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Objectives: Our aim was to unravel the inactivation pathway of the class A b-lactamase produced by Bacillus
licheniformis BS3 (BS3) by clavulanate.

Methods: The interaction between clavulanate and BS3 was studied by X-ray crystallography, pre-steady-state
kinetics and mass spectrometry.

Results: The analysis of the X-ray structure of the complex yielded by the reaction between clavulanate and
BS3 indicates that the transient inactivated form, namely the cis-trans enamine complex, is hydrolysed to
an ethane-imine ester covalently linked to the active site serine and a pentan-3-one-5-ol acid. It is the first
time that this mechanism has been observed in an inactivated b-lactamase. Furthermore, the ionic interactions
made by the carboxylic group of pentan-3-one-5-ol may provide an understanding of the decarboxylation
process of the trans-enamine observed in the non-productive complex observed for the interaction between
clavulanate and SHV-1 and Mycobacterium tuberculosis b-lactamase (Mtu).

Conclusions: This work provides a comprehensive clavulanate hydrolysis pathway accounting for the observed
acyl-enzyme structures of class A b-lactamase/clavulanate adducts.
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Introduction
b-Lactam antibiotics still represent the most used group of anti-
microbial agents in medical practice. They have a high selective
toxicity due to the inhibition of an essential step in the bio-
synthesis of a unique bacterial structure, the peptidoglycan.1

This inhibition results from their covalent binding to essential
penicillin-binding proteins (PBPs), leading to the irreversible
blockade of peptidoglycan synthesis and cell death.2 Neverthe-
less, since their very early use in clinical settings, significant pro-
blems have arisen with resistance, which is mainly mediated by
enzymes—b-lactamases (EC 3.5.2.6)—hydrolysing the b-lactam
bond and rendering the drug biologically ineffective.3 – 5

Among the strategies for circumventing the b-lactamase-
mediated bacterial resistance, several compounds—such as
clavulanate, sulbactam and tazobactam—that are able to
efficiently and specifically inhibit the broad- and extended-
spectrum active site serine b-lactamases have been developed.
Clavulanate, a naturally occurring b-lactam, shows weak anti-
bacterial activity, but displays potent b-lactamase inhibitory

properties. It is characterized by an oxazolidine ring, the
absence of an acylamino side chain and an unusual substituent
on C2. Its combination with b-lactam antibiotics (e.g. amoxicillin)
that are able to inactivate PBPs is among one of the major suc-
cesses of chemotherapy and is still one of the most effective
therapies used in hospitals against bacterial infections.6

Different pathways have been proposed to explain the inhib-
ition mechanism of class A b-lactamases by clavulanate
(Figure 1). They all involve the attack of the active serine
residue on the carbonyl carbon atom of clavulanate to form a
labile tetrahedral intermediate, and cleavage of the C–N bond
in the b-lactam ring of clavulanate to form an acyl enzyme.
The latter can be hydrolysed and lead to the regeneration of
free and active enzyme, or its rearrangement can lead to the ac-
cumulation of non-active complexes and the complete inactiva-
tion of the enzyme.7 – 9

Spectroscopy and crystallography studies on the clavulanate
inhibition of the class A b-lactamase from Staphylococcus
aureus PC1 suggested that the Ser-70-attached cis-enamine is
stabilized to the trans-enamine and further decarboxylated.10,11
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These studies also proposed Lys-73 as being properly positioned
for making a cross-link with the inhibitor molecule.12 In oppos-
ition with this model, the resolution of the structure of Bacillus
licheniformis 749/C apo-b-lactamase led to the proposal of
Ser-130, instead of Lys-73, as the candidate for establishing a
cross-linking with the clavulanate moiety, rendering an ether
with Ser-130 also compatible with previous spectroscopy ana-
lyses.13,14 Using electrospray ionization mass spectrometry,
Brown et al.15 later supported this model for Escherichia coli
TEM-2 and proposed Ser-130 as having the nucleophilic role
needed for yielding the formation of ether and effective inactiva-
tion of the enzyme.15

In this study we report the 2 Å resolution crystal structure of
the adduct of the class A b-lactamase from B. licheniformis BS3
with clavulanate, and provide clues about the pathway of class A
b-lactamase inhibition by clavulanate.

Materials and methods

Enzymes and chemicals
The expression and purification of the BS3 enzyme were performed as
described previously.16 Clavulanate (BRL 14151) was a gift from GSK
(Brentford, UK), and nitrocefin was purchased from ProGenosis (Sart-
Tilman, Liège, Belgium).

Kinetics
Kinetic experiments were performed on a Specord 50 Analytikjena spec-
trophotometer connected to a personal computer via an RS232C inter-
face. Enzyme and inhibitors were diluted in 25 mM phosphate buffer
(pH 7.5). BSA (20 mg/L) was added to the diluted solutions of
b-lactamase to prevent enzyme denaturation. The reactions were fol-
lowed by monitoring the hydrolysis of a reporter substrate in the pres-
ence of various concentrations of the inactivator. The BS3 b-lactamase
(2.5 nM) was added to a solution of 100 mM nitrocefin containing increas-
ing concentrations of clavulanate (from 400 nM to 8 mM). Typically the
reactions were performed at 308C in a final volume of 500 mL. The
values of the pseudo-first-order inactivation constant rate ki were calcu-
lated from the hydrolysis curves. The ratio between the number of pro-
ductive turnovers and those leading to enzyme inactivation was
calculated from experiments in which the ratio between the initial inacti-
vator concentration and enzyme concentration was such that incom-
plete inactivation occurred. This was done by monitoring the residual
activity after incubating the enzyme (50 nM) with increasing concentra-
tions of clavulanate (50 nM–50 mM).

BS3 b-lactamase crystallography
Crystals were grown at 208C by hanging-drop vapour diffusion with drops
containing 5 mL of BS3 solution (38 mg/mL) and 2 mL of 20% PEG 6000 in
100 mM sodium citrate buffer (pH 3.4) equilibrated against 1 mL of the
latter solution at 208C. The BS3/clavulanate adduct was obtained by
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Figure 1. Structure of clavulanate and combined scheme of proposed mechanisms for the inactivation of class A b-lactamase by clavulanate.
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diffusing into the crystal, increasing concentrations of clavulanate over
the course of 20 min at room temperature. A fresh solution of clavula-
nate was continuously added up to a final concentration of 25 mM.

Data were collected at 1008K on an ADSC Q315r CCD detector at a
wavelength of 0.9763 Å on beamline BM3OA at the European Synchro-
tron Radiation Facility (ESRF, Grenoble, France). X-ray diffraction experi-
ments were carried out under cryogenic conditions (1008K) after
transferring the crystals into 33% glycerol and 33% PEG6000. Indexing
and integration were carried out using Mosflm,17 and the scaling of the
intensity data was accomplished with SCALA of the CCP4 program
suite.18 Refinement was carried out using REFMAC5,19 TLS20 and
Coot.21 The structure of the BS3 b-lactamase bound to clavulanate
was refined to 2 Å. Data statistics and refinement are given in Table 1.

Mass spectrometry
Mass spectrometry spectra were acquired for BS3 and BS3/clavulanate.
For the latter, 2 mL of 0.5 M Li-clavulanate was mixed with 3.2 mL of
26 mg/mL BS3 in 10 mM Tris, pH 7.2/50 mM NaCl. The reaction was
stopped by the addition of 5 mL of 12% (v/v) formic acid after 30 min.
The volume was decreased to 10 mL by ultrafiltration using Microcon
YM-10 (Millipore). Sample preparation was done by two additional ultra-
filtration steps with 500 mL of 25 mM ammonium acetate. The sample

was concentrated to 30 mL and mixed with 50% (v/v) acetonitrile and
0.1% (v/v) formic acid. Mass spectrometry analysis was then conducted
using ESI-Q-TOF micro mass (Waters) operated in positive mode, with
a capillary voltage of 3.0 kV, a sample cone voltage of 100 V and a
temperature of 1008C, RF lens 1 set at 100 V and a 500 L/h desolvation
gas flow. Sample was injected into the source for desolvation at
4 mL/min flow.

Results

Kinetics

The reaction of the B. licheniformis b-lactamase BS3 with clavu-
lanate proceeds along a branched pathway. At a clavulanate/BS3
concentration ratio lower than 10, we did not observe a com-
plete recovery of the b-lactamase activity even after a long incu-
bation of 36 h at room temperature. In addition, when the ratio
was higher than 40, we observed a complete and irreversible in-
activation of the class A b-lactamase. These data indicated that
no transient inactivation process of BS3 could be observed and
are in good agreement with the model of interaction already pro-
posed by Charnas and Knowles7 for TEM-1.

We also observed a hyperbolic dependence of the ki values
versus clavulanate concentration from which we could compute
the individual values of ki lim¼8×1023 s21, Km¼0.6 mM and
ki lim/Km¼1.33×104 M21 s21 (Figure 2).

Crystallography

The crystal structure of BS3 in complex with clavulanate was
solved at 2 Å resolution. The electron density in the BS3/clavula-
nate crystal is well defined for both monomers present in the
asymmetric unit, from Lys-30 to Asn-291. The root-mean-
square deviation between the equivalent backbone atoms in
both monomers is 0.32 Å for the Ca atoms, and no significant

Table 1. X-ray data collection and refinement statistics for BS3
b-lactamase

Crystal BS3/clavulanate

PDB code 2y91

Data collection
Resolution range (Å)a 34.60–2.00

(2.11–2.00)
No. of unique reflections 40601
Rmerge (%)a 7.9 (53.4)
Redundancya 3.2 (3.1)
Completeness (%)a 99.3 (98.9)
l/sIa 9.2 (2.2)

Refinement
Resolution range 34.1–2.00
No. of protein atoms 4336
No. of water molecules 254
Rcryst (%) 17.8
Rfree (%) 21.9

Root-mean-square deviations from ideal stereochemistry
Bond lengths (Å) 0.010
Bond angles (8) 1.21
Mean B factor (all atoms) (Å2) 34.9
Mean B factor (clavulanate CL1) (Å2) 28.5b

Mean B factor (clavulanate CL2) (Å2) 36.3b

Ramachandran plot
Favoured region (%) 98.2
Allowed regions (%) 1.8
Outlier regions (%) 0.0

Root-mean-square difference of
Ca atoms with native structure (Å)

0.32b

aStatistics for the highest resolution shell are given in parentheses.
bMonomer A.
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Figure 2. Evolution of ki values as a function of clavulanate
concentration. The curve was fitted, by Sigma plot version 12, with the
help of the following equation: ki¼ ki lim[C]/K(Km + [S])/Km + [C], where
ki, ki lim and C represent the pseudo-first-order inactivation constant,
the limit value of ki and the clavulanate concentration, respectively. Km

and S represent the Michaelis–Menten constant (38 mM) and the
concentration of nitrocefin (100 mM), respectively.
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difference is found between the two active sites. The following
discussion will refer to monomer A.

The overall fold of the BS3/clavulanate complex is similar to
the previously reported BS3 structure (PDB: 1I2S).22 As other
class A b-lactamases, the active site motifs are located in the
interface between the ‘all a’ and ‘a/b’ domains, defined as
‘Ser-Thr-Ile-Lys’ (motif 1, carrying the nucleophile serine),
‘Ser-Asp-Asn’ (motif 2, in the loop between a4 and a5), and
‘Lys-Thr-Gly’ (motif 3, on strand b3), linked by the V-loop
bearing a7 (Phe-165 to Glu-171).22

In the active site of both monomers we observed electron
densities compatible with two different molecules derived from
clavulanate hydrolysis, an ethane-imine ester (called CL1), and

a pentan-3-one-5-ol acid (called CL2) (Figure 3a). CL1 is cova-
lently linked to the active site serine. The b-lactam-derived
ester carbonyl oxygen is connected by hydrogen bonds to back-
bone Ser-70 and Ala-237 nitrogen atoms, which define the oxy-
anion hole (Figure 3b). The distances between the carbonyl
oxygen of CL1 and the backbone amide groups of the residues
Ser-70 and Ala-237 are 2.95 and 2.90 Å, respectively, as
described for other class A b-lactamases.23

The other density can be filled by a CL2 molecule, which
is hydrogen bonded to the Ser-130 hydroxyl group (from
the second motif), Lys-234Nz, Thr-235Og (both part of the
third motif) and Arg-244 through CL2 carboxyl-mediated hydro-
gen bonds (Figure 3b). For Mycobacterium tuberculosis BlaC
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b-lactamase (PDB: 3CG5), a decarboxylated trans-enamine
seems to be the major tautomer attached to the active site
(Figure 3c), but, like BS3 b-lactamase, no evidence of a Ser-130
adduct was found.24 In the BlaC structure, the decarboxylated
clavulanate-derived enamine seems to be stabilized by several
water molecules, which are not present in equivalent positions
in the BS3/clavulanate structure (not shown).

The BS3/clavulanate adduct is solvated by 307 ordered
water molecules. Compared with the structure of BS3 apo-
b-lactamase, the absence in the structure of BS3 clavulanate
adduct of the hydrolytic class A conserved water molecule impli-
cated in the deacylation step explains the stability of the
acyl-enzyme. A water molecule was reported in the BlaC/clavula-
nate structure, although slightly displaced from its position in the
apo-enzyme (Figure 3d). The absence of water is accompanied
by a slight displacement of the V-loop.

We compared the structures of BS3 in complex with clavula-
nate and other inhibitors such as lactivicin (PDB 2X71; Figure 4a),
6-b-iodopenicillanate (PDB 2WKO; Figure 4b), and cefoxitin (PDB
1I2W; Figure 4c). The overall structure of the BS3 backbone in
complex with all these compounds is superimposable with that
of BS3/clavulanate (not shown). Noteworthy is the superimpos-
ition between CL1 (linked to the active site serine) and part
of the backbone of the lactivicin, 6-b-iodopenicillanate and
cefoxitin molecules, and CL2 with lactivicin and cefoxitin. On
the other hand, the V-loop motif (Phe165-Glu171) of the BS3/
clavulanate backbone shows a slight deviation when compared
with those from the other complexes (up to 0.848 Å).

Mass spectrometry

The presence of a covalent adduct between BS3 and CL1 has
been confirmed by mass spectrometry. The major peak was
observed for the apo-enzyme. The mass increment between
BS3 (29478+3 Da) and the most prominent minor peak in the
spectrum of BS3 with clavulanate (295548+3 Da) was 70, con-
sistent with the formation of the covalently attached CL1 moiety.

Discussion
As in other class A b-lactamases, BS3 is inhibited by clavulanate
following a complex scheme. Previous mass spectrometry and
Raman crystallography studies on class A b-lactamases have
pointed to a scheme involving hydrolysis of clavulanate, transient
inhibition as well as irreversible enzyme inactivation.9,15,25,26 The
biphasic curves that we have observed with BS3 are in agree-
ment with this complex scheme. Biphasic curves mean that
the initial turnover rate of the enzyme is progressively reduced
by the accumulation of one or more acyl-enzyme complexes
that inactivate the enzyme. Biphasic curves are usually observed
in the hydrolysis of clavulanate by class A b-lactamases, pointing
to a branched pathway in which one path corresponds to the hy-
drolysis of clavulanate and the other refers to transient or irre-
versible inactivation.27 The species involved in transient and
irreversible inactivation are acyl-enzymes resulting from the
opening of both the lactam and the oxazilidinone rings, and dif-
ferent fragments have been observed covalently bonded to the
active serine.

Based on the structural similarities between clavulanate and
benzylpenicillin, and the observed superposition of the BS3/

clavulanate structure with the acyl-enzyme TEM-1-
benzylpenicillin (PDB: 1FQG) (Figure 5a), a mechanism describing
the inhibition of class A b-lactamases by clavulanate at the
atomic level can be proposed (Figures 5 and 6). As a first step,
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one can assume that clavulanate enters the active site as peni-
cillins do and that, upon acylation, b-lactam ring opening is im-
mediately followed either by deacylation or by oxazolidine ring
opening (Figure 5b and c). Upon oxazolidine ring opening, the
C5–C6 bond becomes a double bond that can adopt a cis or a
trans conformation. In the structure described in this article
the C5–C6 bond adopts the trans conformation, as previously
observed in PC1, M. tuberculosis b-lactamase (Mtu) and SHV-1,
whereas the cis conformation has only been observed in PC1
b-lactamase. The trans conformation is associated with elec-
tronic delocalization on the C6–C7 bond that forces N4, C5, C6,
C7, O8 and Ser-70Og atoms to be coplanar, as observed in all
the structures with fragments of clavulanate in the trans-
enamine configuration (Figure 5d). The clavulanate carboxylate
is in strong interaction with Ser-130, Lys-234, Thr-235 and
Arg-244, and the trans-enamination induces important stresses
between the carboxylate and the carbonyl linked to the active
serine. The weakening of the bonds around the C3 atom eventu-
ally results in loss of the carboxylate (as observed in PC1, Mtu

and SHV-1) or the breaking of the C3–N4 bond, producing the
two fragments observed in BS3.

The cis-enamine carboxylated species observed in PC1 can
possibly undergo decarboxylation to give the trans-enamine dec-
arboxylated species, but the contrary is unlikely. Moreover, the cis
conformer may undergo deacylation, whereas the trans con-
former is stabilized over deacylation by partial delocalization of
the C5–C6 double bond on C6–C7, rendering C7 less susceptible
to the attack of the nucleophilic water molecule. The cis con-
former may thus be responsible for the transient inhibition,
whereas the trans conformer should be responsible for irrevers-
ible inactivation. As suggested by Charnas et al.,28 a direct
enamine intermediate can be obtained by deprotonation of C7.
The proximity between Glu-166 and C7, and the absence of
water between Glu-166 and Ser-70 in the BS3/clavulanate struc-
ture argue in favour of Glu-166 as a good base candidate to
achieve this deprotonation, in which case the imine intermediate
is not necessary (Figure 6). Mass spectrometry experiments per-
formed on TEM-1, SHV-1 and Mtu suggest that both forms of the
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Figure 5. Illustration of the proposed mechanism for clavulanate-mediated inhibition of BS3 b-lactamase. (a) Comparison of BS3 b-lactamase (in
green) in complex with CL1/CL2 (in yellow) and the acyl-enzyme TEM-1-benzylpenicillin (pink). (b) b-Lactam ring opening, followed by oxazolidine
ring opening. (c) cis conformer of clavulanate. (d) Comparison between the cis conformer model of clavulanate and the fragments observed in
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irreversible complex observed by crystallography can presumably
be present in the active site of class A b-lactamases, but parti-
tion between both pathways of the irreversible inhibition
cannot be predicted from the sequence. Although different frag-
ments of clavulanate are observed in BS3, SHV-1 and PC1, most
residues of their active site are identical, and those that are dif-
ferent have no direct contact with the fragments of clavulanate.
Moreover, they all have an arginine at position 244, which repre-
sents the main difference with Mtu. Yet the adduct in Mtu is
similar to that observed in SHV-1.

Rather than being related to the partition between the
observed fragments of clavulanate, the position of the arginine
in the sequence could tentatively be related to the amount of
clavulanate needed for inhibition. Inhibition constants observed
in enzymes with the arginine at position 244 (TEM-1, SHV-1,
BS3 and PC1) generally show lower values than those with an ar-
ginine at position 220 (Mtu, Streptomyces clavuligerus29 and
Streptomyces albus G30) or 276 (CTX-M-931 and Mycobacterium
fortuitum32). Nevertheless other residues close to the active
site clearly have an influence on the inhibition, notably the
amino acid at position 6933,34 or 276.35

Finally, TEM variants resistant to clavulanate (IRT) show various
mutations of Arg-244, suggesting that the interaction between
Arg-244 and the clavulanate carboxylate is essential for clavula-
nate inhibitory properties.36 Alternatively, although less common
than the mutation of arginine, the Ser130Gly mutation encoun-
tered in IRT-17 (TEM-59) also confers bacterial resistance to clavu-
lanate.37 The reduced number of interactions made by the
clavulanate carboxylate may favour the hydrolysis path over the
inhibition path resulting from oxazolidine ring opening.

Conclusions

Unlike structural results obtained from crystals of the SHV-1
b-lactamase or the b-lactamases from S. aureus and M. tubercu-
losis, the structure of clavulanate observed after its reaction with
the b-lactamase from B. licheniformis BS3 is made of two moi-
eties. Hydrolysis of clavulanate in two fragments results from
interactions of the carboxylate with active site residues.

The interactions of the carboxylate of the CL2 moiety with
conserved residues of class A b-lactamases represent a clue
not only for explaining the clavulanate hydrolysis observed in
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BS3, but also for understanding the decarboxylation of clavula-
nate leading to the decarboxylated trans-enamine species
observed in the active site of PC1, Mtu and SHV-1.
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