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Background: IL-d (5-hydroxy-6 iodo-8,11,14-eicosatrienoic delta lactone) an iodinated arachidonic acid

(AA) derivative, is one of the iodolipids biosynthesized by the thyroid. Although IL-d regulates several

thyroid parameters such as cell proliferation and goiter growth it was found that this iodolipid inhibits

the growth of other non thyroid cell lines.

Objectives: To study the effect of IL-d on cell proliferation and apoptosis in the colon cancer cell line HT-29.

Results: Treatment with IL-d reduced cell viability in a concentration-dependent manner: 1 mM 20%, 5 mM

25%, 10 mM 31%, 50 mM 47% and caused a significant decrease of PCNA expression (25%). IL-d had

pro-apoptotic effects, evidenced by morphological features of programmed cell death such as pyknosis,

karyorrhexis, cell shrinkage and cell blebbing observed by fluorescence microscopy, and an increase in

caspase-3 activity and in Bax/Bcl-2 ratio (2.5 after 3 h of treatment). Furthermore, IL-d increased ROS

production (30%) and lipid peroxidation levels (19%), suggesting that apoptosis could be a result of increased

oxidative stress. A maximum increase in c-fos and c-jun protein expression in response to IL-d was observed

1 h after initiation of the treatment. IL-d also induced a tumour growth delay of 70% compared to the control

group in NIH nude mice implanted with HT-29 cells.

Conclusion: Our study shows that IL-d inhibits cell growth and induces apoptosis in the colon cancer cell line,

HT-29 and opens the possibility that IL-d could be a potential useful chemotherapy agent.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Iodine excess inhibits thyroid proliferation and thyroid func-
tion through the synthesis of an organified compound [1,2].
Several iodinated lipids, biosynthesized by the thyroid, were
postulated as intermediaries in the action of iodide. Boeynaems
and Hubbard [3] and Dugrillon et al. [4] have reported the
conversion of exogenous free arachidonic acid into 5-hydroxy-
6 iodo-8,11,14-eicosatrienoic delta lactone (IL-d) in rat thyroid and
isolated porcine thyroid follicles when they were incubated in the
presence of iodide. Pereira et al. [5] found 2-iodohexadecanal
(2-IHDA) as the major iodolipid in horse thyroid. The formation of
these iodolipids requires iodide uptake and its oxidation by a
peroxidase.

IL-d mimics the inhibitory effects of iodine on thyroid cell
proliferation [6,7], goiter growth and cyclic AMP accumulation in
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the rat [8], iodide uptake, hormone synthesis and H2O2 produc-
tion [9], cell membrane transport of glucose and aminoacids [10].

The synthesis of iodolipids is not only restricted to the thyroid,
it has also been reported in the mammary gland, which organifies
iodide as well. It was shown that I2 inhibited proliferation and
induced apoptosis on different breast cancer cell lines. This effect
may be due to the synthesis of intracellular iodolipids [11,12].
Moreover, IL-d had a 4-fold more potent antiproliferative effect on
breast cancer cells than that of I2 [12].

It was also shown an antiproliferative effect of I2 and IL-d in
several human cancer cell lines through a mitochondrial mediated
apoptosis mechanism [13–15].

Colon cancers often display perturbations in arachidonic acid
metabolism, with elevated levels of cyclooxygenase (COX) expres-
sion which converts arachidonic acid into prostaglandins and
thromboxanes, and lipoxigenase (LOX) expression which converts
arachidonic acid into leukotrienes (LTs) and hydroxyeicosatetrae-
noic acids (HETEs) [16–22]. Whereas these enzymes and their
products are associated with cancer cell survival and tumour
angiogenesis, arachidonic acid itself is a strong apoptotic signal
that may facilitate cancer cell death [23–25].

The aim of the present study was to study the effects of an
iodinated AA derivative (IL-d) on cell growth in the colon cancer
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cell line HT-29 and to study the cellular pathways involved in the
antineoplasic effect of IL-d.
2. Materials and methods

2.1. Cell culture

The HT-29 cell line was cultured in RPMI 1640 supplemented
with 10% FBS and penicillin (100 U/ml) and were grown in a
water-saturated atmosphere containing 5% CO2 and 95% air at
37 1C.

2.2. Cell growth assay

Cell proliferation was measured by counting the cells and
using the MTT assay. For the first method, cells were seeded in
low density into 24-well plates. After 24 h, the cells were
incubated with different compounds for 72 h. After this time,
the cells were washed, trypsinised and counted with a micro-
scope using trypan blue to assess cell survival. The viability of
HT-29 cells was also evaluated using MTT assay. This assay is
based on the cleavage of the tetrazolium salt MTT to a dark blue
formazan product by mitochondrial dehydrogenase in viable cells.
The absorbance of viable cells was measured in a Spectra Micro-
plate Reader with a test wavelength of 570 nm.

2.3. Western blot analysis

Cells were seeded in 60-mm dishes and incubated with
different compounds for the time indicated in the text. Proteins
were extracted in lysis buffer RIPA (50 mM Tris–HCl pH 7.4,
150 mM NaCl, 1% Nonidet P40, 0.1% SDS, 0.5% deoxycholate),
supplemented with PMSF 0.5 mM and protease inhibitor cocktail
(Sigma-Aldrich).

Total proteins (30 mg) were electrophoresed on 10% polyacryl-
amide gels and transferred to nitrocellulose membranes. Membranes
were blocked with 5% non fat dry milk in phosphate buffer saline
solution (PBS) with 0.2% Tween 20 (Sigma) and 5% BSA for 1 h at RT
and then incubated overnight at 4 1C with monoclonal anti c-fos
antibodies (dilution 1:200, Calbiochem), and polyclonal anti c-jun
(dilution 1:500, Calbiochem), anti PCNA antibodies (dilution 1:500,
Santa Cruz Biotechnology), anti Bax (dilution 1:500, Calbiochem, USA)
and anti Bcl-2 (dilution 1:500, Calbiochem, USA). Membranes were
washed, incubated for 1 h at RT with peroxidase-labeled secondary
antirabbit antibody or secondary antimouse antibody (1:3000; Amer-
sham), and visualized with the enhanced chemiluminescence
method. Densitometric analysis was performed using the NIH ImageJ
analysis Software (1.40 g Wayne Rasband, National Institute of
Health, USA) and results were corrected for protein loading by
normalization for b-actin expression

2.4. Caspase-3 activity

Caspase-3 activity was determined with the caspase-3 Assay
kit, according to the manufacturer’s instructions (Sigma CASP-3-C,
Sigma-Aldrich, St. Louis, Mo, USA). This assay is based on the
spectrophotometric detection of the Ac-DEVD-pNA substrate after
cleavage. Cells were harvested in lysis buffer [50 mm HEPES,
5 mM dithiothreitol (DTT), 5 mN CHAPS, 10 mg/ml pepstatin,
benzamidine 2.5 mM, aprotinina 10 mg/ml, pepstatin 1 mg/ml,
0,5 mM phenylmethylsulfonylfluoride (PMSF), pH 7.4]. Lysates
were clarified by centrifugation at 10,000� g for 5 min, and clear
lysates containing 100 mg proteins were incubated with caspase-3
substrate, at 37 1C for 3 h. The concentration of the p-nitroaniline
(pNA) released from the substrate is calculated from the
absorbance values at 405 nm. The activity, expressed as micro-
moles of p-nitroaniline per minute per milliliter, was calculated
with a p-nitroaniline calibration curve. A positive control of
caspase-3 and an inhibitor of caspase-3 (200 m mol/l Inhibitor
Acetyl–Asp–Glu–Val–Asp–al [Ac–DEVD–CHO]) were added to
the plate.

2.5. Apoptosis assay by nuclear morphology

Apoptosis was assessed using fluorescence staining. Cells were
incubated with 2 ml of MIX buffer containing 12 ml of propidium
iodide (1 mg/ml), 2 ml of Hoechst 33342 (1 mg/ml) and 30 ml of
fluorescein diacetate (1.5 mg/ml) at room temperature for 5 min.
Fluorescein diacetate and propidium iodide were used to stain
viable and dead cells, respectively. Hoechst 33342 was used to
evaluate differences between normal and apoptotic nuclei. Fluor-
escent microscopy was used to identify the percentage of propi-
dium iodide-impermeable cells having condensed/fragmented
nuclei (apoptotic). The percentage of apoptotic cells was deter-
mined by counting the number of nuclei showing chromatin
condensation and fragmentation characteristic of apoptosis after
observing a total of at least 100 cells.

2.6. Peroxide levels determination

Peroxide content was determined with the PeroxiDetect Kit
(Sigma-Aldrich, St. Louis, Mo, USA). This kit is based on the fact
that peroxides will convert Fe2þ ion to Fe3þ ion at acid pH.
The Fe3þ ion forms a coloured adduct with xylenol orange which
is determined at 560 nm.

2.7. ROS assay

Intracellular production of ROS was assayed by fluorescence
analysis using 20-70-dichlorofluorescein diacetate (DCFH–DA)
which reacts with intracellular reactive oxygen species. Cells
(1.0�106) were incubated with 10 mM of DCFH–DA for 20 min
at 37 1C, and relative ROS units were determined by fluorescence
at lexcitation: 485/20 nm and lemission: 530/25 nm. The results were
expressed as arbitrary absorbance units/mg protein.

2.8. In vivo tumorigenicity assay

Each experimental group included 7 female homozygous NIH-
nude mice, 20–25 g b.w., 6–8 weeks of age, bred and maintained
in laminar air-flow racks. HT-29 cells were harvested and injected
subcutaneously into the flanks of the mice. The tumors were
allowed to develop during the following 7 days. After the devel-
opment of palpable tumors (approximately 0.02 cm3), the mice
were treated with IL-d. The iodolipid was i.p. injected daily at a
dose of 15 mg. The size of the tumors was measured with a caliper
twice a week, and the volume was calculated according to the
following formula: A2

�B/2 (where A is the width and B is the
length). The studies were performed in accordance with Interna-
tional Helsinki Code and the NIH guidelines.

Protein was determined according to Lowry. All reagents were
purchased from Sigma Chemical Co, Mo, USA).

2.9. Statistical analysis

All data are presented as mean7SE. Statistical analysis of the
results was made by one way ANOVA followed by Student–
Newman–Keuls test. For all statistical analyzes, a probability
value of o0.05 was considered significant.
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Fig. 1. Effect of IL-d, arachidonic acid and KI on cell viability. Cells were plated and cultured in 10% FBS-RPMI. The next day, culture medium was removed and cells were

incubated for 72 h with 10% FBS-RPMI containing IL-d, arachidonic acid (AA) or KI at the indicated concentrations. (A) MTT assay after 3 days of treatment, (B) cells were

scraped off and counted. Results are means7SE from four independents experiments by quadriplicate npo0.05 versus control, nnpo0.01 versus control.
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Fig. 2. Western blot of PCNA expression in cultured HT-29 cells. Cells were

incubated with 10 mM of IL-d for 24, 48 and 72 h. (A) Immunochemical detection

of PCNA levels using a specific antibody. (B) Quantification of PCNA levels by

densitometry scanning of the inmunoblots. Values were normalized with an anti-

b-actin antibody. Each value is the average of 4–5 experimental determinations by

quadruplicate, npo0.05 versus control.
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3. Results

3.1. Effect of IL-d, KI and arachidonic acid on cell proliferation

As shown in Fig. 1A and B, IL-d caused a significant inhibition of
cell proliferation in a concentration dependent-manner. Its precur-
sors, arachidonic acid or KI, did not produce any detectable effect
indicating that the effect is independent of the iodide which could be
released from its dehalogenation or the arachidonic acid originated
during a possible metabolization. The minimum effective dose of IL-d
was 5 mM and cell proliferation was reduced to approximately 20%.
For the following studies a concentration of 10 mM of IL-d was
employed. The effect of IL-d was blocked by the pretreatment of
cells with the antioxidant trolox (T) (100 mM) (C: 10072.6%; IL-d:
6874.6% (po0.01); T: 10377.8: Tþ IL-d: 92711%).

As a marker of cell proliferation, PCNA was examined by
Western blots; IL-d caused a significant decrease of 35% after
3 days of treatment (po0.01) (Fig. 2).

3.2. IL-d induces apoptosis in HT-29 cells

IL-d induced apoptosis in HT-29 cells, as evidenced by mor-
phological features of programmed cell death such as pyknosis,
karyorrhexis, cell shrinkage and cell blebbing (48 h: 6% and 76 h:
11%) (po0.05) (Fig. 3A and B).

Caspase-3 activity, an indicator of apoptosis, was significantly
increased by around 20% and 24% after 48 h and 72 h of treatment
with IL-d (Fig. 4A). The addition of trolox inhibited the effect of
IL-d (Fig. 4B) measured at 72 h.

3.3. Modulation of Bcl-2/Bax expression

No changes of Bcl-2 expression were detected after IL-d
treatment (Fig. 5A). However, IL-d caused a significant increase
of Bax level, an important pro-apoptotic protein, after 3 h of
treatment. As a result, the ratio of Bax/Bcl-2 increased signifi-
cantly: 2.5 after 3 h (po0.01) and 1.9 after 6 and 24 h of
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treatment (po0.05) (Fig. 5B). These events might be involved in
the apoptotic death induced by IL-d. As it was expected, trolox
inhibited the effect of IL-d on Bax levels and Bax/Bcl-2 ratio
(Fig. 5C and D).

3.4. Oxidative status

IL-d increased the content of organic peroxide levels (19%,
po0.05) after 24, 48 and 72 h of IL-d administration (Fig. 6A).
A significant increase in ROS production was detected in a time-
dependent fashion after IL-d administration (Fig. 6B), with a peak
reached 0.5 h after stimulation (30%, po0.01). This effect was
reversed by the addition of the antioxidant trolox (Fig. 6C).

3.5. c-fos and c-jun expression

As shown in Fig. 7, IL-d stimulated the expression of c-fos and
c-jun proteins in a time-dependent manner. A maximum fold
increase in c-fos and c-jun protein expression in response to IL-d
was observed 1 h after initiation of treatment (po0.05). Whereas
c-jun response was transient and had almost decreased after 6 h,
c-fos responses persisted for at least 24 h.
3.6. IL-d decreases tumor growth

To determine whether these in vitro effects of IL-d could be
recapitulated in vivo, we established a xenograft model of HT-29
cells. When tumors reached around 0.02 cm3, the mice were
treated with vehicle or IL-d for 30 consecutive days. As shown
in Fig. 8, the tumors continued to grow in the mice of the control
group. In contrast, there was a significant inhibitory effect on
tumor growth in animals treated with IL-d after 12 days (50% of
their initial size, po0.05). At the end of the 30-day treatment
period, the mice treated with IL-d showed 71% decrease in the
mean estimated tumor volume compared with the control group
(po0.01). IL-d was well tolerated by the animals without
substantial adverse effects. Animals’ weight remained constant
throughout the treatment period (data not shown) and none of
the animals required sacrifice before the end of the study.
4. Discussion

The biosynthesis of iodolipids has been observed in the thyroid
gland of several species and their participation in thyroid regulation



L. Thomasz et al. / Prostaglandins, Leukotrienes and Essential Fatty Acids 88 (2013) 273–280 277
has been suggested [1,2]. Iodinated derivatives from arachidonic
acid, (IL-d and omega lactone: IL-o) inhibit several thyroid para-
meters such as cell proliferation [6,7], Iodide uptake [26], H2O2

production [9], goiter growth [8] and inositol-1,4,5-triphosphate
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(IP3) formation [27]. The occurrence in vivo was demonstrated for
IL-d in thyroid tissue from one patient with Graves’ disease treated
with iodide [7], although the formation of IL-d in other species could
not be detected unless exogenous arachidonic acid (AA) was added
[3,4]. Recently, Gärtner et al. [13] showed that IL-d inhibited the
growth of B-CPAP (derived from papillary thyroid carcinoma) but
not of FTC-133 (derived from a metastasis of a follicular carcinoma)
and 8505C (derived from anaplastic thyroid tissue).

The synthesis of iodolipids is not only restricted to the thyroid.
In fact, it has been demonstrated that in the mammary gland,
which also organifies iodide [28], the synthesis of IL-d takes place
too. Moreover this iodolipid in mM concentrations inhibits pro-
liferation of the breast cancer cell line MCF7 [12]. Rösner et al.
[14] have described that IL-d has antitumor properties in breast
cancer, neuroblastoma, glioblastoma, melanoma and lung carci-
noma cells, while Aranda et al. [15] showed apoptotic effects of
6 IL-d in human prostate cells lines, indicating that the action of
IL-d is not restricted to the thyroid cell.

The objective of this study was to study the antiproliferative
activity of IL-d on a colon cancer cell line, HT-29.

It was shown that treatment with IL-d resulted in loss of cell
viability in a concentration-dependent manner, with any detect-
able effects of its precursors: AA and KI, suggesting a direct action
of this compound. This inhibition on cell proliferation was
correlated with a significant decrease in cell number and PCNA
expression.

An increase in the percentage of apoptotic cells and caspase-3
activity was observed after 48 h of treatment with IL-d. These
results are consistent with previous reports which demonstrated
that iodine and IL-d induce apoptosis in in vitro studies
[14,15,29,30]. Besides, Thomasz et al. showed in in vivo studies
a stimulation of apoptosis in rat thyroid gland after 7 days of
treatment [31].

Colon cancers often display perturbations in arachidonic acid
metabolism with elevated levels of cyclooxygenase or lipoxigen-
ase expression [20–22,32,33]. It was shown that mice expressing
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a COX-2 transgene in colon epithelium treated with azoxy-
methane, a colon carcinogen, had a higher tumor load compared
to wild type mice [34]. The regular use of Nonsteroidal anti-
inflammatory drugs (NSAIDs), diminish the incidence of colon
cancer [35–37]. NSAIDs inhibits cyclooxygenases (COXs) and it
was shown described that NSAIDs can induce apoptosis in colon
cancer cells but it was suggested that the tumor suppressive
effects of NSAIDs are not likely to be related to a reduction in
prostaglandins but rather are due to an elevation of the prosta-
glandin precursor AA [38]. Moreover it was shown that AA
induced apoptosis in colon cancer cells [23–25] but the doses
used in these studies were between 20 and 30 fold higher than
the dose of IL-d used in this study. The AA induced apoptosis is
mediated by ROS generation, although it was demonstrated in
non colon cancer cells [39,40].

In this study, trolox a phenolic antioxidant, blocked the
increase of ROS production and apoptotic parameters induced
by IL-d, suggesting that oxidative stress may play an important
role in IL-d-mediated apoptosis in HT-29 cells.

The Bcl-2 family proteins (pro-apoptotic and anti-apoptotic
proteins) are critical regulator of the apoptotic pathway. The Bcl-2
family of anti-apoptotic proteins (e.g., Bcl-2) and pro-apoptotic
proteins (e.g., Bax) are the central regulators of caspase activation
and cellular life-and-death switch [41]. Alteration of the ratio of
Bcl-2 to Bax is significant in determining whether apoptosis
occurs [42]

We investigated the possible involvement of Bax/Bcl-2 in IL-d
action; Western blot analysis showed that Bax was up-regulated
after IL-d treatment and Bcl-2 expression was not modified,
thereby an increased in the Bax/Bcl-2 ratio was observed.
We conclude, therefore, that IL-d increases oxidative stress,
inhibits cell growth and induces cell death by apoptosis.



L. Thomasz et al. / Prostaglandins, Leukotrienes and Essential Fatty Acids 88 (2013) 273–280 279
Multiple signalling pathways may be involved in oxidant
stress-induced apoptosis and AP-1 pathway is a possible candi-
date. It was shown that increased expression of AP-1 complex is
mediated by increased levels of H2O2 and ROS [43–45]. It was
demonstrated that AA upregulated the expression of JUN and FOS

among other genes involved in apoptotic signalling [46].
We observed that the treatment with IL-d produced a modulation
of AP1 expression. Whereas c-jun increase was transient and had
almost decreased after 6 h, c-fos responses persisted for at
least 24 h. This effect could be mediated by increased intracellular
ROS levels [43–45].

The mechanisms involved in the antiproliferative effect and in
apoptosis induction by IL-d are still not well understood.
The receptor activator of peroxisome proliferation (PPAR-g) could
be implicated in the observed effects. Polyunsaturated fatty acids
including linoleic acid, eicosanoic and arachidonic acid (precursor
of IL-d) are endogenous ligands of PPAR-g [47] and regulate cell
differentiation, cell cycle and apoptosis [48].

Nuñez Anita et al. [49] and Aceves et al. [50] showed the
antiproliferative and pro-apoptotic effect of IL-d in a breast cancer
cell line (MCF-7) and demonstrated that PPAR-g pathway is
involved in these processes. IL-d is a specific ligand of PPARs with
almost 6-fold higher affinity than AA, and activates specifically
the PPAR gamma isoform. These data suggest that IL-d/PPAR
gamma could participate in the antiproliferative and proapoptotic
effect of IL-d, but further studies are needed to clarify the
molecular mechanisms involved in proliferation and apoptosis
regulated by IL-d.

To further validate the potential therapeutic use of IL-d, we
analyzed the effects of iodolipid treatment on xenograft tumors.
In the present study, we observed that IL-d potently inhibited the
in vivo growth of HT-29 xenografts resulting in tumor regression.
No side effects were caused by the administration of IL-d as it was
demonstrated in previous studies [51].

In summary our results demonstrate that IL-d inhibits cell
proliferation and induced apoptosis cell death in the colon cancer
cell line HT-29. The present study suggests that IL-d could be use
as a chemotherapeutic agent for the treatment of colon cancer,
alone or in combination with another therapy.
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