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A novel and easy approach to implement is developed to analyze the degree of convergence, confinement,
and enhancement (Γ) of calculated electromagnetic fields generated in plasmonic nanoparticles (NPs) of arbitrary
shape. The approach is based on computing the variation of the volume trapped (VT) between a constant Γ
surface around a metal NP and the nanoparticle surface boundary as a function of the enhancement itself.
This method is a new and a more practically relevant approach to test the convergence than measures
traditionally employed. For the test cases outlined here, the converged VT vs Γ curve could be fitted very
accurately to a triple exponential expression which makes it convenient to determine the mean field enhancement
within a trapped volume outside the NP, as well as the degree of localization and spreading of the hot spots
(HSs) in 3D space. The technique introduced here should aid the understanding and a rational design of
plasmonic devices based on metal NPs, where the near field plays a major role, such as in plasmon enhanced
spectroscopies and plasmon imaging.

Noble metal nanoparticles (NPs) exhibit a variety of optical
phenomena related to the size and shape dependent surface
plasmon resonances (SPR) that can be excited by electromag-
netic fields.1-3 Such optical phenomena are able to produce large
scattering cross sections at specific wavelengths as well as
strongly confined and enhanced electromagnetic fields in spatial
regions usually called hot spots (HSs).4-6 HSs are critically
important to all plasmon enhanced spectroscopies such as
surface-enhanced raman scattering (SERS),5,7-11tip-enhanced
raman spectroscopy (TERS),12-14 metal-enhanced fluorescence
(MEF),2,15,16 and even single-molecule spectroscopy
(SM-SERS),17,18 which have opened the way to a variety of
applications such as biosensors,9,19,20 plasmon nanolithography,21

and probes for scanning near optic microscopy (SNOM),4,22

among others.
It is therefore of great importance to be able to accurately

determine the electromagnetic field enhancement as well as its
degree of localization inside a HS, both from basic science and
for applications in plasmonic devices. For example, an accurate
determination of the electromagnetic field enhancement is very
important to evaluate the relative contribution of the chemical
and electromagnetic mechanism proposed for SERS or to
evaluate the distance dependence of SERS, TERS, and MEF
around a nanostructure.23,24 SM-SERS is perhaps the application
where the above-mentioned issues are particularly relevant since

recent experiments have demonstrated that the electromagnetic
mechanism is all that is required to explain the observed single
molecule sensitivity.25

The electromagnetic field enhancement (Γ), in a given point of
space, will be defined as Γ ) E ·E*/E0 ·E0

*, where E is the complex
electromagnetic field at this point and E0 is the incident field. In
order to compute the electromagnetic field enhancement inside a
HS there are analytical solutions for particles with simple shapes,
like spheres and spheroids, while for other shapes a number of
numerical methods have been developed such as the finite
difference time-domain, (FTDT),9,26 the discrete-dipole approxima-
tion (DDA), the multiple multi-pole technique (MMT),27 and the
T-MATRIX method, to name some of the most popular ones.28

Accounting for the high local variation of the electromagnetic
field at a HS is a problem that any electrodynamic calculation
has to deal with, and it is an issue which is directly related to
the convergence of the method with respect to the multipole
order used in the expansions in some analytical methods or to
the grid size parameter in the numerical approaches.29

In this work, we choose the DDA method because this is a
particularly powerful method for isolated NPs or small ag-
gregates in a complex surrounding environment and can be
applied for arbitrary shaped NPs and arrays. In this method the
object of interest is represented as a cubic array of N polarizable
elements.3,30-33 The optical response of this array is determined
by solving in a self-consistent way the induced dipole moments
in each element. The output of this procedure can be used to
determine far field optical properties (scattering and extinction
cross sections), as well as near field optical properties, such as
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the electromagnetic field close to the NPs. The grid spacing (d)
of this cubic array is a key parameter for a high quality
simulation of the far field and near field optical properties.

Although the convergence criteria is almost evident for the
computation of the far field optical properties, i.e., when any
significant variation of the extinction spectra is produced upon
changing the grid spacing, the criteria of convergence for the
near field is less obvious. One approach commonly used is to
vary the grid spacing and compute the electric filed enhancement
versus some distance for a direction along the polarization
vector.34 Although this criteria could be very useful for some
applications, it has some degree of arbitrariness in choosing the
plane as well as the direction along which the field enhancement
is computed, specially for particles of arbitrary shape.

Another important aspect that needs to be considered is not
only the value of the field enhancement but also a measure
definition of the degree of localization of the enhanced fields
around the NP, a parameter of fundamental importance for many
plasmonic applications such as those mentioned above.

In this letter, we introduce the concept of variation of the
trapped volume (VTV) which will allow us to characterize the
enhancement of the electromagnetic field and its localization
inside a HS as well as to give a convergence criteria for the
electrodynamics method used.

Here we will be focused on HSs around single metal NPs so
that the trapped volume (VT) will be defined as the volume
enclosed between a constant Γ surface around a metal NP and
the NP surface boundary. A plot of VT vs Γ for different grid
spacing results in a series of curves that will be termed as VTV
curves. If convergence has been reached the trapped volume
for a value of the enhancement should be invariant upon
changing the grid size.

In order to show the capabilities of the VTV approach, we
have computed VT vs Γ for HSs generated around silver NPs in
vacuum for three different shapes: prolate spheroid, cylinder,
and triangular prism. In all of the calculations, we have used
the dielectric function tabulated by Palik.35 Surface scattering
corrections or quantum size effects were not taken into account
since the main purpose of this work is to test the VTV approach.
Including such a correction on the dielectric constant should
produce smaller values of Γ, specially for the prolate spheroid
NP, but it does not have any implications on the results and
conclusions of this work. The computation of Γ and VT were
performed using a customized version of DDSCAT 6.1 program
(see the Supporting Information for more details).

Figure 1a shows the VTV curves for a prolate spheroid with
an aspect ratio ar ) 2 (ar ) major axis/minor axis) when
illuminated at λ ) 432 nm with polarization along the major
axis, having the dimensions indicated in the inset of this figure.
In order to compute VT for different grid spacing we have taken
only one of the HS generated in one end of the NP. There is
certainly a great variation of the VTV curves varying the grid
spacing, but after some critical value of d ≈ 0.1654 nm, all the
VTV curves become indistinguishable. At this point we can
ensure that this curve represents the most reliable variation of
VT with Γ. For comparison, it should be noted that the extinction
spectra for this NP (not shown) is fully converged using d ≈
0.5 nm, which indicates a more demanding computational effort
needed to calculate near field optical properties accurately.

A “tomography” of the converged enhancement field distribu-
tion is depicted in Figure 1b for the planes indicated in the inset
of Figure 1a. These planes were chosen taking into account the
symmetry of the Γ distribution with respect to planes C and F.
The maximum field enhancement is achieved, as expected for

a dipole SPR, at both ends of the major axis along the
polarization direction. As it can be appreciated from these
images, the Γ values are larger for the plane closer to the
nanoparticle tip (plane D), reaching the maximum values on
plane C and the negligible ones on plane F.

We will now consider as a second example a silver nanocylinder
(whose dimensions are indicated in the inset of Figure 2a),
illuminated with polarization along the major axis at λ ) 537 nm.
It should be noted that the trapped volume considered here
corresponds to either one equivalent HS generated at either end of
this NP. Computation of the VTV curves for different grid spacing
indicates that for d ≈ 0.3627 nm convergence has been achieved
as shown in Figure 2a. The corresponding tomography of the
electromagnetic field enhancement is depicted in Figure 2b for
some representative planes, perpendicular (planes D, E, and F) and
parallel (planes A, B, and C) to the NP major axis (indicated in the
inset of Figure 2a). At variance with the silver spheroid, the highest
enhancement is found around the perimeter of the circle surround-
ing both ends of the major axis.

As a final example, we will examine a silver triangular
nanoprism with equal edge lengths, illuminated on a direction
perpendicular to the triangular cross section, with polarization
along the height of the triangular face. The actual dimensions
and geometry of this NP as well as the planes chosen to plot
the enhancement distribution are indicated in the inset of Figure
3a. In this case, there are six regions of maximum field
enhancement located at each of the six vertexes of the
nanoprism. From the three HSs on each face of the triangular
prism (which are a mirror image of the HS’s on the other
triangular face), there is one whose enhancement is on average
greater than the other two as shown in Figure 3b. For the
computation of the VTV curves we have chosen the volume

Figure 1. (a) VTV curves for a prolate Ag NP with aspect ratio ar )
2, for different values of grid size parameter (d): d0 ) 0.9922 nm, d1

) 0.4967 nm, d2 ) 0.3310 nm, d3 ) 0.1985 nm, d4 ) 0.1654 nm, d5

) 0.1417 nm. The incident electromagnetic field wavelength is λ )
432 nm, and the polarization is along the major axis. The inset outlines
the NP dimensions as well as the planes chosen to plot the electric
field enhancement (Γ) distribution. (b) Images of the electric field
enhancement for each of the planes outlined in the inset of panel a.
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encompassed by one of the hottest spot. The VTV curves
obtained for different grid spacing are shown in Figure 3a,
indicating that convergence is reached for d ) 0.222 nm. A 3D
slicing of the electromagnetic field enhancement for three
relevant planes at very small distances from the NP (planes A,
B, and C) is shown in Figure 3b, where it can be appreciated
the description outlined above concerning the equivalence of
the HSs. For the enhancement distribution on plane B, we note
two equivalent HSs that spread along the NP edge. The analysis
of the distribution of Γ through plane C shows the four less
intense HS’s mentioned above, but at variance with the other
two (more intense HSs), they are localized around the corners
and do not spread around the edges.

So far, we have shown the capabilities of the VTV approach
to analyze the convergence of the electrodynamics simulations
and the importance of performing a detailed 3D mapping of
the electromagnetic field enhancement on different planes around
HSs. As it has been pointed out, two relevant quantities in most
of the plasmonic applications mentioned above are the maximum
field enhancement achievable and the degree of confinement
of Γ for a given HS. The first one is of utmost importance,
since many numerical electrodynamic methods often fail to asses
it, as there are serious numerical problems to calculate the
enhancement in regions very close to the NP surface, which
corresponds here to a region within a very small trapped volume.
The second quantity plays a central role, for example, in
estimating the distance dependence of the sensing capabilities
within a given HS or the resolution achievable in plasmonic
imaging and lithography. Our approach to give an answer to
these questions consists in finding a convenient mathematical
expression (VT(Γ)) for each of the converged VTV curves
obtained for the different NPs.

According to the behavior of the converged VTV curves for
the three case studies analyzed, and using elementary physical
arguments, VT(Γ) should fulfill the following conditions:

(a) it should be positive and strictly decreasing
(b) it should go to zero for a finite value of Γ (ΓVT)0)
(c) it should not be defined or should not have any physical

sense for Γ > ΓVT)0

We found that the following expression:

VT(Γ)) (ΓVT)0 -Γ)∑
i)0

2

Aie
-Γ⁄ki (1)

satisfies the requirements mentioned above and also is able to
describe quite accurately the converged variation of VT with Γ
for the three case studies considered in this work. The excellent
agreement of fitting the converged DDA calculations with eq 1
is evidenced by the small root-mean-square (rms) deviation
values and the excellent correlation coefficients for each
optimization as shown in Table 1, along with the corresponding
fitting parameters.

Let us now shed some light into the first question pointed
out above, i.e., the maximum Γ produced in a given HS, by
analyzing eq 1 for each specific case considered in this letter.
For VT ) 0 eq 1 should give the maximum enhancement when
Γ ) ΓVT)0, but this situation corresponds to the unphysical case
of an infinitesimally small object. A realistic situation should
be to consider the finite volume of a small object suitable to be
coupled to the evanescent field of a HS, such as a molecule.
For example, let us regard a typical small volume of 0.125 nm3

which could correpond to a dye molecule such as rhodamine
B. Now, it is straightforward, using eq 1, to estimate the

Figure 2. (a) VTV curves for a cylinder Ag NP with aspect ratio ar
) 3, for different values of grid size parameter (d): d0 ) 2.2459 nm,
d1 ) 1.5192 nm, d2 ) 1.1229 nm, d3 ) 0.5044 nm, d4 ) 0.3627 nm,
d5 ) 0.3028 nm. The incident electromagnetic field wavelength is λ )
573 nm and the polarization is along the major axis. The inset outlines
the NP dimensions as well as the planes chosen to plot the electric
field enhancement (Γ) distribution. (b) Images of the electric field
enhancement for each of the planes outlined in the inset of panel a.

Figure 3. (a) VTV curves for a triangular nanoprism with equal edge
lengths Ag NP, for different values of grid size parameter (d): d0 )
0.6656 nm, d1 ) 0.4439 nm, d2 ) 0.2664 nm, d3 ) 0.2422 nm, d4 )
0.2220 nm, d5 ) 0.1776 nm. The incident electromagnetic field
wavelength is λ ) 465 nm, the propagation direction is perpendicular
to the triangular cross section while the polarization is along the height
of the triangular face. The inset outlines the NP dimensions as well as
the planes chosen to plot the electric field enhancement (Γ) distribution.
(b) Images of the electric field enhancement for each of the planes
outlined in the inset of panel a.
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minimum electromagnetic field enhancement enclosed by this
volume for each HS on each NP shape analyzed, as tabulated
in Table 2.

From these values, the HS generated around the cylinder NP
is able to produce the greatest enhancement followed by the
prism and the spheroid. As is evident, this minimum enhance-
ment calculated corresponds to the ideal situation in which the
small object (for example the molecule under consideration)
can be exactly located within the shape of the volume trapped
for each case. In general the shape of VT does not exactly match
the shape of the object under consideration, and no matter how
small the object volume would be, it will experience a strong
gradient of electromagnetic field enhancement.

As there is a gradient of field enhancement (as VT decreases
the magnitude of Γ increases), it is convenient to define the
average enhancement inside a given VT:

Γj )Γmin +
1

VT(Γmin)
∫Γmin

ΓVT)0 VT(Γ) dΓ (2)

where Γmin is the enhancement for the VT under consideration.
It can easily be shown inserting eq 1 into eq 2 that if the
following condition is fulfilled:

Γmin ,ΓVT)0 - kj with kj > ki ∧ j* i (3)

where kj is the largest coefficient ki in eq 1, then the mean field
enhancement is almost exactly given by the expression:

Γj ≈ Γmin + kj (4)

The above approximation (eq 4) can be used to calculatej Γj
inside a VT ) 0.125 nm3 for the three cases analyzed as the
condition given by eq 3 is satisfied. These values, shown in
Table 2, are slighter larger than Γmin.

As a rigorous test on the accuracy of the present VTV
approach, we have compared our Γ values with exact electro-
dynamic calculations performed by Calandera et al.36 for a
prolate gold spheroid with ar ) 3 and major axis 63.3 nm
illuminated at λ ) 633 nm. The maximum enhancement
computed by these authors corresponds to a value very close
to the NP surface, so that in order to make the comparison we
take the volume of a gold atom (VT ) 0.0125 nm3) and compute
the enhancement. We obtained a value of �Γ ) 42, which is

in excellent agreement with the exact result �Γ ) 47. (See the
Supporting Information for details.)

Let us finally consider the problem of quantifying the degree
of localization and spreading of HSs. In order to give an answer
to this issue we found it convenient to define a HS as the region
of space where the enhancement is greater than one. Using this
definition it is straightforward taking Γ ) 1 in eq 1 to obtain
the trapped volume that encloses enhancements greater than one.
This trapped volume, hereinafter denoted as Λ, constitutes a
very useful measure of the degree of localization of each HS,
i.e. the smaller Λ, the more confined within the HS will the
enhancement be. For the three HSs analyzed in this work the
degree of confinement increases in the following order: cylinder
< spheroid < prism (see Table 2). This feature, although evident
by direct inspection of Figures 1b, 2b, and 3b, can now precisely
be quantified for particles of arbitrary shape. Note also that for
VT ) Λ the average enhancement computed using eq 4 for each
HS is almost exactly given by the corresponding value of k2

given in Table 1.
In summary, in this letter by making a 3D analysis of the

volume trapped by regions of constant electromagnetic field
enhancement and the NP surface boundary, we give a quantita-
tive approach which provides the following:

• A new procedure to analyze the convergence of the
enhancement in 3D space for arbitrary shaped NPs. This
approach is more stringent than measures traditionally
employed to test convergence and can readily be applied
to new particles or structures that have no pre-existing well-
known guidelines.

• An accurate estimation of the degree of confinement (Λ)
of the enhancement (Γ) inside a given trapped volume.

• A mathematical expression for the variation of these trapped
volumes as a function of the electromagnetic field
enhancement.

• A method to answer the long-standing question of how far
these evanescent fields would produce a significant en-
hancement within a certain volume around the NP.

• An accurate assessment (within the capabilities of the
electrodynamic method employed) of the mean field
enhancement experienced by a finite volume element such
as a molecule, a quantum dot (fluorescent semiconductor
NPs), located inside a hot spot.

An important direction for further work is to address the
question of how to extend the present approach to HSs produced
in more complex nanostructures such as nanoparticle clusters
where more significant enhancements are expected. This issue
would require a careful analysis but we think that the present
approach is a good starting point toward predictable electro-
dynamic modeling of the near field enhancement.
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