
Journal of Algebra 432 (2015) 22–61
Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Projective resolutions of associative algebras and 

ambiguities ✩

Sergio Chouhy, Andrea Solotar ∗

IMAS and Dto de Matemática, Facultad de Ciencias Exactas y Naturales, 
Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 1, 
(1428) Buenos Aires, Argentina

a r t i c l e i n f o a b s t r a c t

Article history:
Received 13 October 2014
Available online xxxx
Communicated by Luchezar L. 
Avramov

MSC:
primary 16S15, 16E05
secondary 16D40, 16S38, 16D90

Keywords:
Hochschild cohomology
Resolution
Homology theory

The aim of this article is to give a method to construct bimod-
ule resolutions of associative algebras, generalizing Bardzell’s 
well-known resolution of monomial algebras. We stress that 
this method leads to concrete computations, providing thus 
a useful tool for computing invariants associated to the con-
sidered algebras. We illustrate how to use it by giving several 
examples in the last section of the article. In particular we 
give necessary and sufficient conditions for noetherian down–
up algebras to be 3-Calabi–Yau.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The invariants attached to associative algebras and in particular to finite dimensional 
algebras have been widely studied during the last decades. Among others, Hochschild 
homology and cohomology of diverse families of algebras have been computed.
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The first problem one faces when computing Hochschild (co)homology is to find a 
convenient projective resolution of the algebra as a bimodule over itself. Of course, the 
bar resolution is always available but it is almost impossible to perform computations 
using it.

M. Bardzell provided in [4] a bimodule resolution for monomial algebras, that is, 
algebras A = kQ/I with k a field, Q a finite quiver and I a two-sided ideal which can be 
generated by monomial relations; in this situation, the set of classes in A of paths in Q
which are not zero is a basis of A. Moreover, this resolution is minimal. A simple proof 
of the exactness of Bardzell’s complex has been given by E. Sköldberg in [29], where he 
provided a contracting homotopy. Of course, having such a resolution does not solve the 
whole problem, it is just a starting point.

The non-monomial case is more difficult, since it involves rewriting the paths in terms 
of a basis of A. Different kinds of resolutions for diverse families of algebras have been 
provided in the literature. For augmented k-algebras, Anick constructed in [1] a pro-
jective resolution of the ground field k. The projective modules in this resolution are 
constructed in terms of ambiguities (or n-chains), and the differentials are not given 
explicitly. In practice, it is hard to make this construction explicit enough in order to 
compute cohomology. For quotients of path algebras over a quiver Q with a finite number 
of vertices, Anick and Green exhibited in [2] a resolution for the simple module associ-
ated to each vertex, generalizing the result of [1], which deals with the case where the 
quiver Q has only one vertex. Also, Y. Kobayashi in [23] proposes a method to construct 
a resolution which is difficult to use in concrete examples.

One may think that the case of binomial algebras is easier than others, but in fact 
it is not quite true since it is necessary to keep track of all reductions performed when 
writing an element in terms of a chosen basis of the algebra as a vector space.

In this article we construct in an inductive way, given an algebra A, a projective 
bimodule resolution of A, which is a kind of deformation of Bardzell’s resolution of 
a monomial algebra associated to A. For this, we use ideas coming from Bergman’s 
Diamond Lemma and from the theory of Gröbner bases. The resolution we give is not 
always minimal, but we prove minimality for various families of algebras.

In the context of quotients of path algebras corresponding to a quiver with a finite 
number of vertices, our method consists in constructing a resolution whose projective 
bimodules come from ambiguities present in the rewriting system. Of course there are 
many different ways of choosing a basis, so we must state conditions that assure that 
the rewriting process ends and that it is efficient.

One of the advantages of doing this is that, once a bimodule resolution is obtained, 
it is easy to construct starting from it a resolution of any module on one side and, in 
particular, to recover those constructed in [1] and [2] for the case of the simple modules 
associated to the vertices of the quiver.

To deal with the problem of effective computation of these resolutions, Theorem 4.1
below gives sufficient conditions for a complex defined over these projective bimodules to 
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be exact. We will be, in consequence, able to prove that some complexes are resolutions 
without following the procedure prescribed in the proof of the existence theorem.

Briefly, we do the following: given an algebra A = kQ/I we compute a bimodule 
resolution of A from a reduction system R for I which satisfies a condition we denote 
(♦). We prove that such a reduction system always exists, but we also show in an example 
that it may not be the most convenient one. In particular the resolution obtained may 
not be minimal.

Applying our method we recover a well-known resolution of quantum complete inter-
sections, see for example [7] and [9]. We also construct a short resolution for down–up 
algebras which allows us to prove that a noetherian down–up algebra A(α, β, γ) is 
3-Calabi–Yau if and only if β = −1.

The contents of the article are as follows. In Section 2 we fix notations and prove 
some preliminary results. In Section 3 we deal with ambiguities. In Section 4 we state 
the main theorems of this article, namely Theorem 4.1 and Theorem 4.2, after proving 
some results on orders and differentials. Section 5 is devoted to the proofs of these 
theorems; it contains several technical lemmas. In Section 6 we construct explicitly the 
differentials in low degrees and in Section 7 we give several applications of our results.

Finally, in Section 8 we give sufficient conditions on the reduction system for min-
imality of any resolution obtained from it. We also prove that in case A is graded by 
the length of paths, and it has a reduction system satisfying the conditions required for 
minimality of the resolution, then A is N -Koszul if and only if the associated monomial 
algebra AS is N -Koszul.

We have just seen a recent preprint by Guiraud, Hoffbeck and Malbos [20] where they 
construct a resolution that may be related to ours.

We are deeply indebted to Mariano Suárez-Alvarez and Eduardo Marcos for their 
help in improving this article. We also thank Roland Berger, Quimey Vivas and Pablo 
Zadunaisky for discussions and comments.

2. Preliminaries

In this section we give some definitions, present some basic constructions and we also 
prove results that are necessary in the sequel.

Denote by N the set of positive integers and by N0 the set of nonnegative integers.
Let k be a field and Q a quiver with a finite set of vertices. Given n ∈ N, Qn denotes 

the set of paths of length n in Q and Q≥n the set of paths of length at least n, that 
is, Q≥n =

⋃
i≥n Qi. Whenever c ∈ Qn, we will write |c| = n. If a, b, p, q ∈ Q≥0 are such 

that q = apb, we say that p is a divisor of q; if, moreover, a ∈ Q0, we say that p is a left 
divisor of q and analogously for b ∈ Q0 a right divisor. We denote t, s : Q1 → Q0 the 
usual source and target functions. Given s ∈ Q≥0 and a finite sum f =

∑
i λici ∈ kQ

such that ci ∈ Q≥0 and t(s) = t(ci), s(s) = s(ci) for all i, we say that f is parallel
to s. Let E := kQ0 be the subalgebra of the path algebra generated by the vertices 
of Q.
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Given a set X and a ring R, we denote 〈X〉R the left R-module freely spanned by X.
Let I be a two sided ideal of kQ, A = kQ/I and π : kQ → A the canonical projection. 

We assume that π(Q0 ∪Q1) is linearly independent.
We recall some terminology from [3] that we will use. A set of pairs R = {(si, fi)}i∈Γ

where si ∈ Q≥0, fi ∈ kQ is called a reduction system. We will always assume that a 
reduction system R = {(si, fi)}i∈Γ satisfies the following conditions:

• for all i, fi is parallel to si and fi �= si,
• si does not divide sj for i �= j.

Given (s, f) ∈ R and a, c ∈ Q≥0 such that asc �= 0 in kQ, we will call the triple 
(a, s, c) a basic reduction and write it ra,s,c. Note that ra,s,c determines an E-bimodule 
endomorphism ra,s,c : kQ → kQ such that ra,s,c(asc) = afc and ra,s,c(q) = q for all 
q �= asc.

A reduction is an n-tuple (rn, . . . , r1) where n ∈ N and ri is a basic reduction for 1 ≤
i ≤ n. As before, a reduction r = (rn, . . . , r1) determines an E-bimodule endomorphism 
of kQ, the composition of the endomorphisms corresponding to the basic reductions 
rn, . . . , r1.

An element x ∈ kQ is said to be irreducible for R if r(x) = x for all basic reductions r. 
We will omit mentioning the reduction system whenever it is clear from the context. 
A path p ∈ Q≥0 will be called reduction-finite if for any infinite sequence of basic 
reductions (ri)i∈N, there exists n0 ∈ N such that for all n ≥ n0, rn ◦ · · · ◦ r1(p) =
rn0◦· · ·◦r1(p). Moreover, the path p will be called reduction-unique if it is reduction-finite 
and for any two reductions r and r′ such that r(p) and r′(p) are both irreducible, the 
equality r(p) = r′(p) holds.

Definition 2.1. We say that a reduction system R satisfies condition (♦) for I if

• the ideal I is equal to the two sided ideal generated by the set {s − f}(s,f)∈R,
• every path is reduction-unique, and
• for each (s, f) ∈ R, f is irreducible.

Definition 2.2. If R is a reduction system satisfying (♦) for I, we define S := {s ∈ Q≥0 :
(s, f) ∈ R for some f ∈ kQ}.

Remark 2.2.1. Notice that:

(1) S = {p ∈ Q≥0 : p /∈ B and p′ ∈ B for all proper divisors p′ of p}, where B is the set 
of irreducible paths.

(2) If s and s′ are elements of S such that s divides s′, then s = s′.
(3) Given q ∈ Q≥0, q is irreducible if and only if there exists no p ∈ S such that p

divides q.
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Definition 2.3. Given a path p and q =
∑n

i=1 λici ∈ kQ with λ1, . . . , λn ∈ k× and 
c1, . . . , cn ∈ Q≥0, we write p ∈ q if p = ci for some i, or, in other words, when p is in the 
support of q.

Given p, q ∈ Q≥0 we write q � p if there exist n ∈ N, basic reductions r1, . . . , rn and 
paths p1, . . . pn such that p1 = q, pn = p, and for all i = 1, . . . , n − 1, pi+1 ∈ ri(pi).

Lemma 2.4. Suppose that every path is reduction-finite with respect to R.

(1) If p is a path and r a basic reduction such that p ∈ r(p), then r(p) = p.
(2) The binary relation � is an order on the set Q≥0 which is compatible with concate-

nation, that is, � satisfies that q � p implies aqc � apc for all a, c ∈ Q≥0 such 
that apc �= 0 in kQ.

(3) The binary relation � satisfies the descending chain condition.

Proof. (1) The hypothesis means that r(p) = λp + x with λ ∈ k× and p /∈ x. If x �= 0
or λ �= 1, then r acts nontrivially on p and so it acts trivially on x. Since the sequence 
of reductions (r, r, · · ·) stabilizes when acting on p, there exists k ∈ N such that λkp +
(λk−1 + · · ·+λ +1)x = rk(p) = rk+1(p) = λk+1p +(λk + · · ·+λ +1)x. As a consequence, 
λ = 1 and x = 0.

(2) It is clear that � is a transitive and reflexive relation and that it is compatible 
with concatenation. Let us suppose that it is not antisymmetric, so that there exist 
n ∈ N, paths p1, . . . , pn+1 and basic reductions r1, . . . , rn such that pi+1 ∈ ri(pi) for 
1 ≤ i ≤ n and pn+1 = p1. Suppose that n is minimal. There exist x1, . . . , xn ∈ kQ

and λ1, . . . , λn ∈ k× such that ri(pi) = λipi+1 + xi with pi+1 /∈ xi. Notice that since n
is minimal, ri(pi) �= pi and then ri acts trivially on every path different from pi, for 
all i.

Let us see that

pi /∈ xj for all i �= j.

Since the sequence p1, . . . , pn+1 = p1 is cyclic, it is enough to prove that p1 /∈ xj

for all j. Suppose that p1 ∈ xj for some j ∈ {1, . . . , n}. Since pi+1 /∈ xi for all i and 
pn+1 = p1, it follows that j �= n, and by part (1), j �= 1. Let uk = pk and tk = rk for 
1 ≤ k ≤ j and uj+1 = p1. Notice that uk+1 ∈ tk(uk) for 1 ≤ k ≤ j and uj+1 = u1. Since 
j < n this contradicts the choice of n. It follows that

pi /∈ xj for all i, j.

One can easily check that this implies rn ◦ · · · ◦ r1(p1) = λp1 + x with pi /∈ x for all i. 
Now, define inductively for i > n, ri := ri−n. The sequence (ri)i∈N acting on p1 never 
stabilizes, which contradicts the reduction-finiteness of the reduction system R.
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(3) Suppose not, so that there is a sequence (pi)i∈N of paths and a sequence of basic 
reductions (ti)i∈N such that pi+1 ∈ ti(pi). Since � is an antisymmetric relation, pi �= pj
if i �= j.

Let i1 = 1. Suppose that we have constructed i1, . . . , ik such that i1 < · · · < ik, 
pik ∈ tik−1 ◦ · · · ◦ t1(p1) and pj /∈ tik−1 ◦ · · · ◦ t1(p1) for all j > ik. Set Xk = {i > ik : pi ∈
tik ◦ · · · ◦ ti1(p1)}. By the inductive hypothesis, there is x ∈ kQ and λ ∈ k× such that 
tik−1 ◦ · · · ◦ ti1(p1) = λpik +x with pik /∈ x. Since we also know that pik+1 ∈ tik(pik), and 
pik+1 /∈ tik−1 ◦ · · · ◦ ti1(p1) it follows that pik+1 ∈ tik(pik) + x. Also, tik ◦ · · · ◦ ti1(p1) =
λtik(pik) + tik(x) = λtik(pik) +x, so pik+1 ∈ tik ◦ · · · ◦ ti1(p1). Therefore Xk is not empty. 
We may define ik+1 = maxXk, because Xk is a finite set.

This procedure constructs inductively a strictly increasing sequence of indices (ik)k∈N

with pik ∈ p̃ik := tik−1 ◦ · · · ◦ ti1(p1) for all k ∈ N. The set {tik−1 ◦ · · · ◦ ti1(p1) : k ∈ N}
is therefore infinite. This contradicts the reduction-finiteness of R. �

The converse to Lemma 2.4 also holds, that is, if R is a reduction system for which �
is a partial order satisfying the descending chain condition, then every path is reduction-
finite. In other words, the order � captures most of the properties we require R to verify, 
and it will be important in the next sections.

The reason why we are interested in these reduction systems is the following lemma. 
Its proof is just a consequence of Bergman’s Diamond Lemma, and it is not given here.

Lemma 2.5. If the reduction system R satisfies (♦) for I, then the set B of irreducible 
paths satisfies the following properties:

(i) B is closed under divisors, that is, if b ∈ B and b′ divides b, then b′ belongs to B.
(ii) π(b) �= π(b′) for all b, b′ ∈ B with b �= b′.
(iii) {π(b) : b ∈ B} is a basis of A = kQ/I.

Remark 2.5.1. In view of Lemma 2.5, we can define a k-linear map i : A → kQ such that
i(π(b))) = b for all b ∈ B. We denote by β : kQ → kQ the composition i ◦ π. Notice that 
if p is a path and r is a reduction such that r(p) is irreducible, then r(p) = β(p). In the 
bibliography, β(p) is sometimes called the normal form of p.

The following characterization of the relation � is very useful in practice.

Lemma 2.6. If p, q are paths, then q � p if and only if p = q or there exists a reduction 
t such that p ∈ t(q).

Proof. First we prove the necessity of the condition. Let n ∈ N, r1, . . . , rn and p1, . . . , pn
be as in the definition of �, and suppose that n is minimal. Let p̃1 = p1 and for each 
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i = 1, . . . , n − 1 put p̃i+1 = ri(p̃i). Notice that the minimality implies that ri(pi) �= pi. 
Let us first show that

if i > j then pi /∈ p̃j . (2.1)

Suppose otherwise and let (i, j) be a counterexample with j minimal. We will prove that 
in this situation, pl ∈ p̃l for all l < j. We proceed by induction on l. By definition, 
p1 ∈ p̃1. Suppose 1 ≤ l < j − 1 and pl ∈ p̃l. Then we have pl+1 ∈ rl(pl) and, since l < j, 
pl+1 /∈ p̃l. Write p̃l = λpl + x with x ∈ kQ and pl /∈ x. Since rl acts nontrivially on pl, 
it acts trivially on x; it follows that rl(p̃l) = λrl(pl) + x and so pl+1 ∈ rl(p̃l) = p̃l+1. In 
particular pj−1 ∈ p̃j−1. Since pi /∈ p̃j−1 and pi ∈ p̃j , we must have pi ∈ rj−1(pj−1).

Now, let m = n + j − i, tk = rk and uk = pk if k ≤ j − 1, and tk = ri+k−j

and uk = pi+k−j if j ≤ k ≤ m. One can check that u1 = q, un+j−i = p and that 
uk+1 ∈ tk(uk) for all k = 1, . . . , m − 1. Since m < n this contradicts the choice of n. We 
thus conclude that (2.1) holds.

We can use the same inductive argument as before to prove that pi ∈ p̃i for all 
1 ≤ i ≤ n. Denoting t = (rn, . . . , r1), observe that p ∈ t(q).

Let us now prove the converse. Let t = (tm, . . . , t1) be a reduction such that p ∈ t(q)
and m is minimal, and let us proceed by induction on m. Notice that if m = 1 there 
is nothing to prove. If ti is the basic reduction rai,si,ci , let pi = aisici. Using the same 
ideas as above one can show that

if u �= q and u /∈ ti(pi) for each 1 ≤ i ≤ m,

then u /∈ tl ◦ · · · ◦ t1(q) for each 0 ≤ l ≤ m.

Since p ∈ t(q) either p = q or there exists i ∈ {1, . . . , m} such that p ∈ ti(pi). In the first 
case q � p. In the second case, we know that pi � p and we need to prove that q � pi. 
Since m is minimal, ti(ti−1 ◦ · · · ◦ t1(q)) �= ti−1 ◦ · · · ◦ t1(q) and then pi ∈ ti−1 ◦ · · · ◦ t1(q). 
The result now follows by induction because i − 1 < m. �
Proposition 2.7. If I ⊆ kQ is an ideal, then there exists a reduction system R which 
satisfies condition (♦) for I.

We will prove this result by putting together a series of lemmas.
Let ≤ be a well-order on the set Q0 ∪Q1 such that e < α for all e ∈ Q0 and α ∈ Q1. 

Let ω : Q1 → N be a function and extend it to Q≥0 defining ω(e) = 0 for all e ∈ Q0 and 
ω(cn · · · c1) =

∑n
i=1 ω(ci) if ci ∈ Q1 and cn · · · c1 is a path. Given c, d ∈ Q≥0 we write 

that c ≤ω d if

• ω(c) < ω(d), or
• c, d ∈ Q0 and c ≤ d, or
• ω(c) = ω(d), c = cn · · · c1, d = dm · · · d1 ∈ Q≥1 and there exists j ≤ min(|c|, |d|) such 

that ci = di for all ∈ {1, . . . , j − 1} and cj < dj .
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Notice that the order ≤ω is in fact the deglex order with weight ω, and it has the 
following two properties:

(1) If p, q ∈ Q≥0 and p ≤ω q, then cpd ≤ω cqd for all c, d ∈ Q≥0 such that cpd �= 0 and 
cqd �= 0 in kQ.

(2) For all q ∈ Q≥0 the set {p ∈ Q≥0 : p ≤ω q} is finite.

It is straightforward to prove the first claim. For the second one, let {ci}i∈N be a 
sequence in Q≥0 such that ci+1 ≤ω ci for all i. If ci ∈ Q0 for some i, then it is evident 
that the sequence stabilizes, so let us suppose that {ci}i∈N is contained in Q≥1 and 
ci+1 <ω ci for all i ∈ N. Since (ω(ci))i∈N is a decreasing sequence of natural numbers, it 
must stabilize, so we may also suppose that ω(ci) = ω(cj) for all i, j and that the lengths 
of the paths are bounded above by some M ∈ N. By definition of ≤ω, we know that the 
sequence of first arrows of elements of {ci}i∈N forms a decreasing sequence in (Q1, ≤), 
which must stabilize because (Q1, ≤) is well-ordered. Let N ∈ N be such that the first 
arrow of ci equals the first arrow of cj for all i, j ≥ N . If ci = cini

· · · ci1, and we denote 
c′ i = cini

· · · ci2, then {c′ i}i≥N is a decreasing sequence in (Q≥0, ≤ω) with |c′ i| = M − 1
for all i. Iterating this process we arrive to a contradiction.

Definition 2.8. Consider as before a well-order ≤ on Q0∪Q1 and ω : Q1 → N, and ≤ω be 
constructed from them. If p ∈ kQ and p =

∑n
i=1 λici with λi ∈ k×, ci ∈ Q≥0 and ci <ω c1

for all i �= 1, we write tip(p) for c1. If X ⊆ kQ, we let tip(X) := {tip(x) : x ∈ X \ {0}}.

Consider the set

S := Mintip(I) = {p ∈ tip(I) : p′ /∈ tip(I) for all proper divisors p′ of p}.

Notice that if s and s′ both belong to S and s �= s′, then s does not divide s′. For each 
s ∈ S, choose fs ∈ kQ such that s − fs ∈ I, fs <ω s and fs is parallel to s.

Describing the set tip(I) is not easy in general. We comment on this problem at the 
beginning of the last section, where we compute examples.

Lemma 2.9. Let ≤ω and S be as before. The ideal I equals the two sided ideal generated 
by the set {s − fs}s∈S, which we will denote by 〈s − fs〉s∈S.

Proof. It is clear that 〈s − fs〉s∈S is contained in I. Choose x =
∑n

i=1 λici ∈ I with 
λi ∈ k× and ci ∈ Q≥0. We may suppose that c1 = tip(x), so that c1 ∈ tip(I). There is a 
divisor s of c1 such that s ∈ tip(I) and s′ /∈ tip(I) for all proper divisor s′ of s and s ∈ S

by definition of S. Let a, c ∈ Q≥0 with asc = c1.
Define x′ := afsc +

∑n
i=2 λici. We have x = λ1c1 +

∑n
i=2 λici = λ1a(s − fs)c + x′, 

so that x′ ∈ I and, by property (1) of the order ≤ω, we see that c1 > tip(x′). We can 
apply this procedure again to x′ and iterate: the process will stop by property (2) and 
we conclude that x ∈ 〈s − fs〉s∈S . �
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Lemma 2.10. Let ≤ω and S be as before. The set R := {(s, fs)}s∈S is a reduction system 
such that every path is reduction-unique.

Proof. Since s >ω tip(fs) for all s ∈ S, properties (1) and (2) guarantee that every path 
is reduction-finite. We need to prove that every path is reduction-unique. Recall that π is 
the canonical projection kQ → kQ/I. Let p be a path. Since I = 〈s −fs〉s∈S , we see that 
π(r(p)) = π(p) for any reduction r. Let r and t be reductions such that r(p) and t(p)
are both irreducible. Clearly, π(r(p) − t(p)) = π(p) − π(p) = 0, so that r(p) − t(p) ∈ I. If 
this difference is not zero, then the path d = tip(r(p) − t(p)) can be written as d = asc

with a, c paths and s ∈ S. It follows that the reduction ra,s,c acts nontrivially either on 
r(p) or on t(p), and this is a contradiction. �

This lemma implies that for each s ∈ S, there exists a reduction r and an irreducible 
element f ′

s such that r(fs) = f ′
s. Consider the reduction system R′ := {(s, f ′

s) : s ∈ S}. 
The set of irreducible paths for R clearly coincides with the set of irreducible paths for 
R′ and, since π(s − f ′

s) = π(s − fs) = 0, we have that 〈s − f ′
s〉s∈S ⊆ I. From Bergman’s 

Diamond Lemma it follows that I = 〈s − f ′
s〉s∈S . We can conclude that the reduction 

system R′ satisfies condition (♦), thereby proving Proposition 2.7.
It is important to emphasize that different choices of orders on Q0∪Q1 and of weights 

ω will give very different reduction systems, some of which will better suit our purposes 
than others. Moreover, there are reduction systems which cannot be obtained by this 
procedure, as the following example shows.

Example 2.10.1. Consider the algebra

A = k〈x, y, z〉/(x3 + y3 + z3 − xyz)

and let R = {(xyz, x3 + y3 + z3)}. Clearly this reduction system does not come from 
a monomial order and neither from a monomial order with weights. It is not entirely 
evident but this reduction system satisfies (♦). See also Example 3.4.7 in [20].

Finally, we define a relation � on the set k×Q≥0 := {λp : λ ∈ k×, p ∈ Q≥0} ∪ {0}
as the least reflexive and transitive relation such that λp � μq whenever there exists a 
reduction r such that r(μq) = λp + x with p /∈ x. We state 0 � λp for all λp ∈ k×Q≥0.

Lemma 2.11. The binary relation � is an order satisfying the descending chain condition 
and it is compatible with concatenation.

Proof. The second claim is clear. In order to prove the first claim, let us first prove 
that if p ∈ Q≥0 is such that there exists a reduction r with r(p) = λp + x and p /∈ x, 
then λ = 1 and x = 0. Suppose not. For r a basic reduction, this has already been 
done in Lemma 2.4. If r is not basic, then r = (rn, . . . , r1) with ri basic and n ≥ 2. 
Let r′ = (rn, . . . , r2). Since p ∈ r(p) = r′(r1(p)), there exists p1 ∈ r1(p) such that 
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p ∈ r′(p1). By the previous case, we obtain that p /∈ r1(p), so p �= p1. As a consequence 
of Lemma 2.6, we know that p � p1 since p1 ∈ r1(p) and that p1 � p since p ∈ r′(p1). 
This contradicts the antisymmetry of �.

It is an immediate consequence of the previous fact that given a path p and a reduc-
tion t,

if t(λ1p) = λ2p + x with p /∈ x, then λ1 = λ2. (2.2)

Let λ1, . . . , λn+1 ∈ k×, p1, . . . , pn+1 ∈ Q≥0, x1, . . . , xn ∈ kQ and reductions t1, . . . , tn
be such that ti(λipi) = λi+1pi+1 + xi, pi+1 /∈ xi and λn+1pn+1 = λ1p1. This implies 
that pi � pi+1 for each 1 ≤ i ≤ n and pn+1 = p1. Since � is antisymmetric, it follows 
that pi = p1 for all i and (2.2) implies that λi = λ1 for all i. We thus see that � is 
antisymmetric.

Let now (λipi)i∈N be a sequence in k×Q≥0 and (ti)i∈N a sequence of reductions such 
that ti(λipi) = λi+1pi+1 + xi with pi+1 /∈ xi. Then pi � pi+1 for all i and since �
satisfies the descending chain condition there exists i0 such that pi = pi0 for all i ≥ i0. 
Observation (2.2) implies then that λi = λi0 for all i ≥ i0, so that the sequence (λipi)i∈N

stabilizes. �
If x =

∑n
i=1 λipi ∈ kQ with λi ∈ k× and λp belongs to k×Q≥0, we write x � λp if 

λipi � λp for all i. If in addition x �= λp we also write x ≺ p. The following simple fact 
is the key to proving everything that follows.

Corollary 2.12. Given a path p, its normal form β(p) is such that β(p) � p. Moreover, 
β(p) ≺ p if and only if p /∈ B.

Proof. There is a reduction r such that β(p) = r(p) =
∑n

i=1 λipi. It is clear that λipi � p

for all i, so that β(p) � p. The last claim follows from the fact that β(p) = p if and only 
if p ∈ B. �
3. Ambiguities

Given an algebra A = kQ/I and a reduction system R satisfying (♦) for I, there is 
a monomial algebra associated to A defined as AS := kQ/〈S〉 and equipped with the 
canonical projection π′ : kQ → AS . The set π′(B) is a k-basis of AS . The algebra AS is a 
generalization of the algebra Amon defined in [18]: in that article, the order is necessarily 
monomial.

From now on we fix the reduction system R satisfying condition (♦). Notice that in 
this situation we can suppose without loss of generality, that S ⊆ Q≥2.

The family of modules {Pi}i≥0 appearing in the resolution of A as A-bimodule will be 
in bijection with those appearing in Bardzell’s resolution of the monomial algebra AS. 
More precisely, we will define E-bimodules kAi for i ≥ −1, such that the former will be 
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{A ⊗E kAi ⊗E A}i≥−1 while the latter will be {AS ⊗E kAi ⊗E AS}i≥−1. The resolution 
will start as usual: A−1 = Q0, A0 = Q1 and A1 = S.

For n ≥ 2, An will be the set of n-ambiguities of R. We will next recall the definition of 
n-ambiguity – or n-chain according to the terminology used in [29,1,2] and to Bardzell’s 
[4] associated sequences of paths, and we will take into account that the sets of left 
n-ambiguities and right n-ambiguities coincide. This fact is proved in [4] and also in [29]. 
See [19] too.

Definition 3.1. Given n ≥ 2 and p ∈ Q≥0,

(1) the path p is a left n-ambiguity if there exist u0 ∈ Q1, u1, . . . , un irreducible paths 
such that
(a) p = u0u1 · · ·un,
(b) for all i, uiui+1 is reducible but uid is irreducible for any proper left divisor d of 

ui+1;
(2) the path p is a right n-ambiguity if there exist v0 ∈ Q1 and v1, . . . , vn irreducible 

paths such that
(a) p = vn · · · v0,
(b) for all i, vi+1vi is reducible but dvi is irreducible for any proper right divisor of 

vi+1.

Proposition 3.2. Let n, m ∈ N, p ∈ Q≥1. If u0, ̂u0 ∈ Q1 and u1, . . . , un, ̂u1, . . . , ̂un are 
paths in Q such that both u0, . . . , un and û0, . . . , ̂un satisfy conditions (1a) and (1b) of 
the previous definition for p, then n = m and ui = ûi for all i, 0 ≤ i ≤ n.

Proof. Suppose n ≤ m. It is obvious that u0 = û0, since both of them are arrows. 
Notice that kQ = TkQ0kQ1, that is the free algebra generated by kQ1 over kQ0, which 
implies that either u0u1 divides û0û1 or û0û1 divides u0u1, and moreover u0u1, ̂u0û1 ∈
A1 = S. Remark 2.2.1 says that u0u1 = û0û1. Since u0 = û0, we must have u1 = û1. By 
induction on i, let us suppose that uj = ûj for j ≤ i. As a consequence, ui+1 · · ·un =
ûi+1 · · · ûm.

If i + 1 = n, this reads un = ûn · · · ûm, and the fact that un is irreducible and ûjûj+1

is reducible for all j < m implies that m = n and un = ûn. Instead, suppose that 
i +1 < n. From the equality ui+1 · · ·un = ûi+1 · · · ûm we deduce that there exists a path 
d such that ui+1 = ûi+1d or ûi+1 = ui+1d. If ui+1 = ûi+1d and d ∈ Q≥1, we can write 
d = d2d1 with d1 ∈ Q1. The path ûi+1d2 is a proper left divisor of ui+1 and by condition 
(1b) we obtain that uiûi+1d2 is irreducible. This is absurd since uiûi+1d2 = ûiûi+1d2 by 
inductive hypothesis, and the right hand term is reducible by condition (1b). It follows 
that d ∈ Q0 and then ui+1 = ûi+1. The case where ûi+1 = ui+1d is analogous. �
Corollary 3.3. Given n, m ≥ −1, An ∩ Am = ∅ if n and m are different.



S. Chouhy, A. Solotar / Journal of Algebra 432 (2015) 22–61 33
Just to get a flavor of what An is, one may think about an element of An as a minimal 
proper superposition of n elements of S.

We end this section with a proposition that indicates how to compute ambiguities for 
a particular family of algebras.

Proposition 3.4. Suppose S ⊂ Q2. For all n ≥ 1,

An = {α0 . . . αn ∈ Qn+1 : αi ∈ Q1 for all i and αi−1αi ∈ S}

Moreover, given p = α0 . . . αn ∈ An, we can write p as a left ambiguity choosing ui = αi, 
for all i, and as a right ambiguity choosing vi = αn−i

Proof. We proceed by induction on n. If n = 1 we know that A1 = S in which case 
there is nothing to prove. Let u0 · · ·unun+1 ∈ An+1 and suppose that the result holds 
for all p ∈ An. Since u0 · · ·un belongs to An we only have to prove that un+1 ∈ Q1

and that unun+1 ∈ S. We know that un ∈ Q1, that un+1 is irreducible and that 
unun+1 is reducible. As a consequence, there exist s ∈ S and v ∈ Q≥0 such that 
unun+1 = sv. Moreover, und is irreducible for any proper left divisor d of un+1, so 
the only possibility is v ∈ Q0. We conclude that unun+1 belongs to S. Since S ⊆ Q2 and 
un ∈ Q1, we deduce that un+1 ∈ Q1. This proves that An+1 ⊆ {α0 · · ·αn ∈ Qn+1 : αi ∈
Q1 for all i and αi−1αi ∈ S}.

The other inclusion is clear. �
4. The resolution

In this section our purpose is to construct bimodule resolutions of the algebra A. 
We achieve this in Theorems 4.1 and 4.2: in the first one we construct homotopy maps 
to prove that a given complex is exact, while in the second one we define differentials 
inductively.

We will make use of differentials of Bardzell’s resolution for monomial algebras, so we 
begin this section by recalling them. Keeping the notations of the previous section, note 
that the kQ-bimodule kQ ⊗E kAn⊗E kQ is a k-vector space with basis {a ⊗p ⊗ c : a, c ∈
Q≥0, p ∈ An, apc �= 0 in kQ}.

As we have already done for A, we define a k-linear map i′ : AS → kQ such that
i′(π′(b))) = b for all b ∈ B, and we denote by β′ : kQ → kQ the composition i′ ◦ π′.

Given n ≥ −1, let us fix notation for the following k-linear maps:

πn := π ⊗ idkAn
⊗ π, π′

n := π′ ⊗ idkAn
⊗ π′,

in := i⊗ idkAn
⊗ i, i′n := i′ ⊗ idkAn

⊗ i′,

βn := in ◦ πn, β′
n := i′n ◦ π′

n.
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Consider the following sequence of kQ-bimodules,

· · ·
f1

kQ⊗E kA0 ⊗E kQ
f0

kQ⊗E kQ
f−1

∼=

kQ 0

kQ⊗E kA−1 ⊗E kQ

where

(1) fn : kQ ⊗E kAn ⊗E kQ → kQ ⊗E kAn−1 ⊗E kQ for n ≥ 0,
(2) f−1(a ⊗ b) = ab,
(3) if n is even, q ∈ An and q = u0 · · ·un = vn · · · v0 are respectively the factorizations 

of q as left and right n-ambiguity,

fn(1 ⊗ q ⊗ 1) = vn ⊗ vn−1 · · · v0 ⊗ 1 − 1 ⊗ u0 · · ·un−1 ⊗ un,

(4) if n is odd and q ∈ An,

fn(1 ⊗ q ⊗ 1) =
∑

apc=q
p∈An−1

a⊗ p⊗ c.

Also, for each n ≥ −1, let

δn : A⊗E kAn ⊗E A → A⊗E kAn−1 ⊗E A

be the morphism of A-bimodules defined by

(1) δ−1(π(a) ⊗ π(b)) = π(ab),
(2) if n is even, q ∈ An and q = u0 · · ·un = vn · · · v0 are respectively the factorizations 

of q as left and right n-ambiguity,

δn(1 ⊗ q ⊗ 1) = π(vn) ⊗ vn−1 · · · v0 ⊗ 1 − 1 ⊗ u0 · · ·un−1 ⊗ π(un),

(3) if n is odd and q ∈ An,

δn(1 ⊗ q ⊗ 1) =
∑

apc=q
p∈An−1

π(a) ⊗ p⊗ π(c).

In the same way, define

δ′n : AS ⊗E kAn ⊗E AS → AS ⊗E kAn−1 ⊗E AS

by replacing A and π by AS and π′ in the definition of δn.
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Notice that δ−1 and δ′−1 are respectively multiplication in A and in AS , and that

δn := πn−1 ◦ fn ◦ in,
δ′n := π′

n−1 ◦ fn ◦ i′n.

The algebra AS is monomial. The following complex provides a projective resolution 
of AS as AS-bimodule [4]:

· · · δ′2−−→ AS ⊗E kA1 ⊗E AS
δ′1−−→ AS ⊗E kA0 ⊗E AS

δ′0−−→ AS ⊗E AS
δ′−1−−−→ AS −−→ 0.

We will make use of the homotopy that Sköldberg defined in [29] when proving that this 
complex is exact. We recall it, but we must stress that our signs differ from the ones 
in [29] due to the fact that he considers right modules, while we always work with left 
modules.

Given n ≥ −1, the morphism of kQ −E-bimodules Sn is defined as follows.
For n = −1, S−1 : kQ → kQ ⊗E kA−1 ⊗E kQ is the kQ − E-bimodule map given by 

S−1(a) = a ⊗ 1, for a ∈ kQ.
For n ∈ N0, Sn : kQ ⊗E kAn−1 ⊗E kQ → kQ ⊗E kAn ⊗E kQ is given by

Sn(1 ⊗ q ⊗ b) = (−1)n+1
∑

apc=qb
p∈An

a⊗ p⊗ c.

Let s′n := π′
n ◦ Sn ◦ i′n−1. The family of maps {s′n}n≥−1 verifies the equalities

s′n ◦ δ′n + δ′n−1 ◦ s′n−1 = idAS⊗EkAn⊗EAS
for n ≥ 0 and s′−1 ◦ δ′−1 = idAS⊗EkA−1⊗EAS

.

Also, define sn := πn ◦ Sn ◦ in−1.
Next we define some sets that will be useful in the sequel. For any n ≥ −1 and 

μq ∈ k×Q≥0, consider the following subsets of kQ ⊗E kAn ⊗E kQ:

• L�
n (μq) := {λa ⊗ p ⊗ c : a, c ∈ Q≥0, p ∈ An, λapc � μq},

• L≺
n (μq) := {λa ⊗ p ⊗ c : a, c ∈ Q≥0, p ∈ An, λapc ≺ μq},

and the following subsets of A ⊗E kAn ⊗E A:

• L�
n (μq) := {λπ(b) ⊗ p ⊗ π(b′) : b, b′ ∈ B, p ∈ An, λbpb′ � μq},

• L≺
n (μq) := {λπ(b) ⊗ p ⊗ π(b′) : b, b′ ∈ B, p ∈ An, λbpb′ ≺ μq}.

Remark 4.0.1. We observe that

fn+1(x) ∈ 〈L�
n (μq)〉Z, for all x ∈ L�

n+1(μq), and

Sn(x) ∈ 〈L�
n (μq)〉Z, for all x ∈ L�

n−1(μq).
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Moreover, the only possible coefficients appearing in the linear combinations are +1 and 
−1.

We will now state the main theorems. Recall that our aim is to construct, for non-
necessarily monomial algebras, a bimodule resolution starting from a related monomial 
algebra. The first theorem says that if the difference between its differentials and the 
monomial differentials can be “controlled”, then we will actually obtain an exact com-
plex. The second theorem says that it is possible to construct the differentials.

Theorem 4.1. Set d−1 := δ−1 and d0 := δ0. Given N ∈ N0 and morphisms of A-bimodules 
di : A ⊗E kAi ⊗E A → A ⊗E kAi−1 ⊗E A for 1 ≤ i ≤ N . If

(1) di−1 ◦ di = 0 for all i, 1 ≤ i ≤ N ,
(2) (di − δi)(1 ⊗ q ⊗ 1) ∈ 〈L≺

i−1(q)〉k for all i ∈ {1, . . . , N} and for all q ∈ Ai,

then the complex

A⊗E kAN ⊗E A
dN−−−→ · · · d1−−→ A⊗E kA0 ⊗E A

d0−−→ A⊗E A
d−1−−−→ A −−→ 0

is exact.

Theorem 4.2. There exist A-bimodule morphisms di : A ⊗EkAi⊗EA → A ⊗EkAi−1⊗EA

for i ∈ N0 and d−1 : A ⊗E A → A such that

(1) di−1 ◦ di = 0, for all i ∈ N0,
(2) (di − δi)(1 ⊗ q ⊗ 1) ∈ 〈L≺

i−1(q)〉Z for all i ≥ −1 and q ∈ Ai.

We will carry out the proofs of these theorems in the following section.

5. Proofs of the theorems

We keep the same notations and conditions of the previous section. We start by 
proving some technical lemmas.

Lemma 5.1. Given n ≥ 0, the following equalities hold

(1) δn ◦ πn = πn−1 ◦ fn,
(2) δ′n ◦ π′

n = π′
n−1 ◦ fn.

The proof is straightforward after the definitions.
Next we prove three lemmas where we study how various maps defined in Section 4

behave with respect to the order.
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Lemma 5.2. For all n ∈ N0 and μq ∈ k×Q≥0, the images by πn of L�
n (μq) and of L≺

n (μq)
are respectively contained in 〈L�

n (μq)〉Z and in 〈L≺
n (μq)〉Z.

Proof. Given n ∈ N0, μq ∈ k×Q≥0 and x = λa ⊗ p ⊗ c ∈ L�
n (μq), where a, c ∈ Q≥0 and 

p ∈ An, suppose β(a) =
∑

i λibi and β(c) =
∑

j λ
′
jb

′
j . Since β(a) � a and β(c) � c, then 

λibi � a and λ′
jb

′
j � c for all i, j. This implies

λλiλjbipb
′
j � λapc � μq

and so λλiλ
′
jπ(bi) ⊗ p ⊗ π(b′j) belong to L�

n (μq) for all i, j. The result follows from the 
equalities

πn(x) = λπ(a) ⊗ p⊗ π(c) = λπ(β(a)) ⊗ p⊗ π(β(c)) =
∑
i,j

λλiλ
′
jπ(bi) ⊗ p⊗ π(b′j).

The proof of the second part is analogous. �
Corollary 5.3. Let n ≥ −1 and μq ∈ k×Q≥0. Keeping the same notations of the proof of 
the previous lemma, we conclude that

(1) if x ∈ L�
n (μq), then λπ(a)xπ(c) ∈ 〈L�

n (λμaqc)〉Z,
(2) if x ∈ L≺

n (μq), then λπ(a)xπ(c) ∈ 〈L≺
n (λμaqc)〉Z.

Lemma 5.4. Given n ∈ N0 and μq ∈ k×Q≥0, there are inclusions

(1) δn(L�
n (μq)) ⊆ 〈L�

n−1(μq)〉Z,
(2) δn(L≺

n (μq)) ⊆ 〈L≺
n−1(μq)〉Z,

(3) sn(L�
n−1(μq)) ⊆ 〈L�

n (μq)〉Z,
(4) sn(L≺

n−1(μq)) ⊆ 〈L≺
n (μq)〉Z.

Proof. From x = λπ(b) ⊗ p ⊗ π(b′) ∈ L�
n (μq), with b, b′ ∈ B and p ∈ An, we get 

in(x) = λb ⊗ p ⊗ b′. This element belongs to L�
n (μq) and this implies that fn(λb ⊗ p ⊗ b′)

belongs to 〈L�
n−1(μq)〉Z, by Remark 4.0.1. As a consequence of Lemma 5.2 we obtain 

that δn(x) = πn−1(fn(λb ⊗ p ⊗ b′)) belongs to 〈L�
n−1(μq)〉Z. The proofs of the other 

statements are similar. �
Lemma 5.5. Given n ≥ −1 and μq ∈ k×Q≥0, if x = λa ⊗ p ⊗ c ∈ L�

n (μq) is such that 
π′
n(x) = 0, then

πn(x) ∈ 〈L≺
n (μq)〉Z.

Proof. By hypothesis we get that 0 = π′
n(x) = π′(a) ⊗ p ⊗ π′(c). The only possibilities 

are π′(a) = 0 or π′(c) = 0, this is, a /∈ B or c /∈ B, namely β(a) ≺ a or β(c) ≺ c.
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Writing β(a) =
∑

i λibi and β(c) =
∑

j λ
′
jb

′
j , we deduce that λλiλ

′
jbipbj ≺ μq for all 

i, j. As a consequence, 
∑

i,j λλiλ
′
jπ(bi) ⊗ p ⊗ π(b′j) ∈ 〈L≺

n (μq)〉Z.
The proof ends by computing

πn(x) = πn(β(x)) = πn(
∑
i,j

λλiλ
′
jbi ⊗ p⊗ b′j) =

∑
i,j

λλiλ
′
jπ(bi) ⊗ p⊗ π(b′j). �

The importance of the preceding lemmas is that they guarantee how differentials 
and morphisms used for the homotopy behave with respect to the order. This is stated 
explicitly in the following corollary.

Corollary 5.6. Given n ≥ 1, μq ∈ k×Q≥0 and x ∈ L�
n (μq), the following facts hold:

(1) δn−1 ◦ δn(x) ∈ 〈L≺
n−2(μq)〉Z,

(2) x − δn+1 ◦ sn+1(x) − sn ◦ δn(x) ∈ 〈L≺
n (μq)〉Z.

Proof. Let us first write x = λπ(b) ⊗p ⊗π(b′) with b, b′ ∈ B and x′ := in(x) = λb ⊗p ⊗b′. 
Lemma 5.1 implies that

δn−1 ◦ δn(x) = δn−1 ◦ δn ◦ πn(x′) = δn−1 ◦ πn−1 ◦ fn(x′) = πn−2 ◦ fn−1 ◦ fn(x′).

By Remark 4.0.1, fn−1 ◦ fn(x′) ∈ L�
n−2(μq). Next, by Lemma 5.5, in order to prove that 

δn−1 ◦ δn(x) ∈ 〈L≺
n−2(μq)〉Z, it suffices to verify that π′

n−2 ◦ fn−1 ◦ fn(x′) = 0, which is 
in fact true using Lemma 5.1, and the fact that (AS ⊗E kA• ⊗E AS , δ′•) is a complex.

In order to prove (2), we first remark that if k ∈ N0 and y ∈ 〈L�
k (μq)〉Z, then i′k ◦

π′
k(y) − ik ◦ πk(y) ∈ 〈L≺

k (μq)〉Z. Indeed, let us write y = λa ⊗ p ⊗ c ∈ L�
k (μq). In case 

a ∈ B and c ∈ B, there are equalities i′k ◦ π′
k(y) = y = ik ◦ πk(y), and so the difference 

is zero. If either a /∈ B or c /∈ B, then π′
k(y) = 0 and in this case Lemma 5.5 implies 

that πk(y) ∈ 〈L≺
k (μq)〉Z. So, ik ◦πk(y) ∈ 〈L≺

k (μq)〉Z and the difference we are considering 
belongs to 〈L≺

k (μq)〉Z.
Fix now x = λπ(b) ⊗ p ⊗ π(b′) and x′ = in(x) = λb ⊗ p ⊗ b′, with b, b′ ∈ B.
Since x′ = i′n ◦ π′

n(x′),

x− δn+1 ◦ sn+1(x) − sn ◦ δn(x) = πn(x′) − πn(fn+1 ◦ in+1 ◦ πn+1 ◦ Sn+1(x′))

− πn(Sn ◦ in−1 ◦ πn−1 ◦ fn(x′)).

The previous comments and Remark 4.0.1 allow us to write that

πn ◦ fn+1 ◦ (i′n+1 ◦ π′
n+1 − in+1 ◦ πn+1) ◦ Sn+1(x′) ∈ 〈L≺

n (μq)〉Z,
πn ◦ Sn ◦ (i′n−1 ◦ π′

n−1 − in−1 ◦ πn−1) ◦ fn(x′) ∈ 〈L≺
n (μq)〉Z.

It is then enough to prove that

πn(x′ − fn+1 ◦ i′n+1 ◦ π′
n+1 ◦ Sn+1(x′) − Sn ◦ i′n−1 ◦ π′

n−1 ◦ fn(x′)) ∈ 〈L≺
n (μq)〉Z,
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but

π′
n(x′ − fn+1 ◦ i′n+1 ◦ π′

n+1 ◦ Sn+1(x′) − Sn ◦ i′n−1 ◦ π′
n−1 ◦ fn(x′))

= π′
n(x′) − δ′n+1 ◦ s′n+1(π′

n(x′)) − s′n ◦ δ′n(π′
n(x′))

= 0.

Finally, we deduce from Lemma 5.5 that

πn(x′ − fn+1 ◦ i′n+1 ◦ π′
n+1 ◦ Sn+1(x′) − Sn ◦ i′n−1 ◦ π′

n−1 ◦ fn(x′)) ∈ 〈L≺
n (μq)〉Z. �

Next we prove another technical lemma that shows how to control the differentials.

Lemma 5.7. Fix n ∈ N0, let R be either k or Z.

(1) If d : A ⊗E kAn ⊗E A → A ⊗E kAn−1 ⊗E A is a morphism of A-bimodules such 
that (d − δn)(1 ⊗ p ⊗ 1) ∈ 〈L≺

n−1(p)〉R for all p ∈ An, then given x ∈ 〈L�
n (μq)〉R, 

(d − δn)(x) ∈ 〈L≺
n−1(μq)〉R for all μq ∈ k×Q≥0.

(2) If ρ : A ⊗E kAn ⊗E A → A ⊗E kAn+1 ⊗E A is a morphism of A −E-bimodules such 
that (ρ − sn)(1 ⊗ p ⊗ π(b)) ∈ 〈L≺

n+1(pb)〉R, for all p ∈ An and b ∈ B, then for all 
x ∈ 〈L�

n (μq)〉R, (ρ − sn)(x) belongs to 〈L≺
n+1(μq)〉R for all μq ∈ k×Q≥0.

Proof. Given μq ∈ k×Q≥0 and x ∈ 〈L�
n (μq)〉R, let us see that (d −δn)(x) ∈ 〈L≺

n−1(μq)〉R. 
It suffices to prove the statement for x = λπ(b) ⊗ p ⊗ π(b′) ∈ L�

n (μq).
By hypothesis, (d − δn)(1 ⊗ p ⊗ 1) belongs to 〈L≺

n−1(p)〉R, so (d − δn)(x) equals 
λπ(b)(d − δn)(1 ⊗ p ⊗ 1)π(b′) and it belongs to 〈L≺

n−1(λbpb′)〉R ⊆ 〈L≺
n−1(μq)〉R, using 

Corollary 5.3.
The second part is analogous. �
Next proposition will provide the remaining necessary tools for the proofs of Theo-

rem 4.1 and Theorem 4.2.

Proposition 5.8. Fix n ∈ N0 and let R be either k or Z. Suppose that for each i ∈
{0, . . . , n} there are morphisms of A-bimodules di : A ⊗E kAi⊗EA → A ⊗E kAi−1⊗EA, 
and morphisms of A − E-bimodules ρi : A ⊗E kAi−1 ⊗E A → A ⊗E kAi ⊗E A. Denote 
d−1 = δ−1 and define ρ−1 : A → A ⊗E A as ρ(a) = a ⊗ 1.

If the following conditions hold,

(i) di−1 ◦ di = 0 for all i ∈ {0, . . . , n},
(ii) (di − δi)(1 ⊗ q ⊗ 1) ∈ 〈L≺

i−1(q)〉R for all i ∈ {0, . . . , n} and for all q ∈ Ai,
(iii) for all i ∈ {−1, . . . , n − 1} and for all x ∈ A ⊗E kAi ⊗E A, x = di+1 ◦ ρi+1(x) +

ρi ◦ di(x),
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(iv) (ρi − si)(1 ⊗ q ⊗ π(b)) ∈ 〈L≺
i (qb)〉R for all i ∈ {0, . . . , n}, for all q ∈ Ai and for all 

b ∈ B,

then:

(1) If dn+1 : A ⊗E kAn+1 ⊗E A → A ⊗E kAn ⊗E A is a map satisfying the following 
conditions:
(i) dn ◦ dn+1 = 0,
(ii) (dn+1 − δn+1)(1 ⊗ q ⊗ 1) ∈ 〈L≺

n (q)〉R,
then there exists a morphism ρn+1 : A ⊗E kAn ⊗E A → A ⊗E kAn+1 ⊗E A of A −E

bimodules such that
(a) for all x ∈ A ⊗E kAn ⊗E A, x = dn+1 ◦ sn+1(x) + sn ◦ dn(x),
(b) for all q ∈ An and for all b ∈ B, (ρn+1 − sn+1)(1 ⊗ q ⊗ π(b)) ∈ 〈L≺

n+1(qb)〉R.
(2) There exists a morphism of A-bimodules dn+1 : A ⊗E kAn+1⊗EA → A ⊗E kAn⊗EA

such that
(i) dn ◦ dn+1 = 0,
(ii) (dn+1 − δn+1)(1 ⊗ q ⊗ 1) ∈ 〈L≺

n (q)〉R.

Proof. In order to prove (2), fix q ∈ An+1. By Lemma 5.4, δn+1(1 ⊗ q ⊗ 1) belongs 
to 〈L�

n (q)〉Z and using Lemma 5.7, (dn − δn)(δn+1(1 ⊗ q ⊗ 1)) belongs to 〈L≺
n−1(q)〉R. 

Corollary 5.6 tells us that δn ◦ δn+1(1 ⊗ q ⊗ 1) is in 〈L≺
n−1(q)〉Z. We deduce from the 

equality

dn(δn+1(1 ⊗ q ⊗ 1)) = δn ◦ δn+1(1 ⊗ q ⊗ 1) + (dn − δn)(δn+1(1 ⊗ q ⊗ 1))

that dn(δn+1(1 ⊗ q ⊗ 1)) belongs to 〈L≺
n−1(q)〉R.

Let us define d̃n+1 : A × kAn+1 ×A → A ⊗E kAn ⊗E A by

d̃n+1(a, q, c) = aδn+1(1 ⊗ q ⊗ 1)c− aρn(dn(δn+1(1 ⊗ q ⊗ 1)))c,

for a, c ∈ A, q ∈ An+1. The map d̃n+1 is E-multilinear and balanced, and it induces a 
unique map

dn+1 : A⊗E kAn+1 ⊗E A → A⊗E kAn ⊗E A.

It is easy to verify that dn+1 is in fact a morphism of A-bimodules.
Putting together the equality ρn = sn + (ρn − sn) and Lemmas 5.4 and 5.7, we 

obtain that (dn+1 − δn+1)(1 ⊗ q ⊗ 1) = −ρn ◦ dn ◦ δn+1(1 ⊗ q ⊗ 1) belongs to 〈L≺
n (q)〉R. 

Moreover, given x ∈ A ⊗E kAn−1 ⊗E A, x = dn ◦ ρn(x) + ρn−1 ◦ dn−1(x), choosing 
x = dn(δn+1(1 ⊗ q ⊗ 1)) yields the equality

dn ◦ δn+1(1 ⊗ q ⊗ 1) = dn ◦ ρn ◦ dn ◦ δn+1(1 ⊗ q ⊗ 1)

which proves that dn ◦ dn+1 = 0.
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For the proof of (1), fix q ∈ An and b ∈ B. Using Lemmas 5.4 and 5.7, we deduce that 
the element

1 ⊗ q ⊗ π(b) − ρn ◦ dn(1 ⊗ q ⊗ π(b))

= 1 ⊗ q ⊗ π(b) − ρn ◦ δn(1 ⊗ q ⊗ π(b)) − ρn ◦ (dn − δn)(1 ⊗ q ⊗ π(b))

differs from 1 ⊗ q⊗ π(b) − ρn ◦ δn(1 ⊗ q⊗ π(b)) by elements in 〈L≺
n (qb)〉R. We will write 

that

(id− ρn ◦ δn + ρn ◦ (dn − δn))(1 ⊗ q ⊗ π(b))

≡ id− ρn ◦ δn(1 ⊗ q ⊗ π(b)) mod〈L≺
n (qb)〉R.

Also,

(id− ρn ◦ δn)(1 ⊗ q ⊗ π(b)) ≡ (id− sn ◦ δn)(1 ⊗ q ⊗ π(b)) mod〈L≺
n (qb)〉R

≡ δn+1 ◦ sn+1(1 ⊗ q ⊗ π(b)) mod〈L≺
n (qb)〉R

≡ dn+1 ◦ sn+1(1 ⊗ q ⊗ π(b)) mod〈L≺
n (qb)〉R.

We deduce from this that there exists a unique ξ ∈ 〈L≺
n (qb)〉R such that

(id− ρn ◦ dn)(1 ⊗ q ⊗ π(b)) = dn+1 ◦ sn+1(1 ⊗ q ⊗ π(b)) + ξ.

It is evident that ξ belongs to the kernel of dn.
The order � satisfies the descending chain condition, so we can use induction on 

(k×Q≥0, �). If there is no λp ∈ k×Q≥0 such that λp ≺ qb, then ξ = 0 and we define 
ρn+1(1 ⊗ q ⊗ π(b)) = sn+1(1 ⊗ q ⊗ π(b)). Inductively, suppose that ρn+1(ξ) is defined. 
The equality dn(ξ) = 0 implies that ξ = dn+1 ◦ ρn+1(ξ) and

(id− ρn ◦ dn)(1 ⊗ q ⊗ π(b)) = dn+1(sn+1(1 ⊗ q ⊗ π(b)) + ρn+1(ξ)).

We define ρn+1(1 ⊗ q ⊗ π(b)) := sn+1(1 ⊗ q ⊗ π(b)) + ρn+1(ξ).
Lemmas 5.4 and 5.7 assure that ρn+1(ξ) belongs to 〈L≺

n+1(qb)〉R, and as a consequence

ρn+1(1 ⊗ q ⊗ π(b)) − sn+1(1 ⊗ q ⊗ π(b)) ∈ 〈L≺
n+1(qb)〉R. �

We are now ready to prove the theorems.

Proof of Theorem 4.1. We will prove the existence of an A − E-bimodule map ρ0 :
A ⊗E kA−1 ⊗E A → A ⊗E kA0 ⊗E A satisfying d0 ◦ ρ0 + ρ−1 ◦ d−1 = id, where d−1 = μ

and ρ−1(a) = s−1(a) = a ⊗ 1 for all a ∈ A. Once this achieved, we apply Proposition 5.8
inductively with R = k, for all n such that 0 ≤ n ≤ N−1, obtaining this way a homotopy 
retraction of the complex
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A⊗E kAN ⊗E A
dN−−−→ · · · d0−−→ A⊗E A

d−1−−−→ A −−→ 0

proving thus that it is exact.
Given b = bk · · · b1 ∈ B, with bi ∈ Q1, 1 ≤ i ≤ k,

s0(1 ⊗ π(b)) = −
∑
i

π(bk · · · bk−i+1) ⊗ bk−i ⊗ π(bk−i−1 · · · b1).

On one hand 1 ⊗π(b) −π(b) ⊗1 = 1 ⊗π(b) −s−1(d−1(1 ⊗π(b))) and on the other hand the 
left hand term equals δ0(s0(1 ⊗π(b))), yielding 1 ⊗π(b) −s−1(1 ⊗π(b)) = δ0(s0(1 ⊗π(b)). 
By hypothesis, (d0−δ0)(1 ⊗π(b)) belongs to 〈L≺

−1(b)〉k, and so there exists ξ ∈ 〈L≺
−1(b)〉k

such that

1 ⊗ π(b) − s−1(d−1(1 ⊗ π(b))) = d0(s0(1 ⊗ π(b))) + ξ.

It follows that d−1(ξ) = 0. Suppose first that there exists no λp ∈ k×Q≥0 such that 
λp ≺ b.

In this case ξ = 0 and we define ρ0(1 ⊗π(b)) = s0(1 ⊗π(b)). Inductively, suppose that 
ρ0(ξ) is defined for any ξ such that d−1(ξ) = 0. Since in this case ξ = d0(ρ0(ξ)), we set 
ρ0(1 ⊗ π(b)) := s0(1 ⊗ π(b)) + ρ0(ξ). �
Proof of Theorem 4.2. It follows from the proof of Theorem 4.1 that

1 ⊗ π(b) = (s−1 ◦ d−1 + δ0 ◦ s0)(1 ⊗ π(b))

and so s−1 ◦ d−1 + δ0 ◦ s0 = idA⊗EA. Setting d0 := δ0, the theorem follows applying 
Proposition 5.8 for R = Z. �

We end this section by showing that this construction is a generalization of Bardzell’s 
resolution for monomial algebras.

Proposition 5.9. Given an algebra A, let (A ⊗E kA• ⊗E A, d•) be a resolution of A as 
A-bimodule such that d• satisfies the hypotheses of Theorem 4.1. If p ∈ An is such that 
r(p) = 0 or r(p) = p for every reduction r, then for all a, c ∈ kQ,

dn(π(a) ⊗ p⊗ π(c)) = δn(π(a) ⊗ p⊗ π(c)).

Proof. By hypothesis, we know that there exists no λ′p′ ∈ k×Q≥0 such that λ′p′ ≺ p, so 
L≺
n−1(p) = {0} and dn(1 ⊗ p ⊗ 1) = δn(1 ⊗ p ⊗ 1). Given a, c ∈ kQ we deduce from the 

previous equality that

dn(π(a) ⊗ p⊗ π(c)) − δn(π(a) ⊗ p⊗ π(c))

= π(a)(dn(1 ⊗ p⊗ 1) − δn(1 ⊗ p⊗ 1))π(c) = 0. �
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Corollary 5.10. Suppose the algebra A = kQ/I has a monomial presentation. Choose a 
reduction system R whose pairs have the monomial relations generating the ideal I as 
first coordinate and 0 as second coordinate. In this case, the only maps d verifying the 
hypotheses of Theorem 4.2 are those of Bardzell’s resolution.

6. Morphisms in low degrees

In this section we describe the morphisms appearing in lower degrees of the resolution.
Let us consider the following data: an algebra A = kQ/I and a reduction system R

satisfying condition ♦.
We start by recalling the definition of δ0 and δ−1. For a, c ∈ kQ, α ∈ Q1,

δ−1 : A⊗E A → A, δ0 : A⊗E kA0 ⊗E A → A⊗E A,

δ−1(π(a) ⊗ π(c)) = π(ac), δ0(π(a) ⊗ α⊗ π(c)) = π(aα) ⊗ π(c) − π(a) ⊗ π(αc).

Definition 6.1. We state some definitions.

• Let φ0 : kQ → A ⊗E kA0 ⊗E A be the unique k-linear map such that

φ0(c) =
n∑

i=1
π(cn · · · ci+1) ⊗ ci ⊗ π(ci−1 · · · c1)

for c ∈ Q≥0, c = cn · · · c1 with ci ∈ Q1 for all i, 1 ≤ i ≤ n.
• Given a basic reduction r = ra,s,c, let φ1(r, −) : kQ → A ⊗E kA1⊗E A be the unique 

k-linear map such that, given p ∈ Q≥0

φ1(r, p) =
{
π(a) ⊗ s⊗ π(c), if p = asc,

0 if not.
(6.1)

In case r = (rn, . . . , r1) is a reduction, where ri is a basic reduction for all i, 1 ≤ i ≤ n, 
we denote r′ = (rn, . . . , r2) and we define in a recursive way the map φ1(r, −) as the 
unique k-linear map from kQ to A ⊗E kA1 ⊗E A such that

φ1(r, p) = φ1(r1, p) + φ1(r′, r1(p)).

• Finally, we define an A-bimodule morphism d1 : A ⊗E kA1 ⊗E A → A ⊗E kA0 ⊗E A

by the equality

d1(1 ⊗ s⊗ 1) = φ0(s) − φ0(β(s)), for all s ∈ A1.

Next we prove four lemmas necessary to the description of the complex in low degrees.

Lemma 6.2. Let us consider p ∈ Q≥0 and x ∈ kQ such that x ≺ p. For any reduction r
the element φ1(r, x) belongs to 〈L≺

1 (p)〉Z.
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Proof. We will first prove the result for x = μq ∈ k×Q≥0. The general case will then fol-
low by linearity. Fix x = μq ∈ k×Q≥0. We will use an inductive argument on (k×Q≥0,�).

To start the induction, suppose first that there exists no μ′q′ ∈ k×Q≥0 and that 
μ′q′ ≺ μq = x. In this case, every basic reduction ra,s,c satisfies either ra,s,c(x) = x or 
ra,s,c = 0. In the first case, asc �= q and so φ1(ra,s,c, x) = 0. In the second case, asc = q, 
so φ1(ra,s,c, x) = μπ(a) ⊗ s ⊗ π(c).

Given an arbitrary reduction r = (rn, . . . , r1) with ri basic for all i, there are three 
possible cases.

(1) r1(x) = x and n > 1,
(2) r1(x) = x and n = 1,
(3) r1(x) = 0.

Denote r′ = (rn, . . . , r2) as before and r1 = ra,s,c. In case 1), φ1(r, x) = φ1(r′, x). In 
case 3), φ1(r, x) = φ1(r1, x) = 0. Finally, in case 2), φ1(r, x) = φ1(r1, x) = μπ(a) ⊗ s ⊗
π(c). Using Lemma 5.2, we obtain that in all three cases φ1(r, x) ∈ 〈L≺

1 (p)〉Z.
Next, suppose that x = μq and that the result holds for μ′q′ ∈ k×Q≥0 such that 

μ′q′ ≺ μq = x. Let us consider r, r1 and r′ as before. Again, there are three possible 
cases:

(1) asc = q,
(2) asc �= q and n > 1,
(3) asc �= q and n = 1.

Case 3) is immediate, since in this situation φ1(r, x) = 0. The second case reduces to the 
other ones, since φ1(r, x) = φ1(r′, x). In the first case,

φ1(r, x) = μπ(a) ⊗ s⊗ π(c) + φ1(r′, r1(x)).

We know that r1(x) ≺ x, and we may write it as a finite sum r1(x) =
∑

i μiqi. Using the 
inductive hypothesis, we deduce that φ1(r, x) ∈ 〈L≺

1 (p)〉Z. �
Lemma 6.3. For all x ∈ A ⊗E kA1 ⊗E A, x belongs to the kernel of δ0 ◦ d1(x).

Proof. Let x be an element of A ⊗E kA1 ⊗E A. Since these maps are morphisms of 
A-bimodules, we may suppose x = 1 ⊗ s ⊗ 1, with s ∈ A1. A direct computation gives

δ0(d1(1 ⊗ s⊗ 1)) = δ0(φ0(s) − φ0(β(s)))

= π(s) ⊗ 1 − 1 ⊗ π(s) − π(β(s)) ⊗ 1 + 1 ⊗ π(β(s))

= 0. �
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Lemma 6.4. Given a, c ∈ Q≥0 and p =
∑n

i=1 λipi ∈ kQ, with pi ∈ Q≥0 for all i, we 
obtain the equality

φ0(apc) = φ0(a)π(pc) + π(a)φ0(p)π(c) + π(ap)φ0(c).

The proof is immediate using the definition of φ0 and k-linearity of φ0 and π.
Next we prove the last of the preparatory lemmas.

Lemma 6.5. Given p ∈ Q≥0 and a reduction r = (rn, . . . , r1), with ri a basic reduction 
for all i such that 1 ≤ i ≤ n, there is an equality

d1(φ1(r1, p)) = φ0(p) − φ0(r(p)).

Proof. We will prove the result by induction on n. We will denote ri = rai,si,ci .
For n = 1, there are two cases. The first one is when p �= a1s1c1. In this situation, 

r(p) = r1(p) = p, φ1(r1, p) = 0 and so the equality is trivially true. In the second case, 
p = a1s1c1, φ1(r1, p) = π(a1) ⊗ s1 ⊗ π(c1) and r(p) = r1(p) = a1β(s1)c1. Moreover,

d1(φ1(r1, p)) + φ0(r1(p)) = d1(π(a1) ⊗ s1 ⊗ π(c1)) + φ0(a1β(s1)c1)

= π(a1)φ0(s1)π(c1) − π(a1)φ0(β(s1))π(c1) + φ0(a1β(s1)c1).

Using Lemma 6.4, the last term equals

φ0(a1)π(β(s1)c1) + π(a1)φ0(β(s1))π(c1) + π(a1β(s1))φ0(c1),

so the whole expression is

π(a1)φ0(s1)π(c1) + φ0(a1)π(β(s1)c1) + π(a1β(s1))φ0(c1)

= π(a1)φ0(s1)π(c1) + φ0(a1)π(s1c1) + π(a1s1)φ0(c1),

and using again Lemma 6.4, this equals φ0(p).
Suppose the result holds for n − 1. As usual, we denote r′ = (rn, . . . , r2).
Since r(p) = r′(r1(p)),

d1(φ1(r, p)) + φ0(r(p)) = d1(φ1(r1, p)) + d1(φ1(r′, r1(p))) + φ0(r′(r1(p)))

= d1(φ1(r1, p)) + φ0(r1(p))

= φ0(p). �
Consider now an element p ∈ A2. By definition we write p = u0u1u2 = v2v1v0 where 

u0u1 and v1v0 are paths in A1 dividing p. Suppose r = ra,s,c is a basic reduction such 
that r(p) �= p. We deduce that either s = u0u1 or s = v1v0. For an arbitrary reduction 
r = (rn, . . . , r1), we will say that r starts on the left of p if r1 = ra,s,c, s = u0u1 and 
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asc = p, and we will say that r starts on the right of p if r1 = ra,s,c, s = v1v0 and 
asc = p.

Proposition 6.6. Let {rp}p∈A2 and {tp}p∈A2 be two sets of reductions such that rp(p) and 
tp(p) belong to kB, rp starts on the left of p and tp starts on the right of p. Consider 
d2 : A ⊗E kA2⊗EA → A ⊗E kA1⊗EA the map of A-bimodules defined by d2(1 ⊗p ⊗1) =
φ1(tp, p) − φ1(rp, p).

The sequence

A⊗E kA2 ⊗E A
d2−−→ A⊗E kA1 ⊗E A

d1−−→ A⊗E kA0 ⊗E A
δ0−−→ A⊗E A

δ−1−−−→ A −→ 0

is exact.

Proof. To check that d2 is well defined, consider the map d̃2 : A × kA2 × A → A ⊗E

kA1 ⊗E A defined by d̃2(x, p, y) = xφ1(tp, p)y − xφ1(rp, p)y, for all x, y ∈ A, which is 
clearly multilinear; taking into account the definition of φ1, it is such that d̃2(xe, p, y) =
d̃2(x, ep, y) and d̃2(x, pe, y) = d̃2(x, p, ey) for all e ∈ E, so it induces d2 on A ⊗EkA2⊗EA.

The sequence is a complex:

• δ−1 ◦ δ0 = 0 and δ0 ◦ d1 = 0 follow from Lemma 6.3.
• Given p ∈ A2, d1(d2(1 ⊗p ⊗1)) = d1(φ1(tp, p) −φ1(rp, p)). Using Lemma 6.5, this last 

expression equals φ0(p) − φ0(tp(p)) − φ0(p) + φ0(rp(p)), which is, by Remark 2.5.1, 
equal to −φ0(β(p)) + φ0(β(p)), so d1 ◦ d2 = 0.

It is exact:

• We already know that this is true at A and at A ⊗E A.
• Given s ∈ A1, d1(1 ⊗ s ⊗ 1) − δ1(1 ⊗ s ⊗ 1) belongs to 〈L≺

0 (s)〉k: indeed, notice that 
δ1(1 ⊗ s ⊗ 1) = φ0(s), and φ0(β(s)) belongs to 〈L≺

0 (s)〉k since β(s) ≺ s. It follows 
that

d1(1 ⊗ s⊗ 1) − δ1(1 ⊗ s⊗ 1) = −φ0(β(s)) ∈ 〈L≺
0 (s)〉k.

• Given p ∈ A2, we will now prove that (d2 − δ2)(1 ⊗ p ⊗ 1) belongs to 〈L≺
1 (p)〉k. We 

may write p = u0u1u2 = v2v1v0, as we did just before this proposition and thus 
δ2(1 ⊗ p ⊗ 1) = π(v2) ⊗ v1v0 ⊗ 1 − 1 ⊗ u0u1 ⊗ π(u2). Besides, if rp = (rn, . . . , r1) and 
tp = (tm, . . . , t1) with ti and rj basic reductions, the fact that rp starts on the left 
and tp starts on the right of p gives

(d2 − δ2)(1 ⊗ p⊗ 1) = φ1(t′ p, t1(p)) − φ1(r′ p, r1(p)),

where t′ p = (tm, . . . , t2) and r′ p = (rn, . . . , r2). Since t1(p) ≺ p and r1(p) ≺ p, 
Lemma 6.2 allows us to deduce the result.

Finally, Theorem 4.1 implies that the sequence considered is exact. �
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Remark 6.6.1. Given a ∈ A0 = Q1, we have that L≺
−1(a) = ∅, so for any morphism 

of A-bimodules d : A⊗E kA0 ⊗E A → A⊗E kA−1 ⊗E A such that (d − δ0)(1 ⊗ a ⊗ 1)
belongs to 〈L≺

−1(a)〉k, it must be d = δ0.
On the other hand, given s ∈ A1, write β(s) =

∑m
i=1 λibi. Let r = ra,s′,c be a basic 

reduction such that r(s) �= s. We must have s′ = s and a, c ∈ Q0 must coincide with the 
source and target of s, respectively. In other words, the only basic reduction such that 
r(s) �= s is ra,s,c with a and c as we just said, and in this case r(s) = β(s) ∈ kB.

In this situation

{λq ∈ k×Q≥0 : λq ≺ s} = {λ1b1, . . . , λmbm},

and writing bi = bni
i · · · b1i with bji ∈ Q1,

L≺
0 (s) =

N⋃
i=1

{λiπ(bni
i · · · b2i ) ⊗ b1i ⊗ 1, . . . , λi ⊗ bni

i ⊗ π(bni−1
i · · · b1i )}.

If d : A ⊗E kA1 ⊗E A → A ⊗E kA0 ⊗E A verifies (d − δ1)(1 ⊗ s ⊗ 1) ∈ L≺
0 (s) and 

δ0 ◦ d(s) = 0 for all s ∈ A1, then there exists γj
i ∈ k such that

d(1 ⊗ s⊗ 1) = φ0(s) −
m∑
i=1

ni∑
j=1

γj
i λiπ(bni

i · · · bj+1
i ) ⊗ bji ⊗ π(bj−1

i · · · b1i ).

From this, applying δ0 and reordering terms we can deduce that γj
i = 1 for all i, j. We 

conclude that the unique morphism with the desired properties is d1.

7. Examples

In this section we construct explicitly projective bimodule resolutions of some algebras 
using the methods we developed in previous sections.

Given an algebra A = kQ/I, we proved in Lemmas 2.9 and 2.10 that it is always 
possible to construct a reduction system R such that every path is reduction-unique. 
However, it is not always easy to follow the prescriptions given by these lemmas for a 
concrete algebra. Moreover, the reduction system obtained from a deglex order ≤ω may 
be sometimes less convenient than other ones. In fact, describing the set tip(I) is not in 
general an easy task.

Bergman’s Diamond Lemma is the tool we use to effectively compute a reduction 
system in most cases. Next we sketch this procedure, which is also described in [3, 
Section 5].

The two sided ideal I is usually presented by giving a set {xi}i∈Γ ⊆ kQ of generating 
relations. If we fix a well-order on Q0∪Q1, a function ω : Q1 → N and consider the total 
order ≤ω on Q≥0, we can easily write xi = si−fi, and we can eventually rescale xi so that 
si is monic, with si >ω fi for all i and define the reduction system R = {(si, fi)}i∈Γ. 
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Every path p will be reduction-finite with respect to R. Bergman’s Diamond Lemma 
says that every path is reduction-unique if and only if for every path p ∈ A2 there are 
reductions r, t with r starting on the left and t starting on the right of p such that 
r(p) = t(p). This last situation is described by saying that p is resolvable. The set A2 is 
usually finite and so there is a finite number of conditions to check.

In case there exists a non-resolvable ambiguity p ∈ A2, choose any two reductions r, t
starting on the left and on the right respectively with r(p) and t(p) both irreducible. 
The element r(p) − t(p) belongs to I \ {0}. We can write r(p) − t(p) = s − f with f <ω s

and add the element (s, f) to our reduction system, and so p is now resolvable. New 
ambiguities may now appear, so it is necessary to iterate this process, which may have 
infinitely many steps, but we will arrive to a reduction system R satisfying condition 
(♦).

Next we give an example to illustrate this procedure, which will be also useful to 
exhibit a case where another reduction system found in an alternative way is better than
the prescribed one.

Example 7.0.1. Consider the algebra of Example 2.10.1. Let x < y < z and ω(x) =
ω(y) = ω(z) = 1. The ideal I is presented as the two sided ideal generated by the 
element x3 + y3 + z3 − xyz. We see that z3 = tip(z3 − (xyz − x3 − y3)), so we start 
considering the reduction system R = {(z3, xyz − x3 − y3)}. Notice that A2 = {z4}. If 
we apply the reduction rz,z3,1 to z4 we obtain zxyz − zx3 − zy3 which is irreducible. 
On the other hand, if we apply the reduction r1,z3,z to z4 we obtain xyz2 − x3z − y3z

which is also irreducible and different from the first one. The difference between them 
is xyz2 − x3z − y3z − zxyz + zx3 + zy3, so we add (xyz2, x3z + y3z + zxyz − zx3 −
zy3) to the reduction system R. Notice that now the set A2 is {z4, xyz3}. Applying 
reductions on the left and on the right to the element xyz3 we obtain again two different 
irreducible elements and, proceeding as before, we see that we have to add the element 
(y3z2, −x3z2−z2xyz+z2x3 +z2y3 +xyxyz−xyx3−xy4) to our reduction system R. We 
obtain the new ambiguity y3z3 which is not difficult to see that it is resolvable. Thus, 
the reduction system

R1 = {(z3, xyz − x3 − y3), (xyz2, x3z + y3z + zxyz − zx3 − zy3),

(y3z2,−x3z2 − z2xyz + z2x3 + z2y3 + xyxyz − xyx3 − xy4)},

satisfies condition (♦).
There is another reduction system for this algebra, namely R2 = {(xyz, x3+y3+z3)}. 

Let us denote A1
n and A2

n the respective set of n-ambiguities. Notice that z 3
2 (n+1) ∈ A1

n

for n odd and z
3
2n+1 ∈ A1

n for n even, so A1
n is not empty for all n ∈ N. On the 

other hand, A2
n is empty for all n ≥ 2. We conclude that using R2 we will obtain a 

resolution of length 2, with differentials given explicitly by Proposition 6.6, and using 
R1 the resolution obtained will have infinite length. This shows how different can the 
resolutions from different reduction systems be.
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Notice that R2 cannot be obtained by the procedure described above by any choice 
of order on Q0∪Q1 and weight ω. The algebra A = k < x, y, z > /(xyz−x3−y3 − z3) is 
in fact a 3-Koszul algebra. Indeed, denoting by V the k-vector space spanned by x, y, z
and by R the one dimensional k-vector space spanned by the relation xyz−x3−y3 − z3, 
it is straightforward that

R⊗ V ⊗ V ∩ V ⊗ V ⊗R = {0},

and so the intersection is a subset of V ⊗ R ⊗ V . Theorem 2.5 of [5] guarantees that A
is 3-Koszul.

The resolution we obtain from the reduction system R2 is the isomorphic to the Koszul 
resolution, since it is minimal, see Theorem 8.1. As we shall see, this is a particular case 
of a general situation.

7.1. The algebra counterexample to Happel’s question

Let ξ be an element of the field k and let A be the k-algebra with generators x and y, 
subject to the relations x2 = 0 = y2, yx = ξxy. Choose the order x < y with weights 
ω(x) = ω(y) = 1 and fix the reduction system R = {(x2, 0), (y2, 0), (yx, ξxy)}. The set B
of irreducible paths is thus {1, x, y, xy}. It is easy to verify that A2 = {x3, yx2, y2x, y3}
and that all paths in A2 are reduction-unique. Bergman’s Diamond Lemma guarantees 
that R satisfies (♦).

The only path of length 2 not in S is xy; Proposition 3.4 implies that for each n, An

is the set of paths of length n + 1 not divisible by xy,

An = {ysxt : s + t = n + 1}.

Lemma 7.1. The following complex provides the beginning of an A-bimodule projective 
resolution of the algebra A

A⊗E kA2 ⊗E A
d2−−→ A⊗E kA1 ⊗E A

d1−−→ A⊗E kA0 ⊗E A
δ0−−→ A⊗E A

δ−1−−−→ A → 0

where d1 is the A-bimodule map such that

d1(1 ⊗ x2 ⊗ 1) = x⊗ x⊗ 1 + 1 ⊗ x⊗ x,

d1(1 ⊗ y2 ⊗ 1) = y ⊗ y ⊗ 1 + 1 ⊗ y ⊗ y,

d1(1 ⊗ yx⊗ 1) = y ⊗ x⊗ 1 + 1 ⊗ y ⊗ x− ξx⊗ y ⊗ 1 − ξ ⊗ x⊗ y

and d2 is the A-bimodule morphism such that

d2(1 ⊗ y3 ⊗ 1) = y ⊗ y2 ⊗ 1 − 1 ⊗ y2 ⊗ y,

d2(1 ⊗ y2x⊗ 1) = y ⊗ yx⊗ 1 + ξ ⊗ yx⊗ y + ξ2x⊗ y2 ⊗ 1 − 1 ⊗ y2 ⊗ x,
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d2(1 ⊗ yx2 ⊗ 1) = y ⊗ x2 ⊗ 1 − 1 ⊗ yx⊗ x− ξx⊗ yx⊗ 1 − ξ2 ⊗ x2 ⊗ y

d2(1 ⊗ x3 ⊗ 1) = x⊗ x2 ⊗ 1 − 1 ⊗ x2 ⊗ x.

Proof. We apply Proposition 6.6 to the following sets {rp}p∈A2 of left reductions and 
{tp}p∈A2 of right reductions, where

ry
3

= r1,y2,y, ry
2x = r1,y2,x,

ryx
2

= (r1,x2,y, rx,yx,1, r1,yx,x), rx
3

= r1,x2,x,

ty
3

= ry,y2,1, ty
2x = (rx,y2,1, r1,yx,y, ry,yx,1),

tyx
2

= ry,x2,1, tx
3

= rx,x2,1. �
One can find an A-bimodule resolution of A in [9] and in [7]; the authors also compute 

the Hochschild cohomology of A therein. We recover this resolution with our method.
Given q ∈ An, there are s, t ∈ N such that s +t = n +1 and q = ysxt. Suppose q = apc

with p = ys
′
xt′ ∈ An−1 and a, c ∈ Q≥0. Since s + t = n + 1 and s′ + t′ = n, either a

belongs to Q0 and c = x or a = y and c ∈ Q0. As a consequence of this fact, the maps
δn : kQ ⊗E kAn ⊗E kQ → kQ ⊗E kAn−1 ⊗E A are

δn(1 ⊗ ysxt ⊗ 1) =

⎧⎨
⎩

y ⊗ ys−1xt ⊗ 1 + (−1)n+1 ⊗ ysxt−1 ⊗ x, if s �= 0 and t �= 0,
y ⊗ yn ⊗ 1 + (−1)n+1 ⊗ yn ⊗ y, if t = 0,
x⊗ xn ⊗ 1 + (−1)n+1 ⊗ xn ⊗ x, if s = 0,

(7.1)

Moreover, given a basic reduction r = ra,s,c, the fact that s belongs to S = {x2, y2, yx}
implies that r(ysxt) is either 0 or ξys−1xyxt−1. Considering the reduction system R, if 
s �= 0 and t �= 0, then

L≺
n−1(ysxt) = {ξsx⊗ ysxt−1 ⊗ 1, ξt ⊗ ys−1xt ⊗ y}.

In case s = 0 or t = 0, the set L≺
n−1(ysxt) is empty.

The computation of d2 − δ2 suggests the definition of the maps

dn : A⊗E kAn ⊗E A → A⊗E kAn−1 ⊗E A

as follows

dn(1 ⊗ ysxt ⊗ 1) = δn(1 ⊗ ysxt ⊗ 1) + ε(ξsx⊗ ysxt−1 ⊗ 1 + ξt ⊗ ys−1xt ⊗ y)

where ε denotes a sign depending on s, t, n. The equality dn−1◦dn = 0 shows that making 
the choice ε = (−1)s does the job.
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Finally, Theorem 4.1 shows that the complex

· · · −→ A⊗E kAn ⊗E A
dn−−→ · · · d1−−→ A⊗E kA0 ⊗E A

δ0−−→ A⊗E A
δ−1−−−→ A −→ 0

with

dn(1 ⊗ ysxt ⊗ 1) = y ⊗ ys−1xt ⊗ 1 + (−1)n+11 ⊗ ysxt−1 ⊗ x

+ (−1)sξsx⊗ ysxt−1 ⊗ 1 + (−1)sξt ⊗ ys−1xt ⊗ y,

for s > 0 and t > 0, and

dn(1 ⊗ yn+1 ⊗ 1) = y ⊗ yn ⊗ 1 + (−1)n+11 ⊗ yn ⊗ y,

dn(1 ⊗ xn+1 ⊗ 1) = x⊗ xn ⊗ 1 + (−1)n+11 ⊗ xn ⊗ x,

is a projective bimodule resolution of A.
Again, the algebra A is Koszul, see for example [6] and the resolution obtained using 

our procedure is isomorphic to the Koszul resolution, which is the minimal one, see 
Theorem 8.1.

7.2. Quantum complete intersections

These algebras generalize the previous case. Instead of the relations x2 = 0 = y2, 
yx = ξxy, we have xn = 0 = ym, yx = ξxy, where n and m are fixed positive integers, 
n, m > 1.

We still denote the algebra by A. Consider the order x < y with weights 
ω(x) = ω(y) = 1. The set of 2-ambiguities associated to the reduction system 
R = {(xn, 0), (ym, 0), (yx, ξxy)} is A2 = {ym+1, ymx, yxn, xn+1}, and the set of ir-
reducible paths is B = {xiyj ∈ k〈x, y〉 : 0 ≤ i ≤ n − 1, 0 ≤ j ≤ m − 1}. We 
easily check that every path in A2 is reduction-unique and using Bergman’s Dia-
mond Lemma, we conclude that R satisfies (♦), Also, A1 = S = {ym, yx, xn} and 
A3 = {y2m, ym+1x, ymxn, yxn+1, x2n}.

Denote by ϕ : N2
0 → N0 the map

ϕ(s, n) =

⎧⎪⎨
⎪⎩

s

2n if s is even,

s− 1
2 n + 1 if s is odd.

(7.2)

Given N ∈ N, the set of N -ambiguities is AN = {yϕ(s,m)xϕ(t,n) : s + t = N +1}. We will 
sometimes write (s, t) instead of yϕ(s,m)xϕ(t,n) ∈ AN .
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We first compute the beginning of the resolution.

Lemma 7.2. The following complex provides the beginning of a projective resolution of A
as A-bimodule:

A⊗E kA2 ⊗E A
d2−−→ A⊗E kA1 ⊗E A

d1−−→ A⊗E kA0 ⊗E A
δ0−−→ A⊗E A

δ−1−−−→ A −→ 0

where d1 and d2 are morphisms of A-bimodules given by the formulas

d1(1 ⊗ xn ⊗ 1) =
n−1∑
i=0

xi ⊗ x⊗ xn−1−i,

d1(1 ⊗ ym ⊗ 1) =
m−1∑
i=0

yi ⊗ y ⊗ ym−1−i,

d1(1 ⊗ yx⊗ 1) = 1 ⊗ y ⊗ x + y ⊗ x⊗ 1 − ξ ⊗ x⊗ y − ξx⊗ y ⊗ 1

d2(1 ⊗ ym+1 ⊗ 1) = y ⊗ ym ⊗ 1 − 1 ⊗ ym ⊗ y,

d2(1 ⊗ ymx⊗ 1) =
m−1∑
i=0

ξiym−1−i ⊗ yx⊗ yi + ξmx⊗ ym ⊗ 1 − 1 ⊗ ym ⊗ x

d2(1 ⊗ yxn ⊗ 1) = y ⊗ xn ⊗ 1 −
n−1∑
i=0

ξixi ⊗ yx⊗ xn−1−i − ξn ⊗ xn ⊗ y,

d2(1 ⊗ xn+1 ⊗ 1) = x⊗ xn ⊗ 1 − 1 ⊗ xn ⊗ x.

Proof. It is straightforward, using Proposition 6.6 applied to the set {rp}p∈A2 of left 
reductions, where

ry
m+1

= r1,ym,y, ry
mx = r1,ym,x,

ryx
n

= (r1,xn,y, . . . , rx,yx,xn−2 , r1,yx,xn−1) rx
n+1

= r1,xn,x,

and the set {tp}p∈A2 of right reductions, where

ty
m+1

= ry,ym,1, ty
mx = (rx,ym,1, . . . , rym−2,yx,y, rym−1,yx,1),

yyx
n

= ry,xn,1, tx
n+1

= rx,xn,1. �
Of course we want to construct the rest of the resolution. Denote (s, t) =

yϕ(s,m)xϕ(t,n) ∈ AN . We will first describe the set L≺
N−1(s, t). There are four cases, 

depending on the parity of s, t and N . With this in view, it is useful to make some 
previous computations that we list below.

(1) For s even, for all j, 0 ≤ j ≤ m − 1, yϕ(s,m) = ym−1−jyϕ(s−1,m)yj .
(2) For s odd, yϕ(s,m) = yyϕ(s−1,m) = yϕ(s−1,m)y.
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(3) For t even, for all i, 0 ≤ i ≤ n − 1, xϕ(t,n) = xixϕ(t−1,n)xn−i−1.
(4) For t odd, xϕ(t,n) = xxϕ(t−1,n) = xϕ(t−1,n)x.

First case: N even, s even, t odd,

L≺
N−1(s, t) = {ξϕ(t,n)jym−1−j ⊗ (s− 1, t) ⊗ yj}m−1

j=1 ∪ {ξϕ(s,m)x⊗ (s, t− 1) ⊗ 1}.

Second case: N even, s odd, t even,

L≺
N−1(s, t) = {ξϕ(t,n) ⊗ (s− 1, t) ⊗ y} ∪ {ξϕ(s,m)ixi ⊗ (x, t− 1) ⊗ xn−1−i}n−1

i=1 .

Third case: N odd, s even, t even,

L≺
N−1(s, t) = {ξϕ(t,n)jym−1−j ⊗ (s− 1, t) ⊗ yj}m−1

j=1

∪ {ξϕ(s,m)ixi ⊗ (s, t− 1) ⊗ xn−1−i}n−1
i=1 .

Fourth case: N , s and t odd,

L≺
N−1(s, t) = {ξϕ(t,n)1 ⊗ (s− 1, t) ⊗ y, ξϕ(s,m)x⊗ (s, t− 1) ⊗ 1}.

Remark 7.2.1. We observe that, analogously to the case n = m = 2,

(d1 − δ1)(1 ⊗ (s, t) ⊗ 1) = (−1)s
∑

u∈L≺
0 (s,t)

u,

(d2 − δ2)(1 ⊗ (s, t) ⊗ 1) = (−1)s
∑

u∈L≺
1 (s,t)

u.

Proposition 5.8 for R = Z guarantees that there exist A-bimodule maps dN : A ⊗E

kAN ⊗E A → A ⊗E kAN−1 ⊗E A such that (dN − δN )(1 ⊗ (s, t) ⊗ 1) ∈ 〈L≺
N−1(s, t)〉Z

and, most important, the complex (A ⊗E kA• ⊗E A, d•) is a projective resolution of A
as A-bimodule.

We are not yet able at this point to give the explicit formulas of the differentials.
In order to illustrate the situation, let us describe what happens for N = 3. We know 

after the mentioned proposition that there exist t1, t2 ∈ Z such that

d3(1 ⊗ ym+1x⊗ 1) = d3(1 ⊗ (3, 1) ⊗ 1)

= δ3(1 ⊗ (3, 1) ⊗ 1) + t1ξ ⊗ (2, 1) ⊗ y + t2ξ
3x⊗ (3, 0) ⊗ 1

= y ⊗ ymx⊗ 1 + 1 ⊗ ym+1 ⊗ x + t1ξ ⊗ ymx⊗ y + t2ξ
3x⊗ ym+1 ⊗ 1.

Of course, d2 ◦ d3 = 0. It follows from this equality that t1 = t2 = −1. This example 
motivates the following lemma, stated in terms of the preceding notations.
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Lemma 7.3. The A-bimodule morphisms dN : A ⊗E kAN ⊗E A → A ⊗E kAN−1 ⊗E A

defined by the formula

dN (1 ⊗ (s, t) ⊗ 1) = δN (1 ⊗ (s, t) ⊗ 1) + (−1)s
∑

u∈L≺
N−1(s,t)

u

satisfy the hypotheses of Theorem 4.1.

Proof. It is straightforward. �
We gather all the information we have obtained about the projective bimodule reso-

lution of A in the following proposition.

Proposition 7.4. The complex of A-bimodules (A ⊗E kA• ⊗E A, d•), with

AN = {yϕ(s,m)xϕ(t,n) : s + t = N + 1}

and differentials defined as follows is exact.

(1) For N even, s even and t odd,

dN (1 ⊗ (s, t) ⊗ 1) = ym−1 ⊗ (s− 1, t)⊗ 1 +
m−1∑
j=1

(−1)sξϕ(t,n)jym−1−j ⊗ (s− 1, t) ⊗ yj

+ (−1)N+11 ⊗ (s, t− 1) ⊗ x + (−1)sξϕ(s,m)x⊗ (s, t− 1) ⊗ 1.

(2) For N even, s odd and t even,

dN (1 ⊗ (s, t) ⊗ 1) = y ⊗ (s− 1, t) ⊗ 1 + (−1)sξϕ(t,n) ⊗ (s− 1, t) ⊗ y

+ (−1)N+11 ⊗ (s, t− 1) ⊗ xn−1

+
n−1∑
i=1

(−1)sξϕ(s,m)ixi ⊗ (s, t− 1) ⊗ xn−1−i

(3) For N odd, s and t even,

dN (1 ⊗ (s, t) ⊗ 1) = ym−1 ⊗ (s− 1, t)⊗ 1 +
m−1∑
j=1

(−1)sξϕ(t,n)jym−1−j ⊗ (s− 1, t) ⊗ yj

+ (−1)N+11 ⊗ (s, t− 1) ⊗ xn−1

+
n−1∑
i=1

(−1)sξϕ(s,m)ixi ⊗ (s, t− 1) ⊗ xn−1−i
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(4) For N , s and t odd,

dN (1 ⊗ (s, t) ⊗ 1) = y ⊗ (s− 1, t) ⊗ 1 + (−1)sξϕ(t,n) ⊗ (s− 1, t) ⊗ y

+ (−1)N+11 ⊗ (s, t− 1) ⊗ x + (−1)sξϕ(s,m)x⊗ (s, t− 1) ⊗ 1.

Again, we obtain the minimal resolution of A, even for n �= 2 or m �= 2, when the 
algebra is not homogeneous.

7.3. Down–up algebras

Given α, β, γ ∈ k, we will denote A(α, β, γ) the quotient of k〈d, u〉 by the two sided 
ideal I generated by relations

d2u− αdud− βud2 − γd = 0,

du2 − αudu− βu2d− γu = 0.

Down–up algebras have been deeply studied since they were defined in [11]. We can men-
tion the articles [15,13,8,16,14,21,22,24–28], in which the authors prove diverse properties 
of down–up algebras. It is well known that they are noetherian if and only if β �= 0 [22]. 
They are graded with dg(d) = 1, dg(u) = −1, and they are filtered if we consider d and 
u of weight 1. If γ = 0 they are also graded by this weight.

Down–up algebras are 3-Koszul if γ = 0, and if γ �= 0, they are PBW deformations of 
3-Koszul algebras [8].

Little is known about their Hochschild homology and cohomology, except for the cen-
ter, described in [31] and [24]. We apply our methods to construct a projective resolution 
of A as A-bimodule, and then use this resolution to compute H•(A, Ae) and prove that 
in the noetherian case, A(α, β, γ) is 3-Calabi–Yau if and only if β = −1. Moreover, in 
this situation we exhibit a potential Φ(d, u) such that the relations are in fact the cyclic 
derivatives ∂uΦ and ∂dΦ, respectively.

We briefly recall that a d-Calabi–Yau algebra is an associative algebra such that there 
is an isomorphism f of A-bimodules

ExtiAe(A,Ae) ∼=
{

0 if i �= d,

A if i = d.
(7.3)

The A-bimodule outer structure of Ae is used when computing ExtiAe(A, Ae), while the 
isomorphism f takes account of the inner bimodule structure of Ae. Bocklandt proved 
in [10] that graded Calabi–Yau algebras come from a potential and Van den Bergh [30]
generalized this result to complete algebras with respect to the I-adic topology.

We fix a lexicographical order such that d < u, with weights ω(d) = 1 = ω(u). 
The reduction system R = {(d2u, αdud + βud2 + γd), (du2, αudu + βu2d + γu)} has 
B = {ui(du)kdj : i, k, j ∈ N0} as set of irreducible paths and A2 = {d2u2}; using 
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Bergman’s Diamond Lemma we see that R satisfies condition (♦). Also, A0 = {d, u}
and An = ∅ for all n ≥ 3. The set B is the k-basis already considered in [11].

The reductions rd2u2 = (ru,d2u,1, r1,d2u,u) and td
2u2 = (t1,du2,d, td,du2,1) are respec-

tively left and right reductions of d2u2.
In view of Proposition 6.6 and observing that δ−1 is in fact an epimorphism and that 

A3 = ∅, the following complex gives a free resolution of A as A-bimodule:

0 −→ A⊗E kd2u2 ⊗E A
d2−−→ A⊗E (kd2u⊕ kdu2) ⊗E A

d1−−→ A⊗E (kd⊕ ku) ⊗E A

δ0−−→ A⊗E A
δ−1−−−→ A −→ 0

where

d1(1 ⊗ d2u⊗ 1) = 1 ⊗ d⊗ du + d⊗ d⊗ u + d2 ⊗ u⊗ 1

− α(1 ⊗ d⊗ ud + d⊗ u⊗ d + du⊗ d⊗ 1)

− β(1 ⊗ u⊗ d2 + u⊗ d⊗ d + ud⊗ d⊗ 1) − γ ⊗ d⊗ 1,

d1(1 ⊗ du2 ⊗ 1) = 1 ⊗ d⊗ u2 + d⊗ u⊗ u + du⊗ u⊗ 1

− α(1 ⊗ u⊗ du + u⊗ d⊗ u + ud⊗ u⊗ 1)

− β(1 ⊗ u⊗ ud + u⊗ u⊗ d + u2 ⊗ d⊗ 1) − γ ⊗ u⊗ 1,

and

d2(1 ⊗ d2u2 ⊗ 1) = d⊗ du2 ⊗ 1 + β ⊗ du2 ⊗ d− 1 ⊗ d2u⊗ u− βu⊗ d2u⊗ 1.

As we have proved in general, the map d2 takes into account the reductions applied to 
the ambiguity.

Proposition 7.5. Suppose that β �= 0. The algebra A(α, β, γ) is 3-Calabi–Yau if and only 
if β = −1.

Proof. We need to compute Ext•Ae(A, Ae). We apply the functor HomAe(−, Ae) to the 
previous resolution, and we use that for any finite dimensional vector space V which is 
also an E-bimodule, the space HomAe(A ⊗E V ⊗EA, Ae) is isomorphic to HomEe(V, Ae), 
and this last one is, in turn, isomorphic to A ⊗E V ∗ ⊗E A. All the isomorphisms are 
natural. The explicit expression of the last isomorphism is, fixing a k-basis {v1, . . . , vn}
of V and its dual basis {ϕ1, . . . , ϕn} of V ∗,

A⊗E V ∗ ⊗E A → HomEe(V,Ae)

a⊗ ϕ⊗ b �→ [v �→ ϕ(v)b⊗ a]

with inverse f �→
∑

i,j b
i
j ⊗ ϕi ⊗ aij , where f(vi) =

∑
j a

i
j ⊗ bij .
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After these identifications, we obtain the following complex of k-vector spaces whose 
homology is Ext•Ae(A, Ae)

0 −→ A⊗E A
δ∗0−−→ A⊗E (kD ⊕ kU) ⊗E A

d∗
1−−→ A⊗E (kD2U ⊕ kDU2) ⊗E A

d∗
2−−→ A⊗E kD2U2 ⊗E A −→ 0,

where {D, U} denotes the dual basis of {d, u} and, accordingly, we denote with capital 
letters the dual bases of the other spaces.

The maps in the complex are, explicitly:

δ∗0(1 ⊗ 1) = 1 ⊗D ⊗ d− d⊗D ⊗ 1 + 1 ⊗ U ⊗ u− u⊗ U ⊗ 1

d∗1(1 ⊗ U ⊗ 1) = 1 ⊗D2U ⊗ d2 − αd⊗D2U ⊗ d− βd2 ⊗D2U ⊗ 1 + u⊗DU2 ⊗ d

+ 1 ⊗DU2 ⊗ du− αdu⊗DU2 ⊗ 1 − α⊗DU2 ⊗ ud− βud⊗DU2 ⊗ 1

− βd⊗DU2 ⊗ u− γ ⊗DU2 ⊗ 1,

d∗1(1 ⊗D ⊗ 1) = du⊗D2U ⊗ 1 + u⊗D2U ⊗ d− αud⊗D2U ⊗ 1 − α⊗D2U ⊗ du

− βd⊗D2U ⊗ u− β ⊗D2U ⊗ ud− γ ⊗D2U ⊗ 1 + u2 ⊗DU2 ⊗ 1

− αu⊗DU2 ⊗ u− β ⊗DU2 ⊗ u2,

d∗2(1 ⊗DU2 ⊗ 1) = 1 ⊗D2U2 ⊗ d + βd⊗D2U2 ⊗ 1,

d∗2(1 ⊗D2U ⊗ 1) = −u⊗D2U2 ⊗ 1 − β ⊗D2U2 ⊗ u.

Consider the following isomorphisms of A-bimodules

ψ0 : A⊗E A → A⊗E kd2u2 ⊗E A,

ψ0(1 ⊗ 1) = 1 ⊗ d2u2 ⊗ 1,

ψ1 : A⊗E (kD ⊕ kU) ⊗E A → A⊗E (kd2u⊕ kdu2) ⊗E A

ψ1(1 ⊗D ⊗ 1) = 1 ⊗ du2 ⊗ 1, and ψ1(1 ⊗ U ⊗ 1) = 1 ⊗ d2u⊗ 1

ψ2 : A⊗E (kD2U ⊕ kDU2) ⊗E A → A⊗E (kd⊕ ku) ⊗E A,

ψ2(1 ⊗D2U ⊗ 1) = 1 ⊗ u⊗ 1, and ψ2(1 ⊗DU2 ⊗ 1) = 1 ⊗ d⊗ 1

ψ3 : A⊗E kD2U2⊗E → A⊗E A

ψ3(1 ⊗D2U2 ⊗ 1) = 1 ⊗ 1.

It is straightforward to verify that the following diagram commutes, thus inducing 
isomorphisms between the homology spaces of both horizontal sequences:



58 S. Chouhy, A. Solotar / Journal of Algebra 432 (2015) 22–61
0 A|A
δ∗0

ψ0

A|(kA0)∗|A
d∗
1

ψ1

A|(kA1)∗|A
d∗
2

ψ2

A|(kA2)∗|A

ψ3

0

0 A|kA2|A
d0

A|kA1|A
d1

A|kA0|A
d2

A|A 0

where | denotes ⊗E and d0 is given by

d0(1 ⊗ d2u2 ⊗ 1) = 1 ⊗ du2 ⊗ d− d⊗ du2 ⊗ 1 − u⊗ d2u⊗ 1 + 1 ⊗ d2u⊗ u.

d1 is

d1(1 ⊗ d2u⊗ 1) = 1 ⊗ d⊗ du− βd⊗ d⊗ u− βd2 ⊗ u⊗ 1

− α(1 ⊗ d⊗ ud + d⊗ u⊗ d + du⊗ d⊗ 1)

− β(−β−1 ⊗ u⊗ d2 − β−1u⊗ d⊗ d + ud⊗ d⊗ 1) − γ ⊗ d⊗ 1

d1(1 ⊗ du2 ⊗ 1) = −β ⊗ d⊗ u2 − βd⊗ u⊗ u + du⊗ u⊗ 1

− α(1 ⊗ u⊗ du + u⊗ d⊗ u + ud⊗ u⊗ 1)

− β(1 ⊗ u⊗ ud− β−1u⊗ u⊗ d− β−1u2 ⊗ d⊗ 1) − γ ⊗ u⊗ 1

and d2 is

d2(1 ⊗ u⊗ 1) = −β ⊗ u− u⊗ 1, d2(1 ⊗ d⊗ 1) = 1 ⊗ d + βd⊗ 1.

From this we deduce that HH3(A, Ae) ∼= A ⊗E A/(Imd2). Let σ be the algebra 
automorphism of A defined by σ(d) = −βd, σ(u) = −β−1u. Recall that Aσ is the 
A-bimodule with A as underlying vector space and action of A ⊗kA

op given by: (a ⊗b) ·x =
axσ(b), that is, it is twisted on the right by the automorphism σ.

It is easy to see that if β �= 0 then Aσ
∼= A ⊗E A/(Imd2) ∼= HH3(A, Ae) as 

A-bimodules. If β = 0 then the action on the left by u on HH3(A, Ae) is zero and 
then A � HH3(A, Ae) since the action on the left by u on A is injective. We conclude 
after a short computation that HH3(A, Ae) ∼= A if and only if β = −1. Notice that for 
β = −1 the complex in the second line of the diagram above is the resolution of A. As 
a consequence, A is 3-Calabi–Yau if and only if β = −1. In this case the potential Φ
equals d2u2 + α

2 dudu + γdu. For β �= 0, −1, we shall see in a forthcoming article that A
is twisted 3-Calabi–Yau algebra [12], coming from a twisted potential. �
8. Final remarks

We have studied some examples of algebras, in particular of N -Koszul algebras for 
which we managed to obtain the minimal resolution using our methods. This fact can 
be stated in general as follows.
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Theorem 8.1. Given an algebra A = kQ/I such that

(1) there is a reduction system R = {(si, fi)}i for I satisfying (♦) with si and fi homo-
geneous of length N ≥ 2 for all i,

(2) for all n ∈ N, the length of the elements of An is strictly smaller than the length of 
the elements of An+1.

The resolutions of A as A-bimodule obtained using Theorem 4.1 and Theorem 4.2 are 
minimal.

Proof. Let (A ⊗E kA• ⊗E A, d•) be a resolution of A as A-bimodule obtained using 
Theorem 4.1 or Theorem 4.2. Denote by |c| the length of a path c ∈ Q≥0. Condition
(1) guarantees that for all paths p, q such that λp � q for some λ ∈ k×, we have 
|p| = |q|. Let n ≥ 0, q ∈ An and λπ(b) ⊗ p ⊗ π(b′) ∈ L≺

n−1(q). Since p ∈ An−1, 
condition (2) says that |p| < |q|. On the other hand, λbpb′ ≺ q and then |bpb′| =
|q|. We deduce that b ∈ Q≥1 or b′ ∈ Q≥1. As a consequence, Im(dn) is contained in 
J ⊗E kAn−1 ⊗E A ∪ A ⊗E kAn−1 ⊗E J , where J is the ideal generated by the arrows 
and therefore the resolution of A is minimal. �
Remark 8.1.1. The conclusion holds in a more general situation, which includes example 
in Subsection 7.2. It is sufficient to have a reduction system satisfying (1) and such that 
the ambiguities p that appear when reducing a given n + 1-ambiguity q are of length 
strictly smaller than the length of q.

Remark 8.1.2. In Example 7.0.1, the reduction system R2 satisfies the conditions of 
Theorem 8.1, while R1 does not satisfy (2).

Notice that if R is a reduction system for an algebra for which there is a non-resolvable 
ambiguity, then, even if we complete it like we did in Example 7.0.1, the resolutions 
obtained using Theorem 4.1 and Theorem 4.2 will not be minimal.

We end this article proving a generalization of Prop. 8 of [18] and a corollary.

Proposition 8.2. Let A = kQ/I, where Q is a finite quiver, kQ is the path algebra graded 
by the length of paths and I a homogeneous ideal with respect to this grading, contained 
in Q≥2. Let R be a reduction system satisfying conditions (1) and (2) of Theorem 8.1
and let AS be the associated monomial algebra. The algebra AS is N -Koszul if and only 
if A is an N -Koszul algebra.

Proof. The projective bimodules appearing in the minimal resolution of AS are in one-
to-one correspondence with those appearing in the resolution of A, so either both of 
them are generated in the correct degrees or none is. �
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This proposition, together with Thm. 3 of [17] give the following result.

Corollary 8.3. If A has a reduction system R satisfying condition (1) of Theorem 8.1
and such that S ⊆ Q2, then A is Koszul.
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