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Abstract— We present a novel method for the estimation and
correction of mismatch errors in time-interleaved analog-to-
digital converters. The estimation of the mismatch errors requires
a training signal, but it is efficient, accurate, and effective while
keeping low the complexity of the associated algorithm, when
compared with other works in the literature. The compensation
strategy uses the estimated parameters for offset and gain
mismatch error correction, and implements a low-complexity
(similar to that of a finite-impulse response filter) Lagrange
interpolation filter to correct errors due to timing mismatch,
which depends on the dynamics of the input signal. The proposed
compensation strategy achieves almost ideal behavior over a
wide bandwidth, i.e., only 12% of oversampling is required
for an almost complete cancelation of distortion. The method
has been tested under severe mismatch conditions (up to 10%
timing mismatch and 5% gain and offset mismatch), showing
an improvement of over 6 bits in the effective number of bits
and 50 dB in the spurious-free dynamic range. In addition,
when compared with the available techniques, no limitation
on the number of channel converters is introduced since the
compensator effectively cancels the distortion even in the presence
of large mismatches.

Index Terms— Analog-to-digital converter (ADC), correction,
estimation, mismatch error, time interleaved (TT).

I. INTRODUCTION

S THE bandwidth, dynamic range, and operation
frequency of modern telecommunication systems
increase, efficient high-resolution analog-to-digital convert-
ers (ADCs) operating at higher sampling rates are required.
While some ADC architectures can obtain high resolution
at a relatively high conversion speed, for some applications,
the conversion speed of a single ADC might not be
enough [1].
Among the alternative architectures to solve the tradeoff,
a possible solution is to use time-interleaved (TI) ADCs.
The TI architecture has several ADCs interleaved in time
such that the overall conversion rate of the system is propor-
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tionally increased to the number of ADCs used [1]. Unfor-
tunately, any mismatch in gain, offset, or sampling time
among these converters will result in nonlinear distortion
of the sampled signal, thus deteriorating the performance
of the whole system. Just to give an application example,
in [2], it is shown that even a slight mismatch in the TI
ADC structure can severely affect the bit error rate (BER)
behavior of an Orthogonal Frequency Division Multiplex-
ing link. Therefore, the mismatches among ADCs in a TI
structure should be estimated and their effects should be
compensated for.

The estimation and correction of mismatch errors in
TI ADCs and the tools available have been widely
studied in the last few years [3]-[20]. Brief descriptions
of the main approaches found in the literature are
presented in [12] and [14]. The main strategies can be
divided into two different groups: 1) adaptive (blind)
equalization [6], [9], [11], [15] and 2) offline estimation plus
online correction [3], [4], [7], [8], [13], [21]. In general,
the first type of compensation has the advantage that neither
prior information about the mismatches nor the input signal
is required. Another characteristic is that it adapts to changes
in the parameters involved. However, it exhibits a large
convergence period of time before the compensation actually
works [6], [9], [11], [15], and the final result has in general
lower accuracy than the offline estimation plus online
correction-based methods [22].

Furthermore, the solutions obtained are usually tailored for
a particular channel ADC architecture [9], [11], [15] or valid
for a limited number of TI ADCs. Also, in some cases, the
required computation complexity becomes quite high [6].

Foreground calibration, using the previous estimation of
the mismatch between the different ADCs, leads to more
accurate results. However, the use of a training sequence is
required for the estimation of the parameters involved [3], [4],
[7]1, [13]. For example, this approach is particularly suitable
for wireless communication standards, where data transmis-
sion is performed in frames with training data for channel
equalization and synchronization. The methods available so
far providing high compensation performance in the presence
of large mismatches over a wide bandwidth require a high
computational cost. While some methods are also capable
of coping with intrachannel nonlinear effects, they are either
architecture dependent [9], [11] or the computational cost
is orders of magnitude higher [4]. As an alternative, these
effects can be corrected before mismatch compensation is
needed [11].
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In this paper, we propose a simple strategy for the estimation
of mismatch errors in TI ADCs and a low-complexity compen-
sator that effectively removes the associated distortion in the
whole Nyquist bandwidth. In particular, we propose an effi-
cient estimation method for the mismatch parameters through
least squares (LS) by choosing adequate error functions. After
compensating for offset and gain errors, a (low-complexity)
Lagrange interpolation polynomial is used to deal with timing
errors.

Timing mismatch correction, which is a particular case of
recovering uniformly sampled data from nonuniform sam-
ples [23], is usually the main concern in TI ADCs, due to
its dynamic and frequency-dependent nature. As illustrated
by the simulation results, the compensation performance in
terms of Signal-to-Noise and Distortion Ratio/spurious-free
dynamic range (SFDR) improvement, accuracy in the esti-
mation of mismatch parameters, and robustness to mismatch
variations is very good even under severe mismatch con-
ditions. Indeed, only 12% of oversampling is required for
an almost complete cancelation of distortion, showing an
improvement of over 6 bits in the effective number of bits
(ENOB) and 50 dB in the SFDR for up to 10% timing
mismatch and 5% gain and offset mismatch. Furthermore,
a low complexity for both estimation and correction of all
three main mismatch errors is maintained.

As previously mentioned, while some methods are
also capable of coping with large timing mismatches
(about 10%) [6]—[8], the associated computational complexity
for both estimation and correction of the output digital signal
is by far higher than that of the method proposed here.
On the other hand, other methods with lower computational
cost [9], [11], [15] either correct only gain and offset mis-
matches [15] or exhibit other limitations such as a large
convergence time inherent to most adaptive methods and are
targeted for a specific ADC channel architecture [9], [11].

In general, no other method so far simultaneously offers the
following features of our proposal:

1) accurate, yet low-complexity, mismatch error estimation
and correction for all three main sources of error (gain,
offset, and timing);

2) robustness to the presence of large mismatches for the
three sources of error mentioned above;

3) no additional reference ADCs required;

4) accurate compensation over a wide bandwidth (close to
the whole Nyquist band).

This paper is organized as follows. In Section II, a brief
description of TI ADCs is provided, and the effect of mis-
match errors is analyzed and modeled. In Section III, a new
simple and efficient approach for the estimation of mismatch
errors is presented and compared with other methods found
in [3], [7], [11], and [14] in terms of accuracy and com-
putational complexity. Compensation of mismatch errors is
discussed in Section IV, where the issue of timing mismatch
compensation is analyzed and different interpolation meth-
ods are considered. A novel simplified form of Lagrange
interpolation polynomials is presented, which is shown to
outperform the other interpolation techniques. The method
is compared with other state-of-the-art proposals, both in
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Fig. 1. Interleaved ADCs.

terms of complexity and performance [3], [13]. The evaluation
and simulation results are provided in Section V, and the
conclusion is presented in Section VI.

II. TIME-INTERLEAVED ADCs
Fig. 1 shows the block diagram of a TI ADC array with
M ADCs working in parallel. Each ADC samples the input
signal with a sampling period T and a relative phase shift
(m — 1)T/M. We first consider the conversion of x(¢) into
yim(t) at the mth converter by modulation of x(¢) with the

Dirac comb function
o0

qim(t) = D 0t —kT —11) (1)

k=—o00

where
TIm = TT (2)

such that

o0
Yim (@) = xO)qim () = x() D 0 —kT —71m).  (3)
k=—00
Due to the time-shifting property of the Dirac function,
we get
(.¢]
Yim@) = D x(kT +71m)0t —kT —11m). (4
k=—o00

Hence, at the output of the mth ADC, we get the discrete-

time sequence of samples

ylm[k] :x(kT+TI)n)~ (5)

Then, considering the sampling procedure for the M ADCs,
we can write

M
i) = D yim()

3

M-

oo
D KT+ 21m)(t — kT — t1m)
=—00

m=1k=—
S x(n%)&(t—n%) ©)

where n = Mk + m — 1 so that the multiplexed output of
the M ADCs in the TI structure can be represented by the
discrete-time sequence

T
yi[n] =x (nﬁ) @)
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thus obtaining an equivalent sampling frequency M times
higher. From now on, index n refers to the sample number
at the output of the TI ADC array.

A. Gain and Offset Mismatch Errors in TI ADCs

Unfortunately, due to fabrication process inaccuracies, any
TI ADC architecture presents mismatch errors between the
different ADC channels, which lead to a nonideal behavior.
In this paper, we analyze the estimation and correction of
offset, gain, and timing mismatch-induced errors. Offset mis-
match is caused by different dc levels at each ADC output,
whereas gain mismatch results when the gain from the analog
input to the digital output is different for each ADC in the
interleaved array. Timing mismatch is more critical and will
be discussed in the next section.

Let us now consider the output of the mth ADC with only
offset and gain mismatch

Ymlk]l = Guyimlk]l + Op = Gux (kT + Tim) + Om  (8)

where G, and O,, are the gain and offset of the mth ADC,
respectively.

It is clear that G, and O, terms affect the multiplexed
output y[n] every Mth sample. Hence, by defining the discrete
sequences

o0
Pglnl= > Gln—kM] )
k=—o00
and
o0
Polnl= D" Oln—kM] (10)
k=—00
where G[n] = [Go,G1,...,Gy—1] and O[n] =
[0p, O1,...,0n—1], respectively (both defined for

0 < n < M —1). Thus, we can model the nonideal
output y[n] (affected by offset and gain mismatches) as a
function of mismatch errors on the ideally sampled signal
yr[n] as follows:

yln] = yi[n]Pg[n] + Po[n]. (11)

Several remarks can be made about (11). First of all, since
a time-domain product means convolution in the frequency
domain, gain mismatch errors introduce different gains to the
sampled band-limited replicas of x(¢). However, if x(t) = 0
or G, =a,Vm =1,..., M, where a is an arbitrary constant,
there is no distortion. This is because if  is the same for every
ADC in the array, there is no gain mismatch. Second, since
addition in time means addition in frequency, offset mismatch
errors will introduce constant spurious tones independently of
the input signal. In fact, distortion due to offset mismatch
errors will appear in the output spectrum even if x(r) = 0.
A similar expression to (11) is obtained in [12] following a
slightly different analysis.

B. Timing Mismatch Errors in TI ADCs

Timing mismatch is due to a phase shift At, in the clock
of ADC m, which results in deviation of the sampling instant

>
» & Amplitude

t At § i
Time

Fig. 2. Phase error while sampling.

(and hence an amplitude error in the sample taken), as illus-
trated in Fig. 2.

Now let us consider the mth ADC channel with all kinds
of mismatch errors. According to the notation used so far, the
output of such an ADC should be rewritten as

Ymlkl = Gux (kT + 7)) + Op, (12)

where now a timing mismatch is allowed between each ADC,
and therefore

m—1
Tm = T[m+Atm ZTT+Atm (13)

As shown in Fig. 2, a Ar shift in the sampling instant will
result in an amplitude error A A. Therefore, we can model the
effect of timing mismatch as an additive distortion to the ideal
sample vy, [k]

Ymlk]l = Gu(yimlk] + Aymlk]) 4+ Op.

It is clear from Fig. 2 and (12)—(14) that the error due to
timing mismatch depends on the dynamics of the input signal.
The output signal from the TI ADC with all mismatch errors
is then

(14)

y[n] = (yi[n] + Ay[n]) P[n] + Poln].

This manner to model the timing mismatch distortion as an
(unknown) additive error renders the sequential estimation and
correction of all mismatch errors possible and efficient, as will
be shown in the following sections.

15)

III. ESTIMATION OF MISMATCH ERRORS IN TI ADCs

Estimation of mismatch errors is required as a first step in
order to compensate for them. In addition, the quality of the
estimates should be as high as possible while keeping low
complexity for the compensation to be effective and feasible.
In this section, we propose an estimation method that is simple
and capable of accurately estimating the parameters even
for large mismatch errors. We assume a sinusoidal training
sequence to illustrate the method [i.e., x(¢#) = sin(2z ft + @),
f < 2M/T, such that at least two samples per period are taken
in each channel in order to avoid aliasing in the training phase].
The estimation of mismatch errors is performed offline, and
thus the exact training signal can be estimated as well without
much effort. For example, in [24], the training sequence
was estimated offline from a set of measurements of the
ADC output by minimizing the rms error between the acquired
data and an ideal ADC. Alternative methods to recover
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the training signal, such as sine-wave fitting, are described
in [3], [7], and [25].

For the estimation of the mismatch parameters, we compare
the output of each channel with an ideal sample (not the output
of the complete TI ADC array).

Consider the output of the mth ADC in the interleaved array
with gain, offset, and timing mismatch errors given by (14).
If we compare it with the ideal sample y,,[k], we get

Eo,[k] = ymlk] — yrmlk]
= (G — Dymmlk]

Then, after taking L data samples, we can define a set of
equations in vector form

Eo,, = Ym — ¥m = 1Oy + vo (17
where
Eo,, = [Eo,[1],..., Eo,[L1]" (18)
IL=I[1,..., 117 (19)
and
vo = [olll,...,volL]l] (20)

where volk] = (G — D)ymmlk]
LS estimates of the offset yield

+ G Aynlk]. Hence, the

O = (1.711) 1. Eo,, = 1)

1 L
- > Eo,lkl.
k=1

Therefore, the estimate of the offset for the mth ADC is
given by

L
Om = E Om

L
Z[(Gm — DY1mlk] + G Aymlk] + Opl. (22)
k:

We recall from (5) and (12)—(14) that Ay,lk] =
x(kT 4+ tpm + Aty) — x(kT + 711), and thus if y,[k] has
zero mean, so does Ay,[k]. The estimator is unbiased, and
therefore, we have from (22) that if L is large enough and
yiml[k] has zero mean, then ém = O,,. Note that the offset
estimator becomes unbiased for high values of L, and it
therefore is asymptotically unbiased.

Now consider the gain error function defined as

ymlk] — ém GmAynlkl 4+ Op — ém
ylm[k] y1m[k]

Eg, k] = =G+

(23)

Similarly, we can take L data samples and formulate a set
of equations in vector form as

A

-0
EGy = 22" — 1.6 + Vg (24)
Yim
where
EG, = [EG,[1],..., Eg, [L1]" (25)
I, =11,...,11¢ (26)
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and
ve = lvglll, ..., v6ILII] 27)
where vg[k] = (G Ay k] + O — O,n)/ylm[k]. Hence, the
LS estimates of the gain yield
Gn = (1,"11) "1 Eg,,
_go 4L Z G Aymlk] + Op — O, 8)

Yimlk]

We can therefore estimate the gain mismatch error G,, as

L
A 1
Gm - Z ; EG,,,[

G4+ L szAym[kHom Onm

ylm[k]

(29)

Having unbiased estimates of O,,, we see from (29) that
if L is large enough, provided y;,[k] # O, then Gm = Gy
If y;mlk] = 0, then that sample is simply discarded for the
estimation of G,.

Let us now define the remaining error due to timing mis-
match after correcting for offset and gain mismatches

1 N
A_[ym[k] - Om] -

m

EAtm [k] = Yim [k] = Aym[k]- (30)

Assuming a sinusoidal input signal, i.e., x(f) =
sin(2z ft + ¢), we can consider a simple and efficient manner
to estimate the timing mismatch as follows.

According to [1], the maximum amplitude error AA due
to a shift Ar in the sampling instant occurs for the higher
frequency component of the input signal. As we are using a
sinusoidal training signal, we should chose a frequency close
to half the channel sampling frequency, and the maximum
error will occur near the zero crossings, where the slope of a
sinusoidal signal is maximum. It can therefore be computed

from a vector of L data samples as

~ max [Eay, ]
fp = ————1=
2z fo

where fp is the frequency of the input signal. The derivation
of (31) can be found in [1].

Similar approaches for offset mismatch error estimation
have been derived in [11] and [15]. There, the offset estimate
is obtained either by simply averaging the output samples of
each ADC [11] regardless of the input sequence or by com-
paring the output samples with a (slower but more accurate)
reference ADC and averaging the result [15]. However, our
offset estimator leads to more accurate results with faster
convergence (in the sense that less samples are required to
obtain a good estimate), even in the presence of large gain and
timing mismatches. This feature is due to the lower variance
of the proposed estimator. Consider, for example, the estimator
proposed in [11], where the offset estimate is the average of
each ADC output

L
1
Z E [Gm(ylm[k
k=1

€19

Om = 1+ AyulkD) + Ol (32)
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Then, the variance is given by

. 1<
var(Om) = 7 > G (yimlkl + Aymlk]) + On—p . (33)
k=1

From (32), if y;,,[k] has zero mean, then Ay,,[k] also has
zero mean and 4 = O,,. Thus, the variance of the estimator
is given by

L

A 1
var(Om) = 7 > |G (yimlkl + Ayn[KD P,
k=1

(34)

Similarly, it can be easily shown that the variance of the
estimator proposed in this paper is given by

R 1<
var(On) = © > (G = Uyimlk] + GnAynlk])®  (35)
k=1

which is clearly much smaller.

On the other hand, the simple, accurate, and efficient manner
for the estimation of gain and timing mismatches presented
here is only possible thanks to the model described by (15).
For example, the algorithm for the estimation of gain (and
offset) mismatch errors derived in [7] requires matrix inver-
sion in the frequency domain after a fast Fourier transform
calculation, which implies a computational complexity that is
orders of magnitude higher. Also, the three methods mentioned
in [11] and [14] as widely used in the literature for gain
mismatch estimation require statistical information of the TI
ADC output, modulation with a pseudorandom signal, or
correlations, which obviously imply a higher computational
complexity than the method proposed here.

As for the timing mismatch estimation, the widely used
sine-fitting method, described, for example, in [3], involves
the following procedure:

1) applying a sine wave with a specified frequency to the

TI ADC;

2) recording L output samples of each channel ADC;

3) fitting a sine-wave function to each channel ADC output
using an LS criterion to minimize the sum of the squared
errors between this function and the recorded data;

4) choosing one of the M ADCs as a reference and
computing the relative parameter difference between all
ADC:s to obtain the individual timing mismatches.

This procedure obviously implies a higher computational

complexity than the estimator proposed in this paper.

Finally, the sequential estimation of mismatch errors pro-
posed in this paper, which uses the previous estimates of the
other error sources, enhances the estimation and gives robust-
ness to large mismatches in the other parameters. The offset
mismatch errors are computed first, then the gain mismatch
errors are computed (subtracting the offset estimates), and
finally, the timing mismatch (subtracting the offset estimates
and dividing by the gain estimates) is calculated.

The estimation of mismatch errors is performed offline, and
thus the exact training signal can be estimated as well without
much effort. For example, in [24], the training sequence was
estimated offline from a set of measurements of the ADC
output by minimizing the rms error between the acquired data

Yoacln]

MULTIPLEXER

o
& [~ m—~O—e]

Fig. 3. Possible gain and offset compensation scheme. Here, y[n] is the
multiplexed output of the TI ADC array.
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Fig. 4. Improved gain and offset compensation scheme, prior to multiplexing
the outputs of the ADCs.
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and an ideal ADC. In practice, the ideal input signal used as
reference is in fact estimated by the method proposed in [24].

The gain estimation requires the computation of the perfect
discrete-time version of the input sine wave. Due to this point,
bias on the gain estimation could be present. Nonetheless, this
effect was considered in the simulations, where it is shown
that even when the gain estimates are not exactly the real
values (see Table II), this hardly affects the compensation
performance (see Fig. 10).

We can assume that the issue of nonlinear distortion in
each ADC channel has been previously corrected either by
postprocessing or calibration, such that the effect of mismatch
errors in the interleaved structure is dominant. There are many
articles that treat that problem, for example, [24]. The focus
of this article is set on the effect of mismatch in interleaved
ADCs at a system level.

IV. COMPENSATION OF MISMATCH ERRORS IN TI ADCs

A. Compensation of Gain and Offset Mismatch Errors

Compensation of gain and offset mismatch errors in TI
ADCs can be easily accomplished by first subtracting the
estimated offset from the output samples of each ADC and
then multiplying by the inverse of the estimated gain error.
This procedure can be performed, for example, as shown in
Fig. 3 (after multiplexing the ADCs’ outputs), where y[n]
is the output of the TI ADC without any compensation and
yogcln] is the output of the TI ADC after compensating for
offset and gain errors, respectively.

Note that the gain and offset mismatch errors can also be
corrected before multiplexing the ADCs’ outputs, as shown in
Fig. 4, with lower computational complexity.
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B. Compensation of Timing Mismatch Errors in TI ADCs

After compensating for gain and offset errors, which can
be easily compensated for in a static manner as illustrated
in Figs. 3 and 4, the remaining error due to timing mismatch
between the different ADCs is usually quite big, especially for
high timing mismatches and higher frequencies of the input
signal [see (30) and (31)].

Errors due to timing mismatch arise when the input analog
signal is sampled at periodic but nonuniform time instants.
As the timing shifts have previously been estimated and
the overall ideal sampling frequency is known, we have the
following data available:

1) the actual instants where samples are being taken in each
ADC (ty[k] = kT + Aty);

2) the value of the samples taken at the actual time instants

after correcting for offset and gain errors yj,,[k];

3) the ideal sampling instants with no timing mismatches

tln] =nT/M.

Therefore, we can estimate the ideal samples that would
have been taken at the ideal time instants through interpolation
between the available samples using the available timing
information. For that purpose, we analyze three types of inter-
polations with different complexities, which are representative
of the problem formulation, i.e., linear interpolation, cubic
spline interpolation, and Lagrange polynomial interpolation.
For the problem at hand, we propose the use of Lagrange
interpolation, a particular form of polynomial interpolation,
since it provides the best solution among the three alternatives.

1) Linear Interpolation: Consider two consecutive samples
at the output of the TI ADC array (already corrected for
offset and gain mismatches) yogc[n] and yogc[rn + 1] taken
at the sampling instants #[n] = nT/M + Aty and t[n 4 1] =
(n + DT/M + Aty41, respectively. Then, we can trace a
straight line between both samples and estimate the sample
y[n + 1] belonging to the same line at the ideal sampling
instant t;[n + 1] = (n + 1)T /M. By definition, the slope will
be the same for any points included in the line, in particular

yogeln + 1] = yogeln] — yogeln + 11 — Jln + 1]
T/M + Aty41 — Aty Aty

(36)

where we can obtain the estimated sample from (36) as

yoacln + 11 — yoaeln]
T/M 4+ Aty — Aty
37

yln + 11 = yogeln + 11 — Aty

Note from (37) that only few operations per sample are
required to compute the corrected sample, and thus the com-
plexity is as low as we can get.

2) Cubic Spline Interpolation: Splines are piecewise poly-
nomials smoothly connected, where the joining points are
called knots. For a spline of degree N, each segment is
a polynomial of degree N and the additional smoothness
constraint imposes the continuity of the spline and its N — 1
derivatives at the knots. In general, cubic splines are preferred
since higher order splines do not result in better results [26].

Therefore, given N + 1 knots (¢, yogci),i = 0,1,..., N,
we can interpolate between all pairs of knots (¢;—1, Yogci—1)
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and (¢;, yogci) with polynomials ¢;(¢),i = 1, ..., N such that
q;(t)) = q{,,(t;) and g/ (t;) = ¢q]',,(t;), where " denotes the
derivative operator.

An algorithm for determining the polynomial ¢; (t) for each
segment is described in [27]. Following that approach, we can
define:

qi(t) = coi +eri(t — 1) +eait — 1) + et — 1) (38)

where the condition on the second derivative implies
tivy1 —t r—1

") = ki + kit (39)
40 i — o liv1 — 1
Integrating (39), we get
ki (tig1 = 0% | ki1 (1 = 1)

)= —— = 2 UL 40

ql() 2 tig1 — 2 ti+1_ti+al 0
and integrating (40) gives

ki (tig1 — 1) ki1 (1 —1)°
qi(1) 6 fie1 —1; 6 fior—1 Qi Bi 41

Thus, after applying the continuity and smoothness condi-
tions on ¢;(t) and its derivatives at the knots, each segment
polynomial can be determined, and the interpolation function
is obtained.

C. Lagrange Interpolation for Timing
Mismatch Error Correction

Lagrange interpolation is composed of a set of N orthonor-

mal polynomials of Nth order. Then, given a function f(¢) and
a data set f(¢1),..., f(ty), the nth polynomial described by

(42)

satisfies P,(t) =1if t = ¢, and P,(t) =0 fort =1¢;, j #n.
Hence, the polynomial defined as

N

P(t) = > [Pa(t) f (tn)]

n=1

(43)

is an approximation for f(¢) in the given interval, defined by
the available data set.

It is clear from (42) and (43) that P(t,) = f(tn),
n = 1,...,N. The approximation of f(¢) by P(¢r) will be
better at the center of the interval of data samples used for
fitting the polynomial (around ty,7) and the approximation
will be more accurate for higher N. However, if N is high,
convergence problems will arise in the borders, i.e., around
t; and ty.

In TI ADCs, f(t,) is the output sample of the TI ADC
array after correcting for gain and offset mismatches, and
t, = nT + At, is the sampling instant at the periodic but
nonuniform time interval defined by the sampling frequency
of each ADC and the (previously estimated) sampling shift
Aty in the mth ADC. Hence, we want to estimate f(¢) at the
correct sampling instant ¢.

From (42) and (43), that procedure requires N2 multipli-
cations, N(N — 1) divisions, and N sums for each sample.
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Thus, the complexity of such an approach can be quite high for
large N. Since we know a priori the values of subsequent t,,
thanks to the estimation of At, for each ADC, a simpler
implementation can be obtained after some considerations
inherent to TI sampling.

D. Simplified Lagrange Interpolation Due to the Periodic
Nature of Order M of the Polynomials for TI ADCs

For the particular application of interpolation in TT ADCs
for the compensation of timing mismatches, #, and ¢; in (42)
are the time instants of the samples taken, whereas ¢ is the
ideal time instant without mismatch for which the value of
the ideal sample will be estimated.

Given the periodic nature of the sampling time instant
deviations in TT ADCs, the following (more detailed) notation
can be used instead:

t, = nTs + Aty
tj = jTs + Atj. (44)

Note that for M TI ADCs, the time deviation will be the

same for every M sample, and therefore we can write
ntm = (I’l + M)Ts + Atn

tiym = (j+M)TS+Atj. 45)

Therefore, if we estimate the sample at the ideal time
instant ¢ at the center of the time window

t = (N/2)T;
t+MT, = (N/2 4+ M)T. (46)
Then
NoTt4+ MT, — ¢
Pt +MTy) =[] [S—HM}
, Ind+M — Lj4m
]
]:

N

t+ MT; — (j + M)Ty — At }

_g[(n+M)TS+Atn—(j+M)TS—Az,-
j=1
_ﬁ t— jT, — At;

= L (n—j)TS—i-Atn—Atj

J=1

:| =P,(t). (47)

That allows to conclude that the orthogonal polynomials
Py, () in the available time window are exactly equal for an M
time shift. This means that after M time instants, the Nth-order
orthogonal polynomial coefficients need not be computed all
over again as they coincide with previous calculations. Thus,
considerable simplifications in complexity can be obtained.
In addition, we know a priori the estimated values AAt,,,Vn,
and we can therefore compute the M N different polynomial
coefficients and store them in memory. Hence, we can think
of P,(t) = P,(m) form = 1,..., M. This leads to the time-
varying filter implementation shown in Fig. 5. The coefficients
of the resulting time-variant filter are known, so the computa-
tional complexity is not really a big issue. However, it could
also be implemented in parallel form, to further improve the
performance.

Plrlo() AL, ()
- |
yin)
Fig. 5. Time-variant filter for the implementation of Lagrange interpolation
polynomials.

TABLE 1
INTERPOLATION COMPUTATIONAL COMPLEXITY

Interpolation method | Additions | Products/divisions Total
Linear 4 2 6
Cubic splines 28 23 51
FIR filter [3] N N 2N
Simplified Lagrange N N 2N
Lagrange N 2N? — N 2N?
Method in [13] MN M(N +1) M(2N +1)

Note that this is the exact solution for the Lagrange
orthonormal interpolation polynomials and not an finite-
impulse response (FIR) approximation as proposed in [3].
An FIR approximation would imply that P,(z) takes the
same value for all ¢, which is clearly not the case. Such
an approximation can lead to poor performance under certain
conditions such as high-frequency input signals or large timing
mismatches [3]. As will be shown by simulations, the method
proposed here overcomes these limitations. Table I shows
the computational complexity associated with the different
interpolation methods previously analyzed, measured in terms
of number of operations per output sample. The computational
complexity of the algorithm presented in [13] is also included.
Because the quality of the mismatch parameter estimates is the
key for the compensation performance, for a fair comparison,
we used our method to estimate the gain, offset, and timing
mismatch parameters in all cases. Therefore, all methods
compared use exactly the same estimates, and only the way
in which they are used to perform the compensation differs.

V. SIMULATION RESULTS

A set of simulations have been performed in order to
evaluate the proposed method for the estimation and correction
of mismatch errors in TI ADCs. The method was analyzed in
its two main stages: 1) estimation of the mismatch quantities
and 2) correction of gain, offset, and timing mismatch errors
using the estimations obtained. The focus of the correction
stage is on timing mismatch compensation performance, as
this is the challenging part of the compensation procedure.

Following the model introduced in [13], a TI ADC array
model composed of eight ADCs of 12-bit resolution was
considered, each operating at 260 MHz for an aggregate
sampling rate of 2.08 GS/s. This particular configuration
was chosen so as to maximize the benefits of interleaving.
For that purpose, the following condition should be
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TABLE 11
REAL AND ESTIMATED MISMATCH ERRORS

ADC, | ADC> | ADC3 | ADCy | ADCs | ADCs | ADCr | ADCs
O 0.0213 | 0.0112 | 0.0429 | 0.0294 | 0.0125 | 0.0260 | 0.0331 | 0.0317
O 0.0213 | 0.0112 | 0.0429 | 0.0294 | 0.0125 | 0.0260 | 0.0332 | 0.0317
G 1.0444 | 1.0445 | 1.0398 | 1.0214 | 1.0046 | 1.0297 | 1.0457 | 1.0250
G 1.0444 | 1.0445 | 1.0399 | 1.0214 | 1.0046 | 1.0296 | 1.0457 | 1.0250
At[ps] 4.15 1.96 36.13 15.57 3.20 44.39 2.61 3.27
Atlps] | 4.23 2.05 | 36.19 | 15.63 | 3.29 | 44.38 | 2.71 3.35
1. T
—=—Averaging method 0. 1 X W b 58 g . Xi‘:\hen; ::::gg::::g: i
1 —e—Proposed estimator 0.07 @ i —&-No compensation
—True value 10 —-Ideal behavior

Estimated offset

80 90 100

30 40 50 60 70
Number of samples used for estimation

Fig. 6. Offset mismatch convergence as a function of the number of samples
used.

satisfied [16]: M < (B + 1)In(2), where M is the number
of interleaved ADCs and B is the bit resolution of each ADC.
In this case, (B + 1)In(2) = 9.01, so eight ADCs are used.

The input signal used as training sequence for the
estimation of mismatch errors is a sinusoid x;(t) =
sin(2z ft), f < 130 MHz, such that each channel ADC fulfills
the Nyquist sampling criterion. For the compensation stage,
the input signal considered is a sinusoid x.(t) = sin(2x ft),
1 < f <1000 MHz.

Following this setup, several simulations were performed.
The results are analyzed in the following sections.

A. Performance of the Estimators for Mismatch Errors

First, a TI ADC array with 5% gain and offset errors and
a timing mismatch of 10% was simulated in MATLAB for
a sinusoidal input signal of 730 MHz and a total sampling
frequency of 2.08 GHz. Table II shows the offset, gain, and
timing shifts for each ADC (randomly generated with normal
distribution), along with the corresponding estimations using
the method described in Section III. As can be observed in
Table II, the estimated parameters are very close to the real
values.

As an example, we show in Fig. 6 the convergence of
the estimated offset mismatch as a function of the number
of samples using both our estimator and the commonly used
averaging method.

B. Analysis of Performance in Timing Mismatch
Compensation for Several Interpolation Methods

Fig. 7 shows the ENOB at the output of a TI ADC array
when compensating for the timing mismatch error with either

ENOB

| |
0.05 . . 0.2 0.25 03
Frequency/fs

Fig. 7. Timing mismatch compensation by linear interpolation and interpo-
lation by cubic splines. Red lines: ideal behavior and uncompensated TI ADC
with mismatch errors.

linear interpolation (black line) or cubic spline interpolation
(blue line). In this case, a 12-bit resolution ADC is assumed
with a 5% mismatch in gain, offset, and sampling time. The
ENOB of the TI ADC prior to any compensation is also shown
(red line). As illustrated in Fig. 7, a 5% dispersion in the
parameters causes the effective resolution to fall from 12 to
about 4 bits, and therefore there is no doubt that their effect
must be compensated for.

It can also be observed that linear interpolation is able
to correct only timing mismatch errors when the frequency
of the input signal is very low. This condition means that
an important oversampling is required. On the other hand,
using spline interpolation improves the performance of the
compensation in the sense that a wider bandwidth is correctly
compensated for, but an oversampling of about three is still
needed. Therefore, that approximation is still insufficient.

In this paper, we propose the use of Lagrange polynomials
for interpolation in order to overcome the problems of the
two previously mentioned interpolators. We show that it is
possible to obtain good compensation results while keeping
the complexity low, thanks to the simplified implementation
proposed in Section IV-D.

C. Compensation Results Using the Proposed
Simplified Lagrange Interpolator

Fig. 8 shows the ENOB before and after compensation with
Lagrange interpolation filters of orders 8, 16, 40, 80, 160,
and 240. It can be observed that the compensation strategy
effectively reduces the distortion due to mismatch errors,
achieving close to ideal behavior. Also, a higher compensation
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—5-N=80
—A-N=160
—N=240
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\ |- Ideal

ENOB

025 03
Frequency/fs

Fig. 8.  Timing mismatch compensation by Lagrange interpolation for
different polynomial orders (8, 16, 40, 80, 160, and 240). Red lines: ideal
behavior (top) and uncompensated TI ADC with mismatch errors (bottom).

—%—Sample position in data window
—5-No compensation

ENOB

¥ ;
60 ) 80 100 120 140 160
Estimated sample

Fig. 9. Timing mismatch compensation by Lagrange interpolation for dif-
ferent sample positions during estimation N = 80. Red line: uncompensated
TI ADC with mismatch errors.

bandwidth is obtained when using higher order Lagrange inter-
polation filters. For example, when using a filter of order 160,
about only 12% of oversampling is needed to obtain an ENOB
higher than 10 in the signal frequency band.

Recalling the previous discussion about the best approxima-
tion zone for the Lagrange polynomial given N data samples in
Section IV-C, we simulated the ENOB obtained at the output
of the compensator for a filter of order 160 as a function of
the sample position within the data window during estimation.
The results are shown in Fig. 9. As discussed, the best result
is obtained around #y/2, in this case 80.

D. Spectral Purity After Compensation:
Comparison With Other Methods

Fig. 10 shows the spectrum of an ideal TI ADC (top), the
simulated TI ADC with 5% gain and offset mismatch errors
and 10% timing mismatch, the output of the compensator
proposed for N = 160, and the output of the compensator
proposed in [13]. It can be observed that the distortion is
successfully canceled through compensation by our proposal,
thus not only enhancing the ENOB but also improving the
SFDR for about 50 dB. On the other hand, it can also be
observed that the method proposed in this paper outperforms
by far that of the method described in [13].

The performance of the Lagrange interpolator proposed
in [3], which is an FIR approximation of what we propose

o Ideal TI ADC (without mismatches)
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Fig. 10. Output spectrum of an ideal ADC and an uncompensated
TI ADC with 5% gain and offset and 10% timing mismatches, the output of
the compensator proposed for N = 160, and the output of the compensator
proposed in [13].
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Fig. 11.  Output spectrum of an uncompensated TI ADC with 5% gain
and offset and 10% timing mismatches and the output of the compensator
proposed in [3] for N = 160 and 10%, 1%, and 0.1% timing mismatches.

here, was evaluated as a function of the amount of timing
mismatch. The results are shown in Fig. 11. The top plot
of Fig. 11 is the output of an uncompensated TI ADC with
5% gain and offset mismatches with 10% timing mismatch.
The three remaining plots are the spectra at the output of
the compensator for 10%, 1%, and 0.1% of timing mismatch,
respectively. As discussed earlier, it can be observed that this
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Fig. 12.  Output spectrum of an ideal TI ADC and an uncompensated TI
ADC with 5% gain and offset and 10% timing mismatches and the output
of the compensator proposed for N = 160 with 5% gain and offset and
10% timing mismatches.
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Fig. 13. ENOB as a function of Ar variation before compensation, after
compensating only for gain and offset mismatches, and compensating for
gain, offset, and timing. Here, N = 160 in the Lagrange interpolation filter.

approximation is able to cancel the distortion as long as the
timing mismatch is low enough.

Fig. 12 shows the compensation performance of the pro-
posed method under the same mismatch conditions when using
a more realistic input signal for validation. The signal used is
a randomly generated binary sequence passed through a raised
cosine filter and is Quadrature Amplitude Modulation modu-
lated. It is shown that the spectral purity of the compensated
signal is also maintained in this case.

E. Robustness Tests

An additional simulation is presented in order to show the
robustness of the method to changes in the size of timing
mismatch. The results are shown in Fig. 13, where a random
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ENOB

9 10
ADC resolution

Fig. 14. ENOB as a function of the ADC resolution before (dashed line)
and after compensation (solid line) for 5% gain and offset mismatches and
10% timing mismatch.

gain and offset mismatch with a maximum value of 5% was
added to each channel, while the amount of timing mismatch
varies from 0.1% to 15% of the total sampling period Tj.
As shown in Fig. 13, the ENOB enhancement is almost
constant independently of the amount of timing mismatch even
for a high-frequency input signal.

Finally, we show in Fig. 14 the compensation performance
as a function of the ADC resolution for a TI ADC with 5%
gain and offset mismatches and timing mismatch within 10%,
using an interpolator of order 160. It can be observed that the
compensated ADC achieves an ENOB close to the ideal ADC
resolution in all cases, although the resolution enhancement is
a little lower when the ADC resolution is higher than 10 bits.
However, an important improvement is observed even in such
conditions.

Some possibilities to improve the performance of the pro-
posed method are to increase the number of analyzed samples,
to use a more accurate estimated training signal than that
achieved by the method proposed in [24], or to use a more
accurate interpolation method, possibly at the cost of an
increased computational complexity.

F. Validation With Experimental Data

The experimental results presented in this section are based
on the sampled data of a 6-bit 2-GS/s TI successive approx-
imation register (SAR) ADC. This converter test chip is
detailed in [28], and it has been designed to be used as a
test platform to evaluate mixed-signal calibration algorithms
like [29]. However, it can also be used to test digital calibration
techniques as in this case.

The core of the chip is a hierarchical TI ADC
(see Fig. 15). It includes eight parallel channels (slices)
where each channel consists of one Track and Hold
Amplifier (THA) and two subinterleaved SAR ADCs.
Each THA is managed by a clock signal at frequency
Fgice = Fy/8 = 2 GHz/8 = 250 MHz. The THA and
SARs are synchronized by a clock divider that generates
two clock signals from THA clock with 25% duty cycle at
Fsar = Fiice/2 = 125 MHz. After quantization, the two
SAR outputs are multiplexed to provide a single 6-bit output
bus at Fgjice rate. The eight THA clock phases are provided
by a multiple-phase clock generator. Finally, the digital TI
ADC outputs (8 channels x 6 bits) are sent to a high-speed
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Fig. 17.  ENOB as a function of frequency before (squares) and after

(triangles) compensation for the TI ADC. The line with circles shows the
maximum ENOB of a single-channel ADC.

transmitter interface. Note that in this design, the full data rate
(12 Gbits/s) without decimation is sent off-chip.

The ADC fabricated in a 0.13-gm CMOS process achieves
33.9 dB of signal-to-noise-and-distortion ratio and 192 mW
of power consumption at 1.2 V. Fig. 16 shows the chip die
micrograph.

Fig. 17 shows the ENOB of the TI ADC output before
and after compensation and the maximum ENOB of a single-
channel ADC for a set of measured frequencies, where the

effectiveness of the method can be observed. In this case, an
increment of about 2 bits in the ENOB is achieved, showing
good agreement with the simulation results.

VI. CONCLUSION

A novel method for efficient estimation and correction of
mismatch errors in TI ADCs has been presented. The esti-
mation of mismatch errors is efficient, accurate, and effective
while keeping the complexity of the algorithm low. The com-
pensation strategy uses the estimated parameters for a simple
offset and gain mismatch error correction and implements a
low-complexity Lagrange interpolation filter to correct errors
due to timing mismatch. The simulation results show that
the proposed compensation strategy achieves an almost ideal
behavior over a wide bandwidth. In addition, the compensator
effectively cancels the distortion even in the presence of large
mismatches.
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