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• Differences in precipitation over the
Andes in Central Patagonia are striking.

• The sensitivity of water yield modelling
to precipitation inputs is large.

• Small differences among datasets trans-
late into large differences in water yield.

• It is essential to evaluate the uncertain-
ty related to input when modelling ES.

• Using the best precipitation data is fun-
damental for modelling hydrological ES.
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Chubut River Basin
Water yield is a key ecosystem service in river basins and especially in dry regions around theWorld. In this study
we carry out amodelling analysis of water yields in the Chubut River basin, located in one of the driest districts of
Patagonia, Argentina. We focus on the uncertainty around precipitation data, a driver of paramount importance
forwater yield. The objectives of this study are to: i) explore the spatial and numeric differences among sixwide-
ly used global precipitation datasets for this region, ii) test them against data from independent ground stations,
and iii) explore the effects of precipitation data uncertainty on simulations of water yield. The simulations were
performed using the ecosystem services model InVEST (Integrated Valuation of Ecosystem Services and
Tradeoffs) with each of the six different precipitation datasets as input. Our results show marked differences
among datasets for the Chubut watershed region, both in the magnitude of precipitations and their spatial
arrangement. Five of the precipitation databases overestimate the precipitation over the basin by 50% or more,
particularly over themore humidwestern range. Meanwhile, the remaining dataset (Tropical RainfallMeasuring
Mission — TRMM), based on satellite measurements, adjusts well to the observed rainfall in different stations
throughout the watershed and provides a better representation of the precipitation gradient characteristic of
tem Services and Tradeoffs; ES, ecosystem services; CHB, Chubut River Basin; UCH, Upper Chubut River Basin; MCH, Middle
Climate Research Unit; TRMM, Tropical Rainfall Measuring Mission; GPCC, Global Precipitation Climatology Centre; TRMMv6,
, Tropical Rainfall Measuring Mission version 7; INTA, Agriculture Technology National Institute; LULC, land use/land cover;
ions.

essacg), flaherty@cenpat-conicet.gob.ar (S. Flaherty), brandizi@cenpat-conicet.gob.ar (L. Brandizi), solman@cima.fcen.uba.ar

http://crossmark.crossref.org/dialog/?doi=10.1016/j.scitotenv.2015.07.148&domain=pdf
http://dx.doi.org/10.1016/j.scitotenv.2015.07.148
mailto:pessacg@cenpat-conicet.gob.ar
mailto:flaherty@cenpat-conicet.gob.ar
mailto:brandizi@cenpat-conicet.gob.ar
mailto:solman@cima.fcen.uba.ar
mailto:pascual@cenpat-conicet.gob.ar
http://dx.doi.org/10.1016/j.scitotenv.2015.07.148
http://www.sciencedirect.com/science/journal/00489697
www.elsevier.com/locate/scitotenv


226 N. Pessacg et al. / Science of the Total Environment 537 (2015) 225–234
the rain shadow of the Andes. The observed differences among datasets in the representation of the rainfall
gradient translate into large differences in water yield simulations. Errors in precipitation of +30% (−30%) am-
plify to water yield errors ranging from 50 to 150% (−45 to −60%) in some sub-basins. These results highlight
the importance of assessing uncertainties inmain input data when quantifying andmapping ecosystem services
with biophysical models and cautions about the undisputed use of global environmental datasets.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Freshwater flows are essential for ecosystems, agriculture, industry,
human consumption, hydropower, fisheries, and recreation. Not sur-
prisingly then, recent developments in ecosystem services modelling
for resource management have focused on water yield as a key ecosys-
tem input.

Patagonia is rich in water resources, though population growth, and
urban and industrial development are taking a toll on the capacity of
watersheds to deliver water related benefits to people. Besides that,
climate change scenarios predict a decrease in annual precipitations
and an increase in temperature for most of the region (Nuñez et al.,
2008; Garreaud and Falvey, 2009), making the situation worse. For
instance, freshwater is becoming a limited resource for different urban
areas in the region, especially along the arid Atlantic coast where most
people live.

Here we conduct amodelling analysis of water yields for the Chubut
River basin in Patagonia, Argentina. The Chubut River is ideal for such an
analysis because it is a relatively small river basin, and is yet important
to asmany as 50% of the population in the Chubut Province. This river, as
most of the rivers that flow across the arid Patagonia, is fundamental for
agricultural irrigation and water supply for human consumption. This
basin is also an important case study in terms of ecosystem services
(ES) due to the existence of a number of regional projects aimed at cre-
ating hydroelectric dams which will provide irrigation water for new
agricultural areas (Plan Director, 2013).

All ecosystem services models involving freshwater derive in part
from precipitation data as a critical input. Precipitation is a key driver
of the hydrological cycle, as well as one of the most difficult variables
to measure because of its high spatial heterogeneity and temporal vari-
ability (Junzhi et al., 2012). Accurate measurements of precipitation are
important to environmental scientists, as well as to a wide range of de-
cision makers related to faming, industry, emergency management,
urban areas, and natural areas (Ebert et al., 2007). However, estimating
precipitation is difficult in many parts of the world due to the logistic
complexity and high costs of establishing and maintaining the required
infrastructure (Yilmaz et al., 2005). Patagonia is not an exception and
the spatial characterization of precipitation based on actual field data
is sparse at best, due to nonexistent ground-based radars and a poor
network of rain gauges.When precipitation data at the scale of a water-
shed are required the only alternative is to use global precipitation
datasets. Such data sets, available in different resolutions, are based on
ground observations, satellite estimation, a combinations of both, or
outputs from general circulation models. Whereas many studies have
found that global precipitation datasets provide a good representation
of temporal trends and global-scale spatial distribution, they often ex-
hibit marked differences among themselves at the regional scale
(Getirana et al., 2011). Getirana et al. (2011) compared six daily and
sub-daily precipitation datasets and their impacts on the water balance
of the Negro River Basin (Amazonas). They found that gauge-based
data are the most accurate; however some satellite and model-
based datasets can reproduce the water cycle at the basin scale
and monthly time step fairly well. In addition to this, Hamel and
Guswa (2015) found that the uncertainties introduced by errors in
climate input data are significant and spatially heterogeneous, af-
fecting the spatial distribution within the Cape Fear watershed of
areas with high and low water yields.
Whereas the above studies suggest that precipitation data can be
highly uncertain, systematic studies of the consequences of this uncer-
tainty for resource management priorities are rare. In Patagonia, the
consequences of this lack of analysismight beworse due to data scarcity
and the vastness of the region.

In this context, the aim of this study was to analyze the agreement
among different global precipitation datasets and with data from avail-
able independent ground stations and to explore the effect of precipita-
tion data uncertainty on simulations of water yield over a Patagonian
pilot watershed, the Chubut River Basin (CHB). Because so much inter-
est in water yield stems from assessments of ES, we used the model In-
VEST to generate spatially explicit estimates of water yield in different
sub-basins of the CHB.

The paper is organized as follows: Section 2 describes i) the InVEST
model used for simulatingwater yield, ii) the precipitation datasets avail-
able for the CHB, and iii) the characteristics of the CHB. In Section 3, we
present a comparison of the precipitation datasets and the sensitivity of
water yield in the Chubut watershed to the uncertainties in precipitation
data using the InVEST model. We also present a calibration of the model
to the ecohydrological parameter Z. Finally, Section 4 includes discussion
and conclusions.

2. Methodology

2.1. The Chubut River Basin as a case study

The Chubut River originates in the western extra Andean region of
Patagonia (Rio Negro province) and flows for about 800 km, first
south and then east across the Chubut province and into the Atlantic
Ocean (Fig. 1). The basin reaches an altitude of 2300 m in its source,
Nacimiento, at an altitude of 950 m, is the higher and westernmost
flow gauge station used for this study. The Chubut River's hydrograph
is characterized by two peak discharges, one in spring from snowmelt
and the other in the fall from rainfall.

The CHB basin has a total area of 57,400 km2 and is divided in 3
major sub-basins, upper (UCH), middle (MCH) and lower (LCH), them-
selves divided in a total of 24 sub-basins (Fig. 1). The lower basin is the
most populated, concentrating more than 50% of the Chubut province
population. The Chubut River is the only water supply for over
200,000 people (Commendatore and Esteves, 2004).

One multipurpose dam, Florentino Ameghino, with a capacity of
1500 hm3, was built in 1968 for energy production and to regulate
flow of the lower basin for flood control, irrigation, and water provision
(Plan Director, 2013).

2.2. Precipitation data

A number of global or quasi-global precipitation datasets, with dif-
ferent spatial and temporal resolutions, and generated using different
methodologies are available. For the purpose of this study and consider-
ing the dimensions of the basin, only datasets with the higher spatial
resolutionwere selected. In total, sixmean annual precipitation datasets
were analyzed (Table 1): theClimate ResearchUnit (CRU); theWillmott
from the University of Delawere; the Global Precipitation Climatology
Centre (GPCC), and three different versions of the precipitation datasets
produced by the Tropical Rainfall MeasuringMission (TRMM), which is



Fig. 1. Location and topography (metres above sea level) of the Chubut river basin and the three major sub-basins: upper Chubut (UCH), middle Chubut (MCH) and lower Chubut (LCH).
The red points show the location of the rain gauge stations. The numbers in the lower-right panel indicate the location of the 24 sub-basins the watershed is divided in.
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a joint mission between NASA and the Japan Aerospace Exploration
Agency.

The first three datasets are generated using ground data (i.e. rain
gauge stations) and different interpolation methods. The spatial resolu-
tion of these datasets is 0.5° × 0.5° (approximately 50 km). The three
TRMM versions are based on satellite measurements and differ on the
algorithms used. The first version used in this work – TRMM – uses the
algorithm3B42,which generates, calibrates and combines themicrowave
and infrared precipitation estimations with a 3 hour temporal resolution.
This product is then rescaled to monthly data (Huffman et al., 2007). The
other two versions, TRMMv6 and TRMMv7, use the algorithm 3B43,
which combines the estimates of the 3B42 algorithm with the global
rain gauge data gathered by the Global Precipitation Climatology Centre
(GPCC) (Huffman, 2012). TRMMv7 changes the geolocation to latitude
and longitude, adds many variables, layers and gauge relative weighting
in regard with TRMMv6. The three satellite precipitation datasets
have a 0.25° × 0.25° spatial resolution. The TRMM satellite orbits
Table 1
Precipitation datasets considered as input in the InVEST model.

Dataset Reference Spatial
coverag

CRU University of East Anglia Climate Research
Unit

Mitchell and Jones (2005) Global

GPCC Global Precipitation Climatology Centre Schneider et al. (2011) Global
Willmott University of Delawere Legates and Willmott (1990) Global
TRMM Tropical Rainfall Measuring Mission Huffman et al. (2007) 50°N to
TRMMv6 Tropical Rainfall Measuring Mission Huffman et al. (2007) 50°N to
TRMMv7 Tropical Rainfall Measuring Mission Huffman et al. (2007),

Huffman (2012)
50°N to
at an inclination of 35° and the spatial coverage extends from 50°N
to 50°S latitude. We analyze the mean annual precipitation for the
period 1998–2008, a time span common to all datasets, for a section
of Patagonia including the CHB basin and large enough to appreciate
regional precipitation patterns (42 to 50°S and 73 to 60°W).

The uncertainty in the grid observationswas evaluated as the spread
among the different precipitation datasets. This methodology allows
determining the degree of agreement among the precipitation datasets.
The spread was calculated as the standard deviation of the 11-year
mean of each precipitation datasetwith respect to themean precipitation
dataset ensemble.

In terms of ground stations, there was data available for eight rain
gauges over the basin (Fig. 1). This ground stations are operated by
the National Meteorological Service, the Agriculture Technology National
Institute (INTA) and the National Secretary of Water Resources. The rain
gauge stations are regularly subjected to quality control, however, they
may be subject to errors due strong winds or topography (Groisman
e
Temporal
resolution

Spatial
resolution

Source

1901–2009 0.5° × 0.5° Rain gauge CRU TS3.1

1901–2014 0.5° × 0.5° Rain gauge
1900–2009 0.5° × 0.5° Rain gauge

50°S 1998–2009 0.25° × 0.25° Satellite (3B42 algorithm, version 6)
50°S 1998–2010 0.25° × 0.25° Satellite + rain gauge (3B43 algorithm, ver. 6)
50°S 1998–2010 0.25° × 0.25° Satellite + rain gauge (3B43 algorithm, ver. 7)
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and Legates, 1994; Daly et al., 1994; Luo et al., 2005). Nevertheless, and
given the lack of other sources of data, they have been considered as ref-
erence in this study.

We chose to focus on mean precipitation over a decade because
ecosystem services models focus on average yields when identifying
specific regions that might be targeted as valuable for different ecosys-
tem services—in this case the delivery of water.

2.3. Annual water yield simulation

Weused InVEST, a suite of models tomap and valuate the goods and
services from nature that sustain and fulfil human life (http://www.
naturalcapitalproject.org/InVEST.html). These models are spatially ex-
plicit and were developed by the Natural Capital Project with the aim
of identifying where investment may enhance human well-being and
nature. We used the InVEST water yield model (Reservoir Hydropower
Production) to analyze the total annual water yield in the CHB. The basic
output of this module is a gridded map of water yield.

Annual water yield (Y) for each pixel on the landscape (x) is calcu-
lated as:

Yx ¼ 1−
AETx
Px

� �
� Px

where AET is the annual actual evapotranspiration and P is the annual
precipitation.

The relationship between AET and P is based on the Budyko curve
(Budyko, 1974) as follow:

AETx
Px

¼ 1þ PETx
Px

− 1þ PETx
Px

� �w� �1=w

where PETx is the potential evapotranspiration for pixel x.
The empirical parameter w characterizes the natural climatic-soil

properties and its expression is:

wx ¼ Z � AWCx
Px

þ 1:25

where AWC is the plant available water content and Z is an empirical
parameter. Potential evapotranspiration is defined as:

PETx ¼ Kc lxð Þ � ETox

where ETo is the reference evapotranspiration and Kc is the plant
evapotranspiration coefficient associated with the LULC (lx) in each
pixel. Details about the model can be found in Sharp et al. (2014).

Thewater yieldmodel requires several inputs from different sources
(see Table 2). ETo was obtained from the Food and Agriculture Organiza-
tion of the United Nations (FAO).
Table 2
InVEST data needs: Input files for the water yield module (InVEST 3.0.1).

Input Description/units

Root restricting layer depth Soil depth at which root penetration is strongly inhibited b
of physical or chemical characteristics/mm

Precipitation Average annual precipitation/mm yr−1

Plant available water content Fraction of water that can be stored in the soil profile that
available for plants' use/mm

Reference evapotranspiration Average annual reference evapotranspiration/mm
Land use/land cover (LULC) Land use/land cover map
Watersheds Main watershed
Subwatersheds Subwatersheds within the main watersheds
RootDepth Maximum root depth for vegetated LULC classes/mm
Plant evapotranspiration
coefficient

Plant evapotranspiration coefficient for each LULC class

Seasonality factor (Z) Seasonal distribution of precipitation
The FAO estimates ETo using the Penman–Monteith method (Allen
et al., 1998). The LULC, root restricting layer depth, plant available
water content, and soil depthmapswere all provided by INTA (GeoInta,
http://geointa.inta.gov.ar). The watershed and the subwatersheds poly-
gons were calculated using Arc Hydro tools (ArcGIS 10.1) and checked
against existing maps from the National Secretary of Water Resources
of Argentina (Giraut et al., 2010).

We first explored annual water yield in different sub-basins using
each of the sixmean annual precipitation gridded datasets.We analyzed
the overall geographic pattern of water yield over the basin, and com-
pared the specific regional patterns produced by different precipitation
datasets.

A validation analysis with streamflow data was performed for one
station in the basin, Los Altares, located in the MCH (Fig. 1). Due to the
lack of water yield measurement in the basin, streamflow data at Los
Altareswas comparedwith the aggregated annualwater yield predicted
from all upstream sub-basins contributing to the point in the river
where the gauge is.

To further analyze the sensitivity ofwater yield from InVEST to precip-
itation uncertainty, another round of simulations was performed using
controlled precipitation errors around observed data from the output of
the TRMM algorithm 3B42 (TRMM in Table 1). For a group of seven
sub-basins (those with water yield values higher than 106 m3 yr−1) and
for a group of four pixel types with contrasting conditions of LULC,
mean annual precipitation was systematically varied around observed
values and the response in annual water yield was recorded. We used
the TRMM annual mean precipitation dataset plus systematic errors
of±10%,±20%, and±30% as inputs to InVEST. The result of this analysis
is a plot of relative change in water yield for different systematic errors in
precipitation (Paturel et al., 1995; Goyal, 2004; Xu et al., 2006 among
others).

2.3.1. Ecohydrological parameter Z
The ecohydrological parameter Z is by definition an empirical

parameter which captures the climate seasonality, rainfall intensity,
and topography characteristics in the basin. However, the parameter Z
can be also used as a calibration constant to correct the simulations for
the effects of specific processes the InVEST model does not consider,
such as the frequency of annual events, the sub-parcel spatial variability
of soil water storage capacity, and the synchronicity of the energy-
precipitation cycles (Milly 1994; Kareiva et al., 2011).

Three methods have been proposed to calculate Z (Sharp et al.,
2014): i) as a linear function of the number of precipitation events
per year (Donohue et al., 2012); ii) using global estimations of w (Xu
et al. 2013; Liang and Liu 2014), iii) estimation from calibration using
streamflow data.

For the baseline run, we used a Z value of 5 which was calculated as
the mean value of one-fifth of the number of rain days per year in each
rain gauge (following Donohue et al., 2012). Alternatively, a calibration
analysis was performed with respect to the parameter Z using the
Format Source

ecause GIS raster INTA soil map http://geointa.inta.gov.ar

GIS raster Precipitation datasets (see Table 1)
is GIS raster INTA & Ministry of Agriculture, Food &

Fisheries, British Columbia (Canada)
GIS raster FAO (http://www.fao.org)
GIS raster INTA http://geointa.inta.gov.ar
GIS polygon GIS toolsArcHydro
GIS polygon GIS tools/ArcHydo
Integer number Canadell et al. (1996)
Decimal number between 0
and 1.5

FAO (http://www.fao.org)

Integer number between 1 and 30 Donohue et al. (2012)

http://www.naturalcapitalproject.org/InVEST.html
http://www.naturalcapitalproject.org/InVEST.html
http://geointa.inta.gov.ar
http://www.fao.org
http://geointa.inta.gov.ar
http://www.fao.org
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difference between annual streamflow observed at Los Altares (MCH,
Fig. 1) and estimated annual water yield upstream of that point as the
calibration criteria. For each of the precipitation datasets, simulations
using alternative values of Z within the full range of possible values
(1–30) were performed. We report the value of the calibration criteria,
as the percent difference between annual streamflow and water yield,
as a function of Z values for different precipitation datasets.

3. Results

3.1. Mean annual precipitation

All six different datasets capture thewest–east gradient over Patago-
nia (Fig. 2) of the annual mean precipitation. However, they exhibit
large differences in the location and extent of precipitation maxima
over the Andes (southward 40°S). These differences are associated
with the intrinsic difficulties in representing the strong precipitation
gradient over this area, where annual mean precipitation ranges from
6000 mm yr−1 on the Chilean coast to less than 300 mm yr−1 in
Argentina, just a few tens of kilometres downstream from the Andes
(Smith and Evans, 2007).

Over the CHB, the precipitation datasets show maximum values
ranging from around 1000 mm yr−1 over the west side of the basin to
less than 200 mm yr−1 over the mid and lower basins. The largest
differences among datasets are located over the west border of the
basin, in consonance with the aforementioned problems to represent
maxima over the Andes.

The main characteristics of each dataset over the CHB are summa-
rized in a Fig. 3. The annual mean precipitation for the 11-year period
over the CHB ranges from around 150 mm yr−1 for CRU and TRMM
(algorithm 3B42) to 450 mm yr−1 for TRMMv6 (algorithm 3B42). This
Fig. 2.Mean annual precipitation 1998–2008 (mmyear−1) for six dataset (a) CRU, b) TRMM, c)
the maps.
variability in the mean value is larger than the mean precipitation in
the LCH and MCH sub-basins.

Moreover, there are large differences in the representation of the
25th and 75th percentile. TRMM and CRU show the smallest spread
among percentiles associated with a smaller west–east precipitation
gradient.

Finally, the spread among precipitation datasets over the entire basin
was calculated (Fig. 4). In general, large spread valueswere observed over
the entire basin, reaching 300 mm yr−1 in some UCH sub-basins, which
represent 50% of the mean annual precipitation.

Summarizing, there is a large spread among precipitation datasets in
terms of annual precipitation averages over the 11-year period. The
largest differences are registered over the western side of the basin,
which extends over the strong precipitation gradient characteristic of
the rain shadow east of the Andes. In particular, these differences are as-
sociated with how far east high Andean precipitations are projected
over the basin by different datasets (Fig. 2).

The different datasets have very different performances when com-
pared to data from rain gauge stations (Fig. 5). This kind of analysis are
best done by first interpolating the point-based rain gauge data to areal
precipitation (at the same scale of the precipitation datasets) using in-
terpolations techniques (i.e. Thiessen polygon or Kriging). However,
the paucity of rain gauge data for the CHB did not allow us to properly
estimate rainfall on an areal basis. We therefore choose a straight com-
parison of point rain gauge values with the nearest point corresponding
to the precipitation dataset (Fig. 5). This method can introduce local er-
rors due to the low spatial resolution of the gridded precipitation
datasets. The insufficient and unevenly distributed rain gauge net-
work can also introduce errors in the comparison with precipitation
datasets due to the effect of wind and topography. The effect of
strong winds in precipitation, in particular during snow events, is
TRMMv6, d) TRMMv7, e)GPCC, f)Willmott. The Chubut River Basin bounds are depicted in



Fig. 3. Box plots for the mean annual precipitation in the Chubut river basin for the six
observational dataset.

Fig. 5. Precipitation (averages for 1998–2008, in mm yr−1) for the different datasets in
regards to the rain gauge stations.
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generally misrepresented (Groisman and Legates, 1994). Further-
more, since rainfall increases sharply with altitude, precipitation
over areas with complex topography tends to have systematic errors
(Daly et al., 1994; Luo et al., 2005). Despite these possible sources of
error, gridded precipitation datasets provide an overall picture of
biases and differences among databases and their general effects
as inputs to ES models.

In general, the datasets overestimate the precipitation with re-
spect to rain gauge data in the more humid stations, particularly
over the west of the CHB near the Andes. Willmott and GPCC present
the largest overestimations for most of the stations over the UCH
Fig. 4. Spread among precipitation datasets with respect to th
sub-basin. In general, the datasets show small biases in the MCH
and LCH sub-basins, represented by the rain gauge stations “Los
Altares” and “Trelew”, respectively.

TRMM (with the 3B42 algorithm) is the database that best adjusts to
the observed rainfall in different stations throughout the watershed.

Interestingly, large differences in precipitation are portrayed by
different TRMM versions. Both versions of TRMM that use the 3B43 al-
gorithm (TRMMv6 and TRMMv7), which incorporate rain gauge data,
overestimate the precipitation much more than the TRMM, which
used the 3B42 algorithm, without rain gauge data. This suggests that
in the CHB, where rain gauge data are scarce, the result of incorporating
e mean precipitation dataset ensemble. (Unit: mm yr−1).
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these data into the satellite estimations of precipitation may decrease
the quality of the dataset.

3.2. Sensitivity of water yield to precipitation errors

Because precipitation is a major driver of water yield, it comes as no
surprise that different precipitation datasets produce large differences
in simulated water yield (Fig. 6). These simulations where performed
using the same inputs and basin configuration; but precipitation data
from each of the datasets listed in Table 1.

All datasets agree in allocating maximum water yields to the upper
basin, close to the Andes, but with very important differences not only
Fig. 6. Sensitivity of water yield (106 m3 yr−1) modelli
in the magnitude but in the location of water yield. In agreement with
the largest differences in the representation of precipitation, the largest
water yield differences are observed among sub-basins of the UCH. In
particular for the sub-basins of the UCH with higher water production
thewater yield simulated varied around 40–50% depending on the pre-
cipitation data used as input.

Simulations performed using precipitation fromCRU and TRMM, the
ones that best reproduce the rain gauge data (Fig. 5), show the lowest
values of water yield over the UCH. These two same data sets, however,
produce a very different geographic pattern of water yield at the sub-
basin level (Fig. 7), particularly for the most western sub-basins in the
UCH (4, 5, 7, and 10). In fact, the relative ranking of sub-basins in
ng with InVEST to different precipitation datasets.



Fig. 8. Bias between annual water yield modelling and streamflow data in Los Altares (for
the period 1998–2008, in 106m3yr−1) for the different datasets. To calculate the predicted
annual water yield for Los Altares we added up the annual water yield for the sub-basins
upstream the gauge stations.
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terms ofwater yield iswidely discordant depending onwhichprecipita-
tion data were used.

On the other hand, simulations forced with GPCC, Willmott, and
both TRMMv6 and TRMMv7 which used the 3B43 algorithm, double
the water yield magnitude in upstream sub-basins when compared
with TRMM (3B42 algorithm). The differences inwater yield estimation
over the middle and lower basin, on the other hand, are not as large.

The validation for Los Altares (Fig. 8), located in the MCH basin
(Fig. 1), shows that the water yield simulated using the TRMM precipi-
tation dataset and the InVEST model presents the lowest bias in regard
to the streamflow data for this location (23%), followed by the simula-
tion using CRU, with a bias of 78%. The rest of simulations using the
other precipitation datasets overestimate water yield by more than
300%. These results suggest that the validation using streamflow data
and global precipitation datasets are consistent throughout the basin.

The specific sensitivity of water yield to systematic errors in precip-
itation varies both among representative sub-basins and pixels with
different LULC class selected throughout the watershed (Fig. 9). The
sensitivity curves show a strong dependence of water yield on changes
in precipitation. Errors of +30% in precipitation lead to changes in
water yield ranging from 50 to 150%, depending on the location of the
sub-basin. Errors of −30% in precipitation led to changes between
−45 to −60%, in the sub-basins with the highest values of water
yield (Fig. 9a). The differences between the impact of negative and
positive errors are inherent to the shape of the Budyko curve, used by
InVEST to model the relationship between the annual actual evapo-
transpiration and precipitation. The sensitivity to positive precipitation
errors depends to a great extent on the LULC (Fig. 9b). The sensitivity
to precipitation errors is larger for LULC categories with higher values
of Kc, a parameter related to the potential evapotranspiration of differ-
ent LULC classes.

The spread among annual mean precipitation from different
datasets (Fig. 3) is in the same order ofmagnitude as the idealized errors
introduced in these simulations. That means that the plausible errors of
±30% that amodel user can introducewhen an arbitrary rainfall dataset
is considered may lead to errors as large as −45 to 150% in the water
yield estimation at the sub-basin scale, highlighting the importance of
seriously scrutinizing precipitation and other input parameters by com-
parison with field data and sensitivity analyses.

The Tecka sub-basin (number 10 in Fig. 1) provides an interesting
example of critical data voids. With the exception of TRMM (algorithm
Fig. 7. Scatter Plot of water yield by sub-basin for CRU and TRMM (3B42 algorithm)
precipitation datasets. Points and labels represent different sub-basin in the watershed
(see Fig. 1).
3B42), different precipitation datasets indicate this is the area where
most water is produced in the basin (Fig. 6), and also the area with
the largest spread among precipitation datasets (Figs. 2 and 3). In addi-
tion, it is the sub-basin presenting the largest sensitivity to precipitation
errors (Fig. 9a). Meanwhile, no rain gauge stations are available to vali-
date the actual precipitation in this sub-basin.

3.3. Calibration to the ecohydrological parameter Z

Besides providing a calibration of the model to parameter Z, the
analysis also provides a detailed analysis of the sensitivity of water
yield to Z (Fig. 10). In general, changes in Z have a large impact on
water yield simulations. Extreme values of Z (1 and 30) lead to differ-
ences in water yield simulations of 148% and 47% respectively when
compared with the baseline run (Z = 5, TRMM precipitation, Fig. 10).
Lower Z values have larger effects on water yield simulations than
higher values. This is particularly important in arid basins such as the
CHB, where the number of rain events – and therefore the Z value – is
low.

In terms of calibration, a full agreement betweenwater yield simula-
tions and streamflow data is found for Z= 3when TRMM precipitation
data were used (Fig. 10). This Z value, which is comparable to that cal-
culated considering the number of rain events (Z = 5), produces a re-
duction in estimatedwater yield of 37%with respect to the baseline run.

On the other hand, water yield for the CRU precipitation data, which
provided a poor fit to streamflow data for the baseline value Z= 5, pro-
vides a full agreement for Z = 15.

Meanwhile, no value of Z within the range was found that allows for
a calibration of the model for the remaining precipitation datasets (i.e.
GPCC, TRMMv6, TRMMv7, Willmott). For example, a value of Z = 30,
the maximum value that the parameter can take, leads to biases in Los
Altares larger than 165%.

4. Discussion and conclusions

The sensitivity of annual water yield modelling in the Chubut River
Basin to different precipitation inputs was striking, with errors in
precipitation of +30% (−30%) leading to water yield errors ranging
from 50 to 150% (−45 to −60%) in some sub-basins.

While these results are particular to Chubut River basin they have
been found in other basins that span steep gradients in elevation and
precipitation (Sánchez-Canales et al., 2012). In CHB these conditions
are met because the headwaters of the Chubut River are located over
the strong rainfall gradient at the rain shadow of the Andes. The
Andes strongly affect the regional climate by blocking the disturbances
embedded in the westerly flow, producing the precipitation over this
area and influencing regional wind patterns and precipitation (Insel



Fig. 9. Sensitivity to precipitation errors, (a) per sub-basin and, (b) per point relatedwith different landuse categories (in the legend, in brackets, is the Kc value for each landuse category).
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et al., 2009). Uplift on the west side of the Andes leads to hyper humid
conditions, while down slope subsidence dries the eastern plains lead-
ing to arid and highly evaporative conditions (Garreaud et al., 2013).
Some databases provide a better representation of this precipitation
gradient, but most of them extend the maximum rainfall values to the
east and, consequently, overestimate the precipitation over the west
side of the CHB. The spread among precipitation datasets is larger than
30% over this part of the basin. The comparison of precipitation datasets
with rain gauge data over the CHB indicates that the TRMM (algorithm
3B42) dataset is the most accurate. However, it is important to remark
that the distribution of precipitation over this area is poorly known, es-
pecially over the rainfall maximum area, because of the paucity of rain-
gauge stations in this inaccessible region (Garreaud et al., 2013).

In the end, small differences among datasets in the extent of precip-
itationmaxima over the Andes translate into large differences in the es-
timation of the amount of water received by the Chubut watershed.
Moreover, small differences among the same datasets in the spatial dis-
tribution of precipitationmaxima over theAndes produce very different
estimates of the relative amount of water received by different water-
sheds and of their relative water yield.

As was evident from the results for the Tecka sub-basin, where pre-
cipitation varied around 40% among datasets and water yield around
60% depending on the precipitation dataset used as input, it is essential
Fig. 10. Calibration criteria for the period 1998–2008, as a function of Z value for the different
precipitation datasets.
when producing ecosystem service production functions to understand
the different sources of uncertainty.

The results of this study also suggest that water yield predictions are
highly sensitive to the natural variation in land use land cover character-
istic of this watershed in particular and Patagonian watersheds in gen-
eral, which typically include some kind of gradient including forests,
grasslands, and shrublands. In particular, a strong water yield depen-
dence on the evapotranspiration coefficients characteristic of different
vegetation types was evident. Further research is needed to fully ex-
plore the effects of changes in LULC not only on water yield predictions
but also on other ES which might have a stronger dependence on these
changes (i.e. sediments retention, nutrient transport).

The analysis of the ecohydrological parameter Z shows that in this
kind of arid basins, small differences in the selection of Z lead to large
differences in water yield simulations. This is due to the model being
more sensitive to variations at lower Z values. Previous researchers
have found that for other basins with larger number of annual precipi-
tations events – and therefore larger Z values – the sensitivity of the
model to Z is not relevant (Hamel and Guswa, 2015; Sánchez-Canales
et al., 2012). Our specific results show that the effect of large precipita-
tion errors on model fit cannot be absorbed by the parameter Z.
Adjusting the value of Z allows for a discrimination of the effects of er-
rors due to model structure, parameter estimation, and climate vari-
ables (Hamel and Guswa, 2015).

Considered together, the results highlight the importance of not
using global datasets on precipitation and other inputs to ESmodels un-
critically, for errors inmapping ES could be large, both inmagnitude and
in the geographical representation of the actual provision of ES. The re-
sults also highlight the value of rain gauge and streamflow stations to
validate different datasets. A better rain and streamflow gauge network
may improve the characterization of the precipitation and streamflow
variability in time and space, provide a better validation of precipitation
datasets, andmay even allowbuildingmore local precipitation datasets of
higher resolutions. But establishing and maintaining a good pluviometric
and streamflow network is expensive and would require several years to
have a desirable temporal resolution.

Remote sensing could potentially solve some of these problems in
the short term by providing spatial rainfall over large areas (Duan
et al., 2012). In the case of CHB, TRMM (algorithm 3B42) appears to
be a good option to use as precipitation input. TRMMdata are supported
both by rain gauge data and by the good fit of the InvEST water yield
model as compared to streamflow data. But satellite products such as
TRMM have low spatial resolution for modelling experiments targeted
at characterizing the provision of ES services at the sub-basin level.
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The statistical downscaling of satellite products is an option that could
improve the spatial resolution of precipitation gridded datasets. This
methodology is based on the relationship between precipitation and
other environmental factors, such as topography and vegetation (Jia
et al., 2011). Further research is required to evaluatewhether thismeth-
odologywould be useful to ES research in theCHB and otherwatersheds
of Patagonia.

Ecosystem services are increasingly the framework within which
conservation and resource management is conducted (Liu et al., 2010;
Tallis and Polasky, 2009).While the conceptual appeal of ecosystem ser-
vices is obvious, the limitations of the most basic physical data such as
precipitation andwater yield are oftenoverlooked. If ecosystemservices
are to guide local decisions andmanagement actions, a considerable in-
vestmentwill need to bemade in obtaining data on precipitation,which
is a primary driver of so many ecological processes.
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