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1. Introduction

Let £2 be a bounded domain in R? and let p: £2 — (1, +oc) be a measurable function. In this work, we study the H?

global regularity of the weak solution of the following problem
—Appl = in 2

pX) fi ’ (1.1)

u=g on o2,

where Apu = div(|]Vu|P®=2vuy) is the p(x)-Laplacian. The hypothesis over p, f and g will be specified later.

Note that, the p(x)-Laplacian extends the classical Laplacian (p(x) =2) and the p-Laplacian (p(x) = p with 1 < p < 400).
This operator has been recently used in image processing and in the modeling of electrorheological fluids, see [3,5,24].

Motivated by the applications to image processing problems, in [8], the authors study two numerical methods to ap-
proximate solutions of the type of (1.1). In Theorem 7.2, the authors prove the convergence in W1-P")(£2) of the conformal
Galerkin finite element method. It is of our interest to study, in a future work, the rate of this convergence. In general, all
the error bounds depend on the global regularity of the second derivatives of the solutions, see for example [6,22]. However,
there appear to be no existing regularity results in the literature that can be applied here, since all the results have either
a first order or local character.

The H? global regularity for solutions of the p-Laplacian is studied in [22]. There the authors prove the following: Let
1<p<2 geH*), feli(2) (g>2)and u be the unique weak solution of (1.1). Then:

o If 382 € C% then u € H2(2);

* Supported by UBA X117, UBA 20020090300113, CONICET PIP 2009 845/10 and PIP 11220090100625.
* Corresponding author.

E-mail addresses: ldpezzo@dm.uba.ar (L.M. Del Pezzo), smartin@dm.uba.ar (S. Martinez).

URL: http://cms.dm.uba.ar/Members/ldpezzo (L.M. Del Pezzo).

0022-247X/$ - see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jmaa.2013.09.016


http://dx.doi.org/10.1016/j.jmaa.2013.09.016
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:ldpezzo@dm.uba.ar
mailto:smartin@dm.uba.ar
http://cms.dm.uba.ar/Members/ldpezzo
http://dx.doi.org/10.1016/j.jmaa.2013.09.016
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmaa.2013.09.016&domain=pdf

940 L.M. Del Pezzo, S. Martinez / J. Math. Anal. Appl. 410 (2014) 939-952

o If 2 is convex and g =0 then u € H2(£2);
e If 2 is convex with a polygonal boundary and g =0 then u € C1%(§2) for some « € (0, 1).

Regarding the regularity of the weak solution of (1.1) when f =0, in [1,7], the authors prove the C ;OC” regularity (in the
scalar case and also in the vectorial case). Then, in the paper [15] the authors study the case where the functional has the
so-called (p, q)-growth conditions. Following these ideas, in [17], the author proves that the solutions of (1.1) are in C1¢(§2)
for some o > 0 if £ is a bounded domain in R¥ (N > 2) with C'¥ boundary, p(x) is a Hélder function, f € L°(£2) and
g € CLY(£2); while in [4], the authors prove that the solutions are in Hﬁm({x € 2: p(x) <2} if p(x) is uniformly Lipschitz

(Lip(£2)) and f e W 17(2)NL®(%).

Our aim, it is to generalize the results of [22] in the case where p(x) is a measurable function. To this end, we will need
some hypothesis over the regularity of p(x). Moreover, in all our result we can avoid the restriction g =0, assuming some
regularity of g(x).

On the other hand, to prove our results, we can assume weaker conditions over the function f than the ones on [4].
Since, we only assume that f € L90(£2), we do not have a priori that the solutions are in C1'%(£2). Then we cannot use it
to prove the H? global regularity. Nevertheless, we can prove that the solutions are in C1%(£2), after proving the H? global
regularity.

The main results of this paper are:

Theorem 1.1. Let §2 be a bounded domain in R? with C% boundary, p € Lip(£2) with p(x) > p1 > 1, g € H%(£2) and u be the weak
solution of (1.1). If

(F1) f e L99(£2) with q(x) > q1 > 2 in the set {x € 2: p(x) < 2};
(F2) f=0intheset{xe £2: p(x) > 2},

thenu € H2(£2).

Theorem 1.2. Let $2 be a bounded domain in R? with convex boundary, p € Lip(£2) with p(x) > p1 > 1, g € H*(£2) and u be the
weak solution of (1.1). If f satisfies (F1) and (F2) then u € H2(£2).

Using the above theorem we can prove the following:

Corollary 1.3. Let £2 be a bounded convex domain in IR? with polygonal boundary, p and f as in the previous theorem, g € W90 (£2)
and u be the weak solution of (1.1) then u € C1%(§2) for some 0 < & < 1.

Observe that this result extends the one in [17] in the case where §2 is a polygonal domain in R2.

Organization of the paper. The rest of the paper is organized as follows. After a short Section 2 where we collect some
preliminary results, in Section 3, we study the H2-regularity for the non-degenerated problem. In Section 4 we prove
Theorem 1.1. Then, in Section 5, we study the regularity of the solution u of (1.1) if £2 is convex. In Section 6, we make
some comments on the dependence of the H%-norm of u on p;. Lastly, in Appendices A and B we give some results related
to elliptic linear equation with bounded coefficients and Lipschitz functions, respectively.

2. Preliminaries

We now introduce the spaces LP()(§2) and W1-PO)(£2) and state some of their properties.

Let £2 be a bounded open set of R" and p : 2 — [1, +00) be a measurable bounded function, called a variable exponent
on £2 and denote p; :=essinf p(x) and p; := esssup p(x).

We define the variable exponent Lebesgue space LP()(£2) to consist of all measurable functions u : 2 — R for which the
modular

0p() () :=/|u(x)|p(x) dx
2

is finite. We define the Luxemburg norm on this space by

lull per gy == inf{k > 0: 0pe)(u/k) < 1}.

This norm makes LP¢)(£2) a Banach space.
For the proofs of the following theorems, we refer the reader to [12].
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Theorem 2.1 (Holder’s inequality). Let p, q, s : 2 — [1, +00] be measurable functions such that

1 n 1 1
px)  qx)  sKx)
Then the inequality

I £&8lILs0 2y < 21 fllpor (@) 180 (2
holds for all f € LPO(2) and g € LI0)(£2).

Let WIPO(2) denote the space of measurable functions u such that u and the distributional derivative Vu are in
LP)(£2). The norm

||U||W1,p(~>(_(z) = lullpey + |||VU|HP(,)
makes W1-P()(£2) a Banach space.

Theorem 2.2. Let p’(x) be such that 1/p(x) + 1/p’(x) = 1. Then LP' ©)(£2) is the dual of LP©)(£2). Moreover, if p1 > 1, LPO)(£2) and
W1PO (2) are reflexive.

We define the space Wg'p(')([)) as the closure of the C5°(£2) in W1LPO(2). Then we have the following version of
Poincaré’s inequity (see Theorem 3.10 in [21]).

Lemma 2.3 (Poincaré’s inequity). If p : §2 — [1, +00) is continuous in £2, there exists a constant C such that for every u € Wé’p(') (£2),
lullpo @y < CIVUllLpo ()

In order to have better properties of these spaces, we need more hypotheses on the regularity of p(x).
We say that p is log-Hélder continuous in 2 if there exists a constant Cp, such that

Clog
P —p()| < —— B Vxyef.
10g(e+ W)

It was proved in [10, Theorem 3.7], that if one assumes that p is log-Holder continuous then C*°(£2) is dense in
WLPO() (see also [9,12,13,21,25]).
We now state the Sobolev embedding theorem (for the proofs see [12]). Let

400 ifp(x) >N

be the Sobolev critical exponent. Then we have the following:

Theorem 2.4. Let §2 be a Lipschitz domain. Let p : 2 — [1, 00) and p be log-Hélder continuous. Then the imbedding W 1P (£2) —
LP"O)(2) is continuous.

3. H2-regularity for the non-degenerated problem for any dimension

In this section we assume that £2 is a bounded domain in RN, with N > 2.
We want to study higher regularity of the weak solution of the regularized equation,

X)—2
—div((e + |Vu|2)p<2) Vu)=f ing, (3.2)
u=g onds2,

where 0 < £ <1, and f €Lip(£2) and g e WIPO ().
The existence of a weak solution of (3.2) holds by Theorem 13.3.3 in [12].

Remark 3.1. Given ¢ >0, p € C*(£2) for some og > 0, and g € L°(£2) we have the following results:

(1) Since f, g € L°°(82), by Theorem 4.1 in [18], we have that u € L*°(£2).

(2) By Theorem 1.1 in [17], u € c,l(;f‘(g) for some o depending on p1, p2, |ulli~e) and || flli~(2). Moreover, given

£20 CC L2, |[ullcre(g, depends on the same constants and dist(§2o, 352).
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(3) Finally, by Theorem 1.2 in [17], if 822 € C''¥ and g € C1:¥(8£2) for some y > 0 then u € C"%(£2), where a and
lullcre(p) depend on p1, p2, N, [ullL=(2), [IPllceo(2), @0 and y.

We will first prove the H2-local regularity assuming only that p(x) is Lipschitz. Then, we will prove the global regularity
under the stronger condition that Vp(x) is Holder.

3.1. H?-local regularity

While we were finishing this paper, we found the work [4], where the authors give a different proof of the H2-local
regularity of the solutions of (3.2). Anyhow, we leave the proof for the completeness of this paper.

Theorem 3.2. Let p, f € Lip(§2) with p1 > 1 and u be a weak solution of (3.2), then u € H2 (£2).

loc

Proof. First, let us define for any function F and h > 0,
F(x+h) — F(x)

h )
where h = hey, and ey is a vector of the canonical base of RN,

Let 7(x) = £(x)2Ahu(x) where & is a regular function with compact support. Therefore, if we take v, = (|Vu|? + &)1/2
and h < dist(supp(&), 352), we have

AMF(x) =

‘ﬂw@VW”VM&VMMMki/ﬂ@MMM,
2

2
/(vg(x+h)”("+h)‘2Vu(x—|—h),Vn(x)>dx=/f(x+h)n(x)dx.
2 2

Subtracting, using that Vi = 26 VE Ahu + £2Ah(Vu) and dividing by h we obtain

I= /(Ah(vg(x)i’(")*zw), AM(Vu))e? dx
2
=—2[(Ah(v8(x)p(")_2Vu),énghu)dx+/$2Athhudx
2

2
1

=2/</vg(x+ht)p("+ht)_2Vu(x+ht) dt)%(&VéAhu)dx
k

2 o
+[$2Athhudx
2

=1+

Now, let us fix a ball Bg such that B3g CC £ and take £ € C3°(£2) supported in Bag such that 0< & <1, £ =1 in By,
|VE| < 1/R and |D%&| < CR™2.
By Remark 3.1, there exists a constant C; > 0 such that |Vu| < Cq in Bsg, therefore we get

C C
11<2/ §|Ahuxk|gdx+2/ F|Ahu|dx

Bar Bag
C
< E/|A*‘(Vu)|,§dx+CRN—Z.
Bag

On the other hand, since f is Lipschitz we have that
|f(x+h) — f(0)| < Cah
for some constant C, > 0. This implies that

I < CoRN.
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Therefore, summing II and IIl, and using Young's inequality, we have that for any § > 0

1< / |AM(vu)[*e2dx + C, (3.3)
Bar

for some constant C depending on R and 6.
On the other hand observe that I = I + I, where

L= % /((vg(x—i-h)p(”h)_zVu(x—i-h) — Ve (PEW 2y (x)), AP (Vu))e? dx,
Bag
and
Vu(x)
Ve (x)?2'

I = % f<(v8(x)p("+h> — Ve (x)PW)

Bar

Ah(Vu)>§2dx.

Using that p(x) is Lipschitz and the fact that |Vu(x)| < C1 we have that, for some b between p(x + h) and p(x),
p(x+h) —px)
h

for some constant C > 0 depending on p1, p2, &, C1 and the Lipschitz constant of p(x).
Therefore, we have that

1
Ve PO — v (0P| = <C,

ve ()P log(ve (x))

I, <CCre7! /|Ah(Vu)]$2dx.
Bar

By (3.3), the last inequality and using again Young’s inequality we have that, for any é > 0,

I <8 / | A" (V)2 dx +C, (3.4)
Bar

for some constant C > 0 depending on p1, pa, &, C1 and the Lipschitz constant of p(x).
To finish the proof, we have to find a lower bound for I;. By the well-known inequality, we have that

(Ve (x4 0)PED 293 (x 4 ) — v )PED2Tu(x)), (Vux+h) — Vu®)) > Ce|[Vux + h) — Vu@)|,
where

_ e(Px+h)—2)/2 if p(x+h)>2,
€ (p(x+h) — NNePHD=2/2 it hx + h) < 2.

Therefore, using that p; > 1, we arrive at

112/Ch’2|Vu(x+h)—Vu(x)‘zgzdx:C/]Ah(Vu(x))yzszdx.
B2R BZR

Finally combining the last inequality with (3.4) we have that

/|A”(Vu(x))\2dx <C(N,p, f, ).

Br

This proves that u € H2 (2). O

loc
3.2. H?-global regularity

Now we want to prove that if f € Lip(£2) and g € C1-A(3£2), the regularized equation (3.2) has a weak solution u €
C2(£2) N () for an o € (0,1). We already know, by Remark 3.1, that u € C1**(§2). Then, we only need to prove that
u e C3(2).

Lemma 3.3. Let £2 be a bounded domain in RN with 92 € C''¥, p e C1F(2) N C* (), f € Lip(£2) and g € C'#(32). Then, the
Dirichlet Problem (3.2) has a solution u € C2(§2) N C1¥(£2).
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Proof. Observe that by Theorem 3.2, we know that the solution is in Hﬁx(ﬂ). Then for any 2’ CC £2 we can derive the
equation and look at the solution of (3.2) as the solution of the following equation,

{ Leu=a(x) in$2, (3.5)

u=u onas2’.
Here,
&
Leu :aij(x)uxixj
with
x;Ux;

u 1
a5 (x) = 8ij + (p(x) — 2) R ve=(e+|VuP?)? and

&

a:(x) = In(ve)(Vu, Vp) + fva P (3.6)

The operator L is uniformly elliptic in £2, since for any £ € RN

min{(p1 — 1), 1}|§* < a§i&&; < max{(p2 — 1), 1}|§*. (3.7)

On the other hand, by Remark 3.1, u € C1®(£2). Then, aj; € C¥(£2), since ¢ > 0. Using that f € Lip(£2), we have that

a e CP($2) where p = min(e, B). If 82’ € C2, as u is the unique solution of (3.5), by Theorem 6.13 in [19], we have that
u € C%P(§2). This ends the proof. O

Remark 3.4. By the H? global estimate for linear elliptic equations with L°°(£2) coefficients in two variables (see Lemma A.1
and (3.7)) we have that

lull g2y < Claell 2oy + 1€l H2(2))

where u is the solution of (3.2) and C is a constant independents of &.
4. Proof of Theorem 1.1

Before proving the theorem, we will need a global bound for the derivatives of the solutions of (3.2).
Lemma4.1. Let f € L10(2) with ' (x) < p*(x), g € WIPO(2), & > 0 and u, be the weak solution of (3.2) then

IVuellpo o) < C

where C is a constant depending on || f || .0 (), [1&€llw1.p0)(52) but not on e.
Proof. Let

_ [ 1 2 | \PX)/2
J(v) ._([p(x)(ww +¢€) dx.

By the convexity of | and using (3.2) we have that

J(ue) < J(g) — /(|Vug|2 +6) P 2Vu. (Ve — Vue) dx
2

<c(1 +/f<ua —g)dx)
2

< C(l + ||f||L4(~)(Q)”u8 - g”Lq’(»)(_Q))
<C(1+ I fllLao () IVUe — Vg”LP(')(_Q))v

where in the last inequality we are using that WP (2) < LP"0)(£2) continuously and Poincaré’s inequality.
Thus we have that there exists a constant independent of & such that

f Vg [P® dx < C(1+ | Vel o o))
2
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and using the properties of the LP)(§2)-norms this means that

||Vu€||'Z’p(,)(Q) < C(l + ”VUSHLP(‘)(Q))v

for some m > 1. Therefore ||Vug || p¢) (g is bounded independent of &. O

To prove Theorem 1.1, we will use the results of Section 3. Therefore, we will first need to assume that p € C1-#(2) N
C(2).

Theorem 4.2. Let 2 be a bounded domain in R? with C2 boundary, p € C1#(£2) N C% (2) with p(x) > p1 > 1, g € H*(£2) and u
be the weak solution of (1.1). If f satisfies (F1) and (F2) then u € H*(£2).

Proof. Let f; € Lip(£2) and g, € C%%(§2) such that

fe — f strongly in L1°(£2),
g — g strongly in H2(£2),
as € — 0. Observe that, since f(x) =0 if p(x) > 2, we can take f, =0 in {x € 2: p(x) > 2}.
Now, let us consider the solution of (3.2) as the solution of
52u 52u
an(X) Py +2a12(x) z(x) > =a:(x) ing,
X]
Ug = 8¢ onads2,

where af;, a3,, af,, a. are deﬂned as in Lemma 3.3, substituting f and g by f. and g, respectively. By Lemma 3.3 we
know that u, € C2(£2) N CL¥(2).
First we will prove the {ug}¢c(0,1] is bounded in H2%(£2). By Remark 3.4, we have that

luellyz(o) < C(“as(x) HLz(_Q) + 118 ||H2(.(2))
C(|In(ve)Vuevp ”LZ(Q) + | fev?P “LZ(Q) +18ellh2(@2))- (4.8)
Taking 21 = {x € £2: |Vug(x)| > 1}, using that p(x) is Lipschitz and Holder’s inequality, we have

1/2

lIn(ve)Vue Vpl 2 o1 VUellpo g,

< C o) Vue | +C. (4.9)

() =

On the other hand, since q(x) > g1 > 2, we have that ¢’(x) < p*(x). Then, as | fellpao (o) and [|gellp2() are bounded
independent of &, using Lemma 4.1 we conclude that [|Vugllp)(g) is uniformly bounded.
Observe that, for all s > 0 there exists a constant C > 0 such that

In(ve) < Cv¥2 < C|Vue|? in 21,
thus

[In?(ve)| Ve | ”LP’(')(QH <C[Ivug'? ||Lﬂ’(~>(91)

(1+s)
< C“Vué‘ ”Lp/(.)(prs)(gl)

(1+s)
g C”uSHHZ(Ql)'

In the last line, we are using that 2* = oo, since N = 2.
Then, by the last inequality, (4.8) and (4.9), we get

ey < C(lue il + 1 feve |20 +1)- (4.10)
Taking
Ar={xe: px)=2} and Ay ={xeR: pkx) <2}
and using that f; =0 in {x € £2: p(x) > 2}, we have that
[ feve? ”LZ(.Q) S Ifellizay) + ||fsv§_p ||L2(A2)'

Since || fell;2(a,) is bounded, to prove that {ug}sc(0,1] is bounded in H2(£2), we only have to find a bound of ||f5v§_p 124
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Let us define in A, the function
1
~. v | 2p0—3 +1 if o5 q(x) + <px) <2,
109 =1 g0 , 4 " L3
2 T ifpX) < 755 + 3-

It is easy to see that 2 < q(x) < q(x) for any x € A,.

On the other hand, let us denote w(x) = q%g)(i)z and y (x) = u(x)(2 — p(x)) then

2
1<1+—<y(x)<max{2,2+

8
} Vx e Aj.
q2 2

a1 —
Now, using Holder's inequality with exponent q(x)/2, we have
2—p 2—p
“ f8v€ ||L2(A2) < C”f&‘ ”Lf](')(AZ)” Ve HL;L(-)(AZ)' (411)

Then, if [|[vellyo sy < 1 we have IIVS ||Lﬂ<>(A2) 1 and since g(x) < q(x) we get

[ feve® ||L2(A2) <C

If [Vlly0(a, = 1, we have

2-p 2-p1 2-p1
1V2 7P s agy < WVellZEL, < CO+IVuNE DL, ), (4.12)

where in the last inequality we are using that ¢ < 1.
Since 2* =00 and 1 < y1 < Y (X) < ¥2 < 00, by the Sobolev embedding inequality, we have that

2—p1 2—pq 2—pq
IVuelZ 0, < Clluel?aPt < Cllul 2Py .

Combining this last inequality with inequalities (4.12), (4.11), (4.10) and the fact that q(x) < q(x), we get

145)/2 2-
luellyz(o) < C(HUSH(HZ(g + ”u’“’”Hzf-;z) +1).

Finally, we get that for any 0 <s < 1 there exists a constant C = C(p, g, f,s) such that
e ll 2oy < C.
Then, there exists a subsequence still denoted {ug}se0,1) and u H'(£2) such that
ug — u strongly in H'(£2),
U —~u weakly in H2(£).

It is clear that u satisfies the boundary condition.
Lastly, by Proposition 3.2 in [2], there exists a constant M > 0 independent of ¢ such that

(e +1Vue2) % Vg — (e + V) % Vu| < M|V, —w)[P® ! (413)

for all x € £2. Then, passing to the limit in the weak formulation of (3.2) and using the above inequality, we have that

/|Vu|p(")’2VuV(pdx:/f(pdx

for any ¢ € C3°(£2). Therefore u € H2(£2) and solves (1.1). O
Now, we are able to prove the theorem.

Proof of Theorem 1.1. First, we consider the case p € C1(2). Let p, € C*®(£2) such that p; — p in C1(£2). Now, we define

_ ) fe ifpe(® <2,
fg(x)_{o if pe(x) > 2. (414)

Observe that f, — f in L1Y(£2) as ¢ — 0.
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Then, by Theorem 4.2, the solution u, of (1.1) (with p. and f, instead of p and f) is bounded in HZ(£2) by a constant
independent of ¢. Therefore, there exists a subsequence still denoted {ug}sc0,1) and u H2(£2) such that

U, —u in H(2),
U —~u weakly in H2(£). (4.15)

It remains to prove that u is a solution of (1.1). Let ¢ € C§°(£2), then

/fgpdx:/|Vug|l’s<x>*2wgv(pdx
2 2

=/|Vug|p(")_2Vu8V(pdx+/(|Vu€|p£(")_2 — |Vug [PW=2)Vu, Ve dx. (4.16)
2 2

Therefore, using that H2(£2) — W1PO(£2) compactly, we have that

/|Vu€|p(")_2Vu5V(pdx—>/|Vu|p(")_2VuV<pdx. (417)
2 2

On the other hand, we have

(x—1 x-1

= [Vue ()| log(|Vite (%) |) (pe (%) — p(0)),

where by (X) = p.(x)0 + (1 —0)p(x) — 1 for some 0 < 6 < 1. Therefore, using that 2* = co and that p, — p uniformly, we
obtain

Ve ()| — | Vg (0]

/(|Vug|p8(")_2 — |Vue PP Vu Vo dx — 0. (4.18)
22

Then, using that f, — f in LI0)(£2), (4.16), (4.17) and (4.18), we conclude that u is a solution of (1.1).
Now, we consider the case p € Lip(£2). By Lemmas B.1 and B.2 there exists p, € C!(£2) such that |£2 \ £29| < & where

20={x€2: pe(x) =p(x) and Vp.(x) = Vp(x)}.

We define f. as in (4.14). Then, the solution u, of (1.1) with pe and f. instead of p and f is bounded in H%(£2) by a
constant independent of €. Therefore there exists a subsequence still denoted {ug}sc0,1] and u € H2(£2) satisfying (4.15).

Lastly, we prove that u is a solution of (1.1). Let ¢ € C3°(£2). By Hélder’s inequality, since 2* = oo and by (3) of Lemma B.2
we have

f (IVug [Pe®=2 — |Vu, |PO=2) Vi, Ve dx

21920
< C(IIVugllzre () 1 llLre (2\20) + 1 Ve llie @) 1T1p(2\20))
< Cllugllpzeg) (1T1Lpe (2\20) + I llLr(20020))-

Then, since ||ug || y2(q) is bounded independent of ¢ and |2 \ £20| < & we obtain that

f (IVug [Pe®=2 — |Vu, [PW=2) Vi, Vo dx — 0.
£2\20

Therefore, since (4.16), (4.17) again hold, using that f. — f in L90(£2), and the above equation, we conclude that u is a
solution of (1.1). O

5. The convex case

Lastly, we want to prove that the solution is in H?(£2) if we only assume that 92 is convex. We want to remark
here that this result generalizes the one in Theorem 2.2 in [22] in two ways. In that paper the authors consider the case
p = constant and g = 0. Instead, we are allowed to cover the case where g is any function in H2(£2) and p(x) € Lip(£2).

Remark 5.1. Let £2 be a convex set and p: £2 — [1, c0) be log-continuous in £2. Then, there exists a sequence {§2m}men Of
convex subset of £ with C? boundary such that £, C £2,,41 for any me N and |2 \ £2,] — 0.
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(1) Then, there exists a constant C depending on p(x), |§2| such that

1,p(-
VIlpo ) < CIVVILpO g, YV € WoP(2m),

for any m € N. This follows by Theorem 3.3 in [21], using that §2;; C 2,41 for any m € N.
(2) The Lipschitz constants of §2;; (m € N) are uniformly bounded (see Remark 2.3 in [22]). Therefore, the extension opera-
tors

Eim: WEPO(@Q) - WIPO(Q) and  Eap: H?(2m) — H?(2)

define as Theorem 4.2 in [11] satisfy that ||Eq | and ||E2 | are uniformly bounded.
(3) By (2) and Corollary 8.3.2 in [12], there exists a constant C independent of m such that

VIl ) < ClVIwro0 (g YV € WP (2m),

for any m e N.

We want to remark that all the constants of the above inequalities are independent of p; (see Section 6 for the applications).

Proof of Theorem 1.2. We begin taking {£2,}men as in Remark 5.1 and u;, the solution of
—ApwlUm=f in2p,
Un=2g on d082n,.
By Theorem 1.1, upm € H2(£2,) for any m € N. Moreover, u,, solves
L™t = @ ()um xx; =" (x)  in 2m,
Un=2g on 482,
with
Um, x; (X)um,xj %)
[Vum(x)]?
a" (x) = In(| Vum () |){Vum ), VP X)) + f(0) | Viim (%) |

Then vy, = upy — g solves

ai () =8+ (p(0) - 2)

’

2-p)

L™y =—L"g+d™(x) inQ2p,
vn =0 on d$2n,.

Thus, using that v,; € H2(2) N Hg,(.Qm) and since the coefficients a’;}(x) are bounded independent of m, we can argue as
in Theorem 2.2 in [22] and obtain

IVinll 2 < C|—L™g + FIVUR> PO +1n(|Viim|) Vitm| | 12
<C([1Vum? PO oo+ [0 Vm ) Vil | 2, +1) (5.19)

where the constant C is independent of m.
As in Lemma 4.1 we can prove, using Remark 5.1(1) and (3), that the norms ||[Vum|| p0) (g, are uniformly bounded.
Therefore, proceeding as in Theorem 4.2, we obtain

[0Vt )1 Vumil 2 ) + £V |2,y < CUVURIL S g, VIS, 4 1), (5.20)

with C independent of m, where

21m={x€Qn: |Vup®|>1} and Aym={xe2m: pkx) <2}.

Now, using Remark 5.1(3) and (2), we have that for any r > 1

IVmllwir e < I1E2mVmllwir o)
S ClE2mVmllg2 (o)
< Clvmllipzoy) (5.21)

where C is independent of m.
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Therefore, using (5.19), (5.20) and (5.21), we get

(1+s)/2 2—pq (1+s)/2 2—p1

1+s)/2 2—
<C(Ivmlyaip s + Ivmlipls, ) +1),

where the constant C is independent of m. This proves that {|[vmlly2(g,,)Imen is bounded.
Now we have, as in the proof of Theorem 2.2 in [22], that there exist a subsequence still denote {v;;}men and a function
v e H2(£2) N H}(£2) such that

vm — v strongly in H' (')

for any £2’ cC £2. Then u=v + g € H%(£2) and

um — u strongly in H'(£2')

for any £’ CC £2. Thus, using (4.13), we have

Vi PO 2 Vuy — [VulP®~2Vu  strongly in LP O (£2") (5.22)

for any 2’ CC £2.
On the other hand, for any ¢ € C§°($2) there exists mo such that for all m >mg

/|Vum|p(")_2VumV(pdx=/f(pdx.
2m 2m

Therefore, using (5.22) we have that u is a weak solution of (1.1). O

Proof of Corollary 1.3. By the previous theorem we have that u € H2(£2), then we can derive Eq. (1.1) and obtain

—a;j(X)uxx; = ax) in £,
u=g onas2,

where

ty, (X)ix; (%)
V()2

a(x) =In(|Vu®)|)(Vu), Vp) + f(X)‘Vu(x)‘z_p(X),

aij (x) = 8 + (p(x) — 2)

’

Using that f e L10)(£2) with q(x) > q1 > 2 and following the lines in the proof of Theorem 4.2, we have that a(x) € L5(£2)
with s > 2. Therefore, by Remark A.3, we have that u e C1%(2). O

6. Comments

In the image processing problem it is of interest the case where p; is close to 1. By this reason, we are also interested
in the dependence of the H2-norm on py.

If N=2, g € H*(£2) and u, is the solution of (3.2), we have by Lemma A.1, (3.6) and (3.7), that there exists a constant
C independent of p; and € such that

C
m(”ae l2@) + €l n20))-

where ¥ =1 if £ is convex and k = 2 if 3§2 € C2. Therefore, using that the Poincaré inequality and the embedding
W1LPO(2) < LP"O () hold in the case p; =1 and following the lines of Theorem 1.1 and Theorem 1.2 we have that

luellpz(@) < (

C
lullnece) < e
T (-1

where the constant C is independent of py.
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Appendix A. Regularity results for elliptic linear equations with coefficients in L>°
Let £2 be a bounded open subset of R? and
Mu = ajj(X)uxx;,
such that a;j =aj; and for any £ e RN
MEP <aij(0EE; < AlEP,
and

M1 <ap(x) +axnx) <Mz ing2

where A, A, M1 and M, are positive constant.
In the next lemma, we will give an H2-bound for solutions of

Mu=f ing2,
u=g onoas2,

(A1)

(A2)

(A3)

In fact, the following result is proved in Theorem 37, IIl in [23], but the dependence of the bounds on the ellipticity and the

L°°-norm of (a;j(x)) are not explicit. Then, following the proof of the mentioned theorem we can prove

Lemma A.1. Let 2 be a bounded domain in R?, f € L?(£2) and g € H?(£2). Then, if u is a solution of (A.3) and u € H2(£2) we have

that

C
lullpz(e) < F(”f”LH.Q) +llgln2(@2))

where k = 1if 2 is convex and k = 2 if 3§2 € C? and C is a constant independent of A.

Proof. In this proof, we denote uj; = uxy; for all i, j=1,2 and C is a constant independent of 1.
First, we consider the case g =0. Using (A.1), we have that

2 2 2
(a11(0) + a2 (0) (U3, — unyun) = Z jjUgillkj — Au Z ajjuij = A Z up; — Auf (x).

i,j,k=1 ij=1 ik=1
Then, using Young’s inequality, we get
A 2 4
2 2 2
us < FO° +uj; —urtuog,
ZMMHMNDZR‘MM®+M®) 2

ik=1
and by (A.2), we have that

2 2 c )
Z Uy < pf(x) + X(uu — unuzz)-
ik=1
Now, using (37.4) and (37.6) in [23], we have that for any u € H2(£2)

du\’H
/(u%z—unuzz)dx:—/(%) 5ds
2 7]

where H is the curvature of 3£2. If §2 is convex, then H > 0 and therefore, using (A.4) and (A.5), we have that
C
2
ID UHLZ(Q) < x||f||L2(9)~
In the general case, we can use the following inequality

i\ 2 2
/<5> ds<C<(1+8])/|Vu|2dx+8/2ulzidx>
FYe) 2

Q ik=1

for any 8 > 0. See Eq. (37.6) of [23].

(A4)

(A.5)

(A.6)

(A7)
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Then, by (A.4), (A.5), using that H is bounded and (A.7) (choosing § properly) we arrive at

2
[ (oo [
o k=1 o s

On the other hand, using that Lu = f in £2, (A.1) and the Poincaré inequality, we have

C
IVullpz(oy < X”f”LZ(_Q)- (A9)

Therefore, by (A.8) and (A.9), we get

C
[ DZ””LZ(Q) < )\_ZHfHLZ(_Q)-

Thus, by the last inequality, (A.9) and (A.6) the lemma is proved in the case g =0.
When g is any function in H2(£2) the lemma follows taking v=u—g. O

The following theorem is proved in Corollary 8.1.6 in [20].

Theorem A.2. Let 2 be a convex polygonal domain in R?, M satisfying (A.1) and u € H*>(£2) N Hg)(.Q) be a solution of (A.3) with
g=0and f € LP(£2) with p > 2. Then Vu € C*(£2) for some 0 < . < 1.

Remark A.3. Observe that the above theorem holds also if we consider any g € W2P(£2), since we can take v=u — g in
(A.3) and use that W2P(2) — CL1-2/P ().

Appendix B. Lipschitz functions
Using the linear extension operator defined in [14], we have the following lemma.

Lemma B.1. Let §2 be a bounded open domain with Lipschitz boundary and f € Lip(£2). Then, there exists a function f : RN — R
such that f is a Lipschitz function, supgn f = infg f and infpy f = maxg f.

Lemma B.2. Let f : RN — R be a Lipschitz function. Then for each & > 0, there exists a C! function fs : RN — R such that

(1) {xeRN: fo(x)# f(x) or Dfe(x) #Df X)}| < &.

(2) There exists a constant C depending only on N such that
IDfellpoomny < CLip(f).

(3) If1 < f1 < f(® < f2in RN, we have
1< fe() < f2+CeV inRN

with C a constant depending only on N.

Proof. Items (1) and (2) follow by Theorem 1, p. 251 in [16].
To prove (3), let us define

20 ={xeR": f(x) = f(x) and Df, (x) = Df (%)}
and let us suppose that there exists x € RN \ £2¢ such that f,(x) = f, 4+ 8 with § > 0. If xp € £2¢, by (2), we have

CLip(f)|x —xo| = fe(x) — fe(x0) = f2+6 — f(x0) = 6.

Then B, (x) C RN\ £20 where p =3§(CLip(f))~' and using (1) we get § < Ce!/N, for some constant C independent of ¢.
Analogously we can prove the other inequality. O
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