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Previous studies have observed reduced vagal modulation in patients with acute schizophrenia and their
first-degree relatives, thus suggesting a genetic predisposition.

To investigate vagal modulation, we analyzed the coupling between heart rate and breathing as a putative
measure of central autonomic function in 19 patients, 19 of their relatives and 19 matched control subjects.
The interaction of heart rate and breathing was investigated in all groups applying the non-linear parameter
cross-ApEn, indicating the asynchrony between both time series. In addition, measures of the time and
frequency domain of heart rate variability (HRV) were obtained.

The main finding of our study is a significantly increased cross-ApEn value, indicating reduced central vagal
modulation both in relatives and patients suffering from schizophrenia. Non-linear measures of HRV proved
to more sensitively differentiate relatives from control subjects. Furthermore, we observed a correlation
between psychopathology and breathing, indicating that positive symptoms are associated with a higher
degree of regularity in the breathing pattern.

Our results suggest that autonomic dysfunction previously described for patients suffering from
schizophrenia is also present in first-degree relatives. This might relate to changes of brainstem activity in
patients and relatives, and a common genetic background in patients and their family members can be
assumed.
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1. Introduction

A genetic background predisposing for autonomic dysfunction in
patients suffering from schizophrenia and their relatives has recently
been suggested (Bdr et al., 2010; Castro et al., 2009). This autonomic
imbalance might be regarded as an intermediate phenotype (Pearlson
and Folley, 2008). In particular, comparable autonomic responses to

Abbreviations: ANCOVA, analysis of covariance; ANOVA, analysis of variance; ApEn,
approximate entropy; CNS, central nervous system; ECG, electrocardiogram; EDA,
electrodermal activity; FPI, Freiburger Personlichkeitsinventar; HF, high frequency;
HRV, heart rate variability; LF, low frequency; MANCOVA, multivariate analysis of
covariance; MANOVA, multivariate analysis of variance; PANSS, Positive and Negative
Syndrome Scale; RMSSD, root mean of squared successive difference; RTN, retro-
trapezoid nucleus; SCID, Structured Clinical Interview for DSM Disorders; VRC, ventral
respiratory columns.
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stress were shown in relatives and patients (Castro et al., 2009) and a
decreased heart rate variability (HRV) and complexity seemed to
represent the primary abnormality (Bdr et al., 2009). Interestingly,
other autonomic regulatory systems such as blood pressure variability
were shown to be less affected by the disease and changes in patients
and relatives were not found (Bdr et al., 2006). Therefore, it was
assumed that the fundamental inherited cardiovascular phenotype
might be the vagal rather than the sympathetic component. Especially,
acute psychotic episodes seemed to be associated with decreased
parasympathetic modulation (Bdr et al., 2007a,b, 2005; Okada et al.,
2003). Interestingly, most studies show a positive correlation to
positive symptoms reported during daytime, however, the autonomic
dysbalance was likewise detectable at night time (Boettger et al.,
2006). Furthermore, the autonomic imbalance was also observed at
the pupil and stomach of patients (Bdr et al., 2008a; Peupelmann et al.,
2009).

To gain deeper insights into vagal regulation in patients and their
relatives, we investigated the coupling between heart rate and
breathing as a putative measure of the central nervous autonomic
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function (Pincus, 2006; Yeragani et al, 1996). In a recent study,
Peupelmann et al. (2009) reported reduced coupling between heart rate
and breathing in patients suffering from schizophrenia as indicated by
the non-linear parameter cross-ApEn (cross-approximate entropy). It
was assumed that decreased vagal activity within the brainstem or
suppression of the latter due to higher regulatory centers might be
responsible for this abnormality. Breathing movements are produced by
a spatially distributed pontine-medullary respiratory network gener-
ating rhythmic patterns of alternating inspiratory and expiratory
activities that drive and coordinate the activity of spinal and cranial
motoneurons (Ramirez and Richter, 1996). The breathing pattern
originates within the interconnected bilateral columns of medullary
neurons, the ventral respiratory columns (VRCs) and is controlled by
inputs from other medullary structures including the retrotrapezoid
nucleus (RTN), raphe nuclei and more rostral pontine circuits. It is
known that neurons in the amygdala complex are connected recipro-
cally with respiratory regions in the medulla and pons (Fulwiler and
Saper, 1984; Yasui et al., 2004 ). The autonomic nervous systemis known
to play a major role in the interaction of respiration and circulation. The
definite mechanisms responsible for the respiratory modulation of
autonomic activity remain incompletely understood (Yasuma and
Hayano, 2004). Two major mechanisms have been recognized for the
close association of respiration and heart rate: direct modulation of the
cardiac vagal preganglionic neurons by central respiratory drive; and
inhibition of cardiac vagal efferent activity by lung inflation. Thus, the
close interrelation also known as respiratory sinus arrhythmia is a
measure of vagal modulation.

To investigate vagal modulation we assessed 19 first-degree relatives
of patients suffering from paranoid schizophrenia, the respective
patients and 19 matched controls. We hypothesized that cardio-
respiratory coupling is reduced in relatives and patients in comparison
to controls reflecting a predisposing genetic background. Furthermore,
we intended to analyze the influence of psychopathology on the
breathing pattern to verify earlier reports (Peupelmann et al., 2009).

2. Methods and materials
2.1. Participants

We included 19 patients suffering from paranoid schizophrenia
and their healthy first-degree relatives (6 siblings, 13 offspring) and
19 healthy controls matched to relatives regarding age, sex, weight,
smoking habits and education (see Table 1). Patients were included
only when they had not taken any medication for at least 8 weeks.
Eight patients were investigated during the first episode and
followed-up for 6 months. Serum drug levels were controlled for
legal (e.g., antipsychotics, antidepressants, benzodiazepines) and
illegal drugs (e.g. cannabis). A clinical ECG was recorded prior to the
investigation and evaluated by a cardiologist. Diagnosis of paranoid
schizophrenia was established when patients fulfilled the DSM-IV
criteria (Diagnostic and statistical manual of mental disorders, 4th
edition, (First, 1997)). Psychotic symptoms were quantified using the
Positive and Negative Syndrome Scale (PANSS, (Kay et al., 1987)).

Control subjects were recruited from hospital staff (n =4), medical
students (n=5) and the local community (n=10). A careful
interview and clinical investigation was performed for all relatives
and controls to exclude any potential psychiatric or other disease as
well as interfering medication. The Structured Clinical Interview SCID
Il and a personality inventory (Freiburger Personlichkeitsinventar,
FPI) were additionally applied for relatives and controls to detect
personality traits or disorders which might influence autonomic
function (LeBlanc et al., 2004). This study complied with the
Declaration of Helsinki. All participants gave written informed
consent to a protocol approved by the local Ethics Committee of the
University Hospital, Jena. Patients and relatives were advised that the
refusal of participating in this study would not affect future treatment.

Table 1
Clinical and demographic data of participants.
Parameter Controls Relatives Patients
Number of participants n=19 n=19 n=19
Male/female 5/14 5/14 9/10
Age, mean (SD; min-max), 28.32+9.54 26.68 +8.03 39.54+9.33
years (20-55) (18-51) (18-51)
Body mass index, mean (SD) 21.984+2.65 22.99+2.96 23.124+3.97
Education
8-10 years at school, no. n=>5 n=6 n=11
12 years at school n=14 n=13 n=38
(A-level), no.
Attended university, no. n=13 n=7 n=3§
Smoker/non-smoker 7/12 6/13 11/8
<5 cigarettes/day, no. n=3 n=1 n=1
5-10 cigarettes/day, no. n=2 n=3 n=3
>10 cigarettes/day, no. n=2 n=2 n=7
Coffee consumption
No coffee consumption, no. n=4 n=3 n=6
1 cup/day, no. n=>5 n=6 n=>5
2 cups/day, no. n=7 n=7 n=4
>3 cups/day, no. n=3 n=3 n=4
Sport
No sport, no. n=4 n=8 n=8
<2 h/week, no. n=7 n=3 n=4
2-5 h/week, no. n=>5 n=4 n=2
>5 h/week, no. n=3 n=4 n=2
Sport not reported, no. n=0 =0 =8
First episode of psychosis, no. n.a. n.a. n=38
Duration of illness, years n.a. n.a. 6.05 (0-15)
(min-max)
Age of onset in male/ n.a n.a 21.90+-4.78/
female (SD) 32.674+7.90
PANNS, mean (min-max) n.a n.a 69.47 (42-95)

PANSS — Positive and Negative Syndrome Scale.
n.a. — not applicable.

2.2. Data acquisition and pre-processing

Investigations were performed between 3 and 6 p.m. in a quiet
room which was kept comfortably warm (22-24 °C) and began after
subjects had rested in supine position for 10 min. Subjects were asked
to relax and to breathe normally to avoid hyperventilation. No further
instruction for breathing was given.

The electrocardiogram (high resolution at 1000 Hz) was recorded
for 20 min (Fan study® system, Schwarzer, Germany). From this, the
device automatically extracted the RR intervals. In addition, respiratory
signal was simultaneously obtained using the Fan study® device. A
thoracic belt was applied and the breathing cycle was measured with a
similar sampling rate (1000 Hz) allowing a direct tracking of both
signals. Furthermore, the sensitivity of the thoracic belt was adjusted
according to a visual screen prior to the investigation for optimal signal
detection. The system allows an on- and off-line visual control of the
breathing cycle and an artifact management of the breathing signal.

2.3. Data analysis

2.3.1. Heart rate variability (HRV)

We obtained the RMSSD (root mean of squared successive
difference) as a time domain parameter of heart rate variability as
well as low frequency (LF, 0.04-0.15Hz) and high frequency
parameters (HF, 0.15-0.40 Hz) of the frequency domain (Task Force
of the European Society of Cardiology, 1996).

2.3.2. Non-linear approximate entropy of heart rate (ApEngg) and
respiration (ApEngesp)

In contrast to measures from moment statistics and the frequency
domain, non-linear parameters have been shown to better depict the
multiple regulatory systems influencing heart rate time series
modulation. ApEn is such a non-linear parameter that was calculated
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for heart rate and breathing rate as well as the interaction between
both. In the model of approximate entropy, runs of patterns in time
series are compared. If these runs remain similar in successive
observations, overall regularity is high and thus complexity (or
irregularity) of the series is low, resulting in smaller ApEn values. We
applied the technique previously described by Pincus (2001), which
we have also employed in previous studies (Bdr et al., 2007a; Yeragani
et al., 1993; Peupelmann et al., 2009; Quick et al., 2009).

Given ‘N’ data points u(1), u(2),..., u(N), two input parameters
should be set prior to the computation of ApEn. These are the run
length ‘m’ and the filter level ‘. From previous reports, a value of 2 for
‘m’ and 0.2 times the standard deviation of the time series for the
value of ‘" have been shown to reveal reliable results. First, we
obtained vector sequences from the consecutive data points, which
represent ‘m’ consecutive ‘u’ values, beginning with the ‘ith’ point.
Consecutively, the distance between vectors, x(i) and x(j) is defined
as the maximum difference in their respective scalar components.
Then the sequence x(1), x(2),..., x(N—m+1) is used to construct
InCi" (r) ={number of x(j) such that d[x(i)x(j)]<r}/(N-m+1) for
each "<N-m+1.

The C" (r) values measure, within a tolerance ‘r’, the regularity or
frequency of patterns similar to a given pattern of window length, ‘m’.

Here, ApEn is defined as

ApEn(m,r,N) = &™) —d™ * ().

In this equation, @™ (r) is the average value of InC!"* (1), In being
the natural logarithm.

The value of ‘N is fixed, typically between 100 and 5000 points but
it has been shown that one can get a reliable estimate of ApEn even
with a data length of <50 points, especially in studies related to
endocrinology (Pincus, 2000, 2001). In this study, we used 3000
points at 5 Hz for the analyses and this translates to 600 s of maximal
stationarity. From these, ApEn was calculated for the obtained RR
interval time series (ApEngg) and for the respiration time series
(ApEnResp)~

2.3.3. Cross-approximate entropy (cross-ApEn) between RR interval and
respiration time series

Cross-ApEn resembles a non-linear measure of coupling between
two signal time series (Pincus et al., 1996a,b). Two distinct variables in
a network (here: heart rate and respiration) are compared by
quantifying their asynchrony. When the association between the
systems is strong, this would thus result in small values of cross-ApEn,
since asynchrony is relatively low. In contrast, when there is only a
weak association between two signal time series, larger cross-ApEn
values would indicate a higher degree of asynchrony (Bdr et al.,
2008b; Pincus, 2000).

2.4. Statistical analyses

We performed the following statistical analysis for log-trans-
formed parameters, which beforehand were tested for normal
distribution using the Kolmogorov-Smirnov test. First, a multivariate
analysis of covariance (MANCOVA) was applied to indicate overall
differences between groups. This MANCOVA used age as a covariate
and included the between-subject factor GROUP for the parameters
heart rate, INRMSSD, InLF, InHF, InApEngg, breathing rate, INApEngesp
and Incross-ApEn to uncover differences between relatives, controls
and patients. Follow-up analyses of covariance (ANCOVAs) for single
parameters using age as a covariate were calculated to demonstrate
differences between relatives, controls and patients.

Furthermore, two MANCOVAs were performed to exclude possible
interactions of age, smoking and activity level with obtained results in
one model, as well as heart rate and breathing rate in a second model.

Both MANCOVAs were completed by follow-up ANCOVAs for single
parameters.

To reveal differences between relatives and patients and also
between relatives and control subjects for single parameters, a
Bonferroni-Holm corrected pair-wise t-test was performed as a
post-hoc analysis. A comparison between patients and controls was
not performed to reduce the number of performed tests.

Scores of personality traits assessed in the FPI and SCID II were
compared between relatives and controls by means of two-tailed t-
tests. Furthermore, these values were correlated with autonomic
parameters for the relatives and the control group separately.

Spearman's rank-order correlation analyses were applied to test
association between ratings of psychopathological scales (PANSS) and
selected ECG and respiratory parameters. Significance was accepted
for p<0.05.

3. Results

3.1. Multivariate analysis of covariance (MANCOVA) and follow-up
analysis of covariance (ANCOVA) of single parameters for all groups
controlled for age

The MANCOVA comparing first-degree relatives, controls and
patients in respect to heart rate, InRMSSD, InLF, InHF, InApEngg,
breathing rate, InNApEnges, and Incross-ApEn revealed a significant
overall difference between groups [F(16,92) =2.6; p <0.002].

Significant differences were observed in follow-up ANCOVAs for
heart rate [F=10.04; p<0.001, Fig. 1A], breathing rate [F=2.82;
p<0.048, Fig. 1B] and InApEngg [F=7.2; p <0.002, Fig. 1C]. Follow-up
ANCOVAs did not reveal a group difference for INnRMSSD (p = 0.39),
InLF (p=0.28) and InHF (p=0.3; Table 2). While no difference was
found for the complexity of breathing as indicated by InApEngesp
[p<0.36], the coupling between heart rate and breathing as expressed
by Incross-ApEn showed to be significantly different between groups
[F=4.8; p<0.012, Fig. 1D].

3.2. MANCOVA and follow-up ANCOVAs for all groups controlled for age,
smoking, and activity level

To control for a putative influence of age, smoking and daily
activity we computed an additional MANCOVA for all parameters
indicating a significant difference between groups [F(12,84)=3.2;
p<0.001]. Significant differences remained in the follow-up ANCOVAs
for heart rate [F=8.5; p<0.001], InApEngg [F=6.7; p<0.003] and
Incross-ApEn [F=3.8; p<0.03].

3.3. Multivariate analysis of covariance controlled for heart rate and
breathing rate

An overall difference remained after using heart rate and breathing
rate as covariates to exclude possible influences [F(8,98)=2.1;
p<0.04]. Similarly, InApEngg [F=3.7; p<0.03] and Incross-ApEn
[F=2.5; p<0.04] remained significantly different.

3.4. Pair-wise t-tests of parameters between relatives and controls and
between relatives and patients

Mean values of parameters of all groups are depicted in Fig. 1 and
Table 2. As depicted in Fig. 1, relatives show a significantly increased
heart rate (p <0.01; A) and respiratory rate (p <0.05; B) compared to
controls. No differences were observed between relatives and patients
(A, B). LnApEngg was lower in relatives than in controls (p <0.05; C)
and lower in patients as compared to relatives (p<0.05; C).
Furthermore, non-linear coupling between both time series
(Incross-ApEn) was significantly different between relatives and
controls (p<0.01) with increased values in relatives indicating
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decreased vagal modulation (D). No difference was observed between
relatives and patients.

No post-hoc comparisons were performed for InRMSSD, InLF, InHF
and InApEnge, (Table 2) since follow-up ANCOVAs did not reveal a
significant difference between groups.

3.5. Influence of personality traits on autonomic function in relatives

Assignificant difference by means of a t-test between groups was found
in the subscale “social orientation” (p<0.032) of the FPI indicating that
relatives were less socially oriented than controls. Furthermore, a signi-
ficant difference was observed for “achievement orientation” (p <0.037).
The SCID II revealed no differences between relatives and controls.

Significant correlations between the subscales of the FPI and
SCID II and autonomic parameters were neither observed in patients
nor in controls and relatives.

3.6. Spearman'’s rank-order correlation analysis

There was a significant correlation between the ratings of global
psychopathology of PANSS and ApEngesp, (1= —0.621; p <0.005; Fig. 2A),

Table 2

Autonomic parameters of participants.
Parameter Controls Relatives Patients
RMSSD 624+115 47.0+8.1 44.0+6.4
ApEngesp 1.01+0.04 0.91+0.06 0.94+£0.05
LF 372+97 303+75 358 + 66
HF 665 +222 352+118 321+96

RMSSD = root mean of squared successive difference; LF=low frequency; HF = high
frequency; ApEnges, = approximate entropy of respiration.

as well as general psychopathology of PANSS and ApEngesp, (r= —0.641;
p<0.003; Fig. 2B). Furthermore, a significant relation of the G2 sub-item
anxiety of PANSS was found with ApEngesp (r=—0.45; p<0.05) and
cross-ApEn (r=0.48; p <0.03). No further correlation was observed.

4. Discussion

Our study demonstrates decreased vagal modulation in healthy
first-degree relatives of patients suffering from schizophrenia that
was recently described for patients (Peupelmann et al., 2009). Thus,
pointing to a possible common genetic background in patients and
their family members. In contrast to previous investigations (Bar et al.,
2009), we investigated unmedicated patients and kept the age range
between groups fairly comparable, although patients were slightly
older than their relatives. Here, we assessed the network interaction
between heart and breathing which is known to be governed by vagal
modulation. Low vagal modulation leads to increased asynchrony
between heart rate and breathing, which is reflected in our study by
increased cross-ApEn values in patients and their relatives.

Previous studies have shown low vagal function at the cardiac level
(Bdr et al., 2007¢) in patients with schizophrenia, predominately shown
by non-linear parameters. Linear parameters of the time and frequency
domains were less sensitive in this respect (Bdr et al., 2007c; Boettger
et al., 2006). These results were corroborated in the current paper. To
gain a better understanding, the analysis of more than one autonom-
ically innervated organ seems to be promising (Bdr et al., 2008a, 2009).
The interaction of autonomic function assessed in the pupil and on the
heart, for instance, was fundamentally different in patients and controls
(Bdr et al., 2008a). This is of great value since findings might be traced
back to regulatory centers of the structures under investigation. Here,
one might speculate, apart from findings related to the heart and
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respiration, that the network within the brainstem lacks regulatory
control. It is likely that descending projections from the central nucleus
of the amygdaloid complex are responsible (Hadziefendic and Haxhiu,
1999). On the other hand, neurotransmitters (e.g. dopamine (Lalley,
2008)) influence the primary locus for respiratory rhythm generation
(pre-Botzinger complex, (Rekling and Feldman, 1998)), thereby
increasing the breathing frequency and influencing the breathing
pattern (Chen et al., 2005).

It is remarkable, that the breathing rate is increased in relatives and
patients, since relatives investigated in this study did not show any sign
of a psychiatric disease. Thus, we conclude that the breathing pattern is
not only influenced by psychotic symptoms in patients. Our findings
presented here might relate to changes of brain activity in patients and
relatives. Breathing is a dynamic behavior that is integrated with many
other physiological functions controlled by the brainstem and higher
CNS circuits including the limbic system and cortical structures.
Stimulation of the amygdala, for instance, produces a rapid increase in
respiratory rate followed by a feeling of fear and anxiety (Masaoka and
Homma, 2004). Thus, one putative mechanism among others might be
related to aberrant brain activity in the amygdala that has been
demonstrated both in patients with schizophrenia and their non-
affected siblings after sad mood induction (Steel et al., 2002; Habel et al.,
2004). Similar to autonomic changes found in our study, non-specific
fluctuations of electrodermal activity (EDA) are known to be more
frequent among patients with schizophrenia and their relatives (Iacono
etal, 1999). EDA is widely used as a sensitive index of emotion-related
sympathetic activity (Dawson et al., 2000) and the close relationships
between emotions and respiration (Boiten, 1998) might suggest similar
underlying alterations of brain activity. Therefore, there is a need to
simultaneously analyze EDA and HRV in patients suffering from

schizophrenia to understand the specific relation of both signals due
to aberrant central control.

In addition, we were able to demonstrate the strong influence of
psychopathology on the complexity of the breathing pattern (Fig. 2).
Increased scores in the PANSS scale are associated with higher regularity
in patients. This corroborates results of an earlier study (Peupelmann
et al,, 2009). Previous studies have further suggested that an increased
amount of positive symptoms are associated with a decrease in vagal
activity (Baretal,, 2005,2007b). It is a matter of speculation whether the
increased amount of regularity observed in the breathing pattern is
caused by vagal withdrawal or due to additional mechanisms.

The correlation between psychopathology and autonomic dys-
function indicates that the actual clinical state influences vagal and
sympathetic function. The aberrant autonomic function in relatives
additionally suggests a genetic trait of autonomic dysfunction present
in patients and their relatives. Thus, future genetic studies assessing
gene polymorphisms associated with altered autonomic function need
to investigate the proportion of changes attributed to trait or state.

Furthermore, we have observed that the sub-item anxiety of
PANSS correlated with reduced coupling between breathing and heart
rate as assessed by cross-ApEn. It is interesting that the sub-item
anxiety was negatively associated with the complexity of the
breathing pattern. Therefore, the more anxious psychotic patients
were in our study the more regular is their breathing pattern. This is in
contrast to several previous studies on patients with panic disorder,
which indicated that patients with anxiety exhibit irregular breathing
patterns as measured by tidal volume and respiratory rate (Yeragani
et al,, 2004). Thus, two diseases with low vagal tone intriguingly
display opposite breathing modalities, a fact that is not well
understood to date. Therefore, functional fMRI studies are needed to
elucidate the central origin of our finding.

Our results are limited by the relatively small sample size.
Furthermore, we have investigated healthy relatives without any
certainty whether relatives might develop a psychiatric disease in the
future. A personality disorder or a prevailing trait according to
performed tests was excluded, although the indicated decreased
scores of social orientation in relatives might be associated with the
higher frequency of schizotypical traits in this population. Our results
are further limited by the age difference between patients and their
relatives, since vagal function is age-dependent (Boettger et al., in
press) and since the control group was matched for the age of
relatives. However, results shown for patients corroborate findings of
previous studies (Bdr et al.,, 2005, 2007b,c; Peupelmann et al., 2009).

In conclusion, cardio-respiratory coupling in respective first-
degree relatives is impaired in a similar fashion as seen in patients
suffering from schizophrenia. Thus, a genetic background can be
suggested. Since the breathing pattern is highly variable in patients
and depends on psychopathology, future studies need to elucidate
how alterations of breathing might affect cardiovascular regulation.
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