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Formulation of Reduced-Order Models for the
Dynamic and Stability Analyses of Autothermal

Radial Flow Reactors

Malte Bartels, Jorge E. Gatica, Marisa Pedernera, Noemı́ Susana Schbib, and
Daniel Oscar Borio

Abstract

Autothermal radial flow reactors typically consist of a reactor setup of mul-
tiple catalyst-beds with internal heat exchange. These reactors are widely used
because of their high efficiency due to the internal heat exchange, and radial flow
arrangements are preferred due to their low pressure drops. Although an effi-
cient multi-functional reactor arrangement, this setup has shown to provide for an
additional destabilizing mechanism via the heat feedback. Thus, additional sta-
bility considerations are necessary when operating autothermal or non-adiabatic
reactors at high conversions. This work proposes the formulation of a simpli-
fied model to investigate the effect of the heat transfer feedback on the stability
of autothermal radial flow reactors. The present work focuses on a lumping ap-
proach to reduce the order of a complex distributed parameter system. The model
is complex enough so as to preserve the intricacies of this reactor arrangement,
but still yield a tractable dynamic formulation. The industrial ammonia synthesis
process has been chosen as a case study to illustrate the proposed methodology.
The lumped model predictions are qualitatively compared against numerical sim-
ulations of a detailed mathematical model.

KEYWORDS: autothermal reactors, ammonia synthesis, radial flow, reduced-
order model, stability analysis



1. INTRODUCTION 

1.1 Autothermal radial flow reactors 

This work will focus on the analysis of exothermic, reversible, gas-phase catalytic reactions.  Although many 
industrial processes fall under these headings, an important industrial process with serious equilibrium limitations is 
the ammonia synthesis via the Haber-Bosch process, i.e.  

N2 + 3 H2 � 2 NH3   )2.92( 0

mol
kJh =∆−  

This process has been selected as a case-study for this paper. Since the synthesis of ammonia proceeds 
through an exothermic process it is seriously restricted by equilibrium limitations at high temperature. Although an 
increase in the temperature increases the rate of reaction, it also imposes more stringent equilibrium limitations. As 
reviewed by Strelzoff (1981), different strategies can be employed to resolve this dilemma: Direct quenching of 
reacting gas with fresh synthesis gas, cooling of the reactants by external cooling, and heat exchange with the 
reacting gases. For practical reasons, it has become a common industrial practice to utilize coupled heat exchange 
mechanisms by combining multiple reactors with heat exchangers. Indeed, due to the cooling of the reactants, a 
higher conversion becomes possible; simultaneously the new arrangement is more energy efficient by providing the 
energy needed. The application of heat exchange for increased conversion in reactor arrangements has been 
extensively investigated in the literature (cf. Abashar, 2000). 

The term "autothermal" commonly relates to the presence of one or more heat exchangers between reactors, 
which provide the preheating of the reactants via heat exchange with the products. This energetic integration  is often 
achieved by a modular system with external heat exchangers. In modern reactors the integration is more frequently 
realized with internal heat exchangers between beds, with the whole arrangement built completely within a single 
pressure shell. Since the internal heat exchangers are much more efficient than external ones, this type of reactor 
arrangement is very popular in industrial practice. 

The scientific literature is abundant in descriptions of different types of industrial reactors that resort to 
intricate heat exchange arrangements to maximize or increase process efficiency (Slack and James, 1977; Vancini, 
1971; Strelzoff, 1981). A comprehensive overview of various autothermal fixed-bed reactor concepts has been 
presented in a recent review by Kolios et al. (2000). 

Modern reactor arrangements also often resort to radial flow patterns to increase process efficiency. The 
shorter pathway for the reactants leads to lower pressure drops. Since pressure drop is commonly associated to 
significant consumption of energy, considerable economical and ecological improvements can be achieved by 
adopting radial flow arrangements.  

The essential part of a radial flow reactor is the annular arrangement of the porous catalytic bed. This 
packed-bed of catalyst particles is illustrated in Figure 1 where flow is assumed to occur in the radial direction only. 
The gaseous reactants can flow either in a centripetal (CP, from the outside in) or centrifugal (CF, from the inside 
out) mode. 
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Figure 1: Schematic of a radial flow packed-bed reactor 

One widely used radial-flow reactor in ammonia plants is the Haldør Topsoe© S-200 (cf. Ullmann´s 
Encyclopedia, 1993), a highly efficient converter. The Haldør Topsoe© S-200 is chosen as an example for this study 
because of its frequent application in many large ammonia plants. Since the original introduction of the S-200 series 
in 1976 this converter type has been used in more ammonia plants than any other competing converter design. This 
reactor is produced in two different configurations, the flow sheet for both versions of this reactor is presented Figure 
2. 

 

Figure 2: Flow sheet of a two-bed reactor with one inter-bed heat exchanger and an optional ("lower") heat 
exchanger after the second bed 

The reactor always includes the so-called "inter-bed" heat exchanger between both beds. Optionally, a 
second heat exchanger after the second bed can be included. Given the geometrical setup of the actual reactor, this 
heat exchanger will be referred to as the "lower" heat exchanger for the remainder of this paper. Both configurations 
will be investigated. These additional mechanisms for energy feedback lend this system a potential for unstable 
behavior. As shown in the work by Morud and Skogestad (1998), instabilities can occur in operating ammonia 
plants, resulting in wide temperature oscillations with the subsequent catalyst damage or deactivation. From this 

feed 

product
λλλλ  

1−λ1−λ1−λ1−λ 
 

µµµµ1111  µµµµ2222  

2 International Journal of Chemical Reactor Engineering Vol. 1 [2003], Article A43

http://www.bepress.com/ijcre/vol1/A43



observation it becomes clear that operation and control strategies demand a-priori information about the stability of 
the system. A model of the reactor from which general conditions for stability can be drawn will then be useful in 
predicting unstable behavior or safe operating windows.  

1.2 Previous research 

Different autothermal reactor setups have been investigated in the past. Bildea et al. (2001), for instance, investigated 
the multiplicity and stability behavior of a heat-integrated multibed plug-flow reactor. They observed different 
regions of behavior in the state space, including oscillatory behavior for realistic model parameters. 

Another approach to this reactor design can be found in the contribution by Kienle et al. (1995). These 
authors investigated a circulation loop reactor (CLR), which is intended as an autonomous periodic system. The 
principle of the CLR is based on self-exciting travelling reaction zones. Their work showed that this reactor has a 
rich dynamic and steady-state behavior with a large region of parameters for the desired periodic regime. 

Radial flow reactors were early modeled by Hlavacek and Kubicek (1972), who derived a one-dimensional 
model for radial-flow reactors and identified the necessary conditions for multiplicity for first-order kinetics. 
However, a first-order kinetic is not sufficient for the ammonia synthesis reaction, since it operates at high 
temperatures and pressures where the reverse reaction becomes important and serious equilibrium limitations are 
observed. 

Pedernera et al. (1999) presented a more detailed steady-state heterogeneous model for radial flow reactors 
and analyzed the ammonia synthesis reaction. This model is quite complex, thus leading to more detailed 
information on the temperature profiles, but its complexity makes it impractical for operation- and control 
applications. 

Morud and Skogestad (1998) analyzed an idealized configuration for a multi-bed industrial ammonia 
reactor, and identified the presence of conditions leading to rapid temperature oscillations. Utilizing a dynamic 
stability rather than a steady-state analysis, they found that a pair of complex conjugate poles crosses the imaginary 
axis introducing the unstable behavior. Furthermore, they made some recommendations for possible control 
strategies. 

1.3 Motivation for this study and overview of this work 

This study proposes a modeling approach of autothermal radial flow reactors by means of a simplified model. The 
simplified nature of the model is aimed at reducing its mathematical complexity but capable of still capturing the 
main behavior of the reactor. A reduced-order, or also called "lumped", model of autothermal radial flow reactors for 
the steady state and dynamic stability analysis has been developed. Reduced-order models are developed in order to 
keep the computational effort low but retain the lowest degree of complexity that can capture the main behavior of 
the system correctly. 

The term “lumped” is also used in the traditional control terminology to differentiate this model from a 
distributed parameters system. Specifically in this work the lumping is made in the radial direction, while no axial 
distribution is assumed. When one examines the final formulation, it becomes apparent that each bed is characterized 
by a single (parameter) temperature, while a distributed parameters analysis would provide a profile instead. In order 
to highlight the goodness of the lumped formulation, a comparison between both approaches is included in this 
paper. The lumping methodology follows the “pseudo-homogeneous” model (Vortmeyer and Schaefer, 1974); i.e. 
the temperature distributions for both phases, solid and gas, have been “lumped” together and transport properties 
refer to “effective” parameters instead. Furthermore, this approach follows the analysis of Hlavacek and Kubicek 
(1972) where the governing equations are approximated by equations in differences. 

Despite its simplicity the model is able to predict a range of typical solutions and give more insight into the 
design of control strategies. In particular, reduced-order models are especially favorable for operation- and control 
applications. It is worth mentioning here that, since the focus is on the model structure, which allows a fast, real-time 
evaluation of the model equations, the accuracy of the solution has been considered less significant. 
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2. MATHEMATICAL MODEL 

2.1 Dimensionless Mass and Energy Balances; Boundary conditions 

The two most common packed-bed configurations used to overcome pressure drop limitations are radial-flow and 
spherical reactors. These reactors can be efficiently described by a pseudo-homogeneous model (Vortmeyer and 
Schaefer, 1974). For the sake of simplicity, the following assumptions are made: 

1. Uniformly packed bed, channeling or shortcut-effects through the packed bed of catalyst do not occur 
2. The physical properties of the reacting gas (spec. heat capacity, density, etc.) are reasonably described by mean 

values. 
3. Absence of any concentration and temperature gradients within the catalyst particles 
4. Absence of any axial and angular temperature and concentration gradients 
5. Negligible pressure drop along the bed  (constant pressure) 
6. Adiabatic operation. 
 

The dimensional form of the steady-state governing equations can be referred to the work of Hlavacek and 
Kubicek (1972). Formulated in terms of dimensionless parameters (defined in the nomenclature section) they can be 
written as: 

Mass balance: 
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where the geometry factor "a" is used to formulate a generalized equation applicable to tubular (0), radial flow (1), 
and spherical (2) reactors. In both equations the upper sign in the convective term (±) refers to centripetal (CP) flow 
while the lower one corresponds to centrifugal (CF) flow. 

In contrast to the original work of Hlavacek and Kubicek (1972) the expression for the reaction rate is taken 
from the work of Temkin and Pyzhev (1940): 
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where pi are the partial pressures of each component i, k1 and k2 are rate constants for synthesis and decomposition 
and "order" is a catalyst-dependent constant (here order=0.5). Through the assumption of constant total pressure, an 
exponential of the total pressure (pT

(1+order)) is an integral part of the definition for the Damköhler number, Da,  
yielding the dimensionless formulation of the reaction rate shown in Equation (4). 
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The boundary conditions utilized with the governing equations are chosen according to Danckwerts (1953), 
i.e. a discontinuity in the temperature/concentration profiles at the inlet of the bed (closed-closed system) and a zero 
temperature/concentration gradient at the outlet. 

2.2 Derivation of a simplified model 

For a simplification of the governing equations, the Lewis-Number (Le) is assumed to be unitary. This also implies 
that, by definition, the Peclet-Numbers (Pe) for mass and energy are equal: PeM = PeH = Pe. The derivation is 
presented in Appendix A. With this simplification, the mass and energy governing equations can be combined into a 
single equation, Equation (5), with the invariant defined by Equation (6). This invariant relates the temperature rise 
to the conversion in steady-state adiabatic reactors.  
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2.3 Derivation of the Lumped Model 

The numerical solution of the simplified model of this 
reactor is accomplished using equally spaced finite 
differences utilizing only three grid points. Two grid 
points are at the boundaries ("2" & "0") of the reactor 
bed and one point ("1") is in the middle of the bed, as 
seen in Figure 3. 

 

 

 

Figure 3: Schematic of the cylinder with internal grid-
points and utilized coordinates 

The governing equation is therefore approximated as Equation (7): 
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With i=1 (total of three grid points, one internal grid point) one arrives at Equation (8): 
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Utilizing the boundary conditions, the temperatures θ0 and θ2 can be expressed in terms of θ1 as shown in 
Appendix B. Therefore the governing equation of the system is a function of the single parameter θ1, the temperature 
in the middle of the bed. This approximation with a single internal grid point will be used in all derivations and 
results for the remainder of the paper. 
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2.4 Reactor Arrangement 

Catalytic beds and heat exchangers can be arranged in different ways, as shown before. For this study we will utilize 
the Haldor-Topsoe S-200© converter as a guideline. As seen in Figure 2, the S-200 series consists of two reactor beds 
with a so-called "inter-bed" heat exchanger and an optional second heat exchanger ("lower heat exchanger"). The 
heat exchanger is modeled as shown in Figure 4: 

cold bypass

heated
bypass

to 2nd bedfrom 1st bed

θi

θi'

θ2'θ2

1−λ

1−λ

11

 

Figure 4: Setup of the inter-bed heat exchanger 

The heat exchanger is assumed to have no dynamic delay and a co-current flow configuration. Furthermore, 
it is assumed that the densities and heat capacities of both streams are equal. An ideal heat exchanger with 100% 
efficiency will exhibit the temperature profiles shown in Figure 5: 

With the assumption of constant densities and heat capacities, 
the energy balance equation can then be written in terms of temperature 
differences as: 

)())(1( 2 idiid θθθθλ −=−−                                               (9) 
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Introducing a heat-exchanger efficiency, εHE, one can solve for 
both outlet temperatures as,  
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Figure 5: Profiles of heat exchanger 
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The second (“lower”) heat exchanger is modeled in an analogous fashion. The additional equations are 
provided by the mixing points (Equation 13), i.e., 
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2.5 Stability Analysis 

Although not a sufficient condition, the existence of multiple steady states (MSS) is a necessary condition for 
unstable behavior. In order to draw conclusions about the stability of the obtained steady states, one has to introduce 
a dynamic analysis of the system. The steady state governing equation (Equation 5) for each reactor “i” can then be 
formulated as: 
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In the following a linear stability analysis of the steady state solution will be performed. The dynamics of 
finite temperature differences is then determined by the eigenvalues of the Jacobian matrix, ∂Fi/∂θ1

i. A convenient 
way of analyzing the stability of these systems is to plot the determinant, trace and discriminant (Tr²-4D) of the 
Jacobian of the linearized system, as demonstrated in Figure 6. 

 

From such a plot, one can quickly assess the 
different regions of stability. It is a well-known fact 
that only a system with positive values of the 
determinant and negative trace will exhibit stable 
behavior. In addition one can classify the dynamics as 
node-like if the discriminant is positive, while for 
negative values the system will exhibit a focus-like 
behavior. 

One important drawback for the simplified 
system represented by the lumped model is the 
inability to capture oscillatory behavior for a 
configuration with a single inter-bed heat exchanger. 
Indeed, since this system will not exhibit a feedback 
from the second bed, the off-diagonal element of the 
Jacobian will always be zero and imaginary roots 
cannot occur. 

 
   Figure 6: Stability Regions for a two-dimensional system 

0
4
² =−DTr

Tr
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3. RESULTS 

3.1.1 Steady State Solution and Multiplicity Regions without heat exchange 

In the following, the steady-state solutions corresponding to a single bed and to two different multiple-bed 
configurations are shown. Solving a single catalytic bed, as shown in Figure 7, one obtains the following locus of 
steady state solutions for the given set of operating parameters. 

 Figure 7 depicts 
the characteristic S-shaped 
curve steady-state solution, 
indicating the existence of 
multiple steady states 
(multiplicity) for a certain 
range of the Damköhler 
number, Da. The system 
can, depending on Da, 
exhibit one, two or three 
different steady states. The 
influence of the flow 
direction, either centripetal 
(CP) or centrifugal (CF), is 
observed. One can see that 
the effect of the flow 
direction is not very 
important; this effect, 
however, might be masked 
in this model by the 
assumption of constant total 
pressure. 

 

Figure 8 shows the 
solutions of a setup with 2 
reactors in series and no heat 
exchange. From this figure, 
one can observe the same 
multiplicity behavior of the 
first reactor as seen in Figure 
7. For an equal-sized second 
reactor the solution shows that 
multiplicity at the upper 
solution branch of the second 
reactor only occurs due to the 
multiplicity behavior in the 
first reactor. However, 
increasing the size ratio 
(Da2/Da1) one can see that for 
a limiting case of (Da2/Da1)=2 
the second reactor exhibits 
multiplicity independent from 
the first reactor. Furthermore, 
one can note that beyond a 
certain point on the upper 
branch the solutions of 

 
Figure 8: Two reactors in series, no heat exchange (utilized parameters: B=20, 

Pe=10, ε=0.05, ξ0=0.5, a=1, CF flow, pT=200bar, K=1e-14) 

Figure 7: Steady-State Solution for a single bed (utilized parameters: B=20, 
Pe=10, ε=0.05, ξ0=0.5, a=1, CF/CP flow, pT=200bar, K=1e-14)
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different size ratios coincide. This occurs due to equilibrium limitations. 

3.1.2 Combination of two beds with one interbed heat exchanger 

Combining two catalyst beds with an inter-bed heat exchanger now opens a wider window of solutions. Since every 
reactor can exhibit up to three different solutions, the system of two catalyst beds in series will exhibit up to a 
maximum of nine possible steady states. The spectrum of solutions now depends both on the individual Damköhler 
numbers, Da, and the cooling between the reactors. However, the fact that the cooling is not independent, but limited 
due to the feedback, will limit the number of possible steady states of the system. 

A very simple and important mechanism to control the reactor performance is by varying the flow ratios of 
the different streams of the system. In the following the effect of the bypass is demonstrated. 

Figure 9 and Figure 10 show how the parameter “λ”, the fraction of reactants, which enters the reactor 
without preheating (cf. Figure 2), changes the state profile of the system. 

Figure 9 and Figure 10 show how decreasing values of λ lead to a much flatter steady state profile. This also 
shifts the solutions to higher temperatures. Since the amount of reactants bypassed and preheated increases, so does 
the temperature in the reactor, leading to the flatter and stretched profile. The important point to notice is, in other 
words, that through decreasing λ one can achieve the same temperature or concentration difference with a smaller 
Da. 

For any control purposes one also should be aware of the quite drastic change in the shape of the profiles 
imposing a potentially strong dynamics on the controller. 

 In the following, the effect of the preheating of reactants is demonstrated in terms of the flow ratio λ: 

 
Figure 9: Effect of the flow ratios on the steady state solution in terms of temperature in the first 
reactor (utilized parameters: B=20, Pe=10, ε=0.05, ξ0=0.5, a=1, CF flow, pT=200bar, K=1e-14)
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Figure 11 shows the solutions 
obtained for different values of Da with 
varying λ. For large Damköhler-Number 
(125) one can see that the reactor operates at 
the upper steady state only. A decrease in λ, 
which relates to pre-heating the feed through 
the first heat exchanger, leads to increasing 
reactor temperature. For lower values of Da, 
however, one can observe that an increase in 
the pre-heated flow (i.e. decreasing λ) leads to 
multiplicity. For a Damköhler Number of 30, 
for example, the reactor would ignite once λ 
is decreased below 0.4. As the Damköhler 
Number decreases, the system eventually 
reaches a limiting condition (for the example, 
Damköhler Number, Da=17) below which the 
reactor will not ignite by means of 
manipulating λ. Other solutions at higher 
temperatures still exist, but would only be 
realized in cases where the reactor is subject 
to a large perturbation. 

 

Figure 11: Temperature profiles in dependence of λ for various Da (utilized parameters: B=20, 
Pe=10, ε=0.05, ξ0=0.5, a=1, CF flow, pT=200bar, K=1e-14) 

Figure 10: Effect of the flow ratios on the steady state solution in 
terms of conversion in the first reactor (utilized parameters: B=20, 

Pe=10, ε=0.05, ξ0=0.5, a=1, CF flow, pT=200bar, K=1e-14) 
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In principle, this observed behavior also holds for the setup with two heat exchangers. However, since 
visualization in this case is difficult due to an additional parameter (flow ratio µ2), the analysis has been limited to a 
single heat-exchanger configuration. 

Comparing these results with those reported by Pedernera et al. (1999) (cf. Figure 12) one can see that the 
lumped model qualitatively exhibits the same behavior, clearly identifying the effect of the bypass on the process 
multiplicity. 

3.1.3 Combination of two beds with two heat exchangers 

For the combination of two reactors with two heat exchangers (cf. Figure 2), The locus for the steady-state 
solutions changes significantly, as shown in Figure 13.  

 
Figure 13: Steady-State Solution for the arrangement with two heat exchangers (B=20, Pe=10, 

ε=0.05, ξ0=0.5, a=1, CF flow, pT=200bar, K=1e-14, Da2/Da1=4, λ=0.5, µ1=µ2=0.25) 
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Figure 12: Effect of λ according to Pedernera et al. (1999) 
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The locus for the steady-state solutions still shows the typical S-shape. This profile, however, is 
significantly extended. In addition, a smaller multiplicity (S-shaped) region is observed in the higher temperatures 
range. Here the system will exhibit five (5) possible steady state solutions. 

For the system with 
both heat exchangers, the 
lumped model is capable of 
identifying the conditions for 
oscillatory behavior. 

As shown in Figure 14, one 
can observe sustained 
oscillations in the system. 
The temperatures in each bed 
related to each other are 
shown in the phase plane 
depicted in Figure 15, with 
the transient temperature 
shown as well. One can see 
that the first reactor has a 
phase shift compared to the 
second reactor. 

Oscillatory behavior 
has been observed in an 
industrial ammonia converter 
as shown by Morud and 
Skogestad (1998). Since 

these data were obtained for unknown operating conditions, our results cannot be compared directly with that 
reference. It is, however, worth noticing that the behavior predicted by the simplified model bears a strikingly similar 
dynamics, highlighting its potential for establishing control strategies. 

3.2 Temperature Profiles 

The model presented in this work has been proposed in the light of computational simplicity, ultimately favorable for 
real time evaluation of the governing equations. 

Figure 15: Phase plot and transient temperature of the obtained oscillations 

 
Figure 14: Chosen setup for an oscillating system (B=20, Pe=10, ε=0.05, 

ξ0=0.5, a=1, CF flow, pT=200bar, K=1e-14, λ=0.5, µ1=µ2=0.25, (Da2/Da1)=4)

chosen setup 
for oscillations
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 In the following, temperature and conversion profiles for a particular reactor configuration and a selected set 
of operating conditions, will be qualitatively compared with the results obtained from a detailed heterogeneous 
model effort presented by Pedernera et al. (1999). Figures 16 and 17 show the temperature and conversion profiles 
reported by Pedernera et al. (1999): 

 

 The comparison corresponds to the two heat-
exchangers configuration, as shown in Figure 2. The 
operating parameters are listed in Table 1. Figures 18 
and 19 show the temperature and conversion profiles 
for the simplified model, respectively. Since (ideal) 
heat exchangers with purely linear profiles are 

assumed, the temperature profiles of the heat exchangers have not been included. The temperatures at the outlet of 
the first reactor and the entrance of the second reactor do not coincide, due to the presence of a heat exchanger that 
lowers the temperature between the reactors, as well as due to the fact that the Danckwerts’ boundary conditions lead 
to a discontinuity at the reactor inlet. For the case of the conversion profiles, this discontinuity is due to the 
Danckwerts boundary conditions. 
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Figure 16: Temperature profiles of the heterogeneous model from Pedernera et al. (1999) 
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Figure 17: Conversion profiles of the heterogeneous model 

from Pedernera et al. (1999) 

Table 1: Operating parameters for the obtained profiles
Reactors Flow ratios 

Da1*(pT
0.5)=40 Pa0.5 λ=0.8 

Da2*(pT
0.5)=80 Pa0.5 µ1=µ2=0.1 
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 The presented temperature and conversion profiles are 2nd order polynomials based on the three 
temperatures obtained from the governing equation and boundary conditions. 

 
In accordance to the Danckwerts’ boundary conditions, the temperature and conversion profiles present the 

characteristic discontinuity at the inlet and the zero-derivative (of temperature or conversion with respect to position) 
at the outlet. 

The comparison between the reported profiles highlights the fact that high conversion profiles obtained from 
the heterogeneous model have a slower increase towards the end of the bed. This effect might be due to a different 
equilibrium condition in the reactor. These types of effects cannot be captured by the simplified model due to its 
discrete nature. Furthermore, the effect of equilibrium limitations in the second bed become also apparent in the 
configuration under analysis. When the reaction reaches high temperatures, it will therefore also reach its equilibrium 
limits which will prohibit further temperature and conversion rise, with the profiles corresponding to the upper state 
resulting in  flat temperature or concentration profiles (i.e., constant). However, one has to note that the equilibrium 
constant used in this work differs from that used by Pedernera et al. (1999). A comparison between the 
heterogeneous model presented by Pedernera et al. (1999) with the lumped model shows that the temperature and 
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Figure 18: Temperature profiles of the presented model for both beds 
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Figure 19: Conversion profiles of the presented model for both beds 
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conversion profiles are in qualitative agreement. However, in contrast to the much more complex heterogeneous 
model, all the profiles in the lumped model are obtained via a simple 2nd order polynomial based on 3 finite points. 

4. CONCLUSIONS AND SUMMARY 

A simplified reduced-order model for two different autothermal radial flow reactor arrangements has been 
developed. From the steady-state solution of a single bed one can observe that the model still captures the 
multiplicity (see Figure 7) exhibited by fixed-bed reactors. The presence of multiplicity predicted by the model is 
also consistent with qualitative changes in all parameters. 

Multiplicity of steady states was observed for a single reactor as well as multiple reactor(s) - heat 
exchanger(s) setups. It has been shown how different ratios of the Damköhler Number change the multiplicity 
behavior (Figure 8). In the (second) setup including two feedback loops, one also can observe a case of five (5) 
possible steady states for certain combinations of Damköhler Numbers (Figure 13). This suggests that autothermal 
setups exhibit even a wider range of solutions. 

The effect of the bypassing (preheating reactants) has also been demonstrated (Figure 9). Preheating of the 
reactants leads to rather drastic changes of the state profiles. This reflects a potential strong dynamics of the system, 
which is especially important in the light of implementing control strategies. Furthermore, it has been shown (Figure 
11) how the feedback mechanism influences the multiplicity behavior. It is possible to either ignite or extinguish the 
reactor by changing the by-pass flow ratio, “λ” (cf. Figure 2). This result is in agreement with those reported by 
Pedernera et al. (1999) in a previous contribution. 

A stability analysis based on a perturbation of the steady state solution has been performed. This analysis 
reveals that the states will all be either stable (focus) or unstable (focus) for the arrangement with a single heat 
exchanger. No node- or oscillatory behavior can be observed due to the missing feedback from the second reactor. It 
has been demonstrated, on the other hand, that the reactor setup with two heat exchangers indeed exhibits oscillatory 
behavior (cf. Figures 14 and 15). Furthermore, a dynamic stability analysis, also based on a perturbation from the 
steady state, showed the stable and unstable operating points. 

 In addition, a qualitative comparison of the temperature and conversion profiles with those calculated from 
detailed models (Pedernera et al., 1999) showed qualitative agreement despite the simplified nature of the lumped 
model. 

Since the developed model is of a simplified nature, it is advantageous for real-time evaluation in control 
applications. Controlling this kind of reactor setup can be achieved by controlling the flow rates of reactants directly 
fed to the first reactor and reactants preheated by either the first or second heat exchanger. Based on the developed 
model, an approach to control the reactor utilizing Cell-to-cell Mapping, a novel computational tool for a global 
analysis of nonlinear dynamic systems, was presented by Chen et al. (2002) and it will the subject of a forthcoming 
contribution. 

Further research includes the stability analysis for the system with two heat exchangers in a more detailed 
fashion. So far the analysis revealed stable behavior for positive slopes in the Da - temperature state space and 
unstable behavior for negative slopes as shown in classical stability analysis by van Heerden (1958). Furthermore the 
effect of the simplifying assumptions should be investigated. This could reveal if some of the assumptions can be 
eliminated without increasing the complexity of the model above certain critical levels. 
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APPENDICES 

Appendix A: Derivation of a Simplified Model assuming Le=1 

For a simplification of the governing equations the Lewis-Number is assumed to be unitary. This also indicates by 
definition that the Peclet-Numbers are equal (PeM=PeH=Pe). As shown above, the dimensionless mass and energy 
balances are: 

Mass Balance 
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subject to the boundary conditions (according to Danckwerts (1953)): 
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Multiplying the mass balance by the dimensionless adiabatic temperature rise, B, and adding both balances, provided 
that both Peclet numbers are identical (PeM=PeH=Pe), one obtains: 
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In other words, the invariant 

θθθθ + BY = constant 

is identified. This derivation can be completed if we resort to the boundary conditions, and combine them using the 
same approach, i.e. (shown for CF, however the same holds for CP): 

)(*)(
:at 

0

0

BYBPeBYa +−=
∂
+∂

=

θ
ξ

θξ

ξξ
 

in other words, 

θθθθ + BY = B 

In summary the system can be represented by a single equation,  
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Note that with these changes now of course also the boundary conditions change accordingly (see Appendix B). 

 
Appendix B: Derivation of a Lumped Model for Multiplicity Analysis  

In order to obtain a lumped model for the stability analysis of the system, we first approximate the derivatives with 
equations in differences. The following derivations are expressed in terms of the indices 0, 1 and 2, i.e. a single 
internal grid-point. The function for the temperature is then approximated with a 2nd-order polynomial (this is a 
natural assumption if we follow the method of weighted residuals, for instance) 
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So one can express the slope of the temperature gradient as the derivative of the dimensionless temperature: 
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Solving for the constants “b” and “c”: 
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Solving for the Boundary Conditions, one can show that (θ0
 represents inlet conditions as reference): 

Centrifugal (CF) Flow Configuration: 
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In case of one interior discretization point, the governing equation is written as: 
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The reduction to a single equation requires one to express θ0 and θ2 as functions of θ1 to arrive at a single equation 
with the unknown θ1. Solving both boundary conditions for the temperatures, one can rewrite the system as: 

Centrifugal (CF) Flow Configuration: 
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Centripetal (CP) Flow Configuration: 
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For reasons of clarity the equations are not combined, but it becomes apparent that the system can now be 
characterized by a single parameter, “θ1”. 
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