become almost 

Figure 6.  Total occupations of dot 1 (black, larger at lower 
temperature) and dot 2 (red) as a function of temperature for E1   =   −4, 

δ= +E E2 1 , Γ = 11 , and (a) Γ = 0.52 , δ = −0.13, (b) Γ = 0.72 , 
δ = −0.08 and (c) Γ = 0.92 , δ = −0.03. The case δ = 0 (dashed lines) 
is shown for comparison.
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Figure 7.  Total occupations of dot 1 (black, larger at low T) and 
dot 2 (red) as a function of temperature T for Γ = 0.52 , and several 
values of δ = − − − − −0,   0.12,   0.13,   0.1305,   0.131,   0.1311. Other 
parameters as in figure 6.
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coincident. The changes near the Fermi energy are more 
subtle and they resemble the opposite of those reported in 
section 3: the side peaks move towards the Fermi energy, the 
Kondo resonance in ρ ω( )1  broadens and displaces partially to 
higher energies, a Kondo resonance appears in ρ ω( )2  and both 
densities tend to merge.

As explained at the beginning of this section, we do not 
expect that for any parameters, ρ ω( )1  and ρ ω( )2  coincide for all 
energies. In figure 9 we compare both densities at δ= ( )T Tocc  
for a 10% mismatch in the Γi. The charge-transfer peaks look 
identical, but the maxima of the Kondo resonances differ by 
about 10%, being higher for dot 2 (the lowest lying and least 
hybridised level). The magnitude of ρ ( )0i , the densities at the 
Fermi level are also slightly different being ρ ρ( ) > ( )0 02 1  by 
around 10%. This might be an effect of finite temperature or 
due to the inaccuracy of the NCA to reproduce the Friedel 
sum rule equation (3). In any case, the shape of both densi-
ties are characteristic of the SU(4) regime and they are quite 
similar.

Depending on the particular property that is being studied, 
the tuning of the parameters is slightly different to get the 

effective SU(4) symmetry for this property. This is illustrated 
in figure 10, where the densities of states are compared for 
two conditions different from =n n1 2 discussed above. At the 
top of figure 10, the parameters are tuned in such a way that 
the densities coincide at the Fermi level: ρ ρ( ) = ( )0 01 2 . This 
condition renders the densities of states very similar in the 
whole energy range. The occupations are slightly different, 
n1   =   0.470 and n2   =   0.465, signaling a deviation from the 
Friedel sum rule, equation (3) is valid at T   =   0. The maximum 
of the Kondo resonance of the doublet 2 (that with the lowest 
energy) is higher, although both maxima lie nearly at the same 
position, and the shape of the resonance corresponds to the 
SU(4) Kondo effect. However, the half widths at half max-
imum are slightly different: =T 0.0098K1  and =T 0.0091K2  for 
doublets 1 and 2, respectively.

At the bottom of figure 10, the parameters are chosen to 
get the same value of the maximum of the Kondo resonance 
ρ ρ=1

max
2
max. When this condition is satisfied, the weight of 

the charge transfer peak (and the corresponding occupation 
ni) for each doublet differs, being larger for dot 1. The reso-
nance in ρ2 is displaced slightly to the right with respect to ρ1. 
However, both densities of states near the Fermi level are very 
similar. This implies that in suitable conductance experiments, 
the conductance through both dots Gi(V) are proportional. 
These experiments correspond to asymmetric arrangements 
such that the coupling to the source and drain leads differs by 
a factor of an order of 10 or more, and ( ) =G V I Vd /di i i is meas-
ured, where Ii is the current through dot i and Vi is the voltage 
of the lead (source or drain) less coupled to dot i [29, 44]. This 
is a situation similar to that in scanning-tunneling-spectros-
copy experiments. In the conditions at the bottom of figure 10, 

( ) ( ) =G V G V A A/ /1 2 1 2, where the constant asymmetry factors 
are = Γ Γ (Γ + Γ )A 4 /i Si Di Si Di

2.

6.  Summary and discussion

We have considered an Anderson model that describes two 
capacitively coupled quantum dots, each one connected 
to a drain and a source lead in the Kondo regime with one 
electron (or hole) added to a singlet configuration. We have 
investigated the possibility that the SU(4) symmetry, lost at 
the Hamiltonian level when the total couplings to the leads 
are different (Γ ≠ Γ1 2), can be restored at low energies as an 
emergent symmetry [40], by changing the difference of on-
site energies δ = −E E2 1. We find that for small tempera-
tures (specifically lower that the Kondo temperature of the 
SU(4) Kondo effect ( )TK

SU 4 ), it is possible to tune δ such that 
the Kondo resonances for each dot sensed by suitably chosen 
conductance experiments are proportional. Specifically at 
this value of δ, the conductance through each dot Gi(V) in a 
configuration of voltages similar to those used in scanning-
tunneling-spectroscopy experiments, have the same line 
shape within experimental errors and reflect the characteristic 
shape of the SU(4) Kondo resonance in the spectral density. 
However, for this value of δ, the total occupations ni for each 
dot are slightly different, indicating the absence of full SU(4) 
symmetry at large energies.

Figure 9.  (a) Occupation as a function of temperature and (b), 
(c) spectral density at δ= ( )T Tocc  as a function of energy of dot 
1 (black) and dot 2 (red), for Γ = 11  and Γ = 0.92 , E1   =   −4, and 
δ = −0.031.
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The temperature dependence of the conductances at not 
too high temperatures also corresponds to the SU(4) regime 
rather that the SU(2) one, since it is given by the energy and 
temperature dependence of the densities ρi. However, slight 
differences in the line shape of both conductances can appear 
as a function of temperature, because both spectral densities 
and occupations do not have exactly the same temperature 
dependence.

The present study assumed infinite intradot (Ui) and 
interdot (U12) Coulomb repulsions, which in practice means 
that only two configurations with N and N   +   1 (or N  −  1) 
particles are included, and all other configurations lie high in 
energy and can be neglected. This can be adjusted experimen-
tally for low enough Γi. When in addition to the singlet with 
N particles and the four states with N   +   1 (N  −  1) particles, 
configurations with N   +   2 (N  −  2) particles are important, the 
system has SU(4) symmetry only for Γ = Γ1 2 and =U Ui12 . In 
this case the sector with ±N 2 particles is six-fold degenerate. 
In practice, <U Ui12  reduces the symmetry to SU(2) × SU(2) 
if =U U1 2 and to SU(2) if in addition either ≠U U1 2 or Γ ≠ Γ1 2. 

In these conditions, restoring SU(4) symmetry at low energies 
tuning the on-site energies Ei is not possible.

From the theoretical point of view it remains to study 
more accurately with alternative techniques, to what extent 
the SU(4) symmetry is kept at the lowest energies. The NCA 
is not reliable at temperatures well below the Kondo one, 
where the Friedel sum rule is not reproduced with a devia-
tion of about 15% at very low temperatures. Combining NRG 
and RPT, the low-energy Fermi-liquid properties and the 
symmetry of the low-energy effective Hamiltonian might be 
studied in detail. A difficulty for numerical studies is the fine 
tuning in δ required to obtain a manifestation of SU(4) sym-
metry in a given property.
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