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A B S T R A C T

Agricultural production responses to climate variability require salient information to support decisions.

We coupled a new hybrid stochastic weather generator (combining parametric and nonparametric

components) with a crop simulation model to assess yields and economic returns relevant to maize

production in two contrasting regions (Pergamino and Pilar) of the Pampas of Argentina. The linked

models were used to assess likely outcomes and production risks for seasonal forecasts of dry and wet

climate. Forecasts involving even relatively small deviations from climatological probabilities of

precipitation may have large impacts on agricultural outcomes. Furthermore, yield changes under

alternative scenarios have a disproportionate effect on economic risks. Additionally, we show that

regions receiving the same seasonal forecast may experience fairly different outcomes: a forecast of dry

conditions did not change appreciably the expected distribution of economic margins in Pergamino (a

climatically optimal location) but modified considerably economic expectations (and thus production

risk) in Pilar (a more marginal location).
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1. Introduction

The world faces the dual challenges of feeding a rapidly
increasing 21st century population of perhaps 9 billion, while at
the same time sustaining life support systems (National Research
Council, 1999). Innovative environmental information will be
central to this effort. The emerging ability to forecast regional
climate is a hallmark achievement of the climate research
community (Stern and Easterling, 1999) and creates exciting
opportunities for agricultural decision-makers, who can use
seasonal climate forecasts to mitigate unwanted impacts or take
advantage of favorable conditions. By providing advance informa-
tion with sufficient lead time to adjust critical agricultural (e.g.,
irrigation, weed control, planting, harvesting) decisions, seasonal
forecasts have significant potential to contribute to the efficiency
of agricultural management, and to food and livelihood security.

Adaptive responses to climate, however, require salient
information to support decisions. If farmers are to benefit from
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seasonal climate forecasts, the information must be presented in
terms of production outcomes at a scale relevant to their decisions
(Baethgen et al., 2009). Agricultural outcomes of decisions are
more relevant to stakeholders than raw climate information: a
farmer is more interested in receiving likely distributions of crop
yields or economic returns than a seasonal precipitation forecast.
Unfortunately, still there is a gap between the information
routinely produced by climate prediction centers and regional
climate outlook forums, and the needs of farmers and other
agricultural decision-makers (Hansen et al., 2006). A greater
capacity is needed to convert raw climate information into
distributions of relevant outcomes for agricultural risk assessment
and management.

Outcomes resulting from the interaction of alternative manage-
ment decisions and weather scenarios can be explored using
process models simulating crop yields and other biophysical
response variables. Models for various important crops in the
Decision Support System for Agrotechnology Transfer (DSSAT)
package (Jones et al., 2003) have been used to simulate processes in
production systems that determine crop responses and crop
performance, resource use and environmental impacts for
different environments and management scenarios. More recently,
the DSSAT models have been increasingly used to determine the
potential impact of climate change on crop production and to
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provide management scenarios for adapting to climate variability
(Alexandrov and Hoogenboom, 2000).

One impediment for linking effectively climate forecasts and
crop simulations is a mismatch between the spatial and temporal
scale of available seasonal forecasts and the daily weather input
required by process-based models. Operational seasonal climate
forecasts generally are coarse-grained in time (�3 months) and
space. Nevertheless, seasonal or sub-seasonal (e.g., monthly)
climate forecasts can be disaggregated using a stochastic weather
generator to produce synthetic daily time series that capture the
predictable, low-frequency components of seasonal or sub-
seasonal variability, while reproducing important statistical
properties of the high-frequency variability in the historic daily
record (Alexandrov and Hoogenboom, 2000; Hoogenboom, 1999).

Stochastic weather generators are statistical models that create
synthetic (i.e., simulated) series of daily weather from historical
data. The statistical properties of synthetic series are intended to
be similar to those of observed historical weather (or of other
scenarios of interest, if different from climatology). Reviews of
commonly used weather generators can be found in Wallis and
Griffiths (1995) and Wilks and Wilby (1999); additional back-
ground is provided in the following section. Recently, Apipatta-
navis et al. (2007) developed a Semiparametric Weather Generator
(SWG) that improves upon existing algorithms, while being easy
and flexible to implement. Nevertheless, so far the SWG has not
been applied to an agricultural question. The SWG uses a k-Nearest
Neighbor (k-NN) resampling approach to generate weather
sequences but also relies on a Markov chain to model the
precipitation occurrence process. Thus, it captures well the wet
and dry spell statistics and also all the distributional properties of
the weather variables. The SWG can easily generate multiple daily
weather series consistent with seasonal climate forecasts; this
paper demonstrates such capability.

The overarching goal of this paper is to develop and validate a
framework to assess possible responses to seasonal climate
predictions in terms of outcomes (site-specific crop yields and
economic returns) that are salient and relevant to decision-makers.
The framework combines a semiparametric stochastic weather
generator – to downscale seasonal climate forecasts into multiple,
equally likely series of daily weather – and biophysical models to
simulate crop yields. The simulated yields are then used to
quantify net economic margins and production risks associated
with alternative (dry, rainy) seasonal climate forecasts. As a case
study, we simulate maize yields and economic profits in the
Argentinean Pampas, a major world agricultural region.

2. Methodology

2.1. Weather generators

Several approaches have been proposed for the stochastic
generation of weather variables. These approaches can be grouped
into two main categories: parametric and nonparametric methods
(Wilks and Wilby, 1999). Parametric weather generators also
known as ‘‘traditional’’ weather generators typically use precipita-
tion as the driving variable. Other variables such as maximum and
minimum temperatures are generated by fitting a lag-1 Multi-
variate Autoregressive (MAR-1) model with dependent upon
precipitation state (Richardson, 1981). Furthermore, the seasonal
fluctuation of model parameters may be described by using Fourier
series. An innovative approach to weather generation – based on
fitting a generalized linear model – was introduced by Furrer and
Katz (2007).

Some disadvantages of parametric approaches include: (1) the
need for prior assumptions about the distributions of the historical
data, (2) a large number of parameters must be fitted for each
season (and this increases exponentially if simulations are
conditioned on large scale climate indices), and (3) only linear
relationships between the variables can be reproduced (Rajago-
palan and Lall, 1999).

An attractive alternative to parametric approaches is the use of
nonparametric methods, which are data-driven and do not require
assumptions about the distributions of the variables of interest.
They can provide a flexible framework, are parsimonious, and can
be easily modified to do simulations based on particular climate
states (Wilks and Wilby, 1999). One of the methods that has been
routinely used and continuously modified is the k-Nearest
Neighbor (k-NN) bootstrap approach (Bannayan and Hoogenboom,
2008). Rajagopalan and Lall (1999) extended the k-NN bootstrap
method developed by Lall and Sharma (1996) for univariate time
series resampling to multivariate data. Buishand and Brandsma
(2001) and Yates et al. (2003) extended the k-NN bootstrap
weather generator to multisite generation with good success.
Furthermore, the k-NN approach was modified for conditional
resampling on atmospheric indices and hydrologic time series
(Beersma and Buishand, 2003; Mehrotra and Sharma, 2006).

The weather module in the DSSAT cropping system model
generates daily weather data using the widely used WGEN and
SIMMETEO (Richardson and Wright, 1984) weather generators.
The main advantage of SIMMETEO in comparison to WGEN is that
its input parameters can be estimated from monthly summaries
instead of the daily data required for estimating the input
parameters for WGEN (Geng et al., 1986, 1998). These parametric
approaches have a long history of development but they suffer
from several shortcomings. (1) The MAR framework requires
normality of the data. If the data are not normally distributed, they
have to be transformed to normality. With several variables and
seasons (e.g., months), this transformation task can be quite
difficult. (2) For the rainfall amounts potential non-normal
features such as bimodality, if exhibited by the data, cannot be
captured by the limited suite of PDFs.

2.1.1. The semiparametric weather generator

The Semiparametric Weather Generator (SWG) proposed by
Apipattanavis et al. (2007) is a multivariate and multisite weather
generator. SWG was developed for (i) improving the ability of the
traditional k-NN model of Lall and Sharma (1996), Rajagopalan and
Lall (1999) and Buishand and Brandsma (2001) to capture the
historical wet day spell statistics by modifying the original
algorithm to incorporate an additional Markov chain model; and
(ii) adding to the modified model the capability of generating
weather scenarios conditioned on seasonal climate forecasts
currently issued operationally by many agencies around the
world. Details on the algorithm and performance of the SWG are
given in Apipattanavis et al. (2007); for the sake of completeness
we briefly present the algorithm, abstracted from that paper.

SWG involves two steps combining parametric and nonpara-
metric approaches. In an initial (parametric) step, a Markov chain
is used to generate the precipitation state of the day (i.e., no rain,
rain, or heavy rain) using the historical wet and dry spell statistics.
In the second (nonparametric) step, a k-NN method is used to
generate the suite of weather variables conditioned on the
simulated precipitation state. The Markov chain correctly
describes the spell statistics, whereas the k-NN bootstrap captures
the distributional, cross-correlation, and lag-dependence statistics
of the weather variables.

The SWG is quite flexible and can generate scenarios consistent
with seasonal climate forecasts such as those operationally issued
by organizations such as the International Research Institute for
Climate and Society (IRI, www.iri.columbia.edu). The simulated
conditional weather scenarios are useful for water and crop
resource management at short time scales. We show these

http://www.iri.columbia.edu/
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applications in subsequent sections of this paper. In addition to
simulation conditioned on seasonal climate forecasts, the SWG can
incorporate easily plausible climate trajectories such as a projected
precipitation trend (Clark et al., 2004). In this case, SWG resamples
the historical record according to the trend we wish to reproduce
or simulate—wherein, each historical year is weighted according to
its ‘‘closeness’’ (in terms of the conditioning variables) to the
scenario for which weather sequences are to be generated. This
technique was applied to generate weather sequences conditioned
on a decadal trend for a location in Argentina for agricultural
planning by Podestá et al. (2009).

2.2. The DSSAT crop models

The Decision Support System for Agrotechnology Transfer
(DSSAT) is a package that facilitates the application of crop
simulation models to agricultural decision-making and research
(Jones et al., 2003). DSSAT is a collection of independent programs
that operate together: the package includes primary modules for
soil, weather, plant, soil–plant–atmosphere interface, and manage-
ment components. In turn, the plant module incorporates models
for 16 different crops (e.g., CROPGRO for soybean, Generic-CERES
for maize and wheat, etc.).

DSSAT simulates growth and development of a crop growing on
a uniform area of land under prescribed management and soil
conditions. The programs contained in DSSAT allow users to
simulate options for crop management over a number of years to
assess the risks associated with each option. In this sense,
computer experiments can be performed hundreds or even
thousands of times for a given environment to determine how
to best manage or control the system. The DSSAT helps decision-
makers by reducing the time and human resources required for
analyzing complex alternative decisions (Boote et al., 1998).

The information required for applying DSSAT package to
different situations (e.g., crops, environments, etc.) includes a
description of weather, soils, experiment conditions and measure-
ments and genotypes (Tsuji et al., 1998). This information is
provided through a database that includes: (a) daily weather series
of minimum and maximum temperatures, solar radiation and
precipitation for the location and years to be simulated, (b) values
for a set of soil-related parameters (e.g., organic matter content for
each layer, bulk density for each layer, etc.), (c) a definition of the
crop management (e.g., sowing date, fertilization rate, etc.) and the
conditions under which the experiment will be performed (e.g.,
simulation beginning date, soil water content at the beginning of
the simulation, etc.), and (d) values for the ‘‘genetic coefficients’’
that describe physiological process and development differences
among crop hybrids or varieties. Depending on the definition of
this information it is possible simulating crop growth and
development over a wide range of environments and management
practices.

In this paper, we coupled the DSSAT package with daily
synthetic weather series consistent with (a) historical climate data
and (b) two different scenarios of predicted seasonal climate. In
this way, we produced multiple realizations of crop yields (Fig. 1)
that were used to estimate production and economic risks in two
climatically contrasting regions of the Argentine Pampas. In the
following section we describe this case study.

3. Case study

We tested the stochastic weather generator—crop modeling
framework in the region of central-eastern Argentina known as the
Pampas, one of the main cereal and oilseed producing regions in
the world (Hall et al., 1992). We selected two specific locations
with different agroecological characteristics: Pergamino (Buenos
Aires Province, 338560S, 608330W) and Pilar (Córdoba Province,
318410S, 638530W) which respectively represent near-optimal and
relatively marginal agricultural conditions.

Pergamino is in the most productive subregion of the Pampas
and has a long agricultural history. In contrast, Pilar is in the
northernmost semi-arid margin of the Pampas, and agriculture
became widespread only in the last 20–30 years. Total annual
rainfall and the annual precipitation cycle vary between the two
locations (González and Barros, 1996). In Pergamino, median
annual precipitation is 937 mm. Pilar represents drier conditions:
median annual precipitation is 738 mm. In Pilar, the annual rainfall
cycle has a marked winter minimum that, together with limited
soil water storage, makes summer crops very dependent on spring
precipitation. In contrast, the winter minimum in Pergamino is less
marked. Currently, crop rotations in both sites include maize,
soybean, and a wheat–soybean double crop (wheat followed by
short-cycle soybean) and crop production technologies are similar
in both locations. Contrasting agroecological conditions between
sites let us use the integrated framework to explore interactions
between the physical environment, climate scenarios, and crop
behavior.

Because the vast majority of agriculture in the Pampas is
rainfed, crop yields are highly sensitive to precipitation shortly
before sowing and during crop development. Maize is particularly
sensitive to water stress during flowering (a critical stage for
definition of maize yield), which typically occurs around the end of
December or beginning of January and coincides with the period
with highest atmospheric water demand (Dardanelli et al., 1997).
Because of the strong association between precipitation and yields,
maize provides a good test-bed to explore the impacts of different
climate scenarios on production outcomes. Consequently, we used
the integrated framework to simulate maize yields for Pergamino
and Pilar under different synthetic weather scenarios. In the
following sections we provide details about the two main steps
involved in the integrated framework: (a) the generation of
synthetic weather series consistent with different seasonal
scenarios, and (b) the simulation of multiple realizations of maize
production outcomes.

3.1. Generation of synthetic weather series

3.1.1. Unconditional simulations

Quality-controlled records of daily precipitation, maximum and
minimum temperatures, and solar radiation – estimated from
relative sunshine or daily temperature range; see Podestá et al.
(2004) – were available for 1931–2001 (71 years) in Pergamino
and for 1941–2004 (64 years) in Pilar. These series were used as
input to the weather generator in order to generate series
consistent with the climatology (i.e., unconditioned series) or,
alternatively, series conditioned on forecasted seasonal scenarios.

The SWG was used to produce daily synthetic series based on
historical climate records for Pergamino and Pilar. For each
location, we generated 100 realizations of daily weather
sequences, each with the same length as the historical record
(71 years for Pergamino, 64 for Pilar). That is, a total of 7100 (6400)
synthetic weather years were generated for Pergamino (Pilar).

3.1.2. Simulations conditioned on seasonal climate forecasts

Seasonal climate outlooks with lead times of up to 12 months
are currently disseminated for several regions of the world
(Goddard et al., 2003; Mason et al., 1999). These forecasts are
typically probabilistic and in a moving epoch format (e.g., 3
months). For instance the IRI, one of the most important agencies
in the world producing seasonal forecasts, provides forecasts as
percentage likelihood of A:N:B format where ‘‘A’’ is above-normal
rainfall percent chance, ‘‘N’’ is near-normal rainfall percent chance



Fig. 1. Schematic diagram of the coupled SWG generator and DSSAT cropping system model.
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and ‘‘B’’ is below-normal rainfall percent chance, with categories
defined from terciles of climatological rainfall totals. The forecasts
are provided for moving periods of 3 months. For example, over an
area a forecast of ‘‘40:35:25’’ for precipitation in November–
January means that there is a 40% chance of rainfall to be above-
normal, 35% chance of rainfall to be near-normal, and 25% chance
of below-normal precipitation in this period.

The model proposed by Apipattanavis et al. (2007) facilitates the
generation of synthetic series conditioned on different climatic
drivers (e.g., categorical seasonal forecasts, climatic indexes). The
conditioning algorithm is based on weighted resampling of input
historical years depending on the seasonal forecast (Yates et al.,
2003). For the generation of synthetic series conditioned on an IRI
forecast, first the historical years are classified into three cate-
gories—wet, normal, and dry based on the terciles of seasonal
precipitation. Then, based on the example given in the previous
paragraph, 40 years are randomly picked from the wet category, 35
from the normal and 25 years from the dry category. As a result of the
conditional resampling a new input series of 100 years is obtained.
Then, SWG is applied to this conditioned input pool of 100 years to
generate synthetic series consistent with the seasonal forecast.

The procedure was used to generate 100 synthetic weather
sequences for a cropping season conditioned on likelihood from
two actual seasonal forecasts issued by IRI: (a) a seasonal forecast
for December–January–February (DJF) 2003, anticipating wetter
than normal conditions (45% of probabilities for the upper tercile
and 25% of probabilities for the lower tercile), and (b) a seasonal
forecast for December–January–February (DJF) 2004, anticipating
drier than normal conditions (20% of probabilities for the upper
tercile and 45% of probabilities for the lower tercile).

3.2. Simulation of maize production outcomes

3.2.1. Maize yields

The synthetic daily weather series were used as input to DSSAT
in order to simulate maize yields (kg of grain per unit area). The
Generic-CERES (Ritchie et al., 1998) within the DSSAT package
simulates maize growth and development as a function of inputs
such as soil characteristics, crop management, genetic information
and daily weather. The Generic-CERES model has been calibrated
and validated in the Pampas. The model has shown an average
error of 17 and 20% in the prediction of maize and wheat yields at
plot level under field conditions, while the differences between
simulated and observed average yields (over a large number of
cases under field conditions) were about 4.5% (Guevara et al., 1999;
Mercau et al., 2001).

The combination of maize management options frequently
used by farmers in each location was chosen as the typical or
representative production system. Furthermore, a representative
soil was selected for each region in consultation with local
technical experts. Values of soil-related parameters (e.g., organic
matter content) were available from soil charts produced by
Argentina’s Agricultural Research Institute (Instituto Nacional de
Tecnologı́a Agropecuaria, INTA). Crop simulation conditions were
set to values frequently found in each region according to the
information provided by local experts. Crop genetic coefficients
and soil-related parameters were available from previous research
in the study area (Mercau et al., 2001, 2007). All the climate series
described in Section 3.1 were used to simulate maize production
outcomes in Pergamino and Pilar using Generic-CERES. DSSAT-
derived yields from the historical and synthetic weather data were
then compared. Simulation outcomes using the historical climate
records were used as a baseline to: (a) assess the performance of
the SWG and WGEN synthetic weather generators and (b) quantify
the relative impacts on maize yields of conditional weather
scenarios (see below).
3.2.2. Calculation of maize economic margins

Once maize yields were simulated, we used a simple economic
model to compute maize net margin per hectare for each climate
scenario (Fig. 1). Net margin was computed as the difference
between gross income and total costs. Gross income per hectare
was the product of simulated yields and the median of 2002–2007
maize prices (80$ ton�1). Total costs included direct and indirect
costs. Direct costs are those costs associated with maize
production and, in turn, can be divided into fixed and variable
costs. Fixed direct costs are independent of crop yields and include
field labors, seeds and agrochemicals. Total fixed direct costs of
258$ ha�1 and 200$ ha�1 were assumed for Pergamino and Pilar,
respectively. Variable direct costs depend on crop yields and
include harvest (assumed as 6% of gross income for both locations),
marketing (assumed as 8% of gross income for both locations) and
grain transportation (a transportation price of 0.061$ ton�1 and a
distance to port of 100 km for Pergamino was assumed for
Pergamino and a transportation price of 0.050$ ton�1 and a
distance to port of 400 km was assumed for Pilar). Indirect costs
apply to the operation of the entire farm and are not associated
with any specific crop; they include structure maintenance costs,
management expenses, real estate taxes, and amortization of
durable capital goods. The indirect costs were assumed to be
70$ ha�1 for both locations. For all cited costs, values assumed are
representative of the period 2002–2007.

Multiple realizations of maize net margins were used to
quantify production risks under some of the climate scenarios. The
cumulative probability distribution (CPD) of maize net margins
was calculated for the conditioned climate scenarios (i.e., dry and
wet scenarios) and for the historical climate record. The
Kolmogorov–Smirnov (K–S) test was applied to assess differences
among CPDs of net margins among the conditional climate
scenarios. Based on the CPD we computed the probability of
negative net margins (PNNM) to quantify risks to production
associated with each climate scenarios. PNNM was computed as
the proportion of realizations (for a given climate scenario) in
which simulated net margins were negative (indicating that
income received from maize production was lower than total
costs).

4. Results and discussion

The results are divided into two parts. First, we assess the
quality of unconditional simulated weather series in terms of
maize yield statistics. Specifically, we assess the capability of the
recently introduced hybrid weather generator (SWG) and the
widely used WGEN algorithm (included in the DSSAT suite of crop
models) to reproduce distributions of maize yields simulated with
historical climate records. In a second part, we explore the impacts
of conditional simulated weather (generated for both dry and rainy
seasonal forecasts) on maize yields, net margins and economic
risks.

4.1. Quality of unconditional weather scenarios

Distributional statistics of maize yields simulated using
unconditional weather series produced with SWG and WGEN
are shown in Fig. 2. The mean yields simulated with SWG are closer
to the mean yields simulated using the historical climate series in
both regions. Both generators overestimate the mean yield values
in Pergamino (Fig. 2(a)). Conversely, in Pilar, the SWG tended to
underestimate mean yields slightly, whereas WGEN overestimated
mean yields (Fig. 2(c)).

The variability of maize yields was underestimated regardless
of the weather generator used to simulate the climate series. In
Pergamino, WGEN tended to reproduce better the variability



Fig. 2. Box plots of statistics of maize yields simulated using multiple realizations of climate synthetic series from SWG and WGEN generators: (a) distribution of mean yields

for Pergamino, (b) distribution of standard deviations of yields for Pergamino, (c) distribution of mean yields for Pilar and, (d) distribution of standard deviations of yields for

Pilar. The height of the boxes represents the interquantile range, the horizontal line inside the box corresponds to the median and the whiskers extend to the 5th and 95th

percentile of the statistics. The dashed line in each panel indicates the maize yields simulated using the historical climate series for each location. Circles denote outliers,

values beyond 1.5 times the interquartile range.
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(Fig. 2(b)), whereas in Pilar SWG showed the better results (Fig. 2(d)).
As the capability of the generators in reproducing the variability of
maize yields differed between locations, we explored the multiple
(100 realizations) maize yield distributions for each generator
(Fig. 3). Empirical density functions were fitted to the historical and
synthetic distributions of yields using the kernel density estimation
procedure of Bowman and Azzalini (1997) and confidence intervals
were constructed. Weather series from WGEN underestimated the
frequency of low maize yields, mainly for Pergamino. That is, for low
yields, the distribution of historical yields falls outside the 98%
envelope of yields simulated with WGEN series. Conversely, when
yields were simulated using SWG series, the frequency of low yields
Fig. 3. The solid line represents an empirical density function (EDF) of simulated maize

(panels c and d). The dashed lines in each panel represent the 1st and 99th quantile of th

synthetic series from SWG (a and c) and WGEN (b and d) generators. Empirical densities w

Bowman and Azzalini (1997).
was closer to historical values although there was a tendency to
underestimate the frequency of high yields.

As most farmers are moderately risk averse, they are primarily
interested in the likelihood of low yields and/or economic
outcomes. Therefore, simulations oriented to support decisions
must be able to reproduce adequately the expected frequency of
low values. Underestimating the frequency of low maize yields (as
observed for WGEN) may lead to underestimation of production
risks. As weather series generated by the SWG tended to reproduce
better the probabilities of lower yields, this tool seems more
appropriate to convert raw climate information into distributions
of outcomes for agricultural risk assessment and management.
yields using the historical climate series for Pergamino (panels a and b) and Pilar

e EDFs estimated for maize yields simulated using multiple realizations of climate

ere fitted to the historical and synthetic yields using the kernel density approach of



Fig. 4. Probability density functions (PDFs) of December–January–February total

precipitation in (a) Pergamino and (b) Pilar for: (1) the historical climate record

(solid black lines), (2) synthetic climate series consistent with a forecast of wetter

than normal precipitation in December–January–February (dotted black lines), and

(3) synthetic climate series consistent with a forecast of drier than normal

precipitation in December–January–February (dashed grey lines). Empirical

densities were fitted to historical and synthetic precipitation using the kernel

density approach of Bowman and Azzalini (1997).

Fig. 5. Empirical probability density functions (PDFs) of simulated maize yields for

Pergamino (a) and Pilar (b) using: (1) the historical climate record (solid lines), (2)

the synthetic climate series consistent with a forecast of wetter than normal

precipitation in December–January–February (dotted black lines), and (3) the

synthetic climate series consistent with a forecast of drier than normal precipitation

in December–January–February (dashed grey lines). The vertical lines represent the

corresponding mean maize yields. Empirical densities were fitted using the kernel

density approach of Bowman and Azzalini (1997).

Fig. 6. Cumulative probability functions (CDF) of simulated net economic margins

for Pergamino (a) and Pilar (b) for: (1) the historical climate record (solid lines), (2)

the synthetic climate series consistent with a forecast of wetter than normal

precipitation in December–January–February (dotted black lines), and (3) the

synthetic climate series consistent with a forecast of drier than normal precipitation

in December–January–February (dashed grey lines).
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4.2. Impacts of conditional weather scenarios—seasonal forecasts

Fig. 4 shows the empirical probability density functions (PDFs)
of total December–January–February (DJF) precipitation from
synthetic series conditioned on seasonal forecasts and the
historical climate record. For both locations, the PDF of precipita-
tion for synthetic series conditioned on the dry climate forecasts
were shifted to the left of the historical PDF (i.e., DJF precipitation
for the dry scenario is lower than for the historical). Conversely, the
PDF of precipitation for synthetic series conditioned on the wet
climate forecasts was shifted to the right of the historical PDF. This
effect is more noticeable in the frequency of high precipitation
values for Pilar. These results illustrate the capability of SWG to
generate synthetic climate series consistent with seasonal climate
forecasts.

Differences between simulated weather series conditioned on
dry and wet seasonal forecasts induced changes in maize yields.
The degree of change in maize yields was different for each
seasonal forecast and location (Fig. 5). In Pergamino, the wet
forecast led to a marked decrease in the frequencies of low maize
yields (<7000 kg ha�1) whereas the dry forecast did not sig-
nificantly change maize yield distributions (Fig. 5(a)). In Pilar, both
seasonal forecasts induced noticeable shifts in the PDFs of maize
yields in relation with the historical distribution (Fig. 5(b)). The
wet forecast led to a significant increase in maize yields, with a
corresponding reduction in the frequency of low yields
(<7000 kg ha�1). Under the dry scenario, maize yields decreased
markedly, with increases (decreases) in the proportion of low
(high) yields (Fig. 5(b)).

Variations in maize yields between the different climate
scenarios induced changes in economic outcomes. Fig. 6 shows
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the Cumulative Density Functions (CDFs) of simulated net margins
for Pergamino and Pilar and for the historical and conditioned
scenarios. Differences among distributions were assessed using the
p-values of Kolmogorov–Smirnov (K–S) tests. As for yields, in
Pergamino, the CDF of net margins for the wet forecast was
marginally different (p = 0.16) from the climatological distribu-
tion; the dry forecast distribution showed no statistical differences
with the climatological margins. Conversely, in Pilar, the CDF of
net margins changed significantly for the dry forecast (p < 0.01)
but showed a limited difference for the wet forecast (p = 0.21); in
both cases, differences were assessed against the climatological
distribution of margins.

Seasonal forecasts involving even relatively small deviations
from climatological probabilities of precipitation may have large
impacts on the economic outcomes of crop production. For
instance, in Pergamino, the median net margin increases more
than 14% (from 233$ ha�1 to 266$ ha�1) for the wet scenario
(probability of above-normal precipitation is 0.45, instead of 0.33).
In Pilar, the dry scenario (probability of below-normal precipita-
tion is 0.45, instead of 0.33) is associated with a 65% decrease in
median simulated net margins (from 112$ ha�1 to 39$ ha�1).

In turn, changes in the distributions of net margins led to
important differences in the production risks associated with each
scenario. For instance, for a wet scenario, the probability of
negative margins in Pergamino decreases to 1/3 of the historical
averages. In Pilar, the historical probability of negative net margins
in Pilar is around 30%. However, under the wet scenario this
probability is halved.

Potential users of seasonal climate forecasts often complain
that forecasts have coarse spatial resolution (i.e., the same
deviations are predicted for large areas). For example, the same
forecast of dry conditions (probability of below-normal DJF
precipitation is 0.45) has widely different implications for our
two target areas. For Pergamino, the distribution of simulated
maize net margins is very similar for the dry and climatological
scenarios (i.e., the dry forecast has no significant effects). In
contrast, in Pilar the distribution of net margins under the dry
scenario is considerably shifted to the left (i.e., lower probabilities
of exceeding a given margin). Site-specific differences in the
implications of the same forecast probably are tied to agroeco-
logical conditions in each region. Climate conditions in Pergamino
are close to optimal for the production of maize; even under a small
decrease in rainfall, results can be satisfactory. In contrast,
production systems in Pilar already operate much closer to the
limits of profitability than in Pergamino and have a slender buffer
against climate hardships.

We stress that differences between forecasted scenarios are
explored for only one crop (maize) and without changing the
typical agronomic management. If different managements (includ-
ing crop selection) were used for different forecasts, farmers might
be able to mitigate negative results or take advantage of favorable
conditions. The framework introduced here, which combines a
semiparametric stochastic weather generator to downscale
seasonal climate forecasts and crop simulation models, allows
decision-makers to assess the likely outcomes of interactions
between expected climate conditions and a range of management
alternatives.

5. Conclusions

The increased recognition of the importance of climate on
human systems has fostered a growing demand by decision-
makers for reliable, quantitative climate information appropriate
for use in assessments of climate variability and change,
adaptation, impacts, and vulnerability (Bert et al., 2006). The
linkage of stochastic weather generators and crop simulation
models is useful to translate raw climate information into
distributions of salient, relevant outcomes for agricultural risk
assessment and management. Presenting expected outcomes of
decisions in terms of distributions of crop yields or economic
returns is more relevant to stakeholders than raw climate
information such as a precipitation forecast.

Seasonal forecasts involving even relatively small deviations
from climatological probabilities of precipitation may have
large impacts on agricultural outcomes. A 12% change in the
probability of a precipitation category (as explored here) may
seem irrelevant to farmers, but conveying the likely agronomic
or economic results of this shift may attract their attention
considerably.

A frequent complaint from potential users of seasonal climate
forecasts is that they have inadequate spatial resolution (i.e., the
same deviations are predicted for large areas). Our results show
that regions receiving the same seasonal forecast may experience
fairly different outcomes. In particular, a given forecast may have
much more serious implications for production systems in
marginal regions that already operate much closer to the limits
of profitability and have a slender buffer against climate
hardships.
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