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We study spatially flat isotropic universes driven by k-essence. It is shown that Fried-

mann and k-field equations may be analytically integrated for arbitrary k-field potentials

during evolution with a constant baryotropic index. It follows that there is an infinite
number of dynamically different k-theories with equivalent kinematics of the gravita-

tional field. We show that there is a large “window” of stable solutions, and that the

dust-like behaviour separates stable from unstable expansion. Restricting to the family
of power law solutions, it is argued that the linear scalar field model, with constant func-

tion F , is isomorphic to a model with divergent speed of sound and this makes them less
suitable for cosmological modeling than the non-linear k-field solutions we find in this

paper.
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To address the outstanding theoretical challenges of modern cosmology, espe-
cially the so-called coincidence problem, which questions as why is it exactly now,
the universe driven by some sort of dark energy is accelerating, several authors have
introduced and studied the so-called k-essence models 1,2,3,4.

Originally, the k-essence, or k-inflation, was introduced in 5 in order to bridge
phenomenologically the string theories with inflation (see Ref. 6 for a recent review).
The main ingredient of the k-essence is a scalar field, with non standard higher order
kinetic terms. Interestingly enough, and contrary to what one could have expected,
these non-standard terms do not necessarily lead to acausal propagation of the k-
field 7. Studying inflationary patterns with the k-fields the authors of 5 were able to
show that k-field may drive an accelerated expansion of the universe starting from
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a generic initial conditions without an assistance of the usual potential terms.
In a different development 1,2, the k-essence was proposed as a dynamical solu-

tion to the coincidence problem. The basic idea of 1,2 is that k-essence could play
a role of a dynamical attractor at the onset of matter domination period introduc-
ing cosmic acceleration at present time. Further study of k-essence was performed
recently in 4. It was argued that in certain dynamical regimes the k-essence is
equivalent to quintessence and it may prove difficult to distinguish between the two
fields. In this Letter we make a step further and show that the dynamically different
k-theories can produce kinematically equivalent cosmological models.

The construction of cosmological models with tracker-like, or the attractor be-
haviour 8, where the k-essence either mimics the equation of state of the matter-
radiation component, or drives towards acceleration, is relied heavily on the exis-
tence of k-essence solutions which, re-written in terms of energy density and pres-
sure, represent, hydrodynamically, fluids with a constant baryotropic index (BI).
These, in turn, give rise to a power-law behaviour of the scale factor when the
underlying geometry is that of a spatially flat isotropic universe.

In the k-essence models studied earlier 1,2,3,4 one would usually consider solutions
where, during the k-field driven expansion with the constant BI, two things happen:
i) The scalar field evolves linearly with time and ii) The k-field potential is an
inverse square in terms of the k-field. The property ii) follows directly from i). The
assumption i), triggered probably by the simplicity of finding solutions in the case
of linear k-field, although permits to consider different k-theories, is too restrictive
with the form of the k-potential and the evolution of the field itself.

The main purpose of this Letter is to show that in the case of the k-essence, one
may find solutions with arbitrary potentials and non-linear scalar fields, but still
have a constant BI. For the solutions we find, one can have a fixed evolution of the
geometry, yet incredibly rich repertoire of scalar field behaviour and its k-potential.
This kind of a degeneracy is quite problematic for the model building. Nevertheless,
there seems to be a way to reduce this degeneration. For solutions with constant
BI we find that the linear k-field model is isomorphic to a divergent sound speed
model. In fact, the former presents a superior type of degeneracy as compared to the
solutions obtained from the non-linear k-field model, therefore fully justifying our
quest for a different type of k-field solutions. The isomorphism between the linear k-
field model and the divergent sound speed model looks especially interesting in the
light of the results of the recent publication 11 where the behaviour of the solutions
near divergent sound speed was thoroughly investigated.

We start with a general Lagrangian

L = −V (φ) F (x), x = gµνφµφν , (1)

where φ is the scalar field and φµ = ∂φ/∂xµ, and do not impose any conditions
neither on V , nor F at this stage. One may easily figure out the energy-momentum
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tensor for (1):

Tµν = V (φ) [2Fxφµφν − gµνF ] , Fx =
d F

d x
. (2)

Identifying (2) with the energy-momentum tensor of a perfect fluid we have

ρφ = V (φ)[F − 2xFx], pφ = L = −V (φ)F. (3)

As usual in this setting we assume a spatially flat homogeneous and isotropic space-
time with line element

ds2 = −dt2 + a2(t)
[
dx2 + dy2 + dz2

]
, (4)

where a(t) is the scale factor and the expansion rate is defined as H = ȧ/a. The
Einstein field equations then reduce to

3H2 = ρφ, −2Ḣ = ρφ + pφ, (5)

and the conservation equation reads

ρ̇φ + 3H(ρφ + pφ) = 0. (6)

The field equation for the φ field may be either obtained by substituting expressions
(3) into the conservation equation (6), or varying directly the Lagrangian (1). Doing
so, we get:

[Fx + 2xFxx]φ̈ + 3HFxφ̇ +
V ′

2V
[F − 2xFx] = 0, (7)

where V ′ = dV/V φ. On the other hand, assuming a “formal” equation of state of
the form pφ = (γ − 1)ρφ for the k-essence and using Eqs. (3), (5) we obtain the BI
γ

γ = − 2Ḣ

3H2
= − 2xFx

F − 2xFx
. (8)

We now assume that the BI is a constant. This kinematically leads to a power-law
scale factor a = a0t

2/3γ .
The first question we ask is, how stable are the solutions with the constant BI

γ = γ0?. To answer this question, we allow γ to vary with time. Differentiating the
equation of state and using the conservation equation we find

γ̇ = 3Hγ(γ − 1) +
ṗφ

ρφ
, (9)

which together with (3) and (8) lead to

γ̇ +

[
3Hγ +

V̇

V
+

Ḟ

F

]
(1− γ) = 0. (10)
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We further check as to whether γ = γ0 are solutions to this equation at all. Obvi-
ously, there are two different ways for this to happen: either γ0 = 1, or generically,
the following stationary condition holds

V̇

V
+

Ḟ

F
= −3Hγ0, (11)

When the stationarity condition (11) holds, the potential V and the function F
are related by:

V F =
4(1− γ0)a

3γ0
0

3γ2
0a3γ0

. (12)

Here, we have integrated (11) and inserted the solution into the Einstein equation
(5) to fix the integration constant. For a positive potential V , the constrain (12)
gives rise to two different theories depending on whether γ0 < 1 or γ0 > 1. In the
case γ0 < 1 we take the function F to be positive, whereas in the case γ0 > 1 we
take it negative. We denote these as F+ and F− respectively.

We now assume that the stationarity condition (11) holds. So, the equation (10)
reads

γ̇ + 3H(γ − γ0)(1− γ) = 0. (13)

Integrating, we find:

γ =
γ0 + c a−3(1−γ0)

1 + c a−3(1−γ0)
. (14)

Here c is an integration constant. For the expanding universe and γ0 < 1 we see
that the solutions of (13) have the asymptotic limit γ0. Therefore, the solutions with
constant BI γ0 are attractors in the case γ0 < 1. This attractor behaviour holds
even for superaccelerated universes 9 with γ0 < 0.

The limit γ0 → 1, should be considered apart, and the solution of the equation
(13) is

γ = 1− 1
c + ln a3

, (15)

where c is an integration constant. Hence, for an expanding universe the solution
with γ0 = 1 is stable as well . The γ0 = 1 solutions separate stable from unstable
regions in the phase space (for a positive expansion rate) as can be easily seen
from the equation (13), and since γ0 = 1 corresponds to dust, we conclude that the
dust-like solutions define the border line between stable and unstable behavior. It
is probably worthwhile to mention that the above stability analysis is simple and
direct as compared to the study performed directly in the field variables using the
solution φ ∝ t as an input.

As from now we stick to the solutions with the constant BI γ. It follows then that
the Einstein and the field equations (5), (7) have two different classes of solutions:

1) The solutions with constant x = x0 = −φ̇2.
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In this case for γ = const 6= 0 we have a = a0t
2/3γ , the first term of the l.h.s. of the

eq. (7) vanishes, and the consistent solution of eqs. (5), (7) becomes φ = ±
√
−x0 t

and

V = − 4x0

3γ2[F − 2xFx]
1
φ2

, (16)

with an arbitrary F evaluated at x = x0. We will not discuss these solutions further,
since these were thoroughly investigated and exploited in model building in 1,?. The
particular case with x0 = 0 (φ = φ0) must be solved apart and gives a de Sitter
solution a = a0e

√
V F/3 t for arbitrary F evaluated at x = 0 and constant potential

V .

2) Solutions with x 6= const.

In this case the conservation equation (6) can be readily integrated to find the first
integral of the field equation (7)

V Fγ =
ρ0

a3γ
. (17)

Comparing this expression with the constrain equation (5) we are lead to the relation
(12) between the potential V and the function F . Hence, the integration constants
a0 and ρ0 are left fixed to ρ0 = 4(1− γ)a3γ

0 /3γ2.
We now look at (8) as a differential equation for F (x). Its immediate general

solution is

Fγ(x) = c (−x)
γ

2(γ−1) . (18)

Without any loss of generality, one may fix the integration constant c = ±1. The
two corresponding families of solutions are then F+

γ and F−
γ respectively. Inserting

the last equation into (3) we get two possibilities

ρ+
φ =

V F+
γ

1− γ
, p+

φ = −V F+
γ , γ < 1, (19)

and

ρ−φ =
V F−

γ

1− γ
, p−φ = −V F−

γ , γ > 1, (20)

where we have assumed that both the k-potential and the energy density are positive
definite.

Inserting (18) into (12) one gets a relation of the form t2V ∝ φ̇γ/1−γ . Finally,
the general relations connecting the field φ and the potential V follows:

t
2−γ

γ =
2− γ

γ

[
± 3γ2

4(1− γ)

] ∫
V

γ−1
γ dφ, γ 6= 2, (21)

ln t =
√

3
∫ √

V dφ, γ = 2. (22)
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The (+) branch in equation (21) corresponds to γ < 1 while the (−) branch to
γ > 1. For linear φ the integral (21) is not defined and this situation corresponds
to the first class (i) of the solutions. The relations (21) and (22) should be read as
follows: given V (φ), one may integrate and obtain t = t(φ), invert and find φ = φ(t).
Then F (x) is still given by (18). Note, that for a fixed γ (fixed power of the scale
factor) one has different potentials and different field evolutions, and consequently
different k-theory. It looks as the k-essence theories have a considerable amount
of freedom in choosing the theory, the potential and the scalar field behaviour, all
describing the same kinematics of the universe. This sounds somewhat “fantastic”
for these are not just simple field redefinitions, and all the theories with the different
φ and V are dynamically different.

We now show how the power law solutions with the linear scalar field and the
inverse square potential are related to the family of solutions with the divergent
velocity of sound. We do so by constructing a one-to-one mapping between these
solutions. We suggest that this might be the reason as to why the solutions with
the linear scalar field run into trouble as discussed in a recent paper by Malquarty
etal 11.

To do so we introduce what we call a “divergent” k- essence Lagrangian with
the kinetic energy proportional to the velocity. For such a theory one may take the
function F∞ as

F∞ = c + b
√
−x. (23)

It is easy to see that the above function leads immediately to a divergent sound
velocity C2

s = −F∞
x /(F∞

x + 2xF∞
xx) and to an inverse square potential by using the

k-field equation (7). This does not constitute a major problem in itself, for one could
have just avoided using this sort of a model. It follows, however, that the solutions
of the models with linear scalar field and the inverse square potential discussed in
1,? are isomorphic to those obtained in the divergent models.

To see the relation between the models we work with the power law solutions.
Consider a typical model cosmology given by:

a = tn, V =
β

φ2
, φ = φ0 t, (24)

obtained by evaluating F and Fx at x = x0 = −φ2
0. We further use f = F (−φ2

0)
and f ′ = Fx(−φ2

0). Substituting these constants into the Friedmann and k-field
equations (5), (7) we find that the index n and the slope of the potential β are
given by

n =
1
3

f + 2φ2
0f
′

φ2
0f
′ =

2
3γ

, β =
n

f ′
, (25)

On the other hand, if in the divergent model we choose the constants c =
3n2φ2

0/β and b = −2nφ0/β we obtain the same solution. Therefore all the power-law
solutions obtained from the model with the linear scalar field and the inverse square
potential map into the solutions of the divergent model with the same potential.
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Moreover, the following reasoning underlines the highly degenerate character
of the linear k-field solutions. Consider the series expansion of the function F (x)
around x = x0. The background cosmology is completely determined by just the
first two co-efficients in the expansion (f, f ′) and the value of φ0 as seen from (25).
Put in different words, the model is insensitive to keeping the first two co-efficients
in the expansion of the function F and the same value of φ0, but varying the rest
of the higher order terms. Since, given the same value of φ0, the first two terms
in the F expansion for the linear and divergent models co-incide, they should be
thought of as equivalent. Therefore, the modeles with the linear k-field and the
inverse square potential posess a symmetry, or rather a degeneracy in the sense
that all the solutions for which the first two terms of the expansion of the function
F around x = x0 co-incide are equivalent among temselves and also equivalent to
the divergent model. This does not happen with the solutions with the non-linearly
behaved scalar field, and suggests that physically the later are more acceptable,
thus partially removing the degeneracy of the solutions.

A more subtle distinction between the models, to completely remove the de-
generacy, would be probably seen by perturbing these solutions. This, however, is
beyond the scope of the present Letter.

In this Letter we have studied particular solutions to the Einstein Equations
coupled to k-essence. Imposing spatially flat isotropic geometry we have shown that
different k-theory Lagrangians may lead to the same kinematical evolution of the
universe.

We have seen, however, that the linear k-field power-law solutions posess an
odd property of beeing isomorphic to a family of solutions with a divergent speed
of sound generated by the function F∞. This relation of isomorphism induces, in
fact, problems with the power-law solutions regardless of the model (functionF ) as
long as the potential is inverse square and the field is linear, leading to consider
different solutions. It has been recently argued 11 that the cosmological models
based on linear k field lead to serious problems. These problems are associated with
the behaviour of the models in the divergent sound speed region. We believe that
our findings relating the linear k-field models with the divergent models sheds new
light on the reasons of the peculiar behavior of those models in the region of the
divergent speed of sound .
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