
J. Math. Anal. Appl. 410 (2014) 939–952
Contents lists available at ScienceDirect

Journal of Mathematical Analysis and
Applications

www.elsevier.com/locate/jmaa

H2 regularity for the p(x)-Laplacian in two-dimensional
convex domains ✩

Leandro M. Del Pezzo a,∗, Sandra Martínez b

a CONICET and Departamento de Matemática, FCEyN, UBA, Pabellón I, Ciudad Universitaria (1428), Buenos Aires, Argentina
b IMAS-CONICET and Departamento de Matemática, FCEyN, UBA, Pabellón I, Ciudad Universitaria (1428), Buenos Aires, Argentina

a r t i c l e i n f o a b s t r a c t

Article history:
Received 3 August 2011
Available online 17 September 2013
Submitted by Goong Chen

Keywords:
Variable exponent spaces
Elliptic equations
H2 regularity

In this paper we study the H2 global regularity for solutions of the p(x)-Laplacian in two-
dimensional convex domains with Dirichlet boundary conditions. Here p : Ω → [p1,∞)

with p ∈ Lip(Ω) and p1 > 1.
© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Let Ω be a bounded domain in R
2 and let p : Ω → (1,+∞) be a measurable function. In this work, we study the H2

global regularity of the weak solution of the following problem{−�p(x)u = f in Ω,

u = g on ∂Ω,
(1.1)

where �p(x)u = div(|∇u|p(x)−2∇u) is the p(x)-Laplacian. The hypothesis over p, f and g will be specified later.
Note that, the p(x)-Laplacian extends the classical Laplacian (p(x) ≡ 2) and the p-Laplacian (p(x) ≡ p with 1 < p < +∞).

This operator has been recently used in image processing and in the modeling of electrorheological fluids, see [3,5,24].
Motivated by the applications to image processing problems, in [8], the authors study two numerical methods to ap-

proximate solutions of the type of (1.1). In Theorem 7.2, the authors prove the convergence in W 1,p(·)(Ω) of the conformal
Galerkin finite element method. It is of our interest to study, in a future work, the rate of this convergence. In general, all
the error bounds depend on the global regularity of the second derivatives of the solutions, see for example [6,22]. However,
there appear to be no existing regularity results in the literature that can be applied here, since all the results have either
a first order or local character.

The H2 global regularity for solutions of the p-Laplacian is studied in [22]. There the authors prove the following: Let
1 < p � 2, g ∈ H2(Ω), f ∈ Lq(Ω) (q > 2) and u be the unique weak solution of (1.1). Then:

• If ∂Ω ∈ C2 then u ∈ H2(Ω);
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• If Ω is convex and g = 0 then u ∈ H2(Ω);
• If Ω is convex with a polygonal boundary and g ≡ 0 then u ∈ C1,α(Ω) for some α ∈ (0,1).

Regarding the regularity of the weak solution of (1.1) when f = 0, in [1,7], the authors prove the C1,α
loc regularity (in the

scalar case and also in the vectorial case). Then, in the paper [15] the authors study the case where the functional has the
so-called (p,q)-growth conditions. Following these ideas, in [17], the author proves that the solutions of (1.1) are in C1,α(Ω)

for some α > 0 if Ω is a bounded domain in R
N (N � 2) with C1,γ boundary, p(x) is a Hölder function, f ∈ L∞(Ω) and

g ∈ C1,γ (Ω); while in [4], the authors prove that the solutions are in H2
loc({x ∈ Ω: p(x) � 2}) if p(x) is uniformly Lipschitz

(Lip(Ω)) and f ∈ W 1,q(·)
loc (Ω) ∩ L∞(Ω).

Our aim, it is to generalize the results of [22] in the case where p(x) is a measurable function. To this end, we will need
some hypothesis over the regularity of p(x). Moreover, in all our result we can avoid the restriction g = 0, assuming some
regularity of g(x).

On the other hand, to prove our results, we can assume weaker conditions over the function f than the ones on [4].
Since, we only assume that f ∈ Lq(·)(Ω), we do not have a priori that the solutions are in C1,α(Ω). Then we cannot use it
to prove the H2 global regularity. Nevertheless, we can prove that the solutions are in C1,α(Ω), after proving the H2 global
regularity.

The main results of this paper are:

Theorem 1.1. Let Ω be a bounded domain in R
2 with C2 boundary, p ∈ Lip(Ω) with p(x) � p1 > 1, g ∈ H2(Ω) and u be the weak

solution of (1.1). If

(F1) f ∈ Lq(·)(Ω) with q(x) � q1 > 2 in the set {x ∈ Ω: p(x) � 2};
(F2) f ≡ 0 in the set {x ∈ Ω: p(x) > 2},

then u ∈ H2(Ω).

Theorem 1.2. Let Ω be a bounded domain in R
2 with convex boundary, p ∈ Lip(Ω) with p(x) � p1 > 1, g ∈ H2(Ω) and u be the

weak solution of (1.1). If f satisfies (F1) and (F2) then u ∈ H2(Ω).

Using the above theorem we can prove the following:

Corollary 1.3. Let Ω be a bounded convex domain in R
2 with polygonal boundary, p and f as in the previous theorem, g ∈ W 2,q(·)(Ω)

and u be the weak solution of (1.1) then u ∈ C1,α(Ω) for some 0 < α < 1.

Observe that this result extends the one in [17] in the case where Ω is a polygonal domain in R
2.

Organization of the paper. The rest of the paper is organized as follows. After a short Section 2 where we collect some
preliminary results, in Section 3, we study the H2-regularity for the non-degenerated problem. In Section 4 we prove
Theorem 1.1. Then, in Section 5, we study the regularity of the solution u of (1.1) if Ω is convex. In Section 6, we make
some comments on the dependence of the H2-norm of u on p1. Lastly, in Appendices A and B we give some results related
to elliptic linear equation with bounded coefficients and Lipschitz functions, respectively.

2. Preliminaries

We now introduce the spaces Lp(·)(Ω) and W 1,p(·)(Ω) and state some of their properties.
Let Ω be a bounded open set of Rn and p : Ω → [1,+∞) be a measurable bounded function, called a variable exponent

on Ω and denote p1 := essinf p(x) and p2 := esssup p(x).
We define the variable exponent Lebesgue space Lp(·)(Ω) to consist of all measurable functions u : Ω →R for which the

modular

�p(·)(u) :=
∫
Ω

∣∣u(x)
∣∣p(x)

dx

is finite. We define the Luxemburg norm on this space by

‖u‖L p(·)(Ω) := inf
{
k > 0: �p(·)(u/k) � 1

}
.

This norm makes Lp(·)(Ω) a Banach space.
For the proofs of the following theorems, we refer the reader to [12].
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Theorem 2.1 (Hölder’s inequality). Let p,q, s : Ω → [1,+∞] be measurable functions such that

1

p(x)
+ 1

q(x)
= 1

s(x)
in Ω.

Then the inequality

‖ f g‖Ls(·)(Ω) � 2‖ f ‖L p(·)(Ω)‖g‖Lq(·)(Ω)

holds for all f ∈ Lp(·)(Ω) and g ∈ Lq(·)(Ω).

Let W 1,p(·)(Ω) denote the space of measurable functions u such that u and the distributional derivative ∇u are in
Lp(·)(Ω). The norm

‖u‖W 1,p(·)(Ω) := ‖u‖p(·) + ∥∥|∇u|∥∥p(·)
makes W 1,p(·)(Ω) a Banach space.

Theorem 2.2. Let p′(x) be such that 1/p(x) + 1/p′(x) = 1. Then Lp′(·)(Ω) is the dual of Lp(·)(Ω). Moreover, if p1 > 1, Lp(·)(Ω) and
W 1,p(·)(Ω) are reflexive.

We define the space W 1,p(·)
0 (Ω) as the closure of the C∞

0 (Ω) in W 1,p(·)(Ω). Then we have the following version of
Poincaré’s inequity (see Theorem 3.10 in [21]).

Lemma 2.3 (Poincaré’s inequity). If p : Ω → [1,+∞) is continuous in Ω , there exists a constant C such that for every u ∈ W 1,p(·)
0 (Ω),

‖u‖L p(·)(Ω) � C‖∇u‖L p(·)(Ω).

In order to have better properties of these spaces, we need more hypotheses on the regularity of p(x).
We say that p is log-Hölder continuous in Ω if there exists a constant Clog such that

∣∣p(x) − p(y)
∣∣ �

Clog

log(e + 1
|x−y| )

∀x, y ∈ Ω.

It was proved in [10, Theorem 3.7], that if one assumes that p is log-Hölder continuous then C∞(Ω) is dense in
W 1,p(·)(Ω) (see also [9,12,13,21,25]).

We now state the Sobolev embedding theorem (for the proofs see [12]). Let

p∗(x) :=
{ p(x)N

N−p(x) if p(x) < N,

+∞ if p(x) � N

be the Sobolev critical exponent. Then we have the following:

Theorem 2.4. Let Ω be a Lipschitz domain. Let p : Ω → [1,∞) and p be log-Hölder continuous. Then the imbedding W 1,p(·)(Ω) ↪→
Lp∗(·)(Ω) is continuous.

3. H 2-regularity for the non-degenerated problem for any dimension

In this section we assume that Ω is a bounded domain in R
N , with N � 2.

We want to study higher regularity of the weak solution of the regularized equation,{
−div

((
ε + |∇u|2) p(x)−2

2 ∇u
) = f in Ω,

u = g on ∂Ω,
(3.2)

where 0 < ε � 1, and f ∈ Lip(Ω) and g ∈ W 1,p(·)(Ω).
The existence of a weak solution of (3.2) holds by Theorem 13.3.3 in [12].

Remark 3.1. Given ε � 0, p ∈ Cα0 (Ω) for some α0 > 0, and g ∈ L∞(Ω) we have the following results:

(1) Since f , g ∈ L∞(Ω), by Theorem 4.1 in [18], we have that u ∈ L∞(Ω).
(2) By Theorem 1.1 in [17], u ∈ C1,α

loc (Ω) for some α depending on p1, p2, ‖u‖L∞(Ω) and ‖ f ‖L∞(Ω) . Moreover, given
Ω0 ⊂⊂ Ω , ‖u‖C1,α(Ω ) depends on the same constants and dist(Ω0, ∂Ω).
0
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(3) Finally, by Theorem 1.2 in [17], if ∂Ω ∈ C1,γ and g ∈ C1,γ (∂Ω) for some γ > 0 then u ∈ C1,α(Ω), where α and
‖u‖C1,α(Ω) depend on p1, p2, N , ‖u‖L∞(Ω) , ‖p‖Cα0 (Ω) , α0 and γ .

We will first prove the H2-local regularity assuming only that p(x) is Lipschitz. Then, we will prove the global regularity
under the stronger condition that ∇p(x) is Hölder.

3.1. H2-local regularity

While we were finishing this paper, we found the work [4], where the authors give a different proof of the H2-local
regularity of the solutions of (3.2). Anyhow, we leave the proof for the completeness of this paper.

Theorem 3.2. Let p, f ∈ Lip(Ω) with p1 > 1 and u be a weak solution of (3.2), then u ∈ H2
loc(Ω).

Proof. First, let us define for any function F and h > 0,

�h F (x) = F (x + h) − F (x)

h
,

where h = hek and ek is a vector of the canonical base of RN .
Let η(x) = ξ(x)2�hu(x) where ξ is a regular function with compact support. Therefore, if we take vε = (|∇u|2 + ε)1/2

and h < dist(supp(ξ), ∂Ω), we have∫
Ω

〈
vε(x)p(x)−2∇u(x),∇η(x)

〉
dx =

∫
Ω

f (x)η(x)dx,

∫
Ω

〈
vε(x + h)p(x+h)−2∇u(x + h),∇η(x)

〉
dx =

∫
Ω

f (x + h)η(x)dx.

Subtracting, using that ∇η = 2ξ∇ξ�hu + ξ2�h(∇u) and dividing by h we obtain

I =
∫
Ω

〈
�h(vε(x)p(x)−2∇u

)
,�h(∇u)

〉
ξ2 dx

= −2
∫
Ω

〈
�h(vε(x)p(x)−2∇u

)
, ξ∇ξ�hu

〉
dx +

∫
Ω

ξ2�h f �hu dx

= 2
∫
Ω

( 1∫
0

vε(x + ht)p(x+ht)−2∇u(x + ht)dt

)
∂

∂xk

(
ξ∇ξ�hu

)
dx

+
∫
Ω

ξ2�h f �hu dx

= II + III.

Now, let us fix a ball B R such that B3R ⊂⊂ Ω and take ξ ∈ C∞
0 (Ω) supported in B2R such that 0 � ξ � 1, ξ = 1 in B R ,

|∇ξ | � 1/R and |D2ξ | � C R−2.
By Remark 3.1, there exists a constant C1 > 0 such that |∇u| � C1 in B3R , therefore we get

II � 2
∫

B2R

C

R

∣∣�huxk

∣∣ξ dx + 2
∫

B2R

C

R2

∣∣�hu
∣∣dx

� C

R

∫
B2R

∣∣�h(∇u)
∣∣ξ dx + C R N−2.

On the other hand, since f is Lipschitz we have that∣∣ f (x + h) − f (x)
∣∣ � C2h

for some constant C2 > 0. This implies that

III � C2 R N .
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Therefore, summing II and III, and using Young’s inequality, we have that for any δ > 0

I � δ

∫
B2R

∣∣�h(∇u)
∣∣2

ξ2 dx + C, (3.3)

for some constant C depending on R and δ.
On the other hand observe that I = I1 + I2 where

I1 = 1

h

∫
B2R

〈(
vε(x + h)p(x+h)−2∇u(x + h) − vε(x)p(x+h)−2∇u(x)

)
,�h(∇u)

〉
ξ2 dx,

and

I2 = 1

h

∫
B2R

〈(
vε(x)p(x+h) − vε(x)p(x)) ∇u(x)

vε(x)2
,�h(∇u)

〉
ξ2 dx.

Using that p(x) is Lipschitz and the fact that |∇u(x)| � C1 we have that, for some b between p(x + h) and p(x),

1

h

∣∣vε(x)p(x+h) − vε(x)p(x)
∣∣ =

∣∣∣∣vε(x)b log
(

vε(x)
) p(x + h) − p(x)

h

∣∣∣∣ � C,

for some constant C > 0 depending on p1, p2, ε, C1 and the Lipschitz constant of p(x).
Therefore, we have that

−I2 � CC1ε
−1

∫
B2R

∣∣�h(∇u)
∣∣ξ2 dx.

By (3.3), the last inequality and using again Young’s inequality we have that, for any δ > 0,

I1 � δ

∫
B2R

∣∣�h(∇u)
∣∣2

ξ2 dx + C, (3.4)

for some constant C > 0 depending on p1, p2, ε, C1 and the Lipschitz constant of p(x).
To finish the proof, we have to find a lower bound for I1. By the well-known inequality, we have that〈(

vε(x + h)p(x+h)−2∇u(x + h) − vε(x)p(x+h)−2∇u(x)
)
,
(∇u(x + h) − ∇u(x)

)〉
� Cε

∣∣∇u(x + h) − ∇u(x)
∣∣2

,

where

Cε =
{

ε(p(x+h)−2)/2 if p(x + h) � 2,

(p(x + h) − 1)ε(p(x+h)−2)/2 if p(x + h) � 2.

Therefore, using that p1 > 1, we arrive at

I1 �
∫

B2R

Ch−2
∣∣∇u(x + h) − ∇u(x)

∣∣2
ξ2 dx = C

∫
B2R

∣∣�h(∇u(x)
)∣∣2

ξ2 dx.

Finally combining the last inequality with (3.4) we have that∫
B R

∣∣�h(∇u(x)
)∣∣2

dx � C(N, p, f , ε).

This proves that u ∈ H2
loc(Ω). �

3.2. H2-global regularity

Now we want to prove that if f ∈ Lip(Ω) and g ∈ C1,β (∂Ω), the regularized equation (3.2) has a weak solution u ∈
C2(Ω) ∩ C1,α(Ω) for an α ∈ (0,1). We already know, by Remark 3.1, that u ∈ C1,α(Ω). Then, we only need to prove that
u ∈ C2(Ω).

Lemma 3.3. Let Ω be a bounded domain in R
N with ∂Ω ∈ C1,γ , p ∈ C1,β (Ω) ∩ Cα0 (Ω), f ∈ Lip(Ω) and g ∈ C1,β (∂Ω). Then, the

Dirichlet Problem (3.2) has a solution u ∈ C2(Ω) ∩ C1,α(Ω).
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Proof. Observe that by Theorem 3.2, we know that the solution is in H2
loc(Ω). Then for any Ω ′ ⊂⊂ Ω we can derive the

equation and look at the solution of (3.2) as the solution of the following equation,{
Lεu = a(x) in Ω ′,
u = u on ∂Ω ′.

(3.5)

Here,

Lεu = aε
i j(x)uxi x j

with

aε
i j(x) = δi j + (

p(x) − 2
)uxi ux j

v2
ε

, vε = (
ε + |∇u|2) 1

2 and

aε(x) = ln(vε)〈∇u,∇p〉 + f v2−p
ε . (3.6)

The operator Lε is uniformly elliptic in Ω , since for any ξ ∈R
N

min
{
(p1 − 1),1

}|ξ |2 � aε
i jξiξ j � max

{
(p2 − 1),1

}|ξ |2. (3.7)

On the other hand, by Remark 3.1, u ∈ C1,α(Ω). Then, aε
i j ∈ Cα(Ω), since ε > 0. Using that f ∈ Lip(Ω), we have that

a ∈ Cρ(Ω) where ρ = min(α,β). If ∂Ω ′ ∈ C2, as u is the unique solution of (3.5), by Theorem 6.13 in [19], we have that
u ∈ C2,ρ(Ω ′). This ends the proof. �
Remark 3.4. By the H2 global estimate for linear elliptic equations with L∞(Ω) coefficients in two variables (see Lemma A.1
and (3.7)) we have that

‖u‖H2(Ω) � C
(‖aε‖L2(Ω) + ‖g‖H2(Ω)

)
where u is the solution of (3.2) and C is a constant independents of ε.

4. Proof of Theorem 1.1

Before proving the theorem, we will need a global bound for the derivatives of the solutions of (3.2).

Lemma 4.1. Let f ∈ Lq(·)(Ω) with q′(x) � p∗(x), g ∈ W 1,p(·)(Ω), ε > 0 and uε be the weak solution of (3.2) then

‖∇uε‖L p(·)(Ω) � C

where C is a constant depending on ‖ f ‖Lq(·)(Ω) , ‖g‖W 1,p(·)(Ω) but not on ε.

Proof. Let

J (v) :=
∫
Ω

1

p(x)

(|∇v|2 + ε
)p(x)/2

dx.

By the convexity of J and using (3.2) we have that

J (uε) � J (g) −
∫
Ω

(|∇uε|2 + ε
)(p−2)/2∇uε(∇g − ∇uε)dx

� C

(
1 +

∫
Ω

f (uε − g)dx

)

� C
(
1 + ‖ f ‖Lq(·)(Ω)‖uε − g‖Lq′(·)(Ω)

)
� C

(
1 + ‖ f ‖Lq(·)(Ω)‖∇uε − ∇g‖L p(·)(Ω)

)
,

where in the last inequality we are using that W 1,p(·)(Ω) ↪→ Lp∗(·)(Ω) continuously and Poincaré’s inequality.
Thus we have that there exists a constant independent of ε such that∫

|∇uε|p(x) dx � C
(
1 + ‖∇uε‖L p(·)(Ω)

)
,

Ω
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and using the properties of the Lp(·)(Ω)-norms this means that

‖∇uε‖m
Lp(·)(Ω)

� C
(
1 + ‖∇uε‖L p(·)(Ω)

)
,

for some m > 1. Therefore ‖∇uε‖Lp(·)(Ω) is bounded independent of ε. �
To prove Theorem 1.1, we will use the results of Section 3. Therefore, we will first need to assume that p ∈ C1.β (Ω) ∩

C(Ω).

Theorem 4.2. Let Ω be a bounded domain in R
2 with C2 boundary, p ∈ C1.β (Ω) ∩ Cα0 (Ω) with p(x) � p1 > 1, g ∈ H2(Ω) and u

be the weak solution of (1.1). If f satisfies (F1) and (F2) then u ∈ H2(Ω).

Proof. Let fε ∈ Lip(Ω) and gε ∈ C2,α(Ω) such that

fε → f strongly in Lq(·)(Ω),

gε → g strongly in H2(Ω),

as ε → 0. Observe that, since f (x) = 0 if p(x) > 2, we can take fε ≡ 0 in {x ∈ Ω: p(x) > 2}.
Now, let us consider the solution of (3.2) as the solution of⎧⎨

⎩aε
11(x)

∂2uε

∂x2
1

+ 2aε
12(x)

∂2uε

∂x1∂x2
+ aε

22(x)
∂2uε

∂x2
2

= aε(x) in Ω,

uε = gε on ∂Ω,

where aε
11, aε

22, aε
12, aε are defined as in Lemma 3.3, substituting f and g by fε and gε respectively. By Lemma 3.3 we

know that uε ∈ C2(Ω) ∩ C1,α(Ω).
First we will prove the {uε}ε∈(0,1] is bounded in H2(Ω). By Remark 3.4, we have that

‖uε‖H2(Ω) � C
(∥∥aε(x)

∥∥
L2(Ω)

+ ‖gε‖H2(Ω)

)
� C

(∥∥ln(vε)∇uε∇p
∥∥

L2(Ω)
+ ∥∥ fε v2−p

∥∥
L2(Ω)

+ ‖gε‖H2(Ω)

)
. (4.8)

Taking Ω1 = {x ∈ Ω: |∇uε(x)| > 1}, using that p(x) is Lipschitz and Hölder’s inequality, we have∥∥ln(vε)∇uε∇p
∥∥

L2(Ω)
� C

∥∥ln2(vε)∇uε

∥∥1/2
L p′(·)(Ω1)

‖∇uε‖1/2
L p(·)(Ω1)

+ C . (4.9)

On the other hand, since q(x) � q1 > 2, we have that q′(x) � p∗(x). Then, as ‖ fε‖Lq(·)(Ω) and ‖gε‖H2(Ω) are bounded
independent of ε, using Lemma 4.1 we conclude that ‖∇uε‖Lp(·)(Ω) is uniformly bounded.

Observe that, for all s > 0 there exists a constant C > 0 such that

ln(vε) � C vs/2
ε < C |∇uε|s/2 in Ω1,

thus ∥∥ln2(vε)|∇uε|
∥∥

L p′(·)(Ω1)
� C

∥∥|∇uε|1+s
∥∥

L p′(·)(Ω1)

� C‖∇uε‖(1+s)
L p′(·)(1+s)(Ω1)

� C‖uε‖(1+s)
H2(Ω1)

.

In the last line, we are using that 2∗ = ∞, since N = 2.
Then, by the last inequality, (4.8) and (4.9), we get

‖uε‖H2(Ω) � C
(‖uε‖(1+s)/2

H2(Ω)
+ ∥∥ fε v2−p

ε

∥∥
L2(Ω)

+ 1
)
. (4.10)

Taking

A1 = {
x ∈ Ω: p(x) = 2

}
and A2 = {

x ∈ Ω: p(x) < 2
}

and using that fε ≡ 0 in {x ∈ Ω: p(x) > 2}, we have that∥∥ fε v2−p
ε

∥∥
L2(Ω)

� ‖ fε‖L2(A1) + ∥∥ fε v2−p
ε

∥∥
L2(A2)

.

Since ‖ fε‖L2(A ) is bounded, to prove that {uε}ε∈(0,1] is bounded in H2(Ω), we only have to find a bound of ‖ fε v2−p
ε ‖L2(A ) .
1 2
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Let us define in A2 the function

q̃(x) =
{ 1

2p(x)−3 + 1 if 1
q(x) + 3

2 � p(x) < 2,

q(x)
2 + 1 if p(x) < 1

q(x) + 3
2 .

It is easy to see that 2 < q̃(x) � q(x) for any x ∈ A2.
On the other hand, let us denote μ(x) = 2q̃(x)

q̃(x)−2 and γ (x) = μ(x)(2 − p(x)) then

1 < 1 + 2

q2
� γ (x) � max

{
2,2 + 8

q1 − 2

}
∀x ∈ A2.

Now, using Hölder’s inequality with exponent q̃(x)/2, we have∥∥ fε v2−p
ε

∥∥
L2(A2)

� C‖ fε‖Lq̃(·)(A2)

∥∥v2−p
ε

∥∥
Lμ(·)(A2)

. (4.11)

Then, if ‖vε‖Lγ (·)(A2) � 1 we have ‖v2−p
ε ‖Lμ(·)(A2) � 1 and since q̃(x) � q(x) we get

∥∥ fε v2−p
ε

∥∥
L2(A2)

� C .

If ‖v‖Lγ (·)(A2) � 1, we have

∥∥v2−p
ε

∥∥
Lμ(·)(A2)

� ‖vε‖2−p1

Lγ (·)(A2)
� C

(
1 + ‖∇uε‖2−p1

Lγ (·)(A2)

)
, (4.12)

where in the last inequality we are using that ε � 1.
Since 2∗ = ∞ and 1 < γ1 � γ (x) � γ2 < ∞, by the Sobolev embedding inequality, we have that

‖∇uε‖2−p1

Lγ (·)(A2)
� C‖uε‖2−p1

H2(A2)
� C‖uε‖2−p1

H2(Ω)
.

Combining this last inequality with inequalities (4.12), (4.11), (4.10) and the fact that q̃(x) � q(x), we get

‖uε‖H2(Ω) � C
(‖uε‖(1+s)/2

H2(Ω)
+ ‖uε‖2−p1

H2(Ω)
+ 1

)
.

Finally, we get that for any 0 < s < 1 there exists a constant C = C(p, g, f , s) such that

‖uε‖H2(Ω) � C .

Then, there exists a subsequence still denoted {uε}ε∈(0,1] and u ∈ H1(Ω) such that

uε → u strongly in H1(Ω),

uε ⇀ u weakly in H2(Ω).

It is clear that u satisfies the boundary condition.
Lastly, by Proposition 3.2 in [2], there exists a constant M > 0 independent of ε such that

∣∣(ε + |∇uε|2
) p(x)−2

2 ∇uε − (
ε + |∇u|2) p(x)−2

2 ∇u
∣∣ � M

∣∣∇(uε − u)
∣∣p(x)−1

(4.13)

for all x ∈ Ω . Then, passing to the limit in the weak formulation of (3.2) and using the above inequality, we have that∫
Ω

|∇u|p(x)−2∇u∇ϕ dx =
∫
Ω

f ϕ dx

for any ϕ ∈ C∞
0 (Ω). Therefore u ∈ H2(Ω) and solves (1.1). �

Now, we are able to prove the theorem.

Proof of Theorem 1.1. First, we consider the case p ∈ C1(Ω). Let pε ∈ C∞(Ω) such that pε → p in C1(Ω). Now, we define

fε(x) =
{

f (x) if pε(x) � 2,

0 if pε(x) > 2.
(4.14)

Observe that fε → f in Lq(·)(Ω) as ε → 0.
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Then, by Theorem 4.2, the solution uε of (1.1) (with pε and fε instead of p and f ) is bounded in H2(Ω) by a constant
independent of ε. Therefore, there exists a subsequence still denoted {uε}ε∈(0,1] and u ∈ H2(Ω) such that

uε → u in H1(Ω),

uε ⇀ u weakly in H2(Ω). (4.15)

It remains to prove that u is a solution of (1.1). Let ϕ ∈ C∞
0 (Ω), then∫

Ω

fεϕ dx =
∫
Ω

|∇uε|pε(x)−2∇uε∇ϕ dx

=
∫
Ω

|∇uε|p(x)−2∇uε∇ϕ dx +
∫
Ω

(|∇uε|pε(x)−2 − |∇uε|p(x)−2)∇uε∇ϕ dx. (4.16)

Therefore, using that H2(Ω) ↪→ W 1,p(·)(Ω) compactly, we have that∫
Ω

|∇uε|p(x)−2∇uε∇ϕ dx →
∫
Ω

|∇u|p(x)−2∇u∇ϕ dx. (4.17)

On the other hand, we have∣∣∇uε(x)
∣∣pε(x)−1 − ∣∣∇uε(x)

∣∣p(x)−1 = ∣∣∇uε(x)
∣∣bε(x)

log
(∣∣∇uε(x)

∣∣)(pε(x) − p(x)
)
,

where bε(x) = pε(x)θ + (1 − θ)p(x) − 1 for some 0 < θ < 1. Therefore, using that 2∗ = ∞ and that pε → p uniformly, we
obtain∫

Ω

(|∇uε|pε(x)−2 − |∇uε|p(x)−2)∇uε∇ϕ dx → 0. (4.18)

Then, using that fε → f in Lq(·)(Ω), (4.16), (4.17) and (4.18), we conclude that u is a solution of (1.1).
Now, we consider the case p ∈ Lip(Ω). By Lemmas B.1 and B.2 there exists pε ∈ C1(Ω) such that |Ω \ Ω0| < ε where

Ω0 = {
x ∈ Ω: pε(x) = p(x) and ∇pε(x) = ∇p(x)

}
.

We define fε as in (4.14). Then, the solution uε of (1.1) with pε and fε instead of p and f is bounded in H2(Ω) by a
constant independent of ε. Therefore there exists a subsequence still denoted {uε}ε∈(0,1] and u ∈ H2(Ω) satisfying (4.15).

Lastly, we prove that u is a solution of (1.1). Let ϕ ∈ C∞
0 (Ω). By Hölder’s inequality, since 2∗ = ∞ and by (3) of Lemma B.2

we have∫
Ω\Ω0

(|∇uε|pε(x)−2 − |∇uε|p(x)−2)∇uε∇ϕ dx

� C
(‖∇uε‖L pε (Ω)‖1‖L pε (Ω\Ω0) + ‖∇uε‖L p(Ω)‖1‖L p(Ω\Ω0)

)
� C‖uε‖H2(Ω)

(‖1‖L pε (Ω\Ω0) + ‖1‖L p(Ω\Ω0)

)
.

Then, since ‖uε‖H2(Ω) is bounded independent of ε and |Ω \ Ω0| < ε we obtain that∫
Ω\Ω0

(|∇uε|pε(x)−2 − |∇uε|p(x)−2)∇uε∇ϕ dx → 0.

Therefore, since (4.16), (4.17) again hold, using that fε → f in Lq(·)(Ω), and the above equation, we conclude that u is a
solution of (1.1). �
5. The convex case

Lastly, we want to prove that the solution is in H2(Ω) if we only assume that ∂Ω is convex. We want to remark
here that this result generalizes the one in Theorem 2.2 in [22] in two ways. In that paper the authors consider the case
p = constant and g = 0. Instead, we are allowed to cover the case where g is any function in H2(Ω) and p(x) ∈ Lip(Ω).

Remark 5.1. Let Ω be a convex set and p : Ω → [1,∞) be log-continuous in Ω . Then, there exists a sequence {Ωm}m∈N of
convex subset of Ω with C2 boundary such that Ωm ⊂ Ωm+1 for any m ∈ N and |Ω \ Ωm| → 0.
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(1) Then, there exists a constant C depending on p(x), |Ω| such that

‖v‖L p(·)(Ωm) � C‖∇v‖L p(·)(Ωm) ∀v ∈ W 1,p(·)
0 (Ωm),

for any m ∈ N. This follows by Theorem 3.3 in [21], using that Ωm ⊂ Ωm+1 for any m ∈ N.
(2) The Lipschitz constants of Ωm (m ∈ N) are uniformly bounded (see Remark 2.3 in [22]). Therefore, the extension opera-

tors

E1,m : W 1,p(·)(Ωm) → W 1,p(·)(Ω) and E2,m : H2(Ωm) → H2(Ω)

define as Theorem 4.2 in [11] satisfy that ‖E1,m‖ and ‖E2,m‖ are uniformly bounded.
(3) By (2) and Corollary 8.3.2 in [12], there exists a constant C independent of m such that

‖v‖L p∗(·)(Ωm) � C‖v‖W 1,p(·)(Ωm) ∀v ∈ W 1,p(·)(Ωm),

for any m ∈ N.

We want to remark that all the constants of the above inequalities are independent of p1 (see Section 6 for the applications).

Proof of Theorem 1.2. We begin taking {Ωm}m∈N as in Remark 5.1 and um the solution of{−�p(x)um = f in Ωm,

um = g on ∂Ωm.

By Theorem 1.1, um ∈ H2(Ωm) for any m ∈ N. Moreover, um solves{
Lmum = am

ij (x)um,xi x j = am(x) in Ωm,

um = g on ∂Ωm,

with

am
ij (x) = δi j + (

p(x) − 2
)um,xi (x)um,x j (x)

|∇um(x)|2 ,

am(x) = ln
(∣∣∇um(x)

∣∣)〈∇um(x),∇p(x)
〉 + f (x)

∣∣∇um(x)
∣∣2−p(x)

.

Then vm = um − g solves{
Lm vm = −Lm g + am(x) in Ωm,

vm = 0 on ∂Ωm.

Thus, using that vm ∈ H2(Ωm) ∩ H1
0(Ωm) and since the coefficients am

ij (x) are bounded independent of m, we can argue as
in Theorem 2.2 in [22] and obtain

‖vm‖H2(Ωm) � C
∥∥−Lm g + f |∇um|2−p(·) + ln

(|∇um|)|∇um|∥∥L2(Ωm)

� C
(∥∥|∇um|2−p(·)∥∥

L2(Ωm)
+ ∥∥ln

(|∇um|)|∇um|∥∥L2(Ωm)
+ 1

)
(5.19)

where the constant C is independent of m.
As in Lemma 4.1 we can prove, using Remark 5.1(1) and (3), that the norms ‖∇um‖Lp(·)(Ωm) are uniformly bounded.

Therefore, proceeding as in Theorem 4.2, we obtain∥∥ln
(|∇um|)|∇um|∥∥L2(Ωm)

+ ∥∥ f |∇um|2−p
∥∥

L2(Ωm)
� C

(‖∇um‖(1+s)/2
L p′(·)(1+s)(Ω1,m)

+ ‖∇um‖2−p1

Lγ (·)(A2,m)
+ 1

)
, (5.20)

with C independent of m, where

Ω1,m = {
x ∈ Ωm:

∣∣∇um(x)
∣∣ > 1

}
and A2,m = {

x ∈ Ωm: p(x) < 2
}
.

Now, using Remark 5.1(3) and (2), we have that for any r > 1

‖vm‖W 1,r(Ωm) � ‖E2,m vm‖W 1,r(Ω)

� C‖E2,m vm‖H2(Ω)

� C‖vm‖H2(Ωm) (5.21)

where C is independent of m.
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Therefore, using (5.19), (5.20) and (5.21), we get

‖vm‖H2(Ωm) � C
(‖vm‖(1+s)/2

H2(Ωm)
+ ‖vm‖2−p1

H2(Ωm)
+ ‖g‖(1+s)/2

H2(Ωm)
+ ‖g‖2−p1

H2(Ωm)
+ 1

)
� C

(‖vm‖(1+s)/2
H2(Ωm)

+ ‖vm‖2−p1
H2(Ωm)

+ 1
)
,

where the constant C is independent of m. This proves that {‖vm‖H2(Ωm)}m∈N is bounded.
Now we have, as in the proof of Theorem 2.2 in [22], that there exist a subsequence still denote {vm}m∈N and a function

v ∈ H2(Ω) ∩ H1
0(Ω) such that

vm → v strongly in H1(Ω ′)
for any Ω ′ ⊂⊂ Ω . Then u = v + g ∈ H2(Ω) and

um → u strongly in H1(Ω ′)
for any Ω ′ ⊂⊂ Ω . Thus, using (4.13), we have

|∇um|p(x)−2∇um → |∇u|p(x)−2∇u strongly in Lp′(·)(Ω ′) (5.22)

for any Ω ′ ⊂⊂ Ω .
On the other hand, for any ϕ ∈ C∞

0 (Ω) there exists m0 such that for all m � m0∫
Ωm

|∇um|p(x)−2∇um∇ϕ dx =
∫

Ωm

f ϕ dx.

Therefore, using (5.22) we have that u is a weak solution of (1.1). �
Proof of Corollary 1.3. By the previous theorem we have that u ∈ H2(Ω), then we can derive Eq. (1.1) and obtain{−aij(x)uxi x j = a(x) in Ω,

u = g on ∂Ω,

where

aij(x) = δi j + (
p(x) − 2

)uxi (x)ux j (x)

|∇u(x)|2 ,

a(x) = ln
(∣∣∇u(x)

∣∣)〈∇u(x),∇p(x)
〉 + f (x)

∣∣∇u(x)
∣∣2−p(x)

.

Using that f ∈ Lq(·)(Ω) with q(x) � q1 > 2 and following the lines in the proof of Theorem 4.2, we have that a(x) ∈ Ls(Ω)

with s > 2. Therefore, by Remark A.3, we have that u ∈ C1,α(Ω). �
6. Comments

In the image processing problem it is of interest the case where p1 is close to 1. By this reason, we are also interested
in the dependence of the H2-norm on p1.

If N = 2, g ∈ H2(Ω) and uε is the solution of (3.2), we have by Lemma A.1, (3.6) and (3.7), that there exists a constant
C independent of p1 and ε such that

‖uε‖H2(Ω) � C

(p1 − 1)κ

(‖aε‖L2(Ω) + ‖g‖H2(Ω)

)
,

where κ = 1 if Ω is convex and κ = 2 if ∂Ω ∈ C2. Therefore, using that the Poincaré inequality and the embedding
W 1,p(·)(Ω) ↪→ Lp∗(·)(Ω) hold in the case p1 = 1 and following the lines of Theorem 1.1 and Theorem 1.2 we have that

‖u‖H2(Ω) � C

(p1 − 1)κ
,

where the constant C is independent of p1.
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Appendix A. Regularity results for elliptic linear equations with coefficients in L∞

Let Ω be a bounded open subset of R2 and

Mu = aij(x)uxi x j ,

such that aij = a ji and for any ξ ∈R
N

λ|ξ |2 � aij(x)ξiξ j � Λ|ξ |2, (A.1)

and

M1 � a11(x) + a22(x) � M2 in Ω (A.2)

where λ, Λ, M1 and M2 are positive constant.
In the next lemma, we will give an H2-bound for solutions of{

Mu = f in Ω,

u = g on ∂Ω,
(A.3)

In fact, the following result is proved in Theorem 37, III in [23], but the dependence of the bounds on the ellipticity and the
L∞-norm of (aij(x)) are not explicit. Then, following the proof of the mentioned theorem we can prove

Lemma A.1. Let Ω be a bounded domain in R
2 , f ∈ L2(Ω) and g ∈ H2(Ω). Then, if u is a solution of (A.3) and u ∈ H2(Ω) we have

that

‖u‖H2(Ω) � C

λκ

(‖ f ‖L2(Ω) + ‖g‖H2(Ω)

)
,

where κ = 1 if Ω is convex and κ = 2 if ∂Ω ∈ C2 and C is a constant independent of λ.

Proof. In this proof, we denote uij = uxi x j for all i, j = 1,2 and C is a constant independent of λ.
First, we consider the case g ≡ 0. Using (A.1), we have that

(
a11(x) + a22(x)

)(
u2

12 − u11u22
) =

2∑
i, j,k=1

aijukiukj − �u
2∑

i j=1

aijui j � λ

2∑
ik=1

u2
ki − �u f (x).

Then, using Young’s inequality, we get

λ

2(a11(x) + a22(x))

2∑
ik=1

u2
ki � 4

λ(a11(x) + a22(x))
f (x)2 + u2

12 − u11u22,

and by (A.2), we have that

2∑
ik=1

u2
ki � C

λ2
f (x)2 + C

λ

(
u2

12 − u11u22
)
. (A.4)

Now, using (37.4) and (37.6) in [23], we have that for any u ∈ H2(Ω)∫
Ω

(
u2

12 − u11u22
)

dx = −
∫

∂Ω

(
∂u

∂ν

)2 H

2
ds (A.5)

where H is the curvature of ∂Ω . If Ω is convex, then H � 0 and therefore, using (A.4) and (A.5), we have that

∥∥D2u
∥∥

L2(Ω)
� C

λ
‖ f ‖L2(Ω). (A.6)

In the general case, we can use the following inequality

∫
∂Ω

(
∂u

∂ν

)2

ds � C

((
1 + δ−1) ∫

Ω

|∇u|2 dx + δ

∫
Ω

2∑
ik=1

u2
ki dx

)
(A.7)

for any δ > 0. See Eq. (37.6) of [23].



L.M. Del Pezzo, S. Martínez / J. Math. Anal. Appl. 410 (2014) 939–952 951
Then, by (A.4), (A.5), using that H is bounded and (A.7) (choosing δ properly) we arrive at

∫
Ω

2∑
ik=1

u2
ki dx � C

λ2

(∫
Ω

f (x)2 dx +
∫
Ω

|∇u|2 dx

)
. (A.8)

On the other hand, using that Lu = f in Ω , (A.1) and the Poincaré inequality, we have

‖∇u‖L2(Ω) � C

λ
‖ f ‖L2(Ω). (A.9)

Therefore, by (A.8) and (A.9), we get

∥∥D2u
∥∥

L2(Ω)
� C

λ2
‖ f ‖L2(Ω).

Thus, by the last inequality, (A.9) and (A.6) the lemma is proved in the case g = 0.
When g is any function in H2(Ω) the lemma follows taking v = u − g . �
The following theorem is proved in Corollary 8.1.6 in [20].

Theorem A.2. Let Ω be a convex polygonal domain in R
2 , M satisfying (A.1) and u ∈ H2(Ω) ∩ H1

0(Ω) be a solution of (A.3) with
g = 0 and f ∈ Lp(Ω) with p > 2. Then ∇u ∈ Cμ(Ω) for some 0 < μ < 1.

Remark A.3. Observe that the above theorem holds also if we consider any g ∈ W 2,p(Ω), since we can take v = u − g in
(A.3) and use that W 2,p(Ω) ↪→ C1,1−2/p(Ω).

Appendix B. Lipschitz functions

Using the linear extension operator defined in [14], we have the following lemma.

Lemma B.1. Let Ω be a bounded open domain with Lipschitz boundary and f ∈ Lip(Ω). Then, there exists a function f : RN → R

such that f is a Lipschitz function, supRN f = infΩ f and infRN f = maxΩ f .

Lemma B.2. Let f : RN →R be a Lipschitz function. Then for each ε > 0, there exists a C1 function fε : RN →R such that

(1) |{x ∈R
N : fε(x) �= f (x) or D fε(x) �= D f (x)}| � ε.

(2) There exists a constant C depending only on N such that

‖D fε‖L∞(RN ) � C Lip( f ).

(3) If 1 < f1 � f (x) � f2 in R
N , we have

1 < fε(x) � f2 + Cε
1
N in R

N

with C a constant depending only on N.

Proof. Items (1) and (2) follow by Theorem 1, p. 251 in [16].
To prove (3), let us define

Ω0 = {
x ∈R

N : fε(x) = f (x) and D fε(x) = D f (x)
}

and let us suppose that there exists x ∈R
N \ Ω0 such that fε(x) = f2 + δ with δ > 0. If x0 ∈ Ω0, by (2), we have

C Lip( f )|x − x0| � fε(x) − fε(x0) = f2 + δ − f (x0) � δ.

Then Bρ(x) ⊂ R
N \ Ω0 where ρ = δ(C Lip( f ))−1 and using (1) we get δ � Cε1/N , for some constant C independent of ε.

Analogously we can prove the other inequality. �
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