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Abstract. In this work we study the optical response of Kretschmann-ATR structures with metamaterials
near conditions of resonant coupling between the incident wave and a surface plasmon polariton. In contrast
with previous research available in the literature, particular attention is paid to the behavior of the phase
of the reflected fields. Besides, the results are discussed in the frame of a phenomenological model based
on the properties of the complex poles and zeroes of the reflection coefficient.

1 Introduction

Surface plasmon polaritons (SPPs) are electromagnetic
surface waves [1,2]. The necessary condition for their exis-
tence on a flat surface between homogeneous media is that
the media on both sides of the surface should have a con-
stitutive parameter (electric permittivity or magnetic per-
meability) with opposite signs. The localization provided
by SPPs is very attractive for many applications such as
data storage, microscopy, light generation or biophoton-
ics [3]. The most studied case in the literature [1,2,4,5]
is that of metal-vacuum interfaces, where opposite signs
occur because of the negative electric permittivity of the
metal. Comparatively much less attention has been paid
to the case of SPPs on metamaterial-vacuum interfaces,
where the metamaterial [6,7] can provide negative values
to the electric permittivity or magnetic permeability, de-
spite the fact that SPPs on metamaterial surfaces may
have very different characteristics [8] from those of SPPs
on metallic surfaces. The most significant differences are
manifested in the polarization and the direction of en-
ergy propagation. Whereas flat metallic surfaces can only
support p polarized SPPs, flat metamaterial surfaces can
support both p and s polarized SPPs, depending on the
values taken by the constitutive parameters at the operat-
ing frequency. Analogously, in the metal case the direction
of energy propagation is always parallel to the direction
of wave propagation, while in the metamaterial case the
direction of energy propagation can be either parallel or
antiparallel to the direction of wave propagation [9].

Since the spatial periodicity associated with SPPs is
less than the spatial periodicity which could be induced
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by an incident photon on the surface, SPPs cannot be
resonantly excited by plane waves. This difficulty can be
overcome by using phase-coupling techniques which give
the photon the additional momentum increase needed to
achieve SPP excitation. One of the most popular cou-
pling techniques is based on the use of attenuated total
reflection (ATR). This technique requires the introduc-
tion of a second surface, usually the base of an isosceles
prism [10,11], as shown in Figure 1 for the Kretschmann
configuration. A SPP can be excitated along the interface
2-3 when the incident radiation reaches the base of the
prism (interface 1-2) with an angle θ greater than the crit-
ical angle of total reflection. In this situation, the evanes-
cent field can resonantly couple with the SPPs of the inter-
face 2-3 and the excitation is manifested as a pronounced
minimum in the curves of reflectivity vs angle of incidence.

It is clear that SPPs involved in ATR experiments are
not strictly the same as those obtained for the case of a
single flat surface. For this reason, the correct interpreta-
tion of ATR experiments requires to consider three media
instead of two. As in any resonant problem, the study of
SPPs in ATR structures can be approached in two dif-
ferent but complementary ways: (i) by studying the non-
trivial solutions to the boundary value problem in the ab-
sence of external sources (homogeneous problem, or mode
approach) or (ii) by studying the electromagnetic response
of the ATR structure when excited by an external source
(direct problem, or reflectivity approach). The first ap-
proach has already been considered in reference [12], where
we presented a detailed study of the kinematic and dy-
namic characteristics of SPPs in Kretschmann-ATR sys-
tems with a metamaterial medium. The interested reader
can also find in that work [12] a review of the last findings
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Fig. 1. (Color online) Configuration.

related to SPPs in ATR systems with metamaterials. The
purpose of this paper is threefold: (a) to address the sec-
ond approach; (b) to exhibit the complex optical response
of the ATR structure and (c) to highlight similarities and
differences between the results obtained with the mode
and the reflectivity approaches. Unlike similar studies by
other authors [13–18], focusing exclusively on the study
of the reflectivity curves, in the present work we corre-
late the behavior of the reflectivity with the phase be-
havior of the reflected field. We believe that the inclusion
of the phase is attractive because it is an easily acces-
sible magnitude, both experimentally and theoretically.
Moreover, the phase can provide additional information
not provided by the reflectivity, as has been shown for
other resonant phenomena analogous to those considered
here [19–21]. Another novel aspect of this work is the pre-
sentation of a phenomenological model. Unlike the rigor-
ous electromagnetic model, which is hardly able to provide
a priori information, we show that the phenomenologi-
cal model can accurately exhibit the main characteristics
of the electromagnetic response of ATR structures with
metamaterials in a very simple manner. This phenomeno-
logical model – a generalization to metamaterials of the
model used in the metal case to study resonant processes
in grating couplers [22] and ATR structures [20] – is based
on the knowledge of two complex parameters characteris-
tic of the structure and independent of the incident angle:
the zeroes and poles of the reflection coefficient. These
two parameters can be obtained by fitting experimental
curves of reflectivity and phase vs angle of incidence, as
showed in the analogous case of diffraction gratings formed
by metamaterials [21]. Alternatively, both parameters can
be obtained numerically, an approach that requires the
analytic continuation to the complex plane of the elec-
tromagnetic formalism used to find the response curves.
Taking advantage of the facts that (i) the details of the
analytical continuation and (ii) the numerical method to
calculate the propagation constant of the SPPs, have been
previously developed in [12], this is the approach we used
in this work.

The plan of this paper is as follows. In Section 2 we
give the rigorous expressions used to calculate the complex
amplitude of the reflected fields in the Kretschmann-ATR
configuration, we present the phenomenological model and

we show how to use the curves of phase vs. angle of in-
cidence to obtain additional information – not provided
by the reflectivity curves – about the existence of critical
thicknesses for which the incident wave is totally absorbed
by the structure ATR via the resonant excitation of SPPs.
Since we have chosen to perform our study by fixing the
frequency of the incident wave while varying other param-
eters such as the angle of incidence and the the thickness
of the metamaterial, dispersion is irrelevant here. In Sec-
tion 3 we investigate the influence of the SPP-photon cou-
pling in the response (reflectivity and phase) of the ATR
structure for the same regimes considered in [12] for the
study of the homogeneous problem. In addition, we calcu-
late numerically the parameters of the phenomenological
model and we show that the model reproduces in a very
satisfactory manner the behavior predicted by the rigor-
ous electromagnetic formalism. Finally in Section 4 we
summarize and discuss the results obtained.

2 Theory

Figure 1 shows the Kretschmann-ATR structure. It is il-
luminated by a linearly polarized monochromatic plane
wave incident from medium 1 (the prism) with an angle θ
greater than the critical angle of total reflection. Medium 2
is a metamaterial with negative values of electric permit-
tivity ε2 and magnetic permeability μ2 in contact with
two non-magnetic dielectric materials (μ1 = μ3 = 1) with
real and positive electric permittivities (ε1 and ε3). The
system of coordinates is chosen so that the x axis coincides
with the propagation direction of the SPP and the y axis
is perpendicular to the interfaces. For p-polarization the
magnetic field vector of the incident wave is parallel to the
z axis while for s-polarization the electric field vector of
the incident wave is parallel to the z axis. We assume a
harmonic time dependence of the fields in the form e−iωt,
with ω the angular frequency of the monochromatic plane
wave, t the time and i =

√−1. Under these hypothe-
ses, the complex amplitude r1 of the fields reflected in
medium 1 can be obtained by following steps formally
similar to those already presented to calculate the mag-
nitude denoted by the same name in the homogeneous
problem [12], replacing the homogeneous system (Eq. (2)
in [12]) with an inhomogeneous system which takes into
account the presence of the incident wave. After solving
the new system

r1 =
r12 + r23 e2iβ2d

1 + r12 r23 e2iβ2d
, (1)

where rij = Zi−Zj

Zi+Zj
, i, j = 1, 2, 3, is the reflection coefficient

corresponding to a single surface between media i and j, d
is the thickness of the metamaterial, β2

j = (ω
c )2εj μj −α2,

Zj = βj/σj and σj = εj for p–polarization or σj = μj

for s–polarization. We believe that at this point it is rele-
vant to note that certain magnitudes involved in this work
and in [12] have very different physical interpretations,
although we are using identical notation to exploit the
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formal similarity. For example, the complex amplitude r1

in the problem of modes represents the amplitude of an
evanescent wave in the y direction, while here it repre-
sents the amplitude of the reflected wave, i.e., a propa-
gating wave in the y direction. Similarly, in the problem
of modes α is a complex magnitude that represents the
propagation constant of an SPP and its value is obtained
by requiring the denominator in equation (1) to be zero,
whereas in the problem schematized in Figure 1, α takes
a real value imposed by the incident wave

α =
ω

c

√
ε1μ1 sin θ, (2)

where c is the speed of light in vacuum. The necessary con-
dition to obtain a coupling between the incident wave and
the SPP propagating along the surface 2−3 with complex
propagation constant α23 is

ω

c

√
ε1μ1 sin θ = Re α23. (3)

When this condition holds, we expect an energy transfer
from the incident wave to the SPP and therefore a de-
crease in the reflectivity of the system. We also expect
this reflectivity decrease to be more or less pronounced,
depending on the thickness d of the metamaterial. We see
that it is not easy to predict the details of the expected
behavior from the reflectivity of the system |r1|2 given
by equation (1). For this reason it is convenient to resort
to a phenomenological model originally used to describe
the SPP resonant response in metallic gratings [19,22] and
extended to ATR metal devices [20] and to metamaterial
gratings [21]. According to this model, the complex ampli-
tude of the reflected wave in medium 1 has the following
expression

r1(z, d/λ) = ζ(z, d/λ)
z − z0(d/λ)
z − zp(d/λ)

, (4)

where z is the analytic continuation of sin θ to the complex
plane, z0 and zp denote respectively the complex zero and
pole of r1 and ζ(z, d/λ) is a complex regular function near
z0 and zp that does not change remarkably near zp. With
the choice of the complex variable z = sin θ, and as seen
in [12], the value z that makes the denominator in equa-
tion (1) zero (i.e. the pole z = zp) is the ratio between the
dimensionless propagation constant κ(d/λ) = c α(d/λ)/ω
and the index of refraction of the medium 1,

zp(d/λ) = κ(d/λ)/
√

ε1μ1. (5)

The complex numbers z0 and zp depend on the consti-
tutive parameters and on the thickness d and must be
calculated numerically as the zeroes of the numerator and
denominator of equation (1) respectively. As the value of
d is changed, the positions of the zero and the pole deter-
mine two trajectories in the complex plane. For physical
reasons, the pole trajectory cannot cross the real axis. If
it did, infinite reflectance would result for some real an-
gle of incidence. The trajectory of the zero, on the other
hand, is not limited and in principle it could cross the real

Fig. 2. (Color online) Phase shift φ as a function of z = sin θ
for Im(z0) Im(zp) > 0.

Fig. 3. (Color online) Phase shift φ as a function of z = sin θ
for Im(z0) Im(zp) < 0.

axis for some critical value of d/λ. The existence of this
critical value has been experimentally verified in diverse
circumstances [20,23–25] and the phenomenon is known
in the literature as total absorption.

We will see below that the phase of the reflected field
plays an important role in the search for a critical value
of d/λ for which z0 is purely real. In the frame of the phe-
nomenological model, and to within an additive constant,
the phase of r1 is given by the following expression

φ(z, d/λ) = arctan
z − z0

z − zp
. (6)

Equation (6) shows that φ(z, d/λ) can exhibit very dif-
ferent behaviors as a function of z = sin θ (i.e. real z)
depending on the location in the complex plane of the
imaginary parts of both the zero and the pole. To illus-
trate these behaviors, in Figures 2 and 3 we show two sit-
uations: Im(z0) Im(zp) > 0 (Fig. 2) and Im(z0) Im(zp) < 0
(Fig. 3). For simplicity, and given that in the case of
highly symmetrical response curves (as in the metallic
case) it has always been observed that Re z0 ≈ Re zp, in
Figures 2 and 3 we assumed that the zero and the pole
have the same real parts. If this condition does not hold
for metamaterial structures, the corresponding response
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Fig. 4. (Color online) SPPs regimes for a flat interface be-
tween a lossless metamaterial with arbitrary values of electric
permittivity and magnetic permeability (ε2, μ2) and a lossless,
conventional material (ε3, μ3). The axis are ε = ε2/ε3 and
μ = μ2/μ3. The values used in the examples are indicated by
stars.

curves would display a loss of symmetry without chang-
ing, however, the general conclusions of the present discus-
sion. Let us consider a real value of z as indicated by the
point P in Figure 2. Taking into account that the phase
φ(z, d/λ) given by equation (6) is represented by the dif-
ference between angles φ0 and φp indicated in Figure 2, by
moving P along the real axis it is possible to visualize the
behavior of φ = φ0 − φp for different angles of incidence.
The result is shown in the inset in Figure 2: φ → 0 when
|z| � Im(zp), φ < 0 when P is on the left of B, φ > 0
when P is on the right of B and φ = 0 when P = B. Note
that the phase curve exhibits a minimum for P = A and a
maximum for P = C. Repeating a similar analysis for the
case Im(z0) Im(zp) < 0 (see Fig. 3), we observe that the
phase curve is now a monotonically decreasing function of
the angle of incidence. Taking into account that the results
shown in Figures 2 and 3 indicate that the phase curves
as a function of z = sin θ have a very different behavior
before and after the zero crosses the real axis – i.e., before
and after the metamaterial thickness reaches the critical
value d/λ for which a total absorption is expected – we
conclude that the observation of the phase curves vs θ ob-
tained for different values of d/λ allows us to visualize the
position of the zero in the complex plane. We note that
this information cannot be extracted from the reflectivity
curves only.

3 Results

In this section we analyze the reflectivity and phase curves
as functions of the angle of incidence for different values of
the geometrical parameters of the ATR system. To corre-
late these curves with the results obtained in the study
of the problem of modes, we have chosen constitutive

parameters with values identical to those used to illustrate
the new regimes of SPPs associated with almost transpar-
ent metamaterials with negative index of refraction [12].
For the metamaterial medium these values are located in
regions A and B of the ε − μ diagram shown in Figure 4.
The constitutive parameters of medium 1 correspond to a
prism (ε1 = 2.25, μ1 = 1) and those of medium 3 to a vac-
uum (ε3 = 1, μ3 = 1). To complete the analysis we show
the parametric trajectories of the zero and the pole in the
complex plane, with the dimensionless thickness d/λ as a
parameter. For the systematic search of the complex zeros
of both the numerator and denominator in equation (1)
we have used the efficient numerical formalism already im-
plemented to find those propagation constants of SPPs in
ATR systems [12].

3.1 Case 1: p-polarization, forward SPPs

In our first example, the metamaterial constitutive param-
eters are ε2 = −2+i 0.001 and μ2 = −0.1+i 0.001, located
in region A shown in Figure 4. This region corresponds to
p-polarized, forward SPPs. In the limit d → ∞, the dimen-
sionless propagation constant is κ∞ = 1.12546+ i 0.00046.
Assuming κ(d/λ) ≈ κ∞, equation (3) predicts a resonant
coupling between the SPP and the incident wave at an
angle of incidence θ ≈ 48◦. Figure 5 shows plots of reflec-
tivity |r1(θ)|2 and phase φ(θ) for different values of the
thickness to wavelength ratio d/λ in the range 0.38−0.68.
From the reflectivity curves (Fig. 5a) we note that both
the angular position of the minimum and the angular
width of the resonances depend on d/λ. The increase in
the angular position of the minimum when the value of
d/λ is varied from 0.38 to 0.68 indicates an increase in the
real part of the polariton propagation constant, in total
agreement with the results predicted by the homogeneous
problem (see Fig. 3a in [12]). In the same way, the de-
crease in the angular width of the resonances when the
value of d/λ is varied in the same interval indicates a de-
crease in the imaginary part of the polariton propagation
constant, a fact which is again in total agreement with
the results predicted by the homogeneous problem (see
Fig. 3b in [12]). Almost identical reflectivity curves with
very pronounced dips (computed minima ≈10−6) can be
observed for d/λ = 0.5540 and d/λ = 0.5545. Although
both reflectivity curves are indistinguishable in the scale
of Figure 5a, the phase curves obtained for these thick-
nesses exhibit very different behaviors. The phase curves
for d/λ = 0.5540 and for d/λ = 0.3800 are decreasing func-
tions of the angle of incidence, whereas for d/λ = 0.5545
and for d/λ = 0.6800 the phase exhibits a minimum and
a maximum.

The change of behavior in the phase curves cannot
be easily explained by the rigorous theoretical model.
However, it can easily be interpreted in the frame of the
pole-zero phenomenological model, since, according to the
above discussion, this change of behavior would indicate
the existence of a critical value of d/λ, between the val-
ues 0.5540 and 0.5545, for which the zero of the reflection
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Fig. 5. (Color online) (a) Reflectivity |r1(θ)|2 and (b) phase
shift φ(θ) as functions of the angle of incidence θ and for dif-
ferent values of the thickness to wavelength ratio d/λ. The
relative constitutive parameters correspond to regime A.

coefficient crosses the real axis thus allowing a total ab-
sorption of the incident energy by the ATR structure.
The phase curves shown in Figure 5b for d/λ ≤ 0.5540
are decreasing functions of the angle of incidence, which
is in agreement with the behavior predicted by the phe-
nomenological model for Im(z0) Im(zp) < 0 (see Fig. 3)
and indicates that in this thickness range Im(z0) < 0,
since a forward SPP should have the imaginary part of
its propagation constant, i.e. the imaginary part of the
pole, positive [12]. Analogously, we see that the behavior
of the phase curves for d/λ ≥ 0.5545 indicates that in this
thickness range Im(z0) > 0 should hold. The symmetry
exhibited by the response curves shown in Figure 5 also
suggests that Re(z0) ≈ Re(zp) for the full range of thick-
nesses considered.

The discussion of the previous paragraph assumes the
validity of the model for the case of ATR structures with
metamaterials, a hypothesis that in fact has never been
validated. To verify this hypothesis we have calculated
numerically the parametric trajectories of z0(d/λ) and
zp(d/λ). As shown in Figures 6 and 7, the obtained re-
sults are in complete agreement with these predictions and

Fig. 6. (Color online) Trajectories of the zero (z0) and the pole
(zp) in the complex plane as functions of d/λ. Constitutive
parameters correspond to regime A, p-polarization, forward
SPP.

confirm the validity of the model to describe phenomeno-
logically the resonant response of SPPs in ATR structures
with metamaterials. In these figures we note that the pole
and zero trajectories start from the point corresponding
to a single interface (d → ∞) where zp = z0 = 0.75030+
i 0.00031. When d/λ decreases, z0 and zp move away from
each other, keeping their real parts approximately equal,
as suggested by the symmetry of the response curves. We
have also verified that

z0 (d/λ = 0.5540) = 0.75025− i 1.29559 10−6,

z0 (d/λ = 0.5545) = 0.75025 + i 7.33953 10−7,

that is, as suggested by the change in phase behavior, the
imaginary part of z0 changes its sign at a critical value of
d/λ between d/λ = 0.5540 and d/λ = 0.5545, for which
the reflectivity of the system is null.

3.2 Case 2: s-polarization, backward SPPs

In our second example, the metamaterial constitutive pa-
rameters are ε2 = −1.5 + i 0.001 and μ2 = −0.8 +
i 0.001 corresponding to region B in Figure 4, where back-
ward SPPs occur in s-polarization. In the limit d → ∞
the SPP dimensionless propagation constant is κ∞ =
1.24720−i 0.00355, with a negative imaginary part due to
the SPP regressive nature. If we assume that κ(d/λ) ≈
κ∞, equation (3) predicts a resonant coupling between
the SPP and the incident wave for an angle of incidence
θ ≈ 56◦.

Figure 8 shows plots of the reflectivity |r1(θ)|2 and the
phase φ(θ) for different values of the thickness to wave-
length ratio (d/λ = 0.5125, 0.8145, 0.8150 and 0.9375).
The reflectivity curves for d/λ = 0.8145 and d/λ = 0.8150
are indistinguishable and present very pronounced dips,
approximately equal to 10−7. From the reflectivity curves
(Fig. 8a) we note that both the angular position of the
minima and the angular width of the dips decrease when
d/λ increases. This indicates that both the real and the
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Fig. 7. (Color online) Detail of the trajectories of the zero (z0)
and the pole (zp) in the complex plane as functions of d/λ. Con-
stitutive parameters correspond to regime A, p-polarization,
forward SPP.

Fig. 8. (Color online) (a) Reflectivity |r1(θ)|2 and (b) phase
shift φ(θ) as functions of the angle of incidence θ and for dif-
ferent values of the thickness to wavelength ratio d/λ. The
relative constitutive parameters correspond to regime B.

imaginary part of the SPP constant decrease when the
thickness of the metamaterial increases, in total agreement
with the results in Figures 6a and 6b in [12].

The phase curves vs angle of incidence (Fig. 8b) show
a very different behavior to that observed in the case
discussed previously. As d/λ increases, the phase curves
change from monotonously increasing, for d/λ = 0.5125

Fig. 9. (Color online) Trajectories of the zero (z0) and the pole
(zp) in the complex plane as a function of d/λ. Constitutive
parameters correspond to regime B, s-polarization, backward
SPP.

Fig. 10. (Color online) Detail of the trajectories of the
zero (z0) and the pole (zp) in the complex plane as a func-
tion of d/λ. Constitutive parameters correspond to regime B,
s-polarization, backward SPP.

and d/λ = 0.8145, to curves exhibiting a maximum and a
minimum for d/λ = 0.8150 and d/λ = 0.9375. The change
in the phase behavior indicates the existence of a criti-
cal value of d/λ between 0.8145 and 0.8150 for which the
system reflectivity is null. In the frame of the zero-pole
model, the symmetry of both the reflectivity (Fig. 8a) and
the phase curves (Fig. 8b) suggests that Re(z0) ≈ Re(zp),
as verified in the results shown in Figures 9 and 10 ob-
tained from the numerical calculation of poles and zeroes.
Numerically we found that

z0(d/λ = 0.8145) = 0.83124 + i 6.79740 10−6,

z0(d/λ = 0.8150) = 0.83124− i 2.30406 10−6,

which confirms that the critical value of d/λ for which
expression (1) is identically zero occurs between the values
d/λ = 0.8145 and d/λ = 0.8150.
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4 Conclusions

We have presented an exhaustive study of the optical re-
sponse of Kretschmann-ATR systems with negative index
metamaterials in conditions close to the resonant coupling
between the incident field and SPPs very different from
those existing in the usual metallic ATR configurations.
We have seen that all the details obtained for the optical
response verify and complement the information obtained
in [12] about the SPP characteristics. As a new result,
our numerical simulations show that the incident field can
be completely absorbed by the ATR structure when the
thickness of metamaterial takes a critical value. The re-
sults of this study highlight the fact that the phase of the
reflected field gives additional information not provided
by the reflectivity. In particular, it has been shown that
the study of the phase is useful for finding the critical
conditions of total absorption. While the analysis of the
optical response of the ATR system could have been done
exclusively from the exact expressions of the reflection co-
efficient of the system, we have complemented the analysis
through the extension to metamaterials of the phenomeno-
logical model previously used for ATR configurations with
metals. The generalization of the model shows, in a very
simple way, the key role played by SPPs in different optical
responses obtained under resonance conditions.
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cional de Investigaciones Cient́ıficas y Técnicas, (CONICET,
PIP 1800) and Universidad de Buenos Aires (project UBA
20020100100327).

References

1. Surface Polaritons: Electromagnetic Waves at Surfaces
and Interfaces, edited by V.M. Agranovich, D.L. Mills
(North-Holland, Amsterdam, 1982)

2. Electromagnetic surface modes, edited by A.D. Boardman
(Wiley, New York, 1982)

3. W.L. Barnes, A. Dereux, T.W. Ebbesen, Nature 424, 824
(2003)

4. H. Raether, Surface Plasmons on Smooth Rough Surface
and on Gratings (Springer-Verlag, Berlin, 1988)

5. S.A. Maier, Plasmonics: Fundamentals and Applications
(Springer-Verlag, New York, 2007)

6. R. Marqués, F. Mart́ın, M. Sorolla, Metamaterials with
Negative Parameters: Theory, Design and Microwave
Applications (Wiley, New York, 2008)

7. L. Solymar, E. Shamonina, Waves in metamaterials
(Oxford Univ. Press, Oxford, New York, 2009)

8. M. Cuevas, R.A. Depine, Phys. Rev. Lett. 103, 097401
(2009)

9. S.A. Darmanyan, M. Nevière, A.A. Zakhidov, Opt.
Commun. 225, 233 (2003)

10. A. Otto, Z. Phys. 216, 398 (1968)
11. E. Kretschmann, Z. Phys. 241, 313 (1971)
12. M. Zeller, M. Cuevas, R.A. Depine, J. Opt. Soc. Am. B

28, 2042 (2011)
13. K. Park, B.J. Lee, C. Fu, Z.M. Zhang, J. Opt. Soc. Am. B

22, 1016 (2005)
14. R. Ruppin, Phys. Lett. A 277, 61 (2000)
15. I.V. Shadrivov, R.W. Ziolkowski, A.A. Zharov, Y.S.

Kivshar, Opt. Express 13, 481 (2005)
16. A. Ishimaru, S. Jaruwatanadilok, Y. Kuga, Prog.

Electromagn. Res. 51, 139 (2005)
17. J.N. Gollub, D.R. Smith, D.C. Vier, T. Perram, J.J. Mock,

Phys. Rev. B 71, 195402 (2005)
18. K.L. Tsakmakidis, C. Hermann, A. Klaedtke, C. Jamois,

O. Hess, Phys. Rev. B 73, 085104 (2006)
19. R.A. Depine, V.L. Brudny, J.M. Simon, Opt. Lett. 12, 143

(1987)
20. R.A. Depine, V.A. Presa, J.M. Simon, J. Mod. Opt. 36,

1581 (1989)
21. M. Cuevas, R.A. Depine, Phys. Rev. B 78, 125412 (2008)
22. M. Nevière, Electromagnetic Theory of gratings, edited by

R. Petit (Springer-Verlag, Berlin, 1980), pp. 123–157
23. M.C. Hutley, D. Maystre, Opt. Commun. 19, 431 (1976)
24. Y.P. Bliokh, J. Felsteiner, Y.Z. Slutsker, Phys. Rev. Lett.

95, 165003 (2005)
25. W. Lukosz, H. Wahlen, Opt. Lett. 3, 88 (1978)

http://www.epj.org

	Introduction
	Theory
	Results
	Conclusions
	References

