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Abstract A validation of the numerical solution for the steady and axisymmetric creeping
flow around a three-dimensional torus is presented. This solution is obtained by means of
the boundary element method. Both a Galerkin weighting technique and collocation to the
centroid of the elements are employed. The curve of the viscous drag force as a function of the
diameter of the torus relative to its thickness is compared against a semi-analytical solution
and laboratory experimental measurements taken from the literature. The semi-analytical
solution, as it is known for this kind of geometry, involves the Legendre functions of first and
second kind of order one and semi-integer degrees, also called toroidal harmonics.
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64 S. Sarraf et al.

1 Introduction

The computation of steady Stokes flows around closed rigid bodies can be of interest in fluid
and biomedical engineering. Possible applications are multilevel boundary element method
(BEM) for steady Stokes flows in irregular two-dimensional domains (Dargush and Grigoriev
2005); low Reynolds number flow of an incompressible fluid in spiral microchannels that are
used in DNA identifying lab-on-a-chip devices (Lepchev and Weihs 2010); creeping flow
regime in oscillatory-flow mixers with flexible chambers (Shipman et al. 2007); laminar flow
in compact heat exchangers and microcoolers in electronics packaging (Galvis 2012); laminar
fully developed flow in micro-/minichannels with non-circular cross sections (Tamayol and
Bahrami 2010); as well as micro-electro-mechanical systems (MEMS) (Berli and Cardona
2009; Méndez et al. 2008; Wang 2002).

Indirect formulations in this flow case are commonly related to hydrodynamic double-
and single-layer potentials (Ladyzhenskaya 1969; Pozrikidis 1996). An indirect Boundary
Integral Equation (BIE) uses as a starting point the potentials produced by surface layers of
(fictitious) singularities (Sauter and Schwab 2011). These surface singularity layers generate
the physical fields of interest, which are distributed on the boundary and its intensities have
to be determined such that the integrated response is equal to the prescribed boundary data.
In this formulation, the physical variables of interest in the boundary value problem (BVP)
are not the solution of the BIE, but they are obtained afterwards by post-treatment.

From a mathematical point of view, the unknowns in the indirect BIE are the jumps of
the traces across the boundary of the Cauchy data of both the interior and the exterior BVP
(Hsiao and Wendland 2008; Sauter and Schwab 2011).

Two options in the indirect BIE include the Power and Miranda (1987) and the Hebeker
(1986) alternatives. In the first case, a single concentrated pair Stokeslet–Rotlet located at
an interior point of the rigid body is used, while in the second case (Pozrikidis 1997), a
single-layer potential is introduced, whose density φ is proportional to the density of the
double-layer potential ψ . In this way, in the Hebeker alternative (Gonzalez 2009; Hebeker
1986), a completed indirect velocity BIE of Fredholm type and second kind is derived as a
combination of double- and single- layer potentials with densities defined over the closed
surface. It fixes the deficient range of the integral operator of a double-layer velocity potential,
obtaining a well-posed problem and giving the total force and torque acting on the rigid body.
The rigid body motions have been filtered assuming that the single-layer density has a linear
dependence on the double-layer density.

Ingber and Mammoli (1999) showed comparisons among three alternatives:

1. the direct velocity BIE (DV-BIE) (Younggren and Acrivos 1975): a Fredholm BIE of first
kind for the velocity is obtained, where the boundary conditions are given in terms of the
velocity components;

2. the completed indirect velocity BIE (CIV-BIE) (Power and Miranda 1987) (or completed
double-layer (CDL-BIE) Kim and Karrila 1991): the deficient range of the integral oper-
ator of the double-layer velocity potential is fixed, obtaining a well-posed problem;

3. the uncompleted direct traction BIE (UDT-BIE) (Fang et al. 2001; Ingber and Mondy
1993): the BIE for the traction is written in terms of the derivatives of the Cauchy princi-
pal value integrals, resulting in hypersingular integrals that are interpreted in the finite-part
sense.

In previous works (D’Elía et al. 2008, 2012), the CIV-BIE alternative in the Hebeker (1986)
scheme was chosen and solved with a BEM based on collocation and Galerkin weighting
procedures, where the validation test case was restricted to the unit sphere under three inflow
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Stationary creeping flow around a 3D torus 65

Fig. 1 Outline of the torus
orientation relative to the main
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types. In the present work, another validation, in particular of the Galerkin technique, is per-
formed through the axisymmetric and steady creeping flow around a three-dimensional torus.
In this way, the developed method is validated for other geometries with analytical or semi-
analytical solutions besides the sphere as well as oblate and prolate spheroids. The results
include the numerically computed curve of the non-dimensional drag force as a function of
a geometric aspect ratio parameter (s0, see Eq. 2). This is compared with a semi-analytical
solution and experimental measurements. This work extends the preliminary results pre-
sented in Sarraf et al. (2012), where only structured meshes were used and the maximum
value for the geometric aspect ratio parameter was s0 = 100.

2 Mathematical formulation

2.1 Differential formulation

Consider a rigid torus with outer diameter D and thickness d , located in a uniform stream
of a Newtonian fluid with its symmetry axis aligned to the flow direction, as outlined in
Fig. 1. The fluid flow has a constant velocity (U, 0, 0) and it is assumed incompressible
with constant density ρ and dynamic viscosity μ. The Reynolds number Re = UρD/μ is
considered small enough; therefore, the following equations govern the problem:

μ∇2v = ∇ p

∇ · v = 0, (1)

where v is the flow velocity field and p is the pressure field. The boundary conditions that
complete the problem formulation are v = 0 on the surface of the torus and ‖v‖ ∼ U at
infinite distance from the body. The analysis is made in terms of the geometric aspect ratio
parameter s0, which is defined as

s0 = (D/d)− 1 = (b/a)+ 1, (2)

where a = d/2 and b = D/2 − d (see Fig. 1).
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66 S. Sarraf et al.

The problem has been studied analytically by Majumdar and O’Neill (1977), among
others, and experimentally by Amarakoon et al. (1982). The particular case of the closed
torus (b = 0) was studied by Dorrepaal et al. (1976).

2.2 Completed indirect velocity BIE

The creeping flow around a closed, rigid and piecewise smooth surface A can be computed
with the Hebeker alternative (Hebeker 1986), which is an extension of the Power–Miranda
proposal (Power and Miranda 1987) and it is analyzed by Pozrikidis (1996). This is written
as follows ∫

A

K̃i jψ j (x)dA y −
∫

A

H̃i jψ j ( y)dA y = ui (x) for all x ∈ A, (3)

where ψ j (x) is the double layer surface density and ui (x) are the unperturbed flow velocity
components. The surface differential element is denoted by dA y = dA( y), while the integra-
tion and field points are y = (y1, y2, y3) and x = (x1, x2, x3), respectively. The double layer
surface kernel K̃i j = K̃i j (x, y) is a tensor of rank 2 due to the surface density of stresslets
distributed over the body surface (Pozrikidis 1996, 1997), and it is given by

K̃i j (x, y) = − 3

4πμ

ri r j rk

r5
nk( y) with r = x − y, and r = ‖x − y‖2, (4)

where nk = nk( y) is the unit surface normal at the integration point y. For smooth surfaces,
this kernel has the key property∫

A

K̃i j (x, y)dA y = 1

2μ
δi j for x ∈ A, (5)

where δi j is the Kronecker delta.
On the other hand, the kernel H̃i j = H̃i j (x, y) is computed as

H̃i j = K̃i j + S̃i j , (6)

where S̃i j = S̃i j (x, y) is the sourcelet kernel given by

S̃i j (x, y) = − χH

8πμ

[
δi j

r
+ ri r j

r3

]
, (7)

χH being an arbitrary positive parameter which couples the simple layer density φ with the
double layer density ψ , i.e.

φ(x) = χH ψ(x). (8)

Hebeker (1986) concludes that χH = 1 is a good choice; therefore, this value is adopted in
the present work. The kernel S̃i j (x, y) is an ad-hoc auxiliary field that allows to eliminate
the rigid modes and accounts for the global torque and the body force (Pozrikidis 1996).

Using matrix notation, Eq. (3) can be rewritten as

I(x;ψ(x)) = u(x) for all x ∈ A; (9)

with the integral operator

I(x;ψ(x)) =
∫

A

{K̃ψ(x)− H̃ψ( y)}dA y for all x ∈ A, (10)
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Stationary creeping flow around a 3D torus 67

where the solution field is the double layer surface density ψ(x). Kernels H̃(x, y) and
K̃ (x, y) couple the double layer densityψ between the integration point y and the observation
point x. Equation (9) is a completed indirect velocity BIE in the Ingber–Mammoli taxonomy
(Ingber and Mammoli 1999), since it does not directly provides the traction on the surface
but the double layer surface density, which has been modified to eliminate the rigid modes
and provides both the body force and torque.

3 Numerical formulation

3.1 Centroid collocation technique

An approximate solution to Eq. (3) can be obtained by a collocation technique, wherein
the double layer surface density is assumed constant per element, resulting in the following
discrete system (D’Elía et al. 2012)

E∑
q=1

⎡
⎢⎣

∫

A(q)

K̃
(p,q)

dA yψ
(p) −

∫

A(q)

H̃
(p,q)

dA yψ
(q)

⎤
⎥⎦ = u(p), (11)

for p = 1, 2, . . . , E , where H̃
(p,q) = H̃(x(p), y(q)), K̃

(p,q) = K̃ (x(p), y(q)) and the vectors
are u(p) = u(x(p)) andψ (p) = ψ(x(p)), evaluated in the element centroids x(p) by the double
loop p, q = 1, 2, . . . , E , while E is the element number in the BEM mesh. At the discrete
level, nodal values and elements are denoted with super- and subscripts, respectively. Using
matrix notation and reordering terms, it is obtained (D’Elía et al. 2012)

(Q − S)ψ = u, (12)

where

ψ =
[
ψ (1)ψ (2)...ψ (E)

]T ∈ R
3E×1;

u =
[
u(1)u(2)...u(E)

]T ∈ R
3E×1 (13)

are global vectors, and [...]T denotes matrix transpose. The global matrices Q and S are
given by the sums

Q =
E∑

q=1

Q(p,q) ;

S =
E∑

q=1

S(p,q) ; (14)

with p = 1, 2, . . . , E , where

Q(p,q) =
{∑E

q=1,q �=p K (p,q) if q = p;
−K (p,q) otherwise;

; (15)

123



68 S. Sarraf et al.

+

η

η

ξ

ξ

+

X

X

X

XX X

2

1

2

1
1

1

1

1

(p) (q)

k

s

t

ri j

Fig. 2 Triangles p and q with simplex coordinate systems (ξ1, ξ2) and (η1, η2), respectively

whose elementary matrices are given by

K (p,q) =
∫

A

K̃
(p,q)

dA y;

S(p,q) =
∫

A

S̃
(p,q)

dA y. (16)

3.2 Weighted Galerkin

Another approximated solution of Eq.(3) can be obtained by means of a weighted Galerkin
procedure with linear shape functions. In this case, double surface integrals with a weak
singularity must be evaluated. The main ingredients are summarized below (for more details
see D’Elía et al. 2012).

Over the surface of the triangles p and q , linear approximations ψ̂
(p,q)

and û(q) are chosen
for the double layer density ψ (p,q)(x) ∈ R

3×1 and velocity u(q)(x) ∈ R
3×1, i.e.

ψ (p)(x) ≈ ψ̂
(p) = N(p)(x)ψ (p)

ψ (q)(x) ≈ ψ̂
(q) = N(q)(x)ψ (q)

u(q)(x) ≈ û(q) = N(q)(x)u(q) (17)

where the elemental shape functions N(p,q)(x) ∈ R
3×9 are given by the row vectors (by

blocks)

N(p)(x) =
[

N(p)
i (x)N(p)

j (x)N(p)
k (x)

]

N(q)(x) =
[

N(q)
r (x)N(q)

s (x)N(q)
t (x)

]
(18)

which represent the restrictions of the nodal shape functions N i (x), N j (x) and Nk(x) on
the element p, while Nr (x), Ns(x), N t (x) on the element q , respectively.

On the other hand, the nodal numbers in the triangles p and q are the sequences (i, j, k)
and (r, s, t) traversed counterclockwise (see Fig. 2).

ψ (p) =
⎡
⎣ψ i
ψ j
ψk

⎤
⎦ ∈ R

9×1 and ψ (q) =
⎡
⎣ψr
ψ s
ψ t

⎤
⎦ ∈ R

9×1 (19)
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Stationary creeping flow around a 3D torus 69

with

ψm =
⎡
⎣ψ3m−2

ψ3m−1

ψ3m

⎤
⎦ ∈ R

3×1 (20)

while the elemental source vector is

u(p) =
⎡
⎣ ui

u j

uk

⎤
⎦ ∈ R

9×1 with um =
⎡
⎣ u3m−2

u3m−1

u3m

⎤
⎦ ∈ R

3×1 (21)

In a standard weighting Galerkin strategy, the shape functions N i (x) are employed to impose
Eq. (9) through the orthogonality conditions

∫

A

NT
l (x) ĝ(x)dAx =

∫

A

NT
l (x)û(x)dAx (22)

for l = 1, 2, . . . , N , where N is the number of nodes of the BEM mesh. The nodal shape
functions in Eq. (22) are given by

NT(x) =

⎡
⎢⎢⎢⎢⎣

NT
1 (x)

...

NT
l (x)

...

NT
N (x)

⎤
⎥⎥⎥⎥⎦ ∈ R

3N×3 (23)

with

NT
l (x) =

⎡
⎣ Nl(x) 0 0

0 Nl(x) 0
0 0 Nl(x)

⎤
⎦ (24)

for the nodes 1 ≤ l ≤ N , with

Nl(x) =
∑

e∈patch(l)

N (e)
l (x) (25)

where patch(l) is the portion of adjacent elements around the node l. After the corresponding
replacements and operations (D’Elía et al. 2012), Eq. (22) leads to the linear finite discrete
system

E∑
q=1

[
I (p,q)ψ (p) − J (p,q)ψ (q)

]
= M(p)u(p) (26)

for p = 1, 2, . . . , E , with the influence matrices

I (p,q) =
∫

A(p)

∫

A(q)

[
N(p)T (x) K (x, y) N(p)(x)

]
dA ydAx (27)

and

J (p,q) =
∫

A(p)

∫

A(q)

[
N(p)T (x) H(x, y) N(q)( y)

]
dA ydAx, (28)

123
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and with the mass matrix

M(p) =
∫

A(p)

[
N(p)T (x)N(p)(x)

]
dAx (29)

3.3 Surface integrals over flat triangles with weak singularity

The integrals of interaction I (p,q) and J (p,q) given in Eqs. (27) and (28), respectively,
provide a double surface integral in R

3 like

Z =
∫

A(p)

dAx

∫

A(q)

dA y f (x, y) (30)

on the panels p and q . In this computation, a quadruple integral is involved, whose integrand
can be written as the multiplicative function f = RG, where R = R(x, y) is a regular
function and G = G(r) is the Green function of the problem, that in this case has a weak
singularity O(1/r). For computing the integral in Eq. (30), two sets of coordinates are
introduced, one for each simplex: (ξ1, ξ2) on panel p, and (η1, η2) on panel q (see Fig. 2):

(ξ1, ξ2) : 0 ≤ ξ1 ≤ 1 ; 0 ≤ ξ2 ≤ ξ1

(η1, η2) : 0 ≤ η1 ≤ 1 ; 0 ≤ η2 ≤ η1 (31)

The generic points in each case are transformed into the panels p and q using the following
expressions

x(ξ1, ξ2) = N(p)(ξ1, ξ2)x(p)

y(η1, η2) = N(q)(η1, η2)x(q) (32)

with the elemental shape functions

N(p)(ξ1, ξ2) = [(1 − ξ1)(ξ1 − ξ2)ξ2]

N(q)(η1, η2) = [(1 − η1)(η1 − η2)η2] (33)

and the elemental nodal coordinates of the vertices of each triangle

x(p) =
⎡
⎣ xi

x j

xk

⎤
⎦ ; x(q) =

⎡
⎣ xr

xs

xt

⎤
⎦ (34)

Thereby, Eq. (30) is written as

Z = J (p) J (q) I (35)

where J (p),(q) = 2A(p),(q) are the Jacobians of each panel, and A(p),(q) are its areas, respec-
tively, while I is expressed in simplices coordinates as

I =
1∫

0

dξ1

ξ1∫

0

dξ2

1∫

0

dη1

η1∫

0

dη2 f (ξ , η) (36)

If the pairs of panels p and q are not contiguous or coincident, then the kernel in Eq. (36)
is regular and, thus, a Gauss–Legendre (GL) quadrature can be applied. When the pairs
have an edge or a vertex in common, weak singularities of edge or vertex, respectively,
arise. If the pairs belong to the same panel, then the integration domain is weakly singular.
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Stationary creeping flow around a 3D torus 71

A systematic method to compute the surface integrals for flat simple triangular elements
has been proposed by Taylor (2003a,b). The formulation is based on a suitable reordering
of four iterated integrations which places the weak singularity at the origin of the four-
dimensional Euclidean real space (4D or R

4), and then applies systematically the Duffy
transformation (Duffy 1982), i.e. regularizes the integrand using polar coordinates. Next,
Taylor selects a GL quadrature in three of the coordinates and then performs an analytical
integration in the fourth one. Since this strategy is specific for kernels of wave propagation in
computational electromagnetism, a modification has been proposed in D’Elía et al. (2011).
This modification consists of a numerical quadrature in the four coordinates to work with
kernels with weak singularity in general. Full details about this technique can be found in
D’Elía et al. (2011), Polimeridis and Mosig (2010) and Taylor (2003a), while the procedure
used in the first and third reference is summarized in the following section.

3.4 Taylor scheme

The Taylor strategy to evaluate Eq. (36) is designed specifically for flat simple triangles p and
q when they are contiguous or coincidents, and the integrand f (ξ , η) has a weak singularity.
In that case, the relative coordinates

μ1 = η1 − ξ1

μ2 = η2 − ξ2 (37)

are introduced. The replacement of these coordinates into Eq. (36) leads to

I =
1∫

0

dξ1

1−ξ1∫

−ξ1

dμ1

ξ1∫

0

dξ2

μ1+ξ1−ξ2∫

−ξ2

dμ2 f (ξ ,μ) (38)

Changing the integration order (μ2, ξ2, μ1, ξ1) to the order (ξ2, ξ1, μ2, μ1), combining inte-
grals that have overlapping domains, and introducing several Duffy coordinate transforma-
tions, Eq. (36) is split into 3, 6 and 1 independent integrals for the common facets, common
edge, and common vertex cases, respectively. It is worth to mention that the new integration
order moves the weak singularity to the origin, the overlapping domains occur in the plane
of the relative coordinates (μ1, μ2), while the Duffy coordinate transformations regularize
the integrands using polar coordinates, and the selected ones are the same used by Taylor. In
principle, there are six independent integrals in each case, although, with further considera-
tions in the common facet and common vertex cases, they are reduced to 3 and 1, respectively.
The final expressions are given in the next sections, where the following notations are used:

f̃ n = f̃ (ξn, ηn) = f (ξn, ηn)+ f (ηn, ξn)

ηn = ξn + μn

ξn,μn : see each case (39)

3.4.1 Common facets

In the case of common facets, Taylor found that the symmetry reduces the number of integrals
from six to three, i.e.

I =
3∑

n=1

In (40)
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Table 1 Integration coordinates
μn , ξn and Jacobian Jn , as a
function of the coordinates
0 ≤ ω, x, χ1, χ2 ≤ 1 in the case
of the self-integrals I1 − I3
(D’Elía et al. 2011; Taylor 2003a)

I1 I2 I3

μ1 ω ωx ωx

μ2 ωx ω(x − 1) ω

ξ1 (1 − μ1)χ1 (1 − μ1 + μ2)χ1 − μ2 (1 − μ2)χ1 + μ2 − μ1

ξ2 ξ1χ2 (ξ1 + μ2)χ2 − μ2 (ξ1 − μ2 + μ1)χ2

Jn (1 − μ1)ξ1 (1 − μ1 + μ2)(ξ1 + μ2) (1 − μ2)(ξ1 − μ2 + μ1)

with

In =
1∫

0

dω

1∫

0

dx

1∫

0

dχ1

1∫

0

dχ2 J̃n f̃ n (41)

and

ω, x, χ1, χ2 : GL quadrature points

ξn = ξn(ω, x, χ1, χ2) = (ξ1, ξ2)n

μn = μn(ω, x, χ1, χ2) = (μ1, μ2)n (42)

where the intervals 0 ≤ ω, x, χ1, χ2 ≤ 1 are the usual unit interval for the GL quadrature
points. The coordinates μn and ξn are computed using rows 1–2 and 3–4 of Table 1, respec-
tively, and the Jacobian is obtained as J̃n = Ja Jn , with Ja = ω, while Jn is given in the row
5 of Table 1.

3.4.2 Common edge

In the case of a common edge, six integrals must be computed, i.e.

I =
9∑

n=4

In (43)

with

In =
1∫

0

dω

1∫

0

dx1

1∫

0

dx2

1∫

0

dχ1 J̃n f̃ n (44)

and

ω, x1 , x2, χ1 : GL quadrature points

ξn = ξn(ω, x1, x2, χ1) = (ξ1, ξ2)n

μn = μn(ω, x1, x2, χ1) = (μ1, μ2)n (45)

where the intervals 0 ≤ ω, x1, x2, χ1 ≤ 1 are the usual unity interval for the GL quadrature
points. The coordinates μn and ξn are computed using columns 1–2 and 3–4 of Table 2,
respectively, and the Jacobian is obtained as J̃n = Jb J , with Jb = x1ω

2 and J = 1 − ω.
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Table 2 Integration coordinates μn and ξn , as a function of the coordinates 0 ≤ ω, x1, x2, χ1 ≤ 1 in the
integrals with a common edge I4 − I9 (D’Elía et al. 2011; Taylor 2003a)

μ1 μ2 ξ1 ξ2

I4 −ωx1 −ωx1x2 (1 − ω)χ1 + ω ω(1 − x1 + x1x2)

I5 ωx1 ωx1x2 (1 − ω)χ1 + ω(1 − x1) ω(1 − x1)

I6 −ωx1x2 ωx1(1 − x2) (1 − ω)χ1 + ω ω(1 − x1)

I7 ωx1x2 ωx1(x2 − 1) (1 − ω)χ1 + ω(1 − x1x2) ω(1 − x1x2)

I8 −ωx1x2 −ωx1 (1 − ω)χ1 + ω ω

I9 ωx1x2 ωx1 (1 − ω)χ1 + ω(1 − x1x2) ω(1 − x1)

Table 3 Integration coordinates ξ10 and η10, as a function of the coordinates 0 ≤ ω, z1, z2, z3 ≤ 1 in the
integral with a common vertex I10 (D’Elía et al. 2011; Taylor 2003a)

ξ1 ξ2 η1 η2

I10 ω ωz1 ωz2 ωz2z3

3.4.3 Common vertex

Finally, in the case of a common vertex, the six integrals are reduced to one, i.e.

I10 =
1∫

0

dω

1∫

0

dz1

1∫

0

dz2

1∫

0

dz3 ˜J10 ˜f 10 (46)

and

ω, z1 , z2, z3 : GL quadrature points

ξ10 = ξ10(ω, z1, z2, z3) = (ξ1, ξ2)10

η10 = η10(ω, z1, z2, z3) = (η1, η2)10 (47)

where the intervals 0 ≤ ω, z1, z2, z3 ≤ 1 are the usual unity interval for the GL quadrature
points. The coordinates ξ10 and η10 are computed using columns 1–2 and 3–4 of Table 3,
respectively, and the Jacobian is obtained as ˜J10 = Jc, with Jc = z2ω

3.

3.5 Traction field on the surface

The force F = (Fx , Fy, Fz) and the torque T = (Tx , Ty, Tz) about the origin O(x, y, z) of
the cartesian coordinate system acting on the body are calculated as a postprocessing through
surface integrals (Power and Miranda 1987)

F =
∫

A

dA y ψ;

T =
∫

A

dA y (r × ψ). (48)

The traction field over the body surface is the superposition of the tractions caused by the
simple and double layer potentials. The direct value of these tractions (on the body surface)
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Fig. 3 Mesh of flat triangles for the cases s0 = 1.5, 3 and 8, respectively

can be obtained by means of the calculation of a boundary integral, which is weakly singular
in the first case and hypersingular in the second one (Gonzalez 2009). Since this work is
oriented to a numerical scheme for the first case, then as a first approximation, only the
contribution of the single layer potential is computed.
Therefore, the traction field ti (x) on the surface A is calculated with the BIE (Ladyzhenskaya
1969)

ti (x) = − 3

4π

∫

A

dA y
ri r j rk

r5
n j (x)ψk( y) for all x ∈ A; (49)

In Eq. (49), it is assumed that the unit normal n is well defined at the field point x. This
restriction prevents the use of this equation to compute the traction field at points of geo-
metric discontinuity, like nodes, edges or vertices of the surface mesh. Hence, the cen-
troids of the panels are used like field points x in the solved examples. Finally, the force
obtained by integrating the traction field given by Eq. (49) matches with that obtained with
Eq. (48).

4 Numerical results

In this section, the numerical results of Eq. (9) for both, Galerkin and collocation, are pre-
sented. In the whole set of cases, it was adopted: exterior diameter D = 1 m, fluid density
ρ = 1 kg/m3, dynamic viscosity μ = 1 Pa s, and undisturbed speed U = 1 × 10−3 m/s.
Values for the geometric aspect ratio parameter s0 were chosen in the interval (1, 300].

The discretization of the torus surface was performed using structured and unstructured
meshes of flat triangles. Figure 3 shows the unstructured surface mesh used for some values
of the geometric aspect ratio parameter s0.

In the case of structured meshes, the generating circumference is divided into n ele-
ments of equal length h = πd/n. In the perpendicular direction to this circumference, the
torus surface is uniformly discretized dividing the outer circle in m segments with length
H = πD/m. Then, each quadrangle of the resulting mesh is divided by one of its diag-
onals into two triangles. This discretization leads to the collapse of panels when s0 = 1
(closed torus). Therefore, in order to avoid the collapse of panels, the case s0 = 1 was
actually solved taking s0 = 1 + ε, with ε = 1 × 10−4. As the parameter s0 increases,
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Fig. 4 Non-dimensional drag force F∞ as a function of the geometric aspect ratio parameter s0. Experimental
points obtained in Amarakoon et al. (1982), semi-analytical and numerical solutions, by collocation (BEM)
and Galerkin (GBEM), on structured (left) and unstructured meshes (right)

the torus decreases its thickness (see Eq. 2), which deteriorates the element aspect ratio.
The effect of this deterioration can be mitigated by redefining the discretization (increas-
ing m and, simultaneously, decreasing n) or directly by increasing the element number
along the outer circle (m). The last option is not viable due to the increase in the com-
putational cost, particularly for large values of s0. Therefore, in this work, it was adopted
as criterion to redistribute the panels maintaining constant its number. This approach is
useful for mesh convergence study. Then, for a mesh with E panels, the discretization
is chosen such that the aspect ratio h/H does not decrease below a prescribed value α,
having

{
n = max

[√
E

α(s0+1) , 4
]

mn = E
(50)

In this work, α = 0.2 was used.
All numerical examples were performed using n1d = 2 GL points in each integration

coordinate.

4.1 Drag curve

According to Amarakoon et al. (1982), the results for the drag are expressed in terms of
the drag on a sphere with the same outer diameter as the torus, which allows to define the
following non-dimensional parameter

F∞ = F

3πμU D
, (51)

where F is the modulus of the drag force over the torus.
Figure 4 shows the non-dimensional drag force F∞ as a function of the geometric aspect

ratio parameter s0 computed by collocation and GBEM, and using structured and unstructured
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Fig. 5 Relative error for the non-dimensional drag force as a function of the number of panels E for different
values of the geometric aspect ratio parameter s0. Numerical results obtained with structured meshes, using
collocation (left) and Galerkin (right)

meshes. The numerical results presented in Fig. 4 were obtained using a mesh with 6,400
elements. In this figure, a semi-analytical solution obtained by Majumdar and O’Neill (1977)
and experimental results by Amarakoon et al. (1982) are also included. The agreement of the
numerical results with the semi-analytical ones is very good. The weighted Galerkin method
presents better results than collocation for high values of the geometric aspect ratio parameter
s0, particularly when structured meshes are used.

4.2 Mesh convergence

The relative error for the non-dimensional drag force is shown in Fig. 5 for the case of
structured meshes, using collocation (left) and Galerkin (right). The relative error is defined
as er = |Fn∞ − F sa∞|/F sa∞, where Fn∞ is the force computed with the numerical solution
and F sa∞ is the semi-analytical value. Figure 5 presents the variation of the relative error
for several values of the geometric aspect ratio parameter s0. The analogous results for the
solution obtained with unstructured meshes are presented in Fig. 6.

In general, the Galerkin method exhibits a monotonous reduction of the error. This feature
is not verified for the collocation technique, for which the behavior of the relative error is
somewhat erratic.

4.3 Computational cost

Figure 7 (left) shows the elapsed total time, in seconds, as a function of the number of elements
E for both collocation (BEM) and weighted Galerkin (GBEM), using the same direct solver
(Householder method) in four of the six cores of a Xeon W3690 processor. Figure 7 (right)
shows the main computer memory (read/write RAM, in [GB]) used comparing BEM with
GBEM. Note that classic BEM with collocation becomes impracticable, whereas with GBEM
values of M relatively higher can be considered. This is because M = 3E in BEM and
M = 3N with GBEM, where usually E 
 N in 3D problems. Besides, although the system
matrix is dense in both cases, it is symmetric only for Galerkin.
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Figure 8 shows the number of pairs of interacting integration points ×106 as a function
of the number of elements E using collocation (BEM, left) and weighted Galerkin (GBEM,
right) in the case of structured meshes. In this figure, the number of interactions is divided
into: zpp for common facets (auto-interactions), zpq for non-common facets, zc−edge for facets
with a common edge, and zc−vertex for facets with a common vertex.

The number of pairs of interacting integration points is given by z = M2n2
1d and z =

M̂2n4
1d for collocation and weighted Galerkin, respectively, where M = 3E and M̂ = 3N

are the number of degrees of freedom in each case, while n1d is the number of GL points in
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Fig. 8 Number of pairs of interacting integration points ×106 as a function of the number of elements E
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zc−edge: facets with a common edge; and zc−vertex: facets with a common vertex

each integration coordinate. Each pair integration in BEM is a double integral and in GBEM
is a quadruple one; therefore, there are n2

1d and n4
1d evaluations per each pair of interaction

in each case.

5 Conclusions

In this work, a weighted Galerkin and a collocation technique were validated on a boundary
integral equation for a numerical solution of the BVP related to a steady and axisymmetric
creeping flow around a three-dimensional torus. The BIE employed was one of Fredholm type
and second kind with a weak singularity, obtained with the Hebeker alternative in an indirect
formulation, where single and double density layers were combined in such a way that the
spectrum of the integral operator was completed and the rigid modes were excluded, while the
source term was given by the no-slip boundary condition for the velocity on the body surface.
This is equivalent to a completed indirect velocity BIE (CIV-BIE). The discrete linear systems
were obtained using constant and linear shape functions, for collocation and Galerkin weight-
ing, respectively, on a polyhedral approximation of the body surface composed by flat simple
triangles. The matrix systems obtained with both methods were dense and regular, although
only in the Galerkin case it was also symmetric, and a direct solver was used for solving them.
In the numerical tests, performed as a function of the geometric aspect ratio parameter s0, the
drag curve was traced by points for both, structured and unstructured meshes, showing no
differences between collocation and Galerkin weighting, with zero force, to machine accu-
racy, of the components in the directions perpendicular to the flow. Both methods showed
mesh convergence and they were able to solve the present flow problem from a very closed
torus (s0 = 1+10−4) up to a very open one (s0 = 300), although Galerkin weighting showed
better results for high values of the geometric aspect ratio parameter s0 and a better mesh con-
vergence. This was evidenced in the drag curves, where the curve obtained with a collocation
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technique deviates from the semi-analytical one for high values of the geometric aspect ratio
parameter s0. Nevertheless, the errors in the drag curve were lower than 1.5 %, compared
with the semi-analytical solution, as well as they are well compared with the experimental
tests.
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