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Abstract. In this article, our aim is to take a step towards a full under-
standing of the notion of paraconsistency in the context of metainferential
logics. Following the work initiated by Barrio et al. [2018], we will consider
a metainferential logic to be paraconsistent whenever the metainferential
version of Explosion (or meta-Explosion) is invalid. However, our contribu-
tion consists in modifying the definition of meta-Explosion by extending the
standard framework and introducing a negation for inferences and metain-
ferences. From this new perspective, Tarskian paraconsistent logics such
as LP will not turn out to be metainferentially paraconsistent, in contrast
to, for instance, non-transitive logics like ST. Finally, we will end up by
defining a logic which is metainferentially paraconsistent at every level, and
discussing whether this logic is uniform through translations.
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1. Introduction

The aim of this article is to provide a new answer to the question of
what a paraconsistent logic is. To do so, we need to consider two topics:
what a logic is and what paraconsistency is.

Regarding the former, a logic is usually defined as a set of (valid)
inferences (of a given language). Two logics are considered to be equiv-
alent if they share the same set of valid inferences. However, in re-
cent papers [see, e.g., Cobreros et al., 2012, 2014; Ripley, 2012], among
others, have argued that dropping transitivity can solve the semantic
paradoxes. For that purpose, they develop the logic ST, used to later
build a non-transitive theory of truth. One of the most fundamental
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features of ST is that although it has the same set of valid inferences
as classical logic, it differs at the level of metainferences. Intuitively,
just as an inference is a relation between sentences, where premises are
meant to justify the conclusion, a metainference is a relation between
inferences; that is, inferences themselves play the part of premises and
conclusions. The rule of Cut —usually taken to codify the transitivity
of logical consequence— is present in many sequent calculi for classical
logic and is the metainference abandoned in ST:

Γ ⇒ ∆,ϕ Σ, ϕ ⇒ Π
Cut

Γ,Σ ⇒ ∆,Π

Barrio et al. [2015] and Dicher and Paoli [2019] have emphasized that
ST is not classical logic1, precisely because the absence of Cut makes clas-
sical logic and ST different regarding the metainferences they determine
as valid. So, Barrio et al. [2020] (from now on BPS) and Pailos [2019a,b]
introduced the logic TS/ST, whose consequence relation is defined for
metainferences, and so is a metainferential logic. TS/ST is characterized
through the non-transitive logic ST and the non-reflexive logic TS [intro-
duced in Cobreros et al., 2012],2 While ST coincides with classical logic
in each valid inference (but not in every classically valid metainference),
TS/ST recovers every classically valid metainference. However, it fails
to validate some classically valid meta-metainferences (metainferences of
level 2). Thus, a new logic for meta-metainferences based on TS/ST can
be defined to recover them. But then again, it fails to validate classically
valid metainferences at higher levels (metainferences of level n > 2).

These are only the first steps of a hierarchy of metainferential logics
such that each step recaptures more classically valid metainferences than
the lower metainferential logics in the hierarchy, although none of them
is entirely classical. And, eventually, it is possible to define a logic as the
union of all of the metainferential logics of the hierarchy that recaptures
every classically valid metainference of any level, as Pailos [2019b] and
Scambler [2020] do.

The moral of these new developments is that metainferences matter
when we define what a logic is. So, in this article, we will consider the
logics defined not only by their inferences but also by their metainfer-
ences.

1 Actually, these theorists have related ST with Priest’s paraconsistent logic LP.
We will go back to this point in later sections.

2 We will formally define these logics in the next section.
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Regarding paraconsistency, the philosophical idea behind this tech-
nical property is the failure of the principle known as (ECQ) ex con-

tradictione quodlibet (from a contradiction, anything follows), which is
also known as ‘Explosion’. This principle, usually formalized as a rule
in inferential logics, is of course classically valid. In other words, in
classical logic a contradiction entails any formula, and that is the reason
why classical theories cannot deal with contradictions. However, there
are many logics that were designed to deal with inconsistent information,
or to model inconsistent situations, e.g., the logic LP [see Asenjo, 1966;
Priest, 1979]. These logics reject ECQ and the rules that formalize it.

Once we incorporate metainferences in the characterization of log-
ics, we need to rethink how to formalize the principle ECQ. In [Barrio
et al., 2018], BPS have discussed some ways of doing it and have pro-
posed what we will call the notion of BPS-paraconsistency. To do so,
the authors formalise the principle ECQ using a metainference (BPS-
Meta Explosion). However, we think that this formalization of ECQ for
metainferences has several problems. The main issue is related to the
fact that the authors express the contradiction between inferences by
appealing to the contradiction between formulas. We believe that once
we take seriously the fact that metainferential logics are logics about
inferences or metainferences, the contradiction between inferences and
metainferences should be independent of the formulas appearing in them.

Luckily, we can reformulate the notion of metainferential paraconsis-
tency in the light of the most recent developments made by Da Ré et al.
[2020]. The idea is to extend the framework with a kind of negation for
inferences and metainferences and to express the contradictions without
appealing to the negation of formulas. It is important to mention that
these resources were not at the disposal of BPS when they introduced
this definition, so we can take the following work as an extension of
BPS’s ideas, rather than as a rival proposal.

Once we introduce our notion of paraconsistency, we will apply it to
some metainferential logics and we will design a logic which is paracon-
sistent at every level of the hierarchy. Also, we will evaluate whether
this coherent policy regarding paraconsistency can be extended to other
properties and whether we can say that all of the logics in this hierarchy
are actually the very same logic.

So, to lay out all of these ideas in order, the structure of this article is
as follows. In section 2, we will present some technical resources that will
be of use in the rest of the article. In section 3, we will explore what it
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means for a logic to be paraconsistent. In order to do it, we will introduce
its traditional definition, following BPS [Barrio et al., 2018], and then we
will expand it by means of an inferential and a metainferential negation.
In section 4, we will examine how to get a logic that is paraconsistent
at every metainferential level as well as at the inferential level, that is, a
purely paraconsistent logic. Then, we will explore whether this research
into pure paraconsistency can be extended to other properties of a logic,
such as uniformity. Finally, in Section 5, we will end up with some
conclusions and proposals for future work.

2. Technicalities

In this section, we will present some technical resources that we will use
throughout this article. In particular, we will explain how to understand
validity in each logic.

Let L be a propositional language and let For(L) denote the set of all
well-formed formulas of L. We will let Greek capital letters be variables
for sets of formulas and their lowercase counterparts schematically stand
for individual formulas.

An inference of L is an ordered pair 〈Γ,∆〉 where Γ,∆ ⊆ For(L)
(written Γ ⇒0 ∆)3. SEQ0(L) will denote the set of all inferences of L.

All inferential logics are sets of inferences. In this article we will work
with four inferential logics: K3 [Kleene, 1952], LP, ST and TS. All four
of them can be characterised with three valued valuations respecting the
usual Strong Kleene truth tables as depicted below:

¬
t f

i i

f t

∧ t i f

t t i f

i i i f

f f f f

∨ t i f

t t t t

i t i i

f t i f

In general, we say an inference Γ ⇒ ∆ is valid in a logic L if and
only if all valuations satisfy it, which means that for every v, it either
satisfies some δ ∈ ∆ or it does not satisfy some γ ∈ Γ . What it means
for a valuation to satisfy a formula as a premise or as a conclusion of an
inference varies from logic to logic. As is shown in the definitions below,
in some logics, formulas are satisfied when they get a designated value,

3 We will drop the 0 sub-index when the context allows for no ambiguity.
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whereas in others, standards of satisfaction change between premises
and conclusions (the standard consisting of the set {t, i} is usually called
“tolerant”, whereas the one consisting only of the singleton {t} is called
“strict” [see, e.g., Cobreros et al., 2012]). So for any valuation v and any
inference Γ ⇒ ∆ we say that:

• v lp-satisfies Γ ⇒ ∆ (written v �LP Γ ⇒ ∆) if and only if either
v(γ) ∈ {f} for some γ ∈ Γ or v(δ) ∈ {t, i} for some δ ∈ ∆;

• v k3-satisfies Γ ⇒ ∆ (written v �K3
Γ ⇒ ∆) if and only if either

v(γ) ∈ {f , i} for some γ ∈ Γ or v(δ) ∈ {t} for some δ ∈ ∆;4

• v st-satisfies Γ ⇒ ∆ (written v �ST Γ ⇒ ∆) if and only either if
v(γ) ∈ {f , i} for some γ ∈ Γ or v(δ) ∈ {t, i} for some δ ∈ ∆;

• v ts-satisfies Γ ⇒ ∆ (written v �TS Γ ⇒ ∆) if and only if either
v(γ) ∈ {f} for some γ ∈ Γ or v(δ) ∈ {t} for some δ ∈ ∆.

Taking these definitions into account, we note that LP is a logic in
which the inference ϕ∧¬ϕ ⇒ ψ fails, since the valuation v(ϕ) = v(¬ϕ) =
i and v(ψ) = f is such that lp-satisfies its premises but it does not lp-
satisfy its conclusion. By contrast, K3 is a logic in which ψ ⇒ ϕ ∨ ¬ϕ
fails, for the valuation v(ϕ) = v(¬ϕ) = i and v(ψ) = t is such that it
k3-satisfies its premise and it does not k3-satisfy its conclusion.

At the same time, it is worth noticing that, as shown in [Cobreros
et al., 2012], ST has the same inferences as CL, while TS has no valid
inferences. The interesting thing about them is that even if inferentially
there is no difference between ST and CL, as we will see, the metain-
ferences they determine are quite different. In order to state it in more
formal terms, we introduce the following definition that we take from
[Da Ré et al., 2020]:

A metainference of level n, for n ­ 1, is an ordered pair 〈Γ,∆〉 where
Γ ⊆ SEQn−1(L) and ∆ ⊆ SEQn−1(L) (written Γ ⇒n ∆). SEQn(L) is
the set of all metainferences of level n on L.5

In [Pailos, 2019a], the author introduced sixteen mixed and impure
meta inferential consequence relations of level 1 based on LP, K3, ST

and TS. Each of these consequence relations has the structure L1/L2,
where L1 and L2 are possibly different inferential consequences relations.

4 We present K3 here because even if it is not a paraconsistent logic, it will come
in handy later on when we analyze some metainferential logics.

5 Notice that this definition allows not only premises but also conclusions to be
multiple, generalizing the usual framework, as the authors do in [Da Ré et al., 2020].
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The main idea is that L1 represents the standard for the premises of the
metainference and L2 stands for the canon for the conclusion. This
can be generalized to metainferential logics of any level (we adapt this
definition from [Da Ré et al., 2020]):

A metainference (of any level n ­ 1) Γ ⇒n ∆ is l1/l2-satisfied by
a valuation v if and only if v either l2-satisfies some member of ∆ or it
does not l1-satisfy some member of Γ . A metainference is locally valid

in L = L1/L2 if and only if every valuation l1/l2-satisfies it.
All metainferential logics of level n are sets of metainferences of

level n. A logic L is a set
⋃

n∈ω Ln, where Ln is an inferential logic
(when n = 0) and a metainferential logic of level n (when 1 ¬ n < ω). In
other words, a logic is a union of an inferential logic and metainferential
logics of every level.

As we said, even though ST coincides with CL at the level of infer-
ences, the metainferential logic ST/ST is much weaker. Besides Cut,
there are many other metainferences which are rendered invalid, such
as the following (here represented in a vertical fashion, as we did in the
introduction and is customary in sequent calculi):

Γ ⇒ ∆,ϕ → ψ Γ ⇒ ϕ,∆

Γ ⇒ ψ,∆

At the same time, despite TS being empty, TS/TS is far from vacuous
or trivial, since it validates many metainferences, such as the one above,
and invalidates many others, such as the following (which has empty
premises and two conclusions):

Γ ⇒ ∆,ϕ Γ ⇒ ∆,¬ϕ

As has been proven many times in the literature [see, e.g., Barrio et
al., 2015; Dicher and Paoli, 2019; Pynko, 2010] the metainferential logic
ST/ST coincides via a suitable translation with LP,6 while it was also
suggested that the metainferential logic TS/TS coincides via a suitable
translation with K3.7 At the same time, as the author points out in
[Pailos, 2019a], TS/ST validates every classical metainference of level 1,
while ST/TS has no valid metainferences of level 1.

Before moving on to the next section, there are two clarifications left
to make. First, in order to refer to a logic simpliciter (i.e., the union of all

6 We are not using the same terminology as in the literature but an equivalent
one.

7 As far as we know this was not actually proved, although it can be easily done.
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natural levels), we will take some level n as its denomination, and assume
the lower levels can be inferred as follows: if the label is L1/L2, the
metainferential logic below is L2. This assumption is usually implicitly
adopted in the literature [see, e.g., Barrio et al., 2018, 2020; Pailos,
2019a], although never explicitly stated. Moreover, it is also assumed
that an inferential logic determines all the metainferential logics above
it. For instance, LP is taken to be the union of LP, LP/LP and so on.
We will not follow this second convention, and will instead indicate the
logic of each level whenever necessary. In the case of LP, we will use the
name LPω for the whole set of metainferential logics.

In the next section, we will explore how paraconsistency is treated
in the literature and we will expand the usual notion of a paraconsistent
logic in order to deal with metainferential logics.

3. What is a paraconsistent logic?

In this section, we will present a new technical definition of what para-
consistency is, taking into account not only inferences but also metain-
ferences. To do so, however, first, we will present some philosophical
motivations concerning the concept of paraconsistency. Then, we will
introduce the traditional definitions of what it means for an inferential
logic to be paraconsistent. Next, we will introduce an appropriate notion
for the metainferential case. Before doing so, we will review the BPS
proposal and we will argue against it. Finally, to deal with the problems
the BPS proposal has, we will introduce some changes in the framework
and, following [Da Ré et al., 2020], we will introduce a metainferential
negation, which will allow us to define metainferential paraconsistency.

3.1. Paraconsistency: the philosophical interpretations

In this section, we will briefly describe some of the more well-known
philosophical insights behind the notion of paraconsistency, and we will
present the main motivations that philosophers and paraconsistent logi-
cians have followed to develop paraconsistent logics.

The key idea of paraconsistency is the failure of the principle known
as (ECQ) ex contradictione quodlibet (from a contradiction, anything
follows), also known as Explosion, which of course is classically valid.

Although all the paraconsistent theorists reject ECQ, there have been
many different particular paraconsistent formal logics that have been
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proposed, under many different motivations. To schematically classify
these positions, we can revisit the taxonomy made by Urbas [1990]. In
his article, the author mentions at least three different main motivations
related to the development of paraconsistent logics.8

First of all, the dialetheic position. This is a metaphysical stance that
considers that there are true contradictions. This position is also called
Dialetheism, and those who embrace it are usually called dialetheists.
Of course, from accepting that there are some true contradictions it
does not follow that every contradiction is true (trivialism). In this
vein, most philosophers and logicians who have developed paraconsistent
logics in order to face paradoxical phenomena are dialetheists. We may
mention [Asenjo, 1966; Beall, 2009; Priest, 1979, 2006; Priest et al., 2018;
Routley and Meyer, 1976] among many others [see Priest et al., 2018 for
a comprehensive survey of dialetheism].

Secondly, it is important to mention the pragmatic position. The
theorists classified under this position develop paraconsistent logics to
be able to deal with inconsistent information, e.g., databases, collections
of statements, beliefs, scientific theories. However, these logicians and
philosophers are not necessarily committed to a metaphysical position,
as the dialetheists are. In this line, we should mention the development
of the Logics of Formal Inconsistency. Among many others, we should
mention the Brazilian tradition initiated by Da Costa [1974], and contin-
ued and developed among others by Carnielli et al. [2007] [see Carnielli
and Coniglio, 2016, for a comprehensive study of this tradition].

Lastly, there are other motivations for embracing a paraconsistent
logic that are neither related to dealing with inconsistent information
nor with the metaphysical claim that there are true contradictions. In
the relevance tradition, for instance, the failure of ECQ is due to the fact
that the conclusion is irrelevant with respect to the premises [see Mares,
2020, for an introduction to relevance logics].

8 Also, recently [Carnielli and Rodrigues, 2019] have proposed another classifica-
tion of the paraconsistent positions, focusing on their metaphysical commitments. We
won’t engage here with metaphysical concerns, preferring instead to remain neutral
and hope that everything we say here will be sufficiently general to avoid having to
take any metaphysical stance.

It is not our aim to be exhaustive about the philosophical motivation for being a
paraconsistent theorist, but just to mention some of the most representative positions.
For a comprehensive presentation of paraconsistency and paraconsistent logics, [see,
e.g., Carnielli and Coniglio, 2016; Priest et al., 2018b].
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One thing all these approaches have in common is their rejection of
ECQ. Nonetheless, this rejection has to be interpreted substantially for it
to be a significant thesis9. In other words, it is not sufficient that there
is some monadic operator which does not satisfy it, given that there
are plenty operators of that kind, even definable in classical settings (a
constant operator mapping all values to t, for instance). Instead, the
expression which does not comply with the principle has to be rightfully
considered a negation.

There is probably no fixed set of positive principles that sets the issue
of what qualifies as negation without, for example, begging the question
and excluding, by fiat, the possibility of paraconsistency. Many agree
that being a contradictory-forming operator is enough, although there
is again dissent on how to characterise contradictions. For instance,
according to [Priest et al., 1989a], it means to validate the principle of
non-contradiction, which speaks against at least some logics of formal
inconsistency being genuine paraconsistent logics. In a similar vein, De
and Omori [2018] claim that to understand ¬ as a negation, one must
have the following:

¬ϕ is true iff ϕ is false and ¬ϕ is false iff ϕ is true.

This qualifies LP’s interpretation of ¬ as a bona fide negation, and ex-
cludes some others, like the intuitionistic case. However, Slater [1995]
argues that LP’s negation does not form contradictories, because the
possibility of both ϕ and ¬ϕ being true classifies them as subcontraries.
This argument can be extended to any logic that can make both ϕ and
¬ϕ true for some sentence ϕ. Summing up, to accept the characterization
of negation as a contradictory-forming operator seems to create a fault-
less disagreement situation, where parties talk past each other because
they do not share the concept of contradictories. Another option for
the paraconsistent theorist is to defend the weaker claim that negation
is a subcontraries-forming operator instead, in the sense that at least
one of ϕ and ¬ϕ has to be true.10 This claim, it is only fair to notice,
has been explicitly rejected by defenders of paraconsistent logic them-
sleves. In the case of LFI’s, they argue that if paraconsistent negation
were merely a subcontraries-operator, it would not be possible to define
classical negation from it [see Carnielli and Coniglio, 2016]. In the case

9 We want to thank our anonymous referees for pressing us on this point.
10 Dually, a contraries-forming operator, in the case of a paracomplete theorist.
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of [Priest et al., 1989a], they dismiss this position on the grounds that
formulas do not have unique subcontraries (up to equivalence), in the
way that they have unique contradictories. Be that as it may, accepting
the negation-as-subcontrary stance has the advantage of characterizing
the whole family of logics we have considered so far in this article, and
does not pit the different paraconsistent logics against each other, which
for our purposes is enough. We will only briefly come back to this point
in the next section, when discussing metainferential negation.

Leaving then the issue of negation aside for now, we find that the
other thing all paraconsistent logics share is an assumption regarding
what sort of objects can form a contradiction; that is, formulas. However,
the emergence of metainferential logics [Barrio et al., 2018, 2020; Pailos,
2019b; Scambler, 2020] has challenged this assumption: metainferences
are as important as inferences, and thus any formalization of ECQ has
to take metainferences into account. In this vein, Barrio et al. [2018]
develop a metainferential principle of Explosion and define a new notion
of paraconsistency. In the next section, we will introduce in detail such
definition. Afterward, we will extend the work made by Barrio et al.
[2018], and using some machinery recently developed in [Da Ré et al.,
2020] we will present our own definition.

3.2. Paraconsistency: the technical definition

Let us start first with the usual notion of inferential paraconsistency. As
we mentioned in the previous section, the main idea of paraconsistency
is the failure of ECQ: from a contradiction anything follows. However,
how to formalize this failure depends on what a contradiction is, which
in turn depends on the objects the logic talks about. In particular,
inferential logics describe inferential patterns between (sets of) formulas,
and thus, a contradiction can only be formed between formulas. So,
e.g., Ripley [2015] (and similarly Carnielli and Coniglio [2016]) define
inferential paraconsistency as follows11:

A logic L is inferentially paraconsistent if and only if 2L ϕ∧¬ϕ ⇒ ψ,
for some ϕ, ψ ∈ For(L) or 2L ϕ,¬ϕ ⇒ ψ, for some ϕ, ψ ∈ For(L).

Notice that these two inferences are just two possible ways of for-
malizing ECQ. In this context, all of the logics will either validate or
invalidate both of these inferences, so we omit this distinction and de-

11 Here we are adapting the terminology to this article.
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fine inferential paraconsistency regardless of the way the formulas that
form the contradiction are connected.12

Now we can look back to the logics we have presented in the previ-
ous section and check which of them are paraconsistent. First, any logic
containing LP or TS as its inferential part is inferentially paraconsistent,
since any valuation v such that v(ϕ) = i and v(ψ) = f is a counterex-
ample to the inference ϕ,¬ϕ ⇒ ψ in both logics. On the other hand, as
it is widely known, it is straightforward to check that a logic containing
K3 and ST as its inferential part is not inferentially paraconsistent.

So far, we have just defined what it means for a logic to be inferen-
tially paraconsistent. However, as the title of this article suggests, we
are interested in investigating how to extend this definition to metainfer-
ential logics. In other words, we would like to answer the question: what
makes a logic metainferentially paraconsistent? It is worth mentioning
that we are not the first to try to address this issue. Barrio et al. [2018],
when analyzing how to formalize the idea of ECQ, claimed the following:

An inference with an inconsistent premise set implies any conclusion.
As is well-known, inconsistent premise sets for inferences are sets that
include (some instance of) the (schematic) formulaeA and ¬A [. . . ] The
question is now, how to adapt this idea to the case of meta-inferences.
For us, the most reasonable take is to say that a meta-inference with
an inconsistent premise set implies any conclusion.

[Barrio et al., 2018, p. 94]

So, to formalize these ideas, Barrio et al. [2018, p. 95] provide the fol-
lowing definition:13 a logic is BPS-paraconsistent if and only if either
Explosion is invalid or the following metainference is locally invalid:

⇒ ϕ ⇒ ¬ϕ
BPS-Meta Explosion

⇒ ψ

12 Notice that although these two rules are very closely related they are not
equivalent. For example, in contexts where structural contraction or weakening fail,
some formulation could be stronger than the other. Also, subvaluationist and super-
valuationist logics are sensitive to this distinction. In this article we will not expand
on these systems but we hope to do it in future works, since our definitions intend to
be quite general.

13 Here we are adapting the notation to the terminology adopted in this article.
Also, we refer in the definition to BPS-paraconsistency, instead of paraconsistency,
since we will keep the latter for our proposal.
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Also, we can say that a logic is BPS-metainferentially paraconsistent
if BPS-meta Explosion is locally invalid in it.14 Now, let us apply this
definition to some of the logics we have presented in the previous section.
First, any logic containing LP/LP is BPS-metainferentially paraconsis-
tent (the same valuation defined to invalidate Explosion is a counterex-
ample to the instance of BPS-Meta Explosion formed by replacing ϕ by p
and ψ by q). On the other hand, although ST is not inferentially paracon-
sistent, ST/ST is indeed BPS-metainferentially paraconsistent (again the
same valuation is a counterexample to BPS-meta Explosion in ST). In
the case of TS/TS it is easy to check that it is not BPS-metainferentialy
paraconsistent since although TS is an empty inferential logic, TS/TS lo-
cally validates many metainferences, including BPS-Meta Explosion. Fi-
nally, regarding K3/K3, it is not BPS-metainferentially paraconsistent.15

So, the authors consider that in order to formalize the contradiction
between two inferences we need to use the negation of the object lan-
guage. Although we agree that we need to consider sets of inconsistent
inferences, we think that the definition given by BPS has some problems.

First of all, the BPS definition is based on formulas and not on in-
ferences. In other words, although the authors claim that the incon-
sistency in a metainference has to be formed between inferences, when
they define BPS-meta Explosion the contradiction between the inferences
is derived from the contradiction between the formulas which appear in
the inferences and not between the inferences themselves. However, since
metainferences talk about inferences, the contradiction should be formed
between inferences independently of the linguistic resources of the object
language. In other words, since metainferential logics describe inferential
patterns between inferences, the definition of metainferential properties
(in this case, metainferential paraconsistency) should be independent of
the presence of any operator for the formulas.

Related to this, it is worth mentioning that many logics16 are BPS-
metainferentially paraconsistent just because they are inferentially para-

14 Notice that BPS-Meta Explosion is a metainference of level 1. However, Barrio
et al. [2018] seem to implicitly assume a generalization of this definition to metainfer-
ences of arbitrary level n.

15 Note that no valuation can ts-satisfy nor k3-satisfy the premises of BPS- Meta
Explosion.

16 Although we will not expand on this point, at least it will hold in any logic
where the internal and the external notion of consequence coincide. See, e.g., [Avron,
1991] for a definition of the internal and the external consequence relations.
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consistent. This is the case, for instance of LP, whose associated metain-
ferential consequence relation (LP/LP) is BPS-metainferentially para-
consistent, since the way in which BPS-Meta Explosion is defined only
focuses on the contradiction between formulas. However, if the concept
of metainferential paraconsistency is taken to merely be a subproduct
of its more fundamental inferential counterpart, its theoretical interest
becomes rather dull.

Finally, we think that the BPS formalization does not capture the
structure of the main idea of ECQ (from a contradiction anything fol-

lows), since it does not represent the idea of contradiction and it does not
represent the idea of anything. Regarding the contradiction, schemati-
cally we think of a contradiction as formed by a pair of objects, A and
notA where not is some kind of contradiction-forming operator. This is
the way in which Explosion is formulated in the inferential case, where
the operator not is none other than the negation connective ¬. However,
BPS-meta Explosion does not have this structure (partly, because of the
lack of resources of the language). Regarding the anything part of ECQ,
notice that the conclusion of BPS-meta Explosion does not have the form
of any inference, but the form of one particular kind of inference (⇒ ψ),
i.e., one without premises and with just one conclusion.

In a nutshell, BPS define meta Explosion using the internal operator
¬, which seems inadequate to define a concept of contradiction useful for
metainferential logics. Instead, we will extend the framework introducing
the kind of negation for (meta)inferences Da Ré et al. [2020] use to
characterise duality.

In this vein, we will divide the class of inferences and metainfer-
ences in two types: positive and negative. The negative inferences
(metainferences) will be interpreted as the negation of positive inferences
(metainferences). So, from now on, a regular inference will be denoted
as Γ ⇒+ ∆ and its negation (the negative inference) will be denoted as
Γ ⇒− ∆17. We need to specify then which are the satisfaction conditions
of a negative inference in a logic L [see Da Ré et al., 2020]:

A valuation v l-satisfies a negative inference or metainference Γ ⇒−

n

∆ (written v �L Γ ⇒−

n ∆) if and only if both v l-satisfies ⇒+
n γ for any

17 Of course, all of the notions introduced in Section 2 can be straightforwardly
adapted to these changes. For instance, a logic is a set of positive and negative
inferences and metainferences.
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γ ∈ Γ , and v l-satisfies δ ⇒+
n for any δ ∈ ∆. A negative inference is

valid in L if and only if for every valuation v, v �L Γ ⇒−

n ∆.
Coming back to the discussion on the previous section, one might

wonder in what sense this is a negation; see:

Just like formula negation operates at the formula-level, toggling be-
tween truth and falsity, we will let inference-negation operate at the
meta-level, affecting the inference satisfaction conditions. While the
satisfaction conditions for a positive inference in a given valuation con-
sist in the fact that if all premises receive a designated value, then so do
some of the conclusions, the satisfaction conditions for the correspond-
ing negative inference invert that to a relevant extent. Thus, a valuation
satisfies its corresponding negative inference if and only if it assigns a
designated value to each premise and it assigns a non-designated value
to each conclusion. [Da Ré et al., 2020, p. 323]

In the case of classical logic, as Da Ré et al. [2020] note, it is easy to
check that for every classical valuation v (boolean bivaluation), and for
every pair of inferences Γ ⇒+ ∆ and Γ ⇒− ∆,

Exclusion: v does not cl-satisfy both;

Exhaustion: v cl-satisfies some.

and similarly for a pair of metaninferences Γ ⇒+
n ∆ and Γ ⇒−

n ∆.
So, positive and negative inferences (metainferences) form contra-

dictory pairs in classical valuations. However, as it happens in the
inferential non-classical setting with the negation connective, in some
metainferential logics one or both of these conditions can fail but now
regarding this kind of negation for inferences. In particular, there are
valuations which st-satisfy both a positive and a negative inference, while
there are valuations which do not ts-satisfy none of them.18

Put another way, let us say that a valuation unsatisfies a positive
inference if it makes all its premises true and all its conclusions false, and

18 Someone might wonder why we chose to define negative inferences in this way
and not, for example, using the more usual notion of invalidity. The reason for this is
that the negation derived from this notion is purely classical (an inference is or is not
satisfied in a valuation, and cannot be satisfied and not satisfied at the same time),
and we are looking for a weaker notion. Also, Cobreros et al [2021] introduce another
notion related to invalidity: antisatisfaction. Although very interesting, we won’t use
it in this article. However it is our hope to provide in future works a comprehensive
study of the relation between these different notions and the concepts developed by
Da Ré et al. [2020], which we are using here.
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that it unsatisfies a negative inference if it makes some of its premises
false or some of its conclusions true. Recall that De and Omori [2016]
state that ϕ and ¬ϕ are contradictory because one of them is true in
a valuation if and only if the other one is false, and this applies to,
for instance, LP because the third value is interpreted as true and false
at the same time. If we keep that interpretation of i, we can say that
Γ ⇒+ ∆ and Γ ⇒− ∆ are contradictory also according to, for instance,
LP or ST, because one of them is satisfied by a valuation if and only if
the other one is unsatisfied by it.

Of course, this is possible because we allow some valuations to both
satisfy and unsatisfy inferences. The same issue with subcontrariety
which arose regarding formula-negation is reinstated here, and the same
answers as before are available. Also, notice that at the level of metain-
ferences, it is not true that we can always define another rogue, non-
explosive operator which hinders the definition of paraconsistency as
failure of EFQ (as it happened in the inferential case). However, this is
only so because the language of inferences is much (syntactically) weaker
than that of formulas, so it is doubtful that this fact can be of significant
importance.

Having said that, we will now exploit this concept of negative infer-
ences to give a proper definition of metainferential paraconsistency:

A logic is paraconsistent if and only if either Explosion is invalid or
the following rule (metanExplosion):

Γ ⇒+
n−1 ∆ Γ ⇒−

n−1 ∆
Metan Explosion

Σ ⇒
+/−

n−1 Π

is locally invalid, for some n with n ­ 1.
As before, we will say that a logic is metainferentallyn paraconsis-

tent if metan Explosion is locally invalid in it. Notice first that we are
here representing the intuitive idea of ECQ in the desired way. First,
the premises of the rule of meta Explosion form a pair of contradictory
metainferences of the form A and not A, and the conclusion has the
form of any inference (any inference is an instance of it19). Also, it
is important to note that there is no mention of any formulas in this

19 Notice that the empty set is not an instance of the conclusion of Metan Explo-
sion. However, something similar happens with the inferential version of Explosion
(ϕ,¬ϕ ⇒

+ ψ), i.e., the empty set is not an instance of ψ (and therefore, e.g., p,¬p ⇒
+

is not an instance of Explosion).
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definition. Actually, it could be the case that the inferential logic lacks
a negation for formulas, but nevertheless it is still possible for it to be
metainferentially paraconsistent. In other words, the problems we found
in the BPS definition can be solved in this new definition.

Now, let us apply this definition to some of the logics we have been
working with. Perhaps surprisingly, a logic containing LP/LP can fail
to be metainferentially paraconsistent. Actually, for every pair of in-
ferences Γ ⇒+ ∆ and Γ ⇒− ∆, a valuation v cannot lp-satisfy both,
so the premises of meta Explosion are never lp-satisfied, and thus the
metainference is locally valid in LP/LP.20 Regarding a logic contain-
ing ST/ST it still is metainferentially paraconsistent, while TS/TS and
K3/K3 fail to be metainferentially paraconsistent (since no valuation
satisfies the premises of meta Explosion). So under this new definition
none of the logics considered above is both inferentially and metain-
ferentially paraconsistent. One might wonder, thus, whether there is
some logic that satisfies both requirements. To this end, take a logic
containing ST/LP, where the standard for the premises of the locally
valid metainferences of level 1 is provided by ST while the standard for
the conclusions is provided by LP. This logic is both inferentially para-
consistent and metainferentially paraconsistent, as the following locally
invalid instance of meta Explosion shows:

⇒+ p ⇒− p
Meta Explosion

⇒+ q

To see this, consider a counterexample given by a valuation v such that
v(p) = i and v(q) = f , which of course st-satisfies the premises of the
metainference, but it does not lp-satisfy the conclusion.

So, this logic has a common policy regarding paraconsistency at the
first two levels. Extending the idea provided by Da Ré [2019], we can give
the following definition: a logic is purely paraconsistent if and only if it
is inferentially paraconsistent and it is metaninferentially paraconsistent,
for any n.

A nice feature of this property is that it changes the focus and ex-
pands the possibilities on how to understand what a paraconsistent logic
is. One might be tempted to think that the characterization of para-
consistency by means of an inferential negation should be replaced with

20 It is easy to check that as in the classical case, for every pair of inferences
Γ ⇒

+ ∆ and Γ ⇒
− ∆ every valuation satisfies Exclusion and Exhaustion.
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the stronger requisite of being purely paraconsistent (as an anonymous
referee seemed to suggest). But this would exclude all logics traditionally
considered paraconsistent, so it is doubtful that such a move can solve
any existent debates on the matter. On the contrary, this notion allows us
to broaden the possible features that characterize a paraconsistent logic.

In the following section we will show how to design one logic which
is purely paraconsistent and we will discuss whether the inferential and
all the metainferential logics contained in it can be thought as being the
same logic.

4. Pure paraconsistency and uniformity

In this section, first, we will show how to define a purely paraconsistent
logic, i.e., a logic that is paraconsistent at every level. Next, we will
discuss whether this policy regarding paraconsistency can be extended
to all the properties of the logics, i.e., if they are uniform in the sense of
being the same logic.

4.1. A purely paraconsistent logic

In [Barrio et al., 2020], BPS define a hierarchy of logics based on ST

which recovers in each level more and more classical metainferences. We
will use this collection of metainferential logics to define the system we
are looking for (the purely paraconsistent logic). Adapting a bit the
terminology, we have the following definition [Barrio et al., 2020]:

Let P0 = ST and in general Pj = Pj−1/Pj−1, for any j ­ 1, where
ST = TS and Pj = X/Y if Pj = Y/X.

We will call Pω the logic which results of joining all these inferen-
tial and metainferential logics.21 To simplify notation, the slash sym-
bol in the logics of lesser levels is sometimes omitted. So, e.g., P2 =
STTS/TSST.

Regarding the logics contained in Pω, the authors prove the following
(adapting a bit the terminology):

Theorem 4.1 (Barrio et al., 2020). For any n, any set of metainferences

Γ and any metainferences ϕ, �Pn
Γ ⇒+

n ϕ if and only if �CL Γ ⇒+
n ϕ.

21 It is worth mentioning that the logic Pω was first introduced in [Barrio et al.,
2020] and denoted as ST (although it was not consider a logic itself but a collection of
logics). Also, it was later studied in [Pailos, 2019b], where it is called CMω, and the
author not only considers it to be a logic but he also claims that it is classical logic.
See [Pailos, 2019b] for details.
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So, having defined this collection of metainferential logics, let’s go
back to our goal: to design a purely paraconsistent logic. It is done
by recursively generating a new set of metainferential logics building
on the Pi sequence above, as follows: we put L0 := LP and Lk =
Pk−1/Lk−1, for any k ­ 1. So, for instance L2 = TSST/STLP, and
L3 = STTSTSST/TSSTSTLP, where again the slashes are omitted for
readability.

And actually, it’s not difficult to check the following:

Fact 4.2. The logic L0 is inferentially paraconsistent and each logic Ln,

n ­ 1, is metainferentiallyn paraconsistent.

Proof. The case of L0 is trivial since L0 := LP. The case of L1 =
ST/LP was illustrated at the end of Section 3. Let Ln be any logic with
n ­ 2. Thus, we need to find a counterexample to some token of the
following metainference:

Γ ⇒+
n−1 ∆ Γ ⇒−

n−1 ∆
Metan Explosion

Σ ⇒
+/−

n−1 Π

Take Γ = ∅ and ∆ = ∅ ⇒+
n−2 . . . ⇒+

0 p (if n=2, just omit the dots

and one of the ⇒). On the other hand, take Σ ⇒
+/−

n−1 Π to be ∅ ⇒+
n−1

∅ ⇒+
n−2 . . . ⇒+

0 q. Using the definitions it is routine to check that the
valuation v(p) = i and v(q) = f satisfies the premises of the metainfer-
ence, but not the conclusion. ⊣

So, each logic of the hierarchy Ln is paraconsistent in the corre-
sponding level, and thus, the union of all of these systems is the purely
paraconsistent logic we were looking for:

Corollary 4.3. The logic Lω =
⋃

n∈ω Ln is purely paraconsistent.

Interestingly, since Lω = LP ∪
⋃

n­1 Pn−1/Ln−1, in each level k ­ 1,
we know that Lk = Pk−1/Lk−1 and thus by Theorem 4.1 the metainferen-
tial logic of the premises Pk−1 recovers all of the classical metainferences
of level k − 1.

4.2. Uniformity

The property of being purely paraconsistent can be regarded as part of a
more general phenomenon, which amounts to a certain coherence among
inferential levels. Coherence, however, can be understood in different
ways.



Metainferential paraconsistency 253

The path we have followed so far has consisted in providing a broad,
informal concept of ECQ, which is then instantiated by different formal
principles, each one involving a different but related type of contradiction
(between formulas, inferences, metainferences, etc). Doing so for every
logical principle would require the metalanguage to be as rich as the
language, allowing not only negations, but also, for instance, conditionals
of any complexity.

Here, we will explore a different path, one which analyzes character-
izations of coherence provided by tools already at our disposal in the
literature. We will call these types of coherence Uniformity. This, in
turn, raises two questions:

1. Is Lω in some sense uniform?

2. Is pure paraconsistency a necessary condition for uniformity, or

does it pertain to a different type of coherence altogether?

For any proposed definitions, some boundaries are clear: CL has to be
considered a paradigmatic case of a uniform logic, whereas we can take
ST/ST as a paradigmatic non-uniform one, given that its inferential logic
(ST) is classical but its metainferential one is not (i.e., some classically
valid metainferences fail [see Cobreros et al., 2012].

The tricky part is that we need some tool to compare the different
levels of a logic, because each one of them deals, in principle, with a differ-
ent type of object, which has its own standard of validity. The probably
most obvious way to do so are translations functions22. In [Barrio et al.,
2020, 2015; Dicher and Paoli, 2019; Pynko, 2010], we can find several ex-
amples of such functions, although they are used to compare levels across
different logics. In particular, the authors show how the metainferential
logic ST/ST coincides with the inferential logic LP when we translate one
into the other. These functions turn a metainference into an inference
by translating premises as premises and conclusions as conclusions.

Given a certain translation function τ , when used to evaluate infer-
ences of different levels inside the same multi-level logic, it can provide
the following approximation to uniformity:

A logic is τ -uniform above level m if and only if for any metan infer-
ence, Γ ⇒n ∆ is valid iff τ(Γ ⇒n ∆) is valid for all n ­ m.

22 Notice that the method of translations is somewhat limited in its application,
since it cannot account for metainferences with infinite premises or conclusions. This
is of course only a problem for the case of logics which are not compact. How to
deal with such cases is left as an open problem for a general and complete theory of
uniformity.
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However, there is an issue which is that, as they stand, the functions
existent in the literature are incomplete. First, as expected, none of them
considers negative inferences. Second, none are defined for inferences
with empty premises and conclusions. This can be easily solved by
adding a ⊥ and a ⊤ constant to the language (which LP usually lacks,
but which poses no problem for it). Third, only the authors in [Barrio
et al., 2020] define a function for more than one metainferential level.
Thus, taking all these details into account, we will provide an improved
translation which is suitable for present purposes:

τ1(Γ ⇒+
0 ∆) =























¬γ1 ∨ · · · ∨ ¬γn ∨ δ1 ∨ · · · ∨ δm if Γ 6= ∅, ∆ 6= ∅

¬γ1 ∨ · · · ∨ ¬γn if ∆ = ∅

δ1 ∨ · · · ∨ δm if Γ = ∅

⊥ if Γ = ∆ = ∅

τ1(Γ ⇒−

0 ∆) =























γ1 ∧ · · · ∧ γn ∧ ¬δ1 ∧ · · · ∧ ¬δm if Γ 6= ∅, ∆ 6= ∅

γ1 ∧ · · · ∧ γn if ∆ = ∅

¬δ1 ∧ · · · ∧ ¬δm if Γ = ∅

⊤ if Γ = ∆ = ∅

τ1(Γ ⇒+/−

n ∆) = {τ1(γi) : γi ∈ Γ} ⇒
+/−

n−1 {τ1(δj) : δj ∈ ∆}, for n > 0

When τ is τ1, the answer to question number 2 is affirmative. The
translation of Metan Explosion is:

¬
∧

Γ ∨
∨

∆,
∨

Γ ∧ ¬
∨

∆ ⇒ Π

which is (equivalent to) an instance of the inferential version of Explo-
sion. Thus, τ1-uniform logics have to be either purely paraconsistent or
not paraconsistent at all. However, this partial uniformity is not enough
for the case of Lω:

Fact 4.4. Lω is not τ1-uniform.

Proof. There are metainferences which are Lω-invalid, but their trans-
lations are Lω-valid. As a witness case, take the following metainference
of level 1:

⇒+ ϕ ϕ ⇒+

ψ ∧ ¬ψ ⇒+
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A valuation v(ϕ) = i and v(ψ) = t st-satisfies the premises but it is
an lp-counterexample to the conclusion, and thus the metainference is
Lω-invalid, but its τ1-translation is the following LP-valid inference:

ϕ,¬ϕ ⇒+ ¬(ψ ∧ ¬ψ) ⊣

Thus, the answer to the question number 1 is negative. Of course,
this result hangs on the reliability of τ1, since other translations could
categorize Lω as uniform. And there might be some reasons to be wary
of its reliability. On the one hand, it seems dubious that there are
any logics which are uniform according to τ1 besides CL. On the other
hand, τ1 looks to be much too coarse for our purposes. Take LP as
an example. Given that negated conclusions are equated with asserted
premises, we get that different metainferences, with different validity
status, get translated into the same inference:

⇒ ϕ ϕ ⇒
�LP/LP ⇒

⇒ ϕ ⇒ ¬ϕ
2LP/LP ⇒

 τ1
2LP ϕ,¬ϕ ⇒ ⊥

⇒ ϕ
�LP/LP ⇒ ¬¬ϕ

⇒ ϕ
2LP/LP ¬ϕ ⇒

 τ1
�LP ϕ ⇒ ¬¬ϕ

This means that not only LP is not uniform at all, but also, that LP/LP

(according to τ1) is neither weaker nor stronger than LP, which seems
odd. The root of this problem, of course, is the fact that the translation
equates negated formulas with contradictions, and LP’s negation is too
weak for that. A possible solution then is to enrich the language, by
adding a stronger negation ∼:

∼
t f

i f

f t

Which can then be used to define a new translation τ2 by simply replacing
¬ by ∼ in τ1. Notice that, in doing so, it is no longer the case that
the metainferences above are conflated under translation. The second
and third metainferences stay the same under τ2, but the first one now
correlates to ϕ,∼ϕ ⇒, which is duly lp-valid, whereas the fourth one is
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transformed into ϕ ⇒ ∼ ¬ϕ, which is lp-invalid. In fact, we can prove
the more general result that LPω is τ2-uniform above level 1 (that is,
with respect to its metainferences, not with respect to its inferences and
formulas, naturally). Namely, straightforward by induction on the level
of the metainference, we obtain:

Fact 4.5. A valuation lp-satisfies a metaninference Γ ⇒n ∆ iff it lp-

satisfies τ2(Γ ⇒n ∆), for any n ­ 1.

Let us then come back to the questions raised in this context by
the concept of uniformity, now instantiated via τ2. With respect to
the first one, nothing changes, the answer is still negative because the
counterexample for Lω works just as well. However, now the answer to
the second question becomes negative too. The reason is that LPω, as we
have shown, is not purely paraconsistent, despite being (mostly) uniform.
Given that we started out this section by considering the possibility of
framing the discussion about paraconsistency as part of a broader dis-
cussion about uniformity, this mismatch seems to dismantle the project.

In any case, is τ2 better than τ1? On the one hand, at least we know
that the concept of uniformity which arises from it has some applicabil-
ity, given that not only CL but also LPω (and others) are τ2-uniform.
τ1-uniformity, on the contrary, appears to fully align with (conservative
extensions of) classical logic. On the other hand, τ2 requires an enrich-
ment of the language, since ∼ is not part of the standard LP vocabulary.
And in opposition to what happens with ⊥ or ⊤, the impact of ∼ is
more significant: we now have two competing negations which validate
different inferences, whereas the negation definable by ⊥ is the same
as ¬. This poses the problem of having to choose which one to use to
represent actual negation. Moreover, as is well known, such a negation
is incompatible with one of the most canonical applications of LP, which
is to build theories that include a naive truth predicate. Hence, which
benefits outvalue the downsides is, at least for now, an unsettled issue.

Also, more radically, one may question the virtuousness of uniformity
itself. On the one hand, coherence constraints are abundant in episte-
mology. If somebody already accepted some principles at some level,
what could be the reason that they stop holding at higher ones? Even
more so, if all these levels are understood as properly logical. On the
other hand, non uniform logics can be more versatile. For instance, they
can be useful to deal with paradoxical vocabulary, while at the same
time maintaining the maximum possible strength at lower levels. Then,
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there might be a tension between uniformity, applicability and minimal
mutilation, which might not be obvious how it is better resolved.

5. Conclusion

Throughout this article, we have argued that, when a logic is charac-
terized as a set of metainferences of every level n, it comes in handy
to have a concept of contradiction specific to each level, independent
of the others (and especially, independent of the more traditional sense
of contradiction between formulas). In particular, we expanded BPS’s
work on the question of what a paraconsistent logic can be by applying
the (meta)inferential negation from [Da Ré et al., 2020] to propose a
more general take.

As a result, a logic such as LPω turns out to be paraconsistent be-
cause Explosion fails, yet not purely paraconsistent, for Meta1Explosion
is valid. On the other hand, STω turns out to be paraconsistent yet not
purely paraconsistent for the contrary reasons, Explosion is valid, yet
Meta1Explosion is not. We gave an example of a purely paraconsistent
logic, Lω in which no instance of Metan Explosion is valid at any level.

Finally, we compared the concept of pure paraconsistency with two
elucidations of what it is for a logic to be uniform. As it turned out,
pure paraconsistency is a prerequisite for uniformity, if the latter is de-
fined according to some translations (τ1 in our case), but it is not if one
chooses other functions (for instance, τ2). In any case, Lω is not uniform
according to either. There are cases in favor and against of each of these
functions, and there might be more worth considering. There is also
the open option of defining Uniformity in some way which gets rid of
translations altogether (which seems to be quite desirable). We hope to
pursue this line of inquiry in future work.

Although in this article we have focused on the notion of paracon-
sistency, there are many routes yet to be explored. Among them, one
particularly interesting is how to define or generalize the notion of para-
completeness to metainferential logics. In the inferential case, a logic is
paracomplete if the law of excluded middle (⇒ ϕ,¬ϕ) is not valid (notice
that K3 and TS are paracomplete). So, one could try to formalize this law
for metainferential levels with the aid of the metainferential negation we
have been using in this article (without the need of introducing any new
vocabulary) and wonder which logics are metainferentially paracomplete
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or purely paracomplete. We think that many of the results and ideas of
this article can be dualized (in some sense, pursuing again the ideas from
[Da Ré et al., 2020]) to shed some light on these questions. However, a
proper study of these considerations needs to wait for another occasion.
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