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Abstract
Breast cancer is the most frequently diagnosed cancer and the leading cause of cancer death in
females worldwide. It is accepted that breast cancer is not a single disease, but instead constitutes
a spectrum of tumor subtypes with distinct cellular origins, somatic changes, and etiologies.
Molecular gene expression studies have divided breast cancer into several categories, i.e. basal-
like, ErbB2 enriched, normal breast-like (adipose tissue gene signature), luminal subtype A,
luminal subtype B, and claudin-low. Chances are that as our knowledge increases, each of these
types will also be subclassified. More than 66% of breast carcinomas express estrogen receptor
alpha (ERa) and respond to antiestrogen therapies. Most of these ERC tumors also express
progesterone receptors (PRs), the expression of which has been considered as a reliable marker
of a functional ER. In this paper we will review the evidence suggesting that PRs are valid targets
for breast cancer therapy. Experimental data suggest that both PR isoforms (A and B) have
different roles in breast cancer cell growth, and antiprogestins have already been clinically used in
patients who have failed to other therapies. We hypothesize that antiprogestin therapy may be
suitable for patients with high levels of PR-A. This paper will go over the experimental evidence of
our laboratory and others supporting the use of antiprogestins in selected breast cancer patients.
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Introduction

Breast cancer is the most frequently diagnosed

malignant neoplasia and is a leading cause of cancer

death in females worldwide. Breast cancer ranks

second overall in cancer mortality (10.9%) and

accounts for 23% (1.38 million) of new cancer

diagnoses and 14% (458 400) of total cancer deaths

(Jemal et al. 2011). Breast cancer is not a single disease

but instead constitutes a spectrum of lesions with

distinct cellular origins, somatic changes, and etiolo-

gies. Gene expression studies have divided breast

cancer into several categories, i.e. basal-like, ErbB2-

enriched, normal breast-like (adipose tissue gene

signature), luminal subtype A, luminal subtype B,

and claudin-low (Prat et al. 2010). More than 70% of

breast carcinomas express estrogen receptor alpha

(ERa) and respond to antiestrogen therapies. These

carcinomas may also express progesterone receptors

(PRs), which are a reliable marker of functional ERs

(Kastner et al. 1990, Petz & Nardulli 2000). In this
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paper, we will review the evidence that PRs are valid

targets for breast cancer therapy. We hypothesize that

antiprogestin therapy is a valid therapeutic approach

for patients with high levels of the PR-A isoform.

We will discuss available clinical data and experi-

mental evidence from our laboratory and others that

support the therapeutic use of antiprogestins in a subset

of breast cancer patients.
Breast cancer and hormones

The bulk of the evidence regarding breast cancer

etiology points to estrogens as the major etiological

factors (Santen et al. 2009). Available experimental and

epidemiological evidence, as reviewed in recent papers

(Aupperlee et al. 2005, Horwitz 2008, Lange et al. 2008),

have also implicated the PR in breast carcinogenesis.

Furthermore, the Women Health Initiative study

(Women’s Health 2002) and the Million Women Study

(Beral 2003) reported an increase in breast cancer risk
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in women undergoing therapy with estrogen plus a

progestin, such as medroxyprogesterone acetate (MPA).

These results were later confirmed in other studies

(Chlebowski et al. 2003, 2010).

More than 70% of breast cancers express ERs and PRs,

and are thus susceptible to adjuvant endocrine therapy.

This adjuvant therapy is designed to target the ERs using

antiestrogens (Jordan 2008), such as tamoxifen (TAM;

Jordan 1990) or Fulvestrant (Faslodex, ICI 182 780,

AstraZeneca, Cheshire, UK; Dauvois et al. 1993), or by

inhibiting the endogenous synthesis of 17b-estradiol (E2)

using aromatase inhibitors (Brodie et al. 1986). Never-

theless, some of these tumors fail to respond from the

very beginning (constitutive-resistant tumors), while

others may acquire hormone resistance (McGuire 1975,

Jordan 2008).

Because E2 regulates the expression of the PR

(Kastner et al. 1990, Petz & Nardulli 2000, Petz et al.

2002, Schultz et al. 2003) and because there is ample

evidence linking progestin to breast cancer patho-

genesis, it is reasonable to utilize inhibition of the PRs

as a rational target for the management of breast cancer

(Moore 2004).
Progesterone receptors

The PR is a member of the steroid–thyroid hormone–

retinoid receptor superfamily of ligand-activated

nuclear transcription factors (Evans 1988, Kastner

et al. 1990). Upon progesterone binding, the receptor

undergoes a series of conformational changes,
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dimerizes, and translocates to the nucleus, where it

interacts with specific DNA sequences (progesterone

receptor elements (PREs)) in the promoter regions of

target genes (Edwards et al. 1995, Lange et al. 2008).

These transcriptional effects may also be mediated by

PRE-independent actions through protein–protein

interactions between the PR and other sequence-

specific transcription factors (Leonhardt et al. 2003).

The PR, like all transcription factors, localizes to the

nuclear compartment. It has also been described to be

located in the cytoplasm and at the cell membrane

(Bottino et al. 2011), where it triggers nongenomic or

membrane-initiated signaling pathways. PR target

genes encode for a wide range of proteins that control

or modulate crucial cellular functions, such as cell

growth, apoptosis, transcription, steroid, and lipid

metabolism (Li & O’Malley 2003). Two PR isoforms

have been described: isoform B (PR-B), which is 933

amino acids long in humans with a molecular weight

(MW) of 116 kDa; and isoform A (PR-A), which lacks

164 amino acids at the N-terminus but is otherwise

identical to isoform B (MW: 94 kDa; Fig. 1A). They

are transcribed from two different promoters of the

same gene on human chromosome 11 q22–q23

(Kastner et al. 1990) or on chromosome 9 in mice

(band A1). The presence of CpG islands in both PR

promoters indicates that both isoforms may be silenced

by CpG island methylation (Vasilatos et al. 2009).

In mice, the isoforms have a MW of 115 and 83 kDa

respectively (Schneider et al. 1991). When PR-A and

PR-B are present in equimolar amounts in wild-type
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PR-positive cells or are transiently coexpressed in

PR-negative cells, they dimerize and bind to DNA as

three species: A/A and B/B homodimers and A/B

heterodimers. Posttranscriptional modifications of the

PR include phosphorylation, acetylation, sumoylation,

and ubiquitination (Dressing & Lange 2009, Hagan

et al. 2009). Although some sites might be basally

phosphorylated, most are phosphorylated by ligand-

dependent or ligand-independent mechanisms. Phos-

phorylation affects the ability of the PRs to interact

with the promoters on their target genes, the

subsequent transcriptional activation of these genes

as well as their ability to interact with other proteins

(Takimoto et al. 1996, Lange et al. 2000). The PR

(PGR) is an estrogen-regulated gene (Horwitz et al.

1978, Kastner et al. 1990). ER may regulate PR (A or B

isoform) by acting on estrogen responsive elements

(EREs) or ERE half sites located at great distances up

or downstream of the promoters (Carroll et al. 2006,

Birney et al. 2007).

Many of the studies on PRs, including the cloning

of the human receptor, were done using T47D cells,

a human breast cancer cell line overexpressing both

PR isoforms (Keydar et al. 1979). Other important

information comes from genetically modified mice

overexpressing either PR-A (Shyamala et al. 1998) or

PR-B and from mice lacking one or both of the isoforms

(Lydon et al. 1995, Conneely & Lydon 2000). It has

been shown in these knockout models that the PR

isoforms have different roles in vivo. PR-B mediates the

proliferative effects of progesterone in the mammary

gland (Conneely et al. 2003, Mulac-Jericevic et al.

2003), whereas PR-A is more important in maintaining

ovarian and uterine functions. PR-B has been regarded

as a much stronger transcriptional activator than PR-A.

The latter can act as a ligand repressor of other steroid

receptors, including PR-B, ER, androgen receptors,

glucocorticoid receptors, or mineralocorticoid

receptors, in a cell- and promoter-dependent manner

(Boonyaratanakornkit & Edwards 2007).

In T47D cells engineered to express only PR-A

(T47D-YA) or PR-B (T47D-YB; Sartorius et al. 1994),

PR-B controls the majority of the progesterone-

regulated genes (w65% of the genes); 4% are

regulated by PR-A, and 25% are regulated by both

(Richer et al. 2002). When PR-A was expressed in

PR-null T47D cell models it appeared to regulate a

greater number of genes in the absence of added

progesterone or progestins relative to forced PR-B

expression (Jacobsen et al. 2002). However, most of

these experiments have been performed in cells forced

to express either PR isoform. In normal human tissue

there is a balanced expression of both PR isoforms
www.endocrinology-journals.org
suggesting that heterodimers PR-A–PR-B are respon-

sible for gene expression in normal tissue. This has

been extensively reviewed (Scarpin et al. 2009), and it

has been suggested that a lack of balance of PR

isoforms may play a role in influencing cells’

transcriptional program.

PR-A is a much more stable PR isoform than PR-B

(Faivre & Lange 2007), and it is frequently over-

expressed in breast cancer (Graham et al. 1995, 2005)

usually due to increased transcriptional activity of PR-B

that leads to its downregulation (Mote et al. 2007).

Interestingly, a high ratio of PR-A/PR-B has been

associated with poorer outcome in patients undergoing

hormonal therapy (Hopp et al. 2004). Therefore,

evaluation of the PR isoform ratio may be important

in breast cancer prognosis and therapeutic decisions.
Antiprogestins

Selective modulators of PRs (SPRM) are classified into

three groups. With type I SPRMs, such as onapristone

(ONA; ZK 98299; Leonhardt et al. 2003), an

antagonist-bound PR does not bind to DNA. With

type II SPRMs, such as mifepristone (MFP; RU-486),

the complex does bind to DNA. Interestingly, type II

SPRMs act as agonists if the cells are stimulated with

activators of the cAMP/PKA pathway; however, this

effect occurs in a PR-B tissue- and species-specific

manner. PRs bound to type III modulators bind DNA

and have a purely antagonistic effect, even in the

presence of activated PKA. This class of SPRMs

includes lonaprisan (ZK 230211; Afhuppe et al. 2009).

MFP was the first PR antagonist developed for

human use. At very low concentrations MFP may

behave as an agonist through nongenomic mechanisms

(Bottino et al. 2011). A similar agonist effect is

observed when PR-B is activated by PKA (Beck et al.

1993), but this does not occur when it binds to PR-A

(Meyer et al. 1990). MFP induces PR dimerization

and DNA binding with an affinity higher than that of

progesterone, the natural ligand (DeMarzo et al. 1991,

Skafar 1991). The inhibitory effect of MFP is related to

its ability to recruit corepressors (Jackson et al. 1997).

Additionally, MFP has antiglucocorticoid effects,

albeit at concentrations much higher than those needed

for its antiprogestin activity (Gaillard et al. 1984).

ONA, which also displays antiglucocorticoid effects

at higher concentrations, was discontinued due to

hepatotoxicity (Robertson et al. 1999).

Lonaprisan, a latest generation antiprogestin

(Afhuppe et al. 2009, 2010), has low antiglucocorti-

coid activity and no effect on PKA-activated PR-B

(Chwalisz et al. 2000, Fuhrmann et al. 2000, Afhuppe
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et al. 2010). Breast cancer patients are now being

recruited for a phase I/II clinical trial of this compound

(http://clinicaltrials.gov/ct2/show/NCT00555919).

Aglepristone (RU534), an antiprogestin approved for

veterinary use (Galac et al. 2004), binds the PR with a

high affinity and the GR with lower affinity (Polisca

et al. 2010). Clinically, aglepristone is indicated for

pyometra, pregnancy control, and vaginal fibromas in

dogs, and for the treatment of fibroadenomatous

mammary hyperplasias in cats (Muphung et al. 2009).

Other antiprogestins under development are Org 31710

and Org 31806 from Organon (Oss, The Netherlands), as

well as CDB-2914 and CDB-4124 (Contraceptive

Development Branch (CDB)) from the National Institute

of Child Health and Human Development. Like MFP,

both CDBs have 11 alpha substitutions, but in contrast to

MFP, they are derivatives of 19-norprogesterone.

Additionally, their antiglucocorticoid activity is less than

that of MFP (Hild et al. 2000, Attardi et al. 2002, 2004).

Other SPRMs with mixed agonistic and antagonistic

activity include asoprisnil (J867) and its derivatives.

These compounds were developed to have ideal SPRM

activity, such that they would act both as agonists in the

ovaries and as antagonists in the mammary gland and

uterus (Chwalisz et al. 2005).
Antiprogestins in mammary glands

Data on the effects of antiprogestins on the normal

human mammary gland are sparse. Inhibition of cell

proliferation was observed in aspirates of mammary

glands from postmenopausal women with leiomyomas

treated with MFP (50 mg/every other day) for 3 months

(Engman et al. 2008).

In experimental animals, antiprogestins may induce

differentiation by increasing the levels of mammary-

derived growth inhibitor (Li et al. 1995). In mice, MFP

(12 mM/kg in sesame oil) induced activation of the PR in

luminal cells to an even greater degree than did the pure

agonist R5020 (Han et al. 2007). In BALB/c female mice,

daily doses of MFP (10 mg/kg) for 1 week reverted MPA-

induced branching; however, it resulted in duct differen-

tiation when administered alone (Cerliani et al. 2010). It

has also been reported that MFP is unable to revert

mammary hyperplasia in PR-A transgenic mice (Simian

et al. 2009) or in FGF2-treated mice (Cerliani et al. 2010).
Antiprogestins in breast cancer models

Rats

All of these studies were performed in animals

treated with 7,12-dimethylbenz[a]anthracene (DMBA)
R38
or N-methyl nitrosourea (MNU). In DMBA-treated

animals, MFP (10 mg/kg per day for 3 weeks) delayed

tumor development (Bakker et al. 1987) and inhibited

tumor growth. Antiprogestin treatment increased the

levels of LH, E2, prolactin, and progesterone but did

not alter the levels of FSH, ACTH, or corticosterone.

MFP (10 mg/kg per day) and TAM (400 mg/kg per

day), in combination, induced regression of DMBA-

induced mammary tumors (Klijn et al. 1989). Two

explanations were put forward to explain the increased

efficacy resulting from this combined therapy. First,

this improved effect could be due to the increase in PR

expression induced by TAM (Horwitz 1987) allowing

for a better response to MFP. Alternatively, TAM may

have negated the effects of high E2 levels induced by

MFP. In this model, ONA was more efficacious than

MFP at the same doses (Michna et al. 1989), although

both drugs increased differentiation. Ovariectomy

induced complete regression but did not affect

differentiation. The SPRMs Orgs 31710 and 31806

were more effective than MFP when administered per

os (p.o.; Bakker et al. 1990); the responses were

observed in combination with LHRH agonists, buser-

elin or goserelin (Bakker et al. 1989). Similar results

were obtained with Org 31710 in combination with

Org 33628. This antiprogestin was given p.o. and was

more effective than MFP (Kloosterboer et al. 2000).

The results were comparable when MNU was used as

a chemical carcinogen, instead of DMBA, using s.c.

antiprogestin doses of 10 mg/kg per day (Michna et al.

1989). In contrast to s.c. administration, there were no

increases in ACTH levels or the weights of the uterus,

adrenals, and ovaries when MFP, Org 31710, or Org

33628 were administered p.o. (Klijn et al. 1994).

Treatment with TAM increased PR expression. In

contrast, administration of MFP alone induced down-

regulation of the PR, and the combination of TAM and

MFP inhibited the expression of both the ER and the PR.

Additive effects of ONA and TAM were reported in

DMBA and MNU rat models (Nishino et al. 2009).

TAM, at a concentration of 6 mg/kg per day, was more

efficacious than when it was administered at a dose of

10 mg/kg per day. Earlier studies had demonstrated

that the combination of TAM and ONA treatment at

doses of 5 mg/kg per day was more effective than

either monotherapy, an effect attributed to decreased

circulating progesterone levels observed in animals in

the combination treatment group (Nishino et al. 2009).

More recently it has been shown that CDB-4124

also suppressed, in a dose-dependent manner, MNU-

induced mammary carcinogenesis in rats. CDB-4124

was administered by gavage for 24 months (20–
www.endocrinology-journals.org
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200 mg/kg per day) or in 3 or 30 mg pellets implanted

6 days after MNU treatment (Wiehle et al. 2011).
Mice

ONA or MFP treatment (1 or 10 mg/kg per day) initiated

1 day posttransplantation inhibited both tumor take and

the stimulatory effects of E2 and MPA in the MXT mouse

model of breast cancer (Michna et al. 1989). ONA proved

to be better than MFP at inhibiting cell proliferation at the

10 mg/kg per day dosage. Tumor regression was

associated with necrosis, cytolysis, and decreased PR

expression. Ovariectomy completely inhibited PR

expression (Bakker et al. 1989). No significant anti-

glucocorticoid effects were seen, and no changes in

adrenal gland weight were measured (Schneider et al.

1991). Dexamethasone failed to rescue the inhibitory

effects of MFP (Bardon et al. 1985). An increase in

uterine, ovary, and pituitary weight was observed in

antiprogestin-treated mice. Histopathological analyses

of the uterus and vagina indicated an estrogenic effect,

probably due to low estrogen levels (Michna et al. 1989).

Similarly, we demonstrated that BALB/c mice, treated

with antisense PR (asPR) oligonucleotides, showed

continuous estrous (Lamb et al. 2005).

Genetically modified mice

Nulliparous mice null for BRCA1/p53 developed mam-

mary hyperplasias that express high levels of PR, and

eventually progressed to develop adenocarcinomas. MFP

(35 mg, 60-day releasing pellets) treatment prevented the

induction of either hyperplasia or carcinoma. These

authors proposed the use of MFP to prevent breast cancer

in BRCAC women (Poole et al. 2006). Interestingly, in

normal breast tissues of women with a germline pathogenic

mutation in one of the BRCA genes, an increase in PR-A

expression has been reported (Mote et al. 2004).
Studies on breast cancer cell lines

A growth-modulatory role for progestins in human

breast cancer cells remains controversial. Progestins

stimulate or inhibit cell proliferation depending on the

concentrations and the experimental conditions used.

Moreover, while progestins were shown to exert a

biphasic effect on breast cancer cells growing on

plastic dishes (2D; reviewed in Clarke & Sutherland

(1990)), they (MPA or progesterone) were clearly

proliferative when these same cells grew in soft agar

(Faivre & Lange 2007) or in 3D culture systems

(reviewed in Mote et al. (2007)), suggesting that

modulation of cell polarity/architecture is also required

to define progestin-induced cell fate.
www.endocrinology-journals.org
MCF-7 and T47D are the most widely used cell lines

to study the effects of hormones and hormone

antagonists. In MCF-7 cells, MFP inhibited PR-

mediated cell proliferation (Bardon et al. 1985).

Similarly, TAM or MFP at a concentration of 10 nM

inhibited E2-induced cell proliferation (Bakker et al.

1987). These experiments were performed using tissue

culture media supplemented with 10% steroid-deficient

(charcoal-stripped (ch)) human serum.

Different results have been reported by different

laboratories using T47D cells. TAM or MFP speci-

fically inhibit E2-induced cell proliferation in T47D

cells, clone 11, which are ER- and PR-positive

(Horwitz et al. 1982). Other cell lines, similarly

cultured, did not show this response (Bardon et al.

1985). It has been hypothesized that the inhibitory

effect of MFP could be due to the fact that antagonist-

bound receptors remain bound to DNA for longer

periods of time, thus impeding PR recycling (Sheridan

et al. 1988). Alternatively, the inhibitory effect caused

by MFP could result from its antiestrogenic effects

(Vignon et al. 1983) or because it may have a different

affinity for the PR isoforms (Meyer et al. 1990).

Furthermore, progestins also inhibited cell prolifer-

ation, and it has been suggested that their antiestro-

genic actions were responsible for this inhibition.

In both cases, entry into S phase was inhibited, and

the cells were arrested in G0/G1 (Michna et al. 1990).

Other laboratories have reported different results on

the inhibitory effects of MPA and MFP on E2-induced

cell proliferation. R5020 (Hissom & Moore 1987) and

MFP (Bowden et al. 1989, Jeng et al. 1993), with the

latter at micromolar concentrations, can stimulate the

proliferation of T47D and MCF-7 cells. The estrogenic

effect of MFP at these high concentrations was

attributed to the short length of the group associated

with the aromatic nucleus at position 11 b (Jeng et al.

1993). Type II antiprogestins, such as MFP, had similar

or greater PR affinity than the agonist itself; however,

the agonistic effect was inhibited at equimolar

concentrations of both ligands, suggesting that there

are different levels of regulation in addition to receptor

binding. Mixed agonist–antagonist dimers of the PR

did not bind to DNA (Edwards et al. 1995). MFP-

bound PR was able to bind to DNA and with a greater

affinity than the agonist-bound PR. In contrast, type I

antagonists permitted PR dimerization; however, they

bound DNA with a very low affinity, which suggests

that different conformational changes are induced by

different PR antagonists. T47D cells transfected with

reporter genes (MMTV-CAT) clearly showed that when

these cells are treated with analogs of cAMP, MFP

exerts an agonistic effect (Beck et al. 1993, Sartorius
R39
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et al. 1993). In this experimental setting, ONA still

behaved as an antagonist (Edwards et al. 1995). MFP

treatment (100 nM) increased cell proliferation in

T47D-YB cells and induced phosphorylation of ERK,

which resulted in increased cyclin D1 expression via

nongenomic mechanisms (Skildum et al. 2005). These

conflicting results may have contributed to the

decreased clinical interest in these drugs.

el Etreby et al. (2000) demonstrated that MFP and

TAM cotreatment increased apoptosis levels (increase

in DNA laddering, decrease in Bcl-2, PKC transloca-

tion, and increase of transforming growth factor b1

(TGFb1)). The authors, however, used concentrations

as high as 1 mM for TAM and 10 mM for MFP, making

it impossible to distinguish between specific and

nonspecific PR-mediated effects.

Similarly, Hyder et al. (1998) demonstrated that

progestins stimulate the synthesis of vascular endo-

thelial growth factor, which plays an important role in

tumor angiogenesis. This effect was also blocked with

micromolar concentrations of MFP in cells carrying

p53 mutations, such as T47D and BT474 cells, but not

in cells expressing wild-type p53, such as MCF-7 cells

(Liang et al. 2005). A similar regulatory mechanism

was shown for thrombospondin-1 (TSP-1; Hyder et al.

2009). Cytostasis and apoptosis (both the intrinsic and

extrinsic pathways) were induced at micromolar MFP

concentrations (Gaddy et al. 2004).

However, inhibition of progesterone-induced cell

proliferation was already observed in MCF-7 cells

using nanomolar MFP concentrations (Calaf 2006). A

recent study demonstrated that lonaprisan (10 nM)

induces apoptosis in T47D cells with a concomitant

increase in p21 levels (Busia et al. 2011). While it is

known that both progestins and antiprogestins increase

the expression of p21 (Bottino et al. 2011), the

induction by progestins is transient (Busia et al. 2011).

It has recently been suggested that all of the effects

induced by MFP at micromolar concentrations are

mediated through nongenomic mechanisms (Fjelldal

et al. 2010). Moreover, Tieszen et al. (2011) showed an

inhibition of cell proliferation using cells from nervous

system, breast, prostate, ovary, and bone and the

authors propose that the growth inhibition of cancer

cells by MFP is not dependent upon the expression of

classical PR. However, it is worth mentioning that all

cell lines responded to the growth inhibitory effect of

MFP with IC50s ranging from w9 to 30 mM. We agree

that these unspecific effects have nothing to do with the

specific inhibition observed in breast cancer cells in

which the inhibition occurs at concentrations compa-

tible with the PR Kd.
R40
Xenotransplants of human cell lines

E2-induced proliferation of MCF-7 xenografts in

athymic BALB/c mice was inhibited by MFP

(50 mg/kg per day) or ONA (30 mg/kg per day)

administered for 17 days (el Etreby et al. 1998).

Combination treatment with TAM (15 mg; 60 days

releasing pellet) increased this inhibitory effect. MFP

(25 mg; 60 days releasing pellets) can prevent the

growth of BT-474 and T47D xenografts in nude mice

that had been previously treated with E2 followed by

MPA (Liang et al. 2007). Additionally, previous

studies have shown that E2 induces tumor regression,

TAM inhibits tumor growth, ONA has no effect, and

ZK 112993 (a different antiprogestin) significantly

inhibits the growth of T61 human tumors that are

maintained by serial transplants in nude mice

(Schneider et al. 1990).
Antiprogestins in different experimental
neoplasias

The variable inhibitory and stimulatory effects attrib-

uted to high concentrations of MFP in cells expressing

the PR complicate the interpretation of the data from

these different studies. Edwards et al. (1995) demon-

strated that equimolar concentrations of agonists and

antagonists exert inhibitory effects. It seems likely that

MFP, at concentrations of 1 mM or higher, also induces

nonspecific effects that may be masking PR-mediated

actions. The same principle holds true in xenograft

models. MFP (50 mg/kg per day) was shown to be

inhibitory not only in MCF-7 cells but also in prostate

(el Etreby et al. 2000) and ovarian cancer xenografts

(Goyeneche et al. 2007). Lower concentrations of

antiprogestins should be used if more specific effects

are desired, as reported in the rat and mouse models.

MFP may also be combined with chemotherapy due to

its ability to inhibit multidrug-resistance proteins

(Gruol et al. 1994, Lecureur et al. 1994).
MFP: clinical uses

MFP has been used for different obstetric indications,

such as uterine ripening and intrauterine fetal death, at

doses of 200 mg/day prior to the vacuum aspirate or in

doses of 850–600 mg for 48 h with very low side

effects compared to prostaglandins (Ulmann & Dubois

1988). MFP at a dose of 200 mg/12 h increased the

percentage of women with spontaneous delivery.

The first trial using MFP for abortion purposes was

launched in 1981 (Herrman et al. 1982). Its use was

advocated for different oncological applications,
www.endocrinology-journals.org
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including breast cancer, prostate cancer, cervical

cancer, meningiomas, and leiomyosarcoma (Grunberg

et al. 1991, 2006, Spitz et al. 2005, Engman et al. 2008,

Check et al. 2010, Yoshida et al. 2010). Additionally,

it has potential use in different psychiatric disorders,

including depression and Alzheimer’s; however, in

these diseases the antiglucocorticoid function seems

to be more important (Benagiano et al. 2008).
Antiprogestins in breast cancer treatment

Twelve years after the first description of the role of

the PR in breast cancer (Horwitz & McGuire 1975),

the first clinical trial to evaluate antiprogestin therapy in

patients recruited 22 patients for a third-line study

(Romieu et al. 1987). Each patient had TAM-resistant

metastases and had failed to respond to previous

chemotherapy and hormone therapies. All study

patients were either postmenopausal or had been

oophorectomized, and they were treated with 200 mg/

day of MFP for 1–3 months. Treatment efficacy was

evaluated according to clinical parameters and follow-

up levels of carcinoembryonic antigen. There was an

18% response rate following 3 months of therapy. The

long-term tolerance was good, and there was an increase

in cortisol coupled with a slight decrease in potassium

levels. The results of a second trial were reported in

1989 (Klijn et al. 1989). Eleven patients with metastases

who had received TAM as a first-line therapy were

treated with daily doses of 200–400 mg MFP p.o.,

regardless of their response to TAM; some patients

received progestins after MFP as a third-line therapy.

There was an objective response in one patient, six

patients showed temporal stabilization, and four

patients had progressive disease. E2, ACTH, cortisol,

and androstenedione serum levels were increased in all

patients. The authors suggested that the increase in E2

may be due to aromatization of androstenedione, and

therefore, they proposed a combinatorial treatment of

MFP and TAM to counteract the effects of E2.

Results from a third study, in which 28 postmeno-

pausal PRC patients were recruited, were described in

1996 (Perrault et al. 1996). These patients were given

200 mg/day of MFP for more than 8 weeks (median:

12.4 weeks). Low-grade side effects were reported in

most patients: 68% lethargy, 39% anorexia, 29%

vomiting, 50% hot flashes, and 32% skin rash. Only

three patients showed a partial response, which

indicates a poor overall response rate to the therapy,

especially considering that only PRC patients were

preselected. All patients were at advanced stages of

their disease with metastases when the treatment was

initiated.
www.endocrinology-journals.org
A fourth clinical trial with ONA, initiated in 1995,

accrued 30 breast cancer patients (Robertson et al.

1999). However, the trial had to be stopped while they

were recruiting the 19th patient due to liver function

test abnormalities. All 19 patients opted to continue

with the trial. Two-thirds showed clinical signs of

tumor regression: 56% showed partial response, and

11% had stable disease, percentages that are very

similar to those obtained with TAM or progestin

treatment. The authors emphasized that ONA did not

increase circulating E2 levels.

Klijn et al. (2000) reviewed these four studies

together with unpublished results from a fifth study.

There are no other published clinical results for breast

cancer treatment using antiprogestins. However, two

clinical trials are currently recruiting for preoperative

evaluation of antiprogestins in early stage breast

cancer (ClinicalTrials.gov Identifier: NCT01138553,

testing MFP, and NCT00555919, Schering, testing

lonaprisan).
MFP for the treatment of other neoplasias

MFP (200 mg/day for 2–31 months) has been used to

treat meningiomas. Five out of 13 tumors responded

after 1 year, with some showing signs of regression

within 2–3 months (Grunberg et al. 1991). A later

study by the same authors showed less promising

results; however, the lack of serious side effects still

merited the use of MFP (Spitz et al. 2005, Grunberg

et al. 2006). They proposed to combine MFP and

dexamethasone treatment during the first 2 weeks to

avoid the antiglucocorticoid effects of MFP.

In 2008, a clinical trial with MFP (50 mg/every

other day) in leiomyomas showed low levels of E2

and progesterone and slightly higher concentrations

of testosterone and androstenedione (Engman et al.

2008). Other SPRMs, such as asoprisnil and CDB-

2914, were used for the treatment of nonsurgical

leiomyomas (Yoshida et al. 2010); their therapeutic

effects may be attributed to their agonistic properties.

More recently, two papers have reported on the

effects of MFP (200 mg/day) in patients with thymic

epithelial cell carcinoma, transitional cell carcinoma of

the renal pelvis, leiomyosarcoma, colon adenocarci-

noma, pancreatic adenocarcinoma, and malignant

fibrous histiocytoma (Check et al. 2010). Improve-

ments and pain relief were observed in all patients. The

nonspecific effects of MFP in these diseases may be

related to the increased activation and recruitment of

NK cells, which also express the PR (Arruvito et al.

2008).
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Contributions of the MPA murine breast
cancer model

We developed an experimental model of breast cancer

with continuous administration of MPA to female

BALB/c mice (Lanari et al. 1986, Molinolo et al.

1987). The main features of this tumor model were

recently reviewed (Lanari et al. 2009). Briefly, most

tumors that develop in the mice are luminal ductal

mammary carcinomas that express high levels of both

ERs and PRs. The tumors metastasize to regional

lymph nodes and the lungs and are maintained by serial

syngeneic transplants (Lanari et al. 1989). Initially,

all behave in a progestin-dependent manner, but after

a few passages, progestin-independent (PI) variants

may emerge. These PI variants still retain high levels of

ERs and PRs, and they grow similarly in ovari-

ectomized or nonovariectomized mice (Lanari et al.

1989, Kordon et al. 1990). Hormone-dependent tumors

only grow in animals treated with MPA; however,

FGF2 (Giulianelli et al. 2008, Cerliani et al. 2010),

tumor necrosis factor a (TNFa; Rivas et al. 2008), or

8-Cl-cAMP (Actis et al. 1995) may replace MPA to

stimulate tumor growth in vivo.

PI-responsive tumors regress with MFP, ONA, or

lonaprisan treatment at daily doses of 10 mg/kg

(Montecchia et al. 1999, Helguero et al. 2003, Wargon

et al. 2009) or with aglepristone treatment at a dose

of 3 mg/week (V Wargon, M Riggio, V Novaro &

C Lanari (2011), unpublished data). The role of the PR

in the antiprogestin-induced effect was confirmed using

asPR oligonucleotides to knockdown PR expression

in vivo (Lamb et al. 2005). These tumors may also

regress with E2 treatment (0.5–5 mg pellets), almost as

well as with antiprogestin treatment. Additionally,

tumor growth was inhibited by TAM treatment. Some

PI tumors are resistant to these treatments, but they still

express hormone receptors. We have demonstrated that

constitutively resistant tumors show PR-A silencing due

to methylation of the PR-A promoter. Similarly, it has

recently been reported that the PR-A promoter is

significantly methylated in TAM-resistant patients

with poor outcome (Pathiraja et al. 2011).

Using selective pressure, we have been able to

derive antiprogestin-resistant variants from antipro-

gestin-sensitive PI tumors. Interestingly, PR-A is

downregulated in both constitutive (Helguero et al.

2003) and acquired antiprogestin-resistant carcinomas

(Wargon et al. 2009). Upon estrogen or TAM

treatment, tumors with acquired resistance may revert

to the antiprogestin responsive phenotype (Wargon

et al. 2009). In constitutive resistant tumors, however,

cotreatment with demethylating agents to increase
R42
PR-A expression is necessary for reacquisition of

antiprogestin responsiveness (Wargon et al. 2011).

C4-PI is one of the PI-responsive variants and C4-2-

PI is the constitutive-resistant variant (Lanari et al.

2009), both originated from C4-HD. C4-PI tumors are

completely inhibited by MFP (Fig. 1), and these tumors

have higher levels of PR-A than PR-B (inset).

Conversely, C4-2-PI shows higher levels of PR-B

than PR-A, and is stimulated by MFP; an effect that

seems to be unique for this tumor, because in other

constitutive variants, MFP-treated tumors behaved in

a manner similar to the controls. In C4-PI tumors

treated with MFP an early upshift of the PR-A band is

observed in western blots (Wargon et al. 2009). After

24 h of treatment both isoforms are downregulated

(Lamb et al. 2005).

Although the mechanism by which MFP modulates

tumor growth depending on the prevailing isoform

expressed has not yet been elucidated, it is possible that

PR-A homodimers or heterodimers activated by MFP

can recruit corepressors instead of coactivators at the

promoter regions of key pro-survival genes. Along this

line we have recently showed that while both MPA and

MFP at 10 nM concentrations can increase STAT5 or

MYC expression in C4-PI cells, only MPA was able

to increase CCND1 expression (Bottino et al. 2011).

We used a dose of 10 mg/kg per day for all

antiprogestins or a 6 mg pellet of MFP, but inhibitory

effects were also achieved at 1 mg/kg per day.

All animals treated with MFP or asRP showed a

continuous estrous cycle. The fact that the systemic

actions of asPR were similar to those of antiprogestins

clearly indicates that this is an indirect effect due to

a pure antiprogestin effect.

In primary cultures of responsive tumors, we

showed that 1–100 nM concentrations of MFP, ONA,

or lonaprisan inhibited MPA-induced or FGF2-induced

cell proliferation (Dran et al. 1995, Lamb et al. 1999).

As reported by others (Edwards et al. 1995), inhibitory

effects were observed when using equimolar con-

centrations of agonists and antagonists.

Another interesting observation was that MFP

inhibited cell proliferation, while it increased ERK

phosphorylation. This led us to hypothesize that the

nongenomic actions or membrane-initiated effects of

progestin and antiprogestins may occur at lower

concentrations than those needed to elicit genomic

effects. Furthermore, if MFP stimulated ERK through

nongenomic mechanisms, then the proliferative effects

should be observed at low MFP concentrations. In fact,

we demonstrated that very low concentrations of MFP

(10K12 M) were able to stimulate cell proliferation.

In vivo, concentrations 104 times lower than those that
www.endocrinology-journals.org
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exerted growth inhibitory effects stimulated C4-PI

growth (Bottino et al. 2011). These results underscore

the relevance of evaluating the PR isoform prior to

administering an antiprogestin to breast cancer patients

and indicate that concentrations high enough to induce

a genomic response are the ones indicated for

therapeutic purposes.
Antiprogestin-induced tumor regression

Tumor regression induced by antiprogestins or E2 is a

complex phenomenon involving stromal–parenchymal

interactions. Increased cytostasis and apoptosis are the

hallmarks of hormone-induced regression. The early

events consist of increases in p21, p27, and p53

expression followed by a later decrease in hormone

receptor expression (Vanzulli et al. 2002, 2005). This

suggests that the decrease in hormone receptor

expression is not the primary event that triggers

regression. Certain tumors also show an increase in

differentiation (Wargon et al. 2009); in these cases,

there is a less evident increase in apoptosis. The stromal

tissue shows signs of activation, including the translo-

cation of b-catenin to the nucleus in carcinoma-

associated fibroblasts and an increase in laminin,

collagen I, and collagen IV deposited in the interstitial

space between the tumor cells. This is also associated

with increases in metalloproteases 2 and 9 (Simian et al.

2006). In Fig. 2A (left), we show a representative image

of a 32-2-PI tumor following MFP treatment. This is a

poorly differentiated adenocarcinoma with few connec-

tive tissue strands (control). After treatment, the tumor
www.endocrinology-journals.org
regresses, and the epithelial component is replaced by

dense connective tissue with few remaining epithelial

clusters. C4-PI is a moderately differentiated adeno-

carcinoma (Fig. 2A, right). Following MFP treatment,

an increase in differentiation with numerous glandular

structures is observed. In Fig. 2B, we show growth

curves of C4-PI treated with TAM, Fulvestrant, an

FGFR inhibitor (PD 173074) or MFP. This experiment

provides evidence that targeting the PR is an effective

therapeutic approach in these tumors. It is possible that

all other treatments, in combination with MFP, may

delay the onset of hormone resistance.
Conclusion

The clinical and experimental data reviewed herein

strongly suggest that antiprogestins have a potential to

be used in combination with TAM in a subgroup of

breast cancer patients. We have demonstrated in

experimental models that only tumors with levels of

PR-A higher than those of PR-B can be specifically

targeted with this therapy. The challenge is to

determine in human breast cancer samples which are

the patients who match this criterion. At the moment

western blot is the adequate tool to quantify PR

isoform ratios. However, we should still look for

potential biomarkers to be used in immunohistochem-

istry associated with high expression of PR-A. Genes

that are upregulated by progesterone treatment in

T47D-YA cells, such as BCL-XL, ERRalpha1, HEF1,

or DSIPI, may be excellent candidates to start working

with (Richer et al. 2002).
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