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Abstract

A novel model-order reduction technique for the solution of the fine-scale equilibrium problem appearing in computa-
tional homogenization is presented. The reduced set of empirical shape functions is obtained using a partitioned version —
that accounts for the elastic/inelastic character of the solution — of the Proper Orthogonal Decomposition (POD). On the
other hand, it is shown that the standard approach of replacing the nonaffine term by an interpolant constructed using only
POD modes leads to ill-posed formulations. We demonstrate that this ill-posedness can be avoided by enriching the
approximation space with the span of the gradient of the empirical shape functions. Furthermore, interpolation points
are chosen guided, not only by accuracy requirements, but also by stability considerations. The approach is assessed in
the homogenization of a highly complex porous metal material. Computed results show that computational complexity
is independent of the size and geometrical complexity of the Representative Volume Element. The speedup factor is over
three orders of magnitude — as compared with finite element analysis — whereas the maximum error in stresses is less than
10%.
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1. Introduction

1.1. Motivation and goal

The major challenge in the macro-scale continuum description of heterogeneous materials such as compos-
ites and polycrystalline metals (that exhibit a clear heterogeneous composition at the micro-, or meso-, scale,
but that can be regarded, for practical purposes, as homogeneous at the macro-scale) lies in the determination
of a constitutive connection, between macro-stresses and macro-strains, that accurately reflects the properties
and geometrical arrangement of the distinct phases at the finer scale. It is well-known [34] that, under the
hypotheses of either periodicity or statistical homogeneity, on the one hand; and scale separation, on the
other hand, this constitutive link can be systematically established by solving, for each point at the coarse
scale, a boundary value problem (BVP) on a certain representative microscopic subdomain. In a strain-
driven formulation of this BVP, the macro-strain at a given point acts as “loading parameter”, in the form
of appropriate essential boundary conditions, whereas the associated macro-stress is obtained through
volume averaging — i.e., homogenization — of the corresponding micro-stress field.

Methods dealing with the solution of this BVP range from purely analytical approaches to direct computa-

tional methods, such as the two-level, Finite Element (FE2) method [29]. Analytical approaches are
computationally inexpensive, but only valid for certain types of geometrically and constitutively simple
micro-structures. By contrast, direct computational methods have no other limitation in scope than the
imposed by the aforementioned hypotheses of statistical homogeneity and scale separation — in these
methods, the microscopic BVP at each coarse-scale point is attacked using no other approximation than
the spatial discretization of the pertinent solution strategy, thus, circumventing the need for introducing ad-
hoc, simplifying assumptions regarding the topological arrangement of the micro-phases and/or their
collective constitutive behavior. Needless to say, the versatility of direct computational homogenization
comes at a significant price: its enormous computational cost.

Between these two extremes (purely analytical and direct computational methods), there are homogeniza-
tion strategies that can be termed semi-analytical, since they combine analytical results with numerical com-
putations. Such is the case of the Transformation Field Analysis (TFA) [25] and variants thereof [48,49,55,30],
which are based on the pre-computation of certain characteristic operators (strain localization and influence
tensors) using the information obtained from solving a carefully chosen battery of fine-scale BPVs. Although
these methods have notably widen the scope of classical analytical approaches — while maintaining their low
computational cost — they are still predicated, to a lesser or greater extent, on ad-hoc assumptions connected
with the constitutive description of the involved phases. Consideration of new materials with unstudied com-
positions using semi-analytical approaches, thus, requires additional research efforts by specialists in the field
and eventual modifications of the corresponding mathematical and numerical formulations — in contrast to
direct computational homogenization approaches, such as the FE2 method, in which the formulation is “mate-
rial-independent”, and hence more versatile.

The current state of affairs in the field of two-scale homogenization seems to call, thus, for a unified homog-
enization approach that combines somewhat the advantages of direct computational homogenization and
analytical and semi-analytical techniques. It would be desirable to have a homogenization method with a com-
putational cost virtually independent of the geometric complexity of the considered representative volume, as in
analytical and semi-analytical techniques. At the same time, it would be also interesting to arrive at a method
whose mathematical formulation dispenses with ad-hoc, simplifying assumptions related with the composition
of the heterogeneous material; i.e., one enjoying the versatility, unrestricted applicability and “user-friendli-
ness” — insofar as it would totally relieve the modeler from the often exceedingly difficult task of visualizing
such assumptions — of direct computational homogenization methods. The goal of the present paper is to
show that these desirable attributes can be achieved, for arbitrarily complex heterogeneous materials well into

the inelastic range, by using the so-called [46] reduced-basis (RB) approximation in the solution of the fine-scale
BVPs.
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1.2. The reduced-basis method

Generally speaking, the reduced-basis approximation is a class of Galerkin approximation procedure that
employs, as opposed to the FE method, but similarly to classical Rayleigh–Ritz solution techniques [19],
globally supported basis functions. The main difference with respect to classical Rayleigh–Ritz schemes is
that these basis functions or modes are not constructed from either polynomials or transcendental functions
(sines, cosines . . .), but rather are determined from a larger set of previously computed — using the finite

element (FE) method or other classical solution techniques — solutions of the BVP at appropriately
selected values of the input of interest. These functions are commonly termed empirical basis functions [41],
the qualifier empirical meaning “derived from computational experiments”.

1.2.1. Dimensionality reduction

As noted earlier, the input of interest or “loading” parameter in the fine-scale problem is the macro-scale
strain tensor. Accordingly, the starting point for constructing the basis functions consists in solving, using the
FE method, a battery of BVPs for various, representative macro-strain histories. The outcome of these FE cal-
culations is a data set comprising an ensemble of hundred or even thousand (depending on the number of time
steps into which the strain histories are discretized) displacement field solutions (also called snapshots). Were
all these snapshots barely correlated with each other, the dimension of the manifold spanned by them would
prove overly high, rendering the entire approach impractical — it would no longer qualify as a truly reduced

basis method. Fortunately, as we show in the present paper, in general, most of these snapshots do display
strong linear correlations between each other — i.e., they have redundant information — and, in addition,
contain deformation modes that are irrelevant to the quality of coarse-scale predictions. All that is required
to obtain a much lower dimensional representation of the solution data set, and therewith the desired reduced
basis, is an automatic means to identify and remove this redundant and irrelevant information, while preserv-
ing, as much as possible, its essential features. The problem of removing unnecessary complexity from huge
data sets so as to uncover dominant patterns is the central concern of disciplines such as digital image compres-
sion [59] and pattern recognition [8], to name but a few, and thereby many efficient dimensionality reduction (or
data compression, in more common parlance) algorithms already exist to deal with it. In the present work, we
employ one of the simplest and most popular of these dimensionality reduction algorithms: the Proper
Orthogonal Decomposition1 (POD).

It may be inferred from the above that the proposed homogenization method, like analytical and semi-ana-
lytical strategies, does introduce simplifications in solving the fine-scale BVP. However, as opposed to analyt-
ical, and to a lesser extent, semi-analytical procedures, these simplifications are not introduced by the modeler,
but rather are automatically carried out by the abovementioned dimensionality reduction methods (in an off-
line stage, prior to the overall multiscale analysis). In other words, in the proposed method, the task of dis-

cerning what is essential and what is not2 is entirely delegated to the computer itself, and hence, its success
does not depend upon the depth of insight, experience, and knowledge base of the modeler — only some dis-
cretion is to be exercised in choosing appropriate strain paths for the offline FE analyses. This feature natu-
rally confers the advantages of versatility and “user-friendliness” enjoyed by direct computational methods.

1.2.2. Numerical integration

Once the global shape functions have been determined, the next step is to introduce an efficient method for
numerically evaluating the integrals appearing in the weak form of the cell BVP. Of course one can simply use
the same Gauss quadrature formulae and the same sampling points (a total number of ng ¼ OðnÞ; n being the
number of mesh nodes) as the underlying finite element model. But this would be akin to integrating, say, a
third-order polynomial function using thousand of sampling points — a profligate waste of computational
resources. Since displacement solutions for the cell BVP are constrained to lie in a reduced-order space of
1 By constraining the cell to deform only into the deformation modes determined by the POD, one automatically obtains a genuine
reduced-order model (ROM) of the cell.

2 Discerning what is essential and what is not is, according to Ashby [4], the key to any successful computational model (i.e., one that
strikes the right balance between accuracy and simplicity).
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dimension nu � n, it is reasonable to expect that the corresponding stresses, internal forces and Jacobians will
also reside in reduced-order spaces of dimensions of order OðnuÞ, and consequently, only p ¼ OðnuÞ � ng

sampling points would suffice in principle to accurately evaluate the corresponding integrals. The challenging
questions that have to be confronted are where to locate these p sampling points and, loosely speaking, how to
determine their associated weighting functions so that maximum accuracy in the integration is attained.

Approaches found in the model reduction literature that, directly or indirectly, deal with these fundamental
questions can be broadly classified either as interpolatory methods [7,33,53,18,5] or Gauss-type quadrature

strategies [3,39]. In both types of approaches, the integrand or part of the integrand is approximated by a lin-
ear combination of a reduced set of empirical modes. In interpolatory approaches, the coefficients in this
approximation are obtained by interpolation at a set of pre-selected sampling points; the criterion for choosing
the location of such points is the minimization of the interpolation error over the finite element snapshots. In
Gauss-type quadrature procedures, on the other hand, the selection of sampling points and the calculation of
the accompanying weighting factors are simultaneously carried out, guided by a criterion of minimum integra-

tion error over the snapshots.
In the BVP under consideration, the output of interest is the volume average of the stresses over the cell

domain and, therefore, accuracy is required not only in the integration of the equilibrium equation, but also
on the approximation of the stresses themselves. This is the reason why attention is focused here on interpo-
latory integration strategies, the variable subject to spatial interpolation being precisely the stresses.

1.3. Originality of this work

The idea of exploiting the synergistic combination of multiscale modeling and reduced basis approximation
is admittedly not new. In the specific context of two-scale homogenization, it has been recently explored by
Boyaval [10], Yvonnet and He [61] and Monteiro et al. [50]. Traces of this idea can also be found in
articles dealing with more general hierarchical multiscale techniques — that do not presuppose either scale
separation or periodicity/statistical homogeneity, or both — namely, in the multiscale finite element method

[52,26,27], in the heterogeneous multiscale method [2,1], and in multiscale approaches based on the Proper Gen-
eralized Decomposition (PGD) [21]. However, it should be noted that none of the above cited papers
confronts the previously described, crucial question of how to efficiently integrate the resulting reduced-
order equations, simply because, in most of them [10,52,26,27,2,1], integration is not an issue — the fine-scale
BVPs addressed in these works bear an affine relation with the corresponding coarse-scale, input parameter, as
in linear elasticity, and, consequently, all integrals can be pre-computed, i.e., evaluated offline, with no impact
in the online computational cost. Thus, the development of reduced-order models endowed with efficient,
mesh-size independent integration schemes — able to handle any material composition — is a research area
that, to the best of the authors’ knowledge, still remains uncharted.

1.3.1. Main original contributions

The theory underlying reduced-order models (ROMs) that incorporate efficient interpolatory integration
schemes is still at its embryonic stage of development — the first general proposal for parametrized BVPs
dates back to 2004 [7] — and many fundamental issues remain to be addressed. Foremost among these is
the crucial question of well-posedness of the resulting system of algebraic equations: does the replacement
of the integrand, or nonaffine term in the integrand, by a reduced-order interpolant always lead to a well-
posed, discrete problem? Examination of the reduced basis literature indicates that apparently no
researcher has so far been confronted with ill-posed reduced-order equations, a fact that might certainly
promote the view that uniqueness of solution can be taken for granted whenever the full-order model is
well-posed. Unfortunately, this is not always so: we demonstrate in this paper that the choice of the
reduced-order space in which the interpolant of the integrand resides has a profound impact on the well-
posedness of the discrete problem. In particular, we show that, in the case of the fine-scale boundary-value
problem, the widely adopted [33] approach of determining the basis functions for this space from
(converged) FE snapshots leads invariably to ill-posed, discrete formulations. The main original contribution

of the present work to the field of reduced-order modeling is the development of an interpolatory integration

method that safely overcomes this type of ill-posedness. The gist of the method is to expand the interpolation



Fig. 1. First-order homogenization.
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space so that it embraces, aside from the span of the POD stress basis functions, the space generated — and
herein lies the novelty — by the gradient of the (reduced-order) shape functions. Furthermore, it is shown that,
in contrast to the situation encountered when using standard interpolatory schemes in other parametrized
BVPs [33], in the BVP under consideration, the number and particular placement of sampling points within

the integration domain influence notably the spectral properties (positive definiteness) of the Jacobian matrix

of the governing equation, and therefore, the convergence characteristics of the accompanying Newton–
Raphson solution algorithm. Another innovative ingredient of the present paper is a points selection
algorithm that does acknowledge this peculiarity and chooses the desired sampling points guided, not only
by accuracy requirements (minimization of the interpolation error over the FE stress snapshot), but also by
stability considerations.
2. RVE equilibrium problem

In this section, we present the variational statement and finite element discretization of the fine-scale equi-

librium problem, which, recall, is the parameterized BVP we wish to efficiently solve using the reduced-basis
approximation.
2.1. Preliminaries

Let X � Rd ðd ¼ 2; 3Þ be a subvolume of characteristic length l� lM (lM is the characteristic length of the
macro-continuum XM , see Fig. 1) that is representative of the heterogeneous material as a whole. In micro-
structures that exhibit statistical homogeneity, this domain receives the name of Representative Volume Ele-

ment (RVE), whereas in micro-structures that display periodicity, it is commonly known as repeating unit cell
(RUC), or simply unit cell [24]. In the sequel, the acronym RVE will be used to refer to X.

In the homogenization approach adopted in this work — commonly known as first-order homogenization
[32,40] — the strain field �ðxÞ at any point x 2 X is assumed to be decomposed into macroscopic and fluctu-
ating contributions; under the hypothesis of infinitesimal deformations, this decomposition can be written as:
3 Ma
bare sy
�ðxÞ ¼ �M þrsuðxÞ: ð1Þ
Here, �M stands3 for the macroscopic strain tensor (the input parameter in the problem) and rsu denotes the
symmetric gradient of the displacement fluctuation field (this field is, in turn, the basic unknown of the problem).

Implicit in the scale separation assumption is the fact that fine-scale deformations only influence coarse-
scale behavior through its volume average over the RVE. It can be shown (see, for instance, Ref. [22]) that
this implies that the boundary conditions (BCs) prescribed on the RVE must be homogeneous (i.e.,
croscopic variables will be identified by appending a subscript “M”, while variables associated to the fine scale will be designated by
mbols. For instance, we shall write �M and �ðxÞ to denote the macroscopic strain tensor and the fine-scale strain field, respectively.
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A0u ¼ 0 on @X; A0 being a certain linear operator). The natural choice for a repeating unit cell is to employ
periodic boundary conditions (See Refs. [9,47] for more details on how to prescribe this type of BCs). In sta-
tistically homogeneous micro-structures, by contrast, there is a certain latitude in the choice of boundary con-
ditions (vanishing fluctuations, uniform tractions, quasi-periodic conditions . . .). In the examples shown later,
vanishing boundary conditions are used (u ¼ 0 on @X).

2.2. Variational formulation

2.2.1. Trial and test spaces

The trial space, i.e., the set of kinematically admissible displacement fluctuation fields, is defined formally as
Vu ¼ fu 2 H 1ðXÞd jA0u ¼ 0; on @Xg; ð2Þ
where H 1ðXÞd stands for the Sobolev space of functions possessing square integrable derivatives over X. Note
that this set forms a vector space. Since the test functions g appearing in the variational statement shown in the
following are kinematically admissible variations ðg :¼ u� v; u; v 2 VuÞ; Vu having structure of vector space
implies that, in the RVE equilibrium problem, the spaces of trial and test functions coincide.

2.2.2. Formal statement

Consider a time discretization of the interval of interest ½t0; tf � ¼
Snstp

n¼1½tn; tnþ1�. The current value of the
microscopic stress tensor rnþ1 at each x 2 X is presumed to be entirely determined by, on the one hand,
the current value of the microscopic strain tensor �nþ1ðxÞ ¼ �Mnþ1 þrsunþ1ðxÞ, and, on the other hand, a
set of microscopic internal variables nnþ1 — that encapsulate the history of microscopic deformations. The
relationship between these variables is established by (phenomenological) rate constitutive equations; these
equations may vary from point to point within the RVE (multiphase materials). Likewise, the considered
RVE may contain also voids distributed all over the domain. The (incremental) RVE equilibrium problem
at time tnþ1 can be stated as follows (see Ref. [22]): given the initial data funðxÞ; �Mn; nnðxÞg and the
prescribed macroscopic strain tensor �Mnþ1, find unþ1 2 Vu such that
Z

X
rsg : rnþ1ð�Mnþ1 þrsunþ1; nnþ1Þ dX ¼ 0 ð3Þ
for all g 2 Vu. The actual output of interest in this fine-scale BVP is not the displacement fluctuation field per se,
but rather the macroscopic stress tensor rM jnþ1, which is defined as the volume average over the RVE of the
microscopic stresses:
rM jnþ1 :¼ 1

V

Z
X

rnþ1 dX; ð4Þ
where V stands for the volume of the RVE. In order to keep the notation uncluttered, the superindex “n + 1”

will be hereafter dropped out and all quantities will be assumed to be evaluated at time tnþ1; only when con-
fusion is apt to show up, the pertinent distinction will be introduced.

2.3. Finite element formulation

Let X ¼
Sne

n¼1X
e be a finite element discretization of the RVE. It will be assumed that this discretization is

fine enough to consider the exact and FE approximated solutions indistinguishable at the accuracy level of
interest. Let fN 1ðxÞ;N 2ðxÞ . . . N nðxÞg (n denotes the number of nodes of the discretization) be a set of shape

functions associated to this discretization. Now we approximate u 2 Vu and g 2 Vu as
uðx; �MÞ � uðhÞðx; �MÞ ¼
Xn

I¼1

NIðxÞU Ið�MÞ; ð5Þ

gðxÞ � gðhÞðxÞ ¼
Xn

I¼1

NIðxÞgI ; ð6Þ
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where U I 2 Rd and gI 2 Rd ðI ¼ 1; 2 . . . nÞ denote the nodal values of the displacement fluctuations and test
functions, respectively. Inserting these approximations in Eq. (3), and exploiting the arbitrariness of coeffi-
cients gI ðI ¼ 1; 2 . . . nÞ, one arrives at the following set of discrete equilibrium equations (repeated indices im-
plies summation):
4 He
stress rffiffiffi

2
p

. T

krk ¼
5 As
Z
X

@NI

@xj
rijð�M þrsuðhÞ; nÞ dX ¼ 0 ði ¼ 1 . . . d; I ¼ 1 . . . nÞ: ð7Þ
Introducing Voigt’s notation,4 the above equation can be expressed in matrix format as:
Z
X

BT rð�M þ BU ; nÞ dX ¼ 0; ð8Þ
As usual, numerical evaluation of the integral in Eq. (8) is carried out by Gaussian quadrature:
Z
X

BT r dX �
Xng

g¼1

wgBT ðxgÞrðxg; ;Þ ¼ 0: ð9Þ
Here, ng ¼ OðnÞ stands for the total number of Gauss points of the mesh; wg denotes the weight associated to
the g-th Gauss point xg (this weight includes both the quadrature weight itself and the corresponding Jacobian
determinant.); and BðxgÞ and rðxg; ;Þ stand for the B-matrix and the stress vector at Gauss point xg,
respectively.

3. Computation of reduced basis

A basic, intuitive picture of the strategy for computing the reduced basis onto which to project the RVE
equilibrium equation (3) was already given in the introductory section. In the following, we put the idea
behind this strategy on a more rigorous footing. We begin by noting that, from a functional analysis stand-
point, the term model reduction is conceptually akin to the more common term model discretization, since both
connote transitions from higher-dimensional to lower-dimensional solution spaces. Whereas model discretiza-

tion is used to refer to the (classical) passage from the infinite dimensional space Vu to the finite element sub-
space Vh

u � Vu, model reduction denotes a transition from this finite dimensional space Vh
u to a significantly

smaller manifold V�u � Vh
u — the reduced-order space. This latter transition is not carried out directly, but

in two sequential steps, namely, sampling of the input parameter space and dimensionality reduction.

3.1. Sampling of the input parameter space

In constructing the finite element space of kinematically admissible functions Vh
u, the only restrictions placed

on the motion of the mesh nodes are those imposed at the boundaries. The finite element solution space, thus,
does not presuppose any constraint on the motion of the interior nodes of the mesh.

However, in actuality, interior nodes cannot fluctuate freely, independently from each other, but they rather
move according to deformational patterns dictated by the constitutive laws that govern the mechanical behavior
of the distinct phases in the RVE.5 This means that the solution of the finite element equilibrium equation (3)
for given values of the macro-strain tensor �M actually lives in a smaller subspace V�u � Vh

u (in the parlance of
model reduction [46,56], V�u is the manifold induced by the parametric dependence of the BVP on the input
variables).

Yet, in general, this subspace cannot be precisely determined; one has to be content to construct an approx-

imation of it as the span of the displacement fluctuation solutions obtained for a judiciously chosen set of nhst
re, it is convenient to use the so-called modified Voigt’s notation rather than the standard one. In the modified Voigt’s notation, both
and strain � tensors are represented as column vectors (frg and f�g, respectively) in which the shear components are multiplied by

he advantage of this notation over the conventional, engineering Voigt’s notation is the equivalence between norms; viz.,ffiffiffiffiffiffiffiffiffiffi
r : r
p ¼ kfrgk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
frgT frg

q
. The reader is urged to consult [20] for further details on this notation.

noted by Lubliner [45], constitutive laws can be regarded as internal restrictions on the kinds of deformation a body can suffer.
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input strain histories ft�1
M ;

t�2
M ; . . . ; t�nhst

M g. Suppose, for simplicity, that each of these strain histories is discret-
ized into equal number of steps nstp, and let
6 See
7 Str
ukðxÞ ¼ u x; t�i
Mj

� �
; k ¼ ði� 1Þnhst þ j ð10Þ
denote the displacement fluctuation solution at the jth time step of the ith strain history
(i ¼ 1; 2 . . . nhst; j ¼ 1; 2 . . . nstp). The approximating space for V�u, henceforth called the snapshots space, is then
defined as:
Vsnp
u ¼ spanfu1ðxÞ; u2ðxÞ; . . . ; unsnpðxÞg#V�u; ð11Þ
nsnp ¼ nstpnhst being the total number of snapshots. The matrix containing, in columns, the nodal values of
these displacement fluctuations solutions:
Xu ¼ U1 U2 � � � Unsnp
� �

2 Rn:d	nsnp ð12Þ
will correspondingly be termed the (displacement fluctuations) snapshot matrix.

3.2. Dimensionality reduction

The next and definitive step in the transition from the high-dimensional finite element space Vh
u to the

desired reduced-order space V�u — in which the fine-scale BVP is to be finally posed — is the dimensionality
reduction process, in which, as pointed out in the introductory section, the dominant deformational patterns
of the RVE response are identified and unveiled by washing out the “inessentials”. To accomplish this central
task, we employ here a partitioned version of the Proper Orthogonal Decomposition.6

3.2.1. Elastic-inelastic reduced basis functions

The Proper Orthogonal Decomposition is nothing but a multidimensional data fitting procedure intended
to obtain a sequence of orthogonal basis functions whose span best approximate the space of snapshots. As
such, the POD is a purely data-driven process — it is “agnostic” to the physical origin of the data. For instance,
for POD basis construction purposes, it is completely immaterial whether a given snapshot corresponds to a
purely linear elastic solution or to a solution well into the inelastic regime. The task of discriminating which
features of the RVE response are essential and which are not is exclusively guided by statistical considerations:
if the elastic response happens to be poorly represented within the snapshot ensemble, the POD may regard as
unimportant the contribution of these snapshots, and, as a consequence, the basis functions with largest asso-
ciated singular values — i.e., the essential modes — would hardly contain any information of this range. To
accurately replicate the apparently trivial linear elastic behavior, thus, one may be forced to take a relatively
large number of basis functions, and this may translate into a significant increase in the overall online compu-
tational cost. This fact certainly places the POD-based reduced basis approach at a competitive disadvantage
compared with semi-analytical homogenization approaches such as the Nonlinear Transformation Field Anal-
ysis [49], which do capture exactly (and effortlessly) the linear elastic response of the RVE.

To eliminate this shortcoming, we propose here a slightly different strategy for constructing the reduced

basis. The essence of the proposal is to partition the space of snapshots Vsnp
u into elastic Vsnp

u;el

� �
and inelastic

Vsnp
u;inel

� �
subspaces:
Vsnp
u ¼ V

snp
u;el 
 V

snp
u;inel; ð13Þ
(
 symbolizes direct sum of subspaces [54]) and then obtain the reduced basis as the union of the bases for
both subspaces. Below, we describe this strategy more in detail.

The first step is to determine an orthogonal basis for Vsnp
u;el. One can do this by simply performing me

independent, linear elastic finite element analysis of the RVE (me ¼ 6 for 3D problems,7 and me ¼ 3 for plane
Appendix A for a brief description of the POD.
ictly speaking, the proposed decomposition is only valid for materials governed by rate-independent constitutive equations.
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strain), and then orthonormalizing the resulting displacement fluctuation fields. These me elastic modes will be
considered as the first me basis functions of the reduced basis:
spanfU1;U2; . . . ;Umeg ¼ V
snp
u;el: ð14Þ
Once we have at our disposal this set of elastic basis functions, we compute the (orthogonal) projection of each
snapshot uk onto the orthogonal complement of Vsnp

u;el (which is precisely the aforementioned inelastic space

Vsnp
u;inel):
uk
inel :¼ uk �

Xme

i¼1

hUi; u
kiL2ðXÞUi; k ¼ 1; 2 . . . nsnp: ð15Þ
It is now on this ensemble of inelastic snapshots uk
inel

� �nsnp

k¼1
that the previously described POD is applied to

obtain the remaining nu � me basis functions. Thus, we finally have:
V�u ¼ V
snp
u;el 
 V

snp
u;inel ¼ span U1;U2; . . . ;U6

zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{Elastic modes

; U7; . . . ;Unu

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{\Essential" Inelastic modes
8<
:

9=
;: ð16Þ
for 3D problems, and
V�u ¼ span U1;U2;U3

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{Elastic modes

; U4; . . . ;Unu

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{\Essential" inelastic modes
8<
:

9=
; ð17Þ
for plane strain. In placing the me elastic modes within the first me positions, the reduced-order model is guar-
anteed to deliver linear elastic solutions with the same accuracy as the underlying (full-order) finite element
model (obviously, provided that nu P me).

Further details concerning the numerical implementation of this apparently novel — to the best of the
authors’ knowledge — basis construction strategy can be found in Appendix B.

4. Galerkin projection onto the reduced subspace

We now seek to pose the boundary-value problem represented by Eq. (3) in the reduced-order space
V�u #Vh

u spanned by the basis functions fU1;U2; . . . ;Unug. To this end, we approximate both test g 2 Vu

and trial u 2 Vu functions by the following linear expansions:
uðx; �MÞ � u�ðx; �MÞ ¼
Xnu

i¼1

UiðxÞU �i ð�MÞ; ð18Þ

gðxÞ � g�ðxÞ ¼
Xnu

i¼1

UiðxÞg�i ; ð19Þ
u�ðxÞ and g�ðxÞ being the low-dimensional approximations of trial and test functions, respectively (hereafter,
asterisked symbols will be used to denote low-dimensional approximations of the associated variables). Insert-
ing Eqs. (18) and (19) into Eq. (3), and exploiting the arbitrariness of coefficients g�i (i ¼ 1; 2 . . . nu), we arrive at
the following set of nu equilibrium equations:
Z

X
rsUiðxÞ : rðx; �M þrsu�; nÞ dX ¼ 0; i ¼ 1; 2 . . . nu: ð20Þ
Expressing now the reduced basis functions in the above equation in terms of finite element shape functions
(through expression UiðxÞ ¼

Pn
I¼1NIðxÞUIi), we get (in Voigt’s notation):
Z

X
B�i

T ðxÞ rðx; �M þ B�U�; nÞ dX ¼ 0; i ¼ 1; 2 . . . nu; ð21Þ
or more compactly:
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Z
X

B�T ðxÞ rðx; �M þ B�U�; nÞ dX ¼ 0: ð22Þ
Here, U� ¼ U �1 U �2 � � � U �nu

� �T 2 Rnu denotes the vector containing the reduced displacement fluctuations —
the basic unknowns of the reduced-order problem — and B� : X! Rs	nu stands for the reduced “B-matrix”,
defined as:
B�ðxÞ :¼ BðxÞU: ð23Þ
This matrix connects the gradient of the displacement fluctuation field with the vector of reduced displacement
fluctuations:

�

rsu� ¼
Xnu

i¼1

B�i U �i ¼ B�1 B�2 . . . B�nu

� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{B�
U �1
U �2

..

.

U �nu

2
666664

3
777775

zfflfflfflffl}|fflfflfflffl{U

¼ B�U� ¼ BUU�:
ð24Þ
For implementational purposes, it is more expedient to express Eq. (23) in terms of elemental B-matrices. To
this end, we write:
BðxÞ ¼
BeðxÞ; if x 2 Xe

0; otherwise



ð25Þ
where Be 2 Rs	d��ne denotes the local B-matrix of element Xe (�ne, in turn, is the number of nodes in Xe). Thus,
B�ðxÞ ¼ BðxÞU ¼ BeðxÞUe: ð26Þ
In the above equation, Ue 2 Rd�ne	nu represents the block matrix of U corresponding to the �ne nodes of finite
element Xe ðe ¼ 1; 2 . . . neÞ.

5. Stress approximation space

To arrive at an efficient, mesh-size independent integration scheme, two crucial questions have to be
addressed, namely, the determination of the vector space (hereafter denoted by Vapr

r ) in which the low-dimen-
sional approximation of the stress field8 should lie in order to obtain an accurate and at the same time well-
posed ROM; and the calculation of the optimal location of the sampling or integration points. Attention here
and in the next section is confined to the aspect related to the stress approximation space; the issue related to
the selection of sampling points, on the other hand, is examined in Section 7.

5.1. The reduced-order subspace of statically admissible stresses V�r
� �

At first sight, the problem of constructing a OðnuÞ-dimensional representation of the stress field seems quite
similar to the problem addressed in Section 3 concerning the reduced basis for the displacement fluctuations:
we have to find a set of orthogonal basis functions fW1ðxÞ;W2ðxÞ . . . WnrðxÞg ðnr ¼ OðnuÞÞ such that its span
accurately approximates the set of all possible stress solutions — that is, the set of all statically admissible stres-

ses. Accordingly, following the procedure described in Section 3, we first compute finite element, stress distri-
butions over the RVE for representative macro-strain histories.9 Then, the elastic/inelastic dimensionality
reduction process set forth in Section 3.2.1 is applied to the resulting ensemble of stress solutions
as mentioned in the introductory section that the central idea of efficient interpolatory approaches for numerical integration of
d-order BVPs is to replace the nonaffine term in the integrand by low-dimensional interpolants. In our case, a glance at the reduced-
quilibrium equation (21) readily reveals that such “offending”, nonaffine term is the stress field — the reduced B-matrix B� ¼ B�ðxÞ
pendent of the input parameter �M and hence need not be subject to approximation.
e most practical and somehow consistent choice regarding these strain trajectories is to use the same as in the computation of the
ement fluctuations snapshots.
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fr1ðxÞ; r2ðxÞ . . . rnsnpðxÞg, in order to identify both the elastic and the essential inelastic stress modes. The space
spanned by these modes will be denoted hereafter by V�r and termed the reduced-order subspace of statically

admissible stresses:
10 No
represe
V�r ¼ span W1ðxÞ;W2ðxÞ; . . . ;WmeðxÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Elastic stress modes

; Wmeþ1ðxÞ;Wmeþ2ðxÞ; . . . ;WnrðxÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{\Essential"; inelastic stress modes

8<
:

9=
;: ð27Þ
5.2. Ill-posedness of the HP-ROM

Let us now try to construct the low-dimensional approximation of the stress field, denoted by10 r�, as a
linear combination of the above described stress reduced basis — hence making Vapr

r ¼ V�r — i.e.,
rðx; �M ;U
�Þ � r�ðx; �M ;U

�Þ ¼
Xnr

i¼1

WiðxÞci �M ;U
�ð Þ; ð28Þ
where ci 2 R ði ¼ 1; 2 . . . nrÞ. This strategy of approximating the offending, nonaffine term in the BVP by a lin-
ear combination of pre-computed basis functions — obtained, in turn, from samples of the nonaffine term
evaluated at the solution — has been successfully applied by several authors, with no apparent — or at least
not reported — computational pitfalls, to a wide gamut of problems: nonlinear monotonic elliptic and non-
linear parabolic BPVs [33], nonlinear miscible viscous fingering in porous media [17,18], uncertainty quanti-
fication in inverse problems [31], and nonlinear heat conduction problems [5,6], to cite but a few.

However, a closer examination of the RVE equilibrium problem reveals that, in this case, this “standard”

strategy proves completely fruitless, for it leads to patently ill-posed reduced-order equations. To show this, let
us first substitute approximation (28) into Eq. (21):
Z

X
B�T ðxÞ rðx; �M ;U

�Þ dX �
Z

X
B�T ðxÞ r�ðx; �M ;U

�Þ ¼
Xnr

i¼1

Z
X

B�T ðxÞWiðxÞ dX


 �
cið�M ;U

�Þ ¼ 0: ð29Þ
By virtue of Eq. (23), the bracketed integral in the preceding equation can be rephrased as:
Z
X

B�T ðxÞWiðxÞ dX ¼ UT

Z
X

BT ðxÞWiðxÞ dX


 �
; i ¼ 1; 2 . . . nr: ð30Þ
Each basis function WiðxÞ ði ¼ 1; 2 . . . nrÞ is, by construction, a linear combination of the stress snapshots col-
lected during the offline, finite element analysis; thus, we can write Wi ¼

Pnsnp

j¼1bijr
j ði ¼ 1; 2 . . . nrÞ; bij 2 R

being the corresponding coefficients in the linear combination. Inserting the above equation into Eq. (30)
and considering that rj (j ¼ 1; 2 . . . nsnp) are finite element stress solutions — and therefore fulfill the finite ele-
ment equilibrium equation (8) — we finally arrive at:
UT
Xnsnp

j¼1

bij

Z
X

BT rj dX


 �zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{¼0

¼ 0; i ¼ 1; 2 . . . nr; ð31Þ
that is, the integral (30) appearing in the equilibrium equation (29), and hence, the left-hand side of the equa-
tion itself, vanishes identically regardless of the value of the modal coefficients ci 2 R (i ¼ 1; 2 . . . nr), and
therefore, regardless of the value of the reduced displacement fluctuations U� — hence the ill-posedness.

5.3. Proposed remedy: the expanded space approach

It is clear from the foregoing discussion that the root cause of the ill-posedness lies in the fact that the set of
all admissible stress fields (Vr) forms a vector space, and, consequently, the POD stress modes Wi 2 Vr
tice that, in keeping with the notational convention introduced in Section 4, the low-dimensional approximation of the stress field is
nted by attaching an asterisk to the stress symbol.
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(i ¼ 1; 2 . . . nr) — and any linear combination of them — turn out to be self-equilibrated fields. Thus, for the
reduced-order problem to be well-posed, the approximation space Vapr

r cannot be only formed by statically
admissible stresses, but it must also include statically inadmissible fields — i.e., stress functions that do not sat-
isfy the reduced-order equilibrium equation (21).

One plausible route for determining a low-dimensional approximation space that embraces both statically
admissible and statically inadmissible stresses might be to collect, during the offline finite element calculations,
not only converged stresses, but also the unconverged ones — i.e., those generated during the corresponding
iterative algorithm — and then perform the POD-based dimensionality reduction over the whole ensemble of
snapshots. In the present work, however, we pursue an approach that precludes the necessity of undertaking
this computationally laborious and in some aspects objectionable — there is no guarantee that the span of
selected, unconverged stress snapshots covers the entire space of statically inadmissible stresses — process.
The idea behind the employed approach was originally conceived, but not fully developed, by the authors
in a recent monograph [35]. Here, the theory underlying such an idea is further elaborated and cast into
the formalisms of functional analysis.
5.3.1. Continuum formulation

To originate our considerations from a general standpoint, it proves convenient first to rephrase the left-
hand side of the reduced-order equilibrium equation (21) as the action of a certain linear operator
G : L2ðXÞs ! Rnu on the stress field over the RVE:
Fig. 2.

modes

down
Z
X

B�i
T

r dX ¼ hB�i ; riL2ðXÞ ¼ ðG ½r�Þi i ¼ 1; 2 . . . nu: ð32Þ
Invoking now the orthogonal decomposition of L2ðXÞs induced by this operator, one obtains:
L2ðXÞs ¼ NðGÞ 
 spanfB�i g
nu

i¼1; ð33Þ
where NðGÞ stands for the nullspace of G . Since the RVE equilibrium equation has a vanishing right-hand
side term, it follows that NðGÞ is actually the space of statically admissible stress fields. Its orthogonal com-
plement, spanfB�i g

nu

i¼1, can be therefore construed as the abovementioned space of statically inadmissible stres-
ses. The key fact here is that such a space is inherently nu-dimensional and, thus, there is no need to perform any

dimensionality reduction whatsoever over unconverged snapshots to arrive at the desired basis: the strain–dis-

placement functions B�1;B
�
2 . . . B�nu

� �
themselves are linearly independent (albeit not orthogonal) and can thereby

serve this very purpose.
According to the preceding decomposition, any r 2 L2ðXÞs can be resolved as (see Fig. 2):
r ¼ rad þ rin; with hrad ; riniL2ðXÞ ¼ 0; ð34Þ
where rad 2 NðGÞ and rin 2 span B�i
� �nu

i¼1
stand for the statically admissible and statically inadmissible com-

ponents of r, respectively. Following the standard approach, the statically admissible component rad — i.e.,
Expanded space approach. The stress approximation space is expanded so that it embraces, not only the span of the stress POD

, but also the span of the reduced strain–displacement functions B�1;B
�
2 . . . B�nu

n o
. The reduced-order RVE equilibrium problem boils

to find the reduced displacement fluctuations vector U� that makes the non-equilibrated component rin to vanish ðrinðU�; �MÞ ¼ 0Þ.
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the stress solution we wish to calculate for a given input �M — is forced to lie in the span of the POD modes
Wi ði ¼ 1; 2 . . . nrÞ obtained from converged snapshots:
11 Ind
displac
rad � r� ¼
Xnr

i¼1

Wicad
i ; ð35Þ
cad
i 2 R ði ¼ 1; 2 . . . nrÞ being the corresponding modal coefficients. The non-equilibrated component rin, on

the other hand, resides naturally in the span of the reduced strain–displacement functions, so we can directly
write — i.e., without introducing further approximations
rin ¼
Xnu

i¼1

B�i cin
i ; ð36Þ
with cin
i 2 R ði ¼ 1; 2 . . . nuÞ. The low-dimensional approximation required in the proposed integration

method, denoted in what follows by rex� (the appended superscript “ex” means “stress approximated in the
expanded space”), is finally obtained as the sum of Eqs. (35) and (36):
rex� ¼
Xnr

i¼1

Wicad
i þ

Xnu

j¼1

B�j cin
i : ð37Þ
Substituting the above approximation into the equilibrium equation, one gets:
Z
X

B�i
T

rex� ¼
Xnu

j¼1

Z
X

B�i
T B�j dX


 �
cin

i ¼ 0; i ¼ 1; 2 . . . nu: ð38Þ
Since B�1;B
�
2 . . . B�nu

� �
are linearly independent functions, it becomes immediately clear that the above equa-

tions holds only if:
cin
i ð�M ;U

�Þ ¼ 0; j ¼ 1; 2 . . . nu; ð39Þ
i.e., if the nu coefficients multiplying B�i 2 L2ðXÞs ði ¼ 1; 2 . . . nuÞ are identically zero. In adopting the proposed
integration approach, thus, the reduced-order RVE equilibrium problem (21) is transformed into the problem
of finding, for a given input macroscopic strain tensor �M , the reduced displacement fluctuations vector
U� 2 Rnu that makes the non-equilibrated component rin (defined in Eq. (36)) to vanish.

In a nutshell, the ill-posedness exhibited by the discrete problem when adopting the standard approach of using

only POD modes is eliminated by expanding the stress approximation space so that it embraces also the span of

the reduced strain–displacement functions (or strain modes11) B�i 2 L2ðXÞs (i ¼ 1; 2 . . . nu):
Vapr
r ¼ V�r 
 span B�i

� �nu

i¼1
¼ span W1;W2 . . . Wnr

zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{nr stress modes

;B�1;B
�
2 . . . B�nu

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{nu strain modes
8<
:

9=
;: ð40Þ
5.3.2. Discrete formulation

In typical finite element implementations, both stresses and gradients of shape functions are only calculated
and stored at the Gauss points of the underlying spatial discretization. For practical reasons, thus, it proves
imperative to reformulate the above explained expanded space strategy and treat both magnitudes as spatially
discrete variables, defined only at such Gauss points.

The discrete counterparts of the continuously defined fields r 2 L2ðXÞs and B�i 2 L2ðXÞs (i ¼ 1; 2 . . . nu) will
be denoted by S 2 Rng �s and B� ¼ B�1 B�2 � � � B�nu

� �
2 Rng �s	nu , and termed the global stress vector, and the

global matrix of strain modes, respectively. The global stress vector S is constructed by stacking the stress vec-
tors rðxg; �Þ 2 Rs (g ¼ 1; 2 . . . ng) at the Gauss points of the finite element grid into a single column vector:
eed, functions B�i 2 L2ðXÞs (i ¼ 1; 2 . . . nu) can be viewed as fluctuating strain modes, since they are the symmetric gradient of the
ement fluctuation modes, see Eq. (23).
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S :¼ rT ðx1; �Þ rT ðx2; �Þ � � � rT ðxng ; �Þ
� �T

: ð41Þ
Similarly, the global matrix of strain modes B� is constructed as:
B� :¼ B�T ðx1Þ B�T ðx2Þ � � � B�T ðxngÞ
� �T

: ð42Þ
Having definitions (41) and (42) at hand, the approximation of Eq. (22) by Gauss quadrature can be written
as:
 Z

X
B�i

T ðxÞrðx; �Þ dX �
Xng

g¼1

wgB�i
T ðxgÞrðxg; �Þ ¼ 0 ) B�i

T
WS ¼ 0; i ¼ 1; 2 . . . nu; ð43Þ
where W is a diagonal matrix containing the weights at each Gauss point:
W :¼

w1I 0 0 � � � 0

0 w2I 0 � � � 0

..

. ..
. ..

. ..
. ..

.

0 0 0 0 wng I

2
66664

3
77775 ð44Þ
(here, I denotes the s	 s identity matrix). Assuming that wg > 0 ðg ¼ 1; 2 . . . ngÞ — Gauss quadrature rules
with negative weights are excluded from our considerations — and using the Cholesky decomposition of

WðW ¼W 1=2W1=2Þ, one can reexpress Eq. (43) as
B�T
WS ¼ ðB�T

W 1=2ÞðW1=2SÞ ¼ 0: ð45Þ

Defining now the weighted global stress vector and weighted matrix of strain modes as
R :¼W1=2S ¼ ffiffiffiffiffi
w1
p

rT ðx1; �Þ
ffiffiffiffiffi
w2
p

rT ðx2; �Þ � � � ffiffiffiffiffiffiffiwng

p
rT ðxng ; �Þ

� �T
; ð46Þ
and
B� :¼W1=2B� ¼ ffiffiffiffiffi
w1
p

B�T ðx1Þ
ffiffiffiffiffi
w2
p

B�T ðx2Þ � � � ffiffiffiffiffiffiffiwng

p
B�T ðxngÞ

h iT
ð47Þ
respectively, and inserting these definitions into Eq. (41), one finally arrives at:
B�R ¼ 0 ð48Þ

or equivalently,
B�i
T R ¼ 0; i ¼ 1; 2 . . . nu; ð49Þ
which shows that any statically admissible weighted stress vector is orthogonal, in the sense of the standard
euclidean inner product, to the weighted strain modes B�i

T (i ¼ 1; 2 . . . nu).
Comparing Eq. (48) with Eq. (32), it becomes clear that B�

T plays the same role as operator G in Eq. (32).
In analogy with Eq. (33), thus, we can write
Rng �s ¼ NðB�T Þ 
RangeðB�Þ ð50Þ

where NðB�T Þ and RangeðB�Þ denote the null space and the range (or column space) of B�

T and B�, respec-
tively, and consequently decompose any R 2 Rng �s as
R ¼ Rad þ Rin ð51Þ

with Rad 2 NB� and Rin 2 RangeðB�Þ. As in the continuous case (see Eq. (35), the statically admissible com-
ponent Rad is now approximated by a linear combination of POD basis vectors obtained from converged stress
snapshots12:
e methodology for obtaining these modes using the SVD is similar to that explained in Section 3.2 for the displacement fluctuation
.
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Rad � R� ¼
Xnr

i¼1

cad
i Wi ¼ Wcad ; ð52Þ
where W ¼ W1 W2 � � � Wnr½ � denotes the (weighted) stress basis matrix and cad 2 Rnr stands for the vector
of modal coefficients associated to such a basis matrix. Likewise, since the non-equilibrated component Rin

pertains to the column space of B�, we can directly write
Rin ¼ B�cin; ð53Þ
where cin 2 Rnu . The low-dimensional (weighted) stress vector Rex� required in the proposed integration meth-
od is finally obtained as the sum of Eqs. (53) and (52):
R � Rex� ¼ Wcad þ B�cin; ð54Þ
or in a more compact format:
Rex� ¼ Wexc: ð55Þ
where
Wex :¼ ½W B�� ð56Þ
and
c ¼
cad

cin

� �
: ð57Þ
The matrix Wex 2 Rng �s	ðnuþnrÞ defined by Eq. (56) will be hereafter called the expanded basis matrix for the
(weighted) stresses, whereas c 2 Rnrþnu will be correspondingly termed the expanded vector of modal coeffi-
cients. Inserting approximation (54) into Eq. (48), and considering that B�

T W ¼ 0 and that B�
T is a full rank

matrix, one finally arrives at the same equilibrium condition derived in the continuum case (see Eq. (39)):
cinðU�; �MÞ ¼ 0: ð58Þ
Once the above equation is solved for U�, the desired equilibrated stress vector R� is obtained by evaluating
Eq. (52):
R� ¼ WcadðU�; �MÞ: ð59Þ
6. The High-Performance ROM

The next step in the development of the proposed integration scheme is to deduce closed-form expressions
for the vectors of modal coefficients cad 2 Rnr and cin 2 Rnu in terms of the stress values computed at a set of
p ¼ OðnuÞ pre-specified sampling points (to be chosen among the set of Gauss points of the underlying finite
element mesh). To this end, we need first to introduce some notation and terminology.

6.1. Gappy vectors

Let I ¼ fI 1; I 2 . . . I pg � f1; 2 � � � ngg denote the set of indices of sampling points. Notationally, we write
R̂ðIÞ 2 Rp�s to designate the subvector of R containing the rows associated to these sampling points; viz.:
R̂ðIÞ :¼ ffiffiffiffiffiffiffi
wI1

p
rT ðxI1

; �Þ ffiffiffiffiffiffiffi
wI2

p
rT ðxI2

; �Þ � � � ffiffiffiffiffiffiffiwIp

p
rT ðxIp ; �Þ

� �T ð60Þ
(When confusion is not apt to arise, the parenthetical subscript indicating the set of sampling indices will be
dropped, and we shall simply write R̂). It proves conceptually advantageous to regard this restricted or
“gappy” — a terminology that goes back to the work of Everson et al. [28] — stress vector R̂ðIÞ as the
result of the application of a certain boolean operator PðIÞ : Rng �s ! Rp�s over the full vector R (i.e.,
R̂ ¼ PðIÞR). We call PðIÞ the selection operator associated to sampling indices I . This operator can be of
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course applied to any Y 2 Rng�s	z (z 2 N). For instance, the restricted matrix of weighted strain modes is
defined as B̂� :¼ PðIÞB

�. Furthermore, it is straightforward to show that
PðIÞP
T
ðIÞ ¼ I ð61Þ
(here I is the ðng � sÞ 	 ðng � sÞ identity matrix) and that
PðIÞðAYÞ ¼ ðPðIÞAPT
ðIÞÞðPðIÞYÞ ð62Þ
for any A 2 Rng�s	ng�s and Y 2 Rng�s	z.

6.2. Least-squares fit

In the spirit of classical polynomial quadrature, such as Newton–Cotes formulae [36], the modal coefficients
cad 2 Rnr and cin 2 Rnu are determined by fitting the low-dimensional approximation (54) to the weighted
stresses calculated at the pre-specified sampling points. It should be noticed that, the variable subject to
approximation — the stress — being a vector-valued function, the total number of discrete points to be
fitted does not coincide with the number of spatial sampling points (p), but rather is equal to the product
of such a number times the number of stress components (s). The well-posedness of the fitting problem,
thus, demands that p � s P nr þ nu, i.e., the number of discrete points must be equal or greater than the
number of parameters to be adjusted. For the equality to hold, both nr þ nu and p have to be multiple of
s; thus, an exact fit is in general not possible for arbitrary values of nr and nu, and recourse to an
approximate fit is to be made. In this respect, we follow here the standard approach of using a least-

squares, best-fit criterion, i.e., minimization of the squares of the deviations between “observed” (R̂) and
fitted (R̂ex� ¼ Ŵaþ B̂�b) values (in our context, “observed” signifies “calculated through the pertinent
constitutive equation”). This minimization problem can be stated as:
c ¼
cad

cin

� �
¼ arg min

a2Rnr ;b2Rnu
kR̂� ðŴaþ B̂�bÞk ð63Þ
where k � k stands for the standard euclidean norm. Let Ŵex ¼ PðIÞŴex ¼ ½Ŵ B̂�� be the gappy expanded basis
matrix, and suppose that the sampling indices I have been chosen so that Ŵex has full rank, i.e.:
rankðŴexÞ ¼ rankð½Ŵ B̂��Þ ¼ nr þ nu: ð64Þ

Then, it can be shown (see, for instance, Ref. [23]) that the solution of this standard, least-squares problem is
provided by the following vector of coefficients:
c ¼
cad

cin

� �
¼ ŴexyR̂; ð65Þ
where
Ŵexy :¼ ŴexT
Ŵex

� ��1
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{M̂�1

ŴexT ð66Þ
is the so-called pseudo-inverse of matrix Ŵex.
Recall that our ultimate aim is to derive closed-form expressions for cin and cad as functions of R̂. Thus, it

remains to extricate these two sub-vectors from expression (65). This can be done by first partitioning both
M̂ ¼ ŴexT

Ŵex and ŴexT
in terms of the gappy stress basis matrix Ŵ and the gappy matrix of strain modes B̂�:
c ¼
cad

cin

� �
¼ ŴT Ŵ ŴT B̂�

B̂�
T
Ŵ B̂�

T
B̂�

" #�1

ŴT

B̂�
T

" #
R̂: ð67Þ
Invoking the blockwise inverse formula for 2 	 2 block symmetric matrices [11], and upon tedious algebra —
that has been relegated to Appendix C — one finally arrives at the following expressions for cad and cin
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cad ¼ ŴyðR̂� B̂�cinÞ; ð68Þ
cin ¼ S�1B̂�

TðI � ŴŴyÞR̂; ð69Þ
where Ŵy denotes the pseudoinverse of the gappy stress basis matrix Ŵ:
Ŵy ¼ ðŴT ŴÞ�1
ŴT ð70Þ
and S :¼ B̂�
TðI � ŴŴyÞ (note that S is invertible by virtue of the hypothesis represented by Eq. (64)).

6.2.1. Reconstruction matrix

Let us first examine expression (68) for the modal coefficients cad — those that multiply the statically admis-
sible component of the global stress vector. Since, at the solution, cin ¼ 0, we have that:
cad ¼ Ŵy R̂� B̂� cin
z}|{¼0

0
B@

1
CA ¼ ŴyR̂: ð71Þ
(Notice that this result can also be obtained by directly solving minimization problem (63) with b ¼ 0). Sub-
stitution of this equation into Eq. (59) yields:
R� ¼ Ŵcad ¼ WŴy
zffl}|ffl{R

R̂ ¼ R R̂; ð72Þ
where
R :¼ WŴy ¼ WðŴT ŴÞ�1
ŴT : ð73Þ
Inspection of Eq. (72) reveals that the matrix R 2 Rng �s	p�s defined above is the operator that allows one to
reconstruct the (weighted) statically admissible stress vector R� 2 Rng �s using only the (weighted) stress values
ðR̂ 2 Rp�sÞ calculated at the pre-selected sampling points I . For this reason, we shall use the term weighted

reconstruction matrix (or simply reconstruction matrix) to refer to this operator. It must be emphasized here
that this matrix only depends on the POD stress basis matrix W and on the selected sampling indices I — i.e.,
it is independent of the input parameter, the macro-strain �M — and, therefore, it can be pre-computed offline.

6.3. “Hyperreduced” RVE equilibrium equation

As for the expression for the set of “statically inadmissible” coefficients cin 2 Rnu , we know that, at the solu-
tion, these coefficients must vanish; thus, from Eq. (69), we have
cinðU�; �MÞ ¼ S�1B̂�
TðI � ŴŴyÞR̂ðU�; �MÞ ¼ 0: ð74Þ
Since S is a nonsingular matrix, the above condition is equivalent to
B̂�
T ðI � ŴŴyÞR̂ðU�; �MÞ ¼ 0: ð75Þ
Furthermore, examination of Eqs. (73) and (75) readily shows that the bracketed term ŴŴy in Eq. (75) is noth-
ing but the submatrix of the reconstruction matrix R formed by the rows associated to sampling points I , i.e.:
ŴŴy ¼ PðIÞðWŴyÞ ¼ PðIÞR ¼ R̂: ð76Þ
Substitution of expression (76) into Eq. (75) finally leads to:
B̂�
T ðI � R̂ÞR̂ðU�; �MÞ ¼ 0: ð77Þ
As previously noted (see Fig. 2), the purpose of enforcing condition cinðU�; �MÞ ¼ 0 is to ensure that the stress
solution lies entirely in the space of equilibrated stresses. Eq. (77) can be viewed, thus, as the “hyperreduced”

form of the original RVE equilibrium equation.
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Observation 6.1. The “hyperreduced” qualifier — coined by Ryckelynck [57,58] — is used here to indicate that
Eq. (77) is the result of two subsequent steps of complexity reduction: firstly, in the number of degrees of
freedom (when passing from the finite element model to the ROM that employs standard Gauss quadrature),
and, secondly, in the number of integration points (when passing from this standard ROM to what we have
baptized13 “High-Performance” ROM). This double complexity reduction can be better appreciated by
rephrasing both Eq. (77) and the FE Eq. (9) in a format similar to that of Eq. (48), viz.:
13 Th
model
factors
B̂�
T ðI � R̂Þ

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{B̂��
T

R̂ ¼ B̂��
T
R̂ ¼ 0 ð78Þ
and
 Xng

g¼1

wgBT ðxgÞrðxg; ;Þ ¼ BT R ¼ 0; ð79Þ
respectively (here, B 2 Rng �s	n�d is the finite element counterpart of B�, defined in Eq. (42). With Eqs. (79), (48)
and (78) at our disposal, the abovementioned process of complexity reduction can be symbolically represented
as
BT R ¼ 0
zfflfflfflfflffl}|fflfflfflfflffl{FEM

)

1st reduc:

n � d ! nu
B�

T R ¼ 0
zfflfflfflfflfflffl}|fflfflfflfflfflffl{Stand: ROM

)

2nd reduc:

ng ! p
B̂��

T
R̂ ¼ 0

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{HP-ROM

; ð80Þ
the relation between B 2 Rng �s	n�d ; B� 2 Rng �s	nu and B̂�� 2 Rp�s	nu being B� ¼ BU and
B̂�� :¼ ðI � R̂ÞB̂� ¼ ðI � R̂ÞPðIÞB� ð81Þ
with p ¼ OðnuÞ � ng ¼ OðnÞ. It is interesting to see how the reduction in complexity of the RVE equilibrium
equation is reflected in the gradual reduction of the dimensions of the “B” operators that act on the weighted
vector of stresses.
6.3.1. Physical interpretation

Aside from a “compressed” version of the original, full-order cell condition, the hyperreduced equation (77)
can be alternatively interpreted as a balance between “observed” and “fitted” internal forces at the selected
sampling points. Such an interpretation becomes readily identifiable by realizing that the product R̂R̂ appear-
ing in Eq. (77) is but the (weighted) vector of fitted stresses at the selected sampling points. Indeed, by virtue of
Eq. (72) and, considering the properties of the selection operator PðIÞ, we have that
R̂R̂ ¼ PðIÞðRR̂Þ ¼ PðIÞR
� ¼ R̂�: ð82Þ
Using the above equality, Eq. (77) is expressible as B̂�
T
R̂ ¼ B̂�

T
R̂�, or, reverting to the original, summation

notation as
X
j2I

wjB
�T ðxjÞrðxj; �Þ ¼

X
j2I

wjB
�T ðxjÞr�ðxj; �Þ: ð83Þ
Note that both sides of the above equation represent the same physical quantity, namely, the sum of inter-
nal forces, in reduced coordinates, at the sampling Gauss points fxI1

; xI2
� � � xIpg. The difference lies in the

stresses employed for computing these internal forces. In the left-hand side, they are calculated using
“observed” stresses r — stresses that arises directly from evaluating the corresponding constitutive equation
— whereas, in the right-hand side, “fitted” stresses r� are used — that is, stresses obtained from fitting the
e term high-performance, reduced-order model (HP-ROM) is used to highlight the tremendous gains in performance that affords this
over the standard ROM, let alone over the full-order, finite model. In the numerical example shown in Section 9, we report speedup
of above three order of magnitudes.
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approximation constructed using the POD stress basis functions W1;W2 . . . Wnr to the observed data. Thus, the
HP-ROM equilibrium condition (83) is telling us that, at the solution, the sum of internal forces — at the pre-

selected sampling points — computed using either observed or fitted stresses14 must coincide.

6.4. Jacobian matrix

Needless to say, the dependence of the stresses on the reduced vector of reduced displacement fluctuations
U� is in general non-linear, and, thereby, an iterative method is required for solving Eq. (77). Here we employ
the standard Newton–Raphson procedure. The iterative scheme corresponding to this procedure is given by the
following expression (the parenthetical superscript indicates iteration number):
14 It s
greater
approx
15 R̂ i
U�ðkþ1Þ ¼ U�ðkÞ � K�ðkÞ
�1

F�ðkÞ; ð84Þ
where
F�ðkÞ ¼ B̂�
T ðI � R̂Þ R̂ð�M ;U

�ðkÞÞ ð85Þ
and
K�ðkÞ ¼ B̂�
T ðI � R̂Þ Ĉð�M ;U

�ðkÞÞ B̂�: ð86Þ
In the above equation, Ĉ 2 Rp�s	p�s denotes a block diagonal matrix containing the algorithmic, constitutive
tangent matrices at each sampling point:
Ĉ :¼

CðxI1
; �Þ 0 0 � � � 0

0 CðxI2
; �Þ 0 � � � 0

..

. ..
. ..

. ..
. ..

.

0 0 0 0 CðxIp ; �Þ

2
66664

3
77775: ð87Þ
6.4.1. Positive definiteness

Because of its relevance in the overall robustness of the proposed method, it is worthwhile at this point to
digress and discuss thoroughly the spectral properties of the Jacobian matrix represented by Eq. (86). In par-
ticular, it would be interesting to ascertain whether positive definiteness of the algorithmic tangent matrices
CðxI1

; �Þ; CðxI2
; �Þ; � � �CðxIpÞ at the selected sampling points, and thus of matrix Ĉ, ensures positive definite-

ness of the Jacobian matrix K� — as it occurs when using classical Gauss quadrature rules with positive
weights — and, if not, which remedies can be applied to obtain such desirable property.

Positive definiteness of the Jacobian matrix (86) requires that the function defined as
F ðUÞ ¼ UTK�U ¼ ðB̂�UÞTðI � R̂Þ ĈðB̂�UÞ ð88Þ
be positive for all non-zero U 2 Rnu . Since B̂� is a full rank matrix — by virtue of Eq. (64) — condition
F ðUÞ > 0 is equivalent to:
GðVÞ ¼ VTðI � R̂Þ Ĉ V > 0 ð89Þ
for all non-zero V 2 RangeðB̂�Þ.
To go further, we need to demonstrate that R̂ 2 Rng �s	ng �s — recall that R̂ is the matrix that maps the vector

of “observed” stresses R̂ to the vector of fitted stresses R̂� — actually represents an orthogonal projection15

onto the column space of the gappy stress basis matrix Ŵ. This can be shown by simply noting that R̂ is,
on the one hand, symmetric:
hould be mentioned in this respect that, in general, r�ðxj; �Þ– rðxj; �Þ since the number of data items to be fitted (p � s) is always
than the number of stress modes (nr). Observed and fitted stresses coincide only when the stress vector R one wishes to

imate pertains to the column space of the stress basis matrix Ŵ.
s the so-called “hat” matrix of linear regression models [51].
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R̂T ¼ ðŴðŴT ŴÞ�1
ŴT Þ

T
¼ ŴðŴT ŴÞ�T

ŴT ¼ R̂ ð90Þ

and, on the other hand, idempotent:
R̂2 ¼ ðŴŴyÞ2 ¼ Ŵ ðŴT ŴÞ�1
ŴT Ŵ

zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{¼I

ðŴT ŴÞ�1
ŴT ¼ ŴðŴT ŴÞ�1

ŴT ¼ R̂: ð91Þ

With this property at hand, we can decompose any V 2 RangeðB̂�Þ as
V ¼ Vk þ V? ð92Þ

where Vk ¼ R̂V 2 RangeðŴÞ — the component of V along the column space of Ŵ — and V? ¼ ðI � R̂ÞV —
the component of V along the orthogonal complement of RangeðŴÞ. Introducing the above decomposition
into Eq. (89), we arrive at
G ¼ V?
T
ĈV? þ V?

T

ĈVk: ð93Þ

While the first term V?

T
ĈV? in the preceding equation is, in virtue of the positive definiteness of Ĉ, eminently

positive for all nonzero V? 2 Rp�s, nothing can be said in principle about the second term V?
T

ĈVk: numerical
experience shows that the sign and relative magnitude of this term depends further on the chosen set of sam-

pling indices I .

Remark 6.1. From the above observation, it follows that the positive definiteness of the Jacobian matrix K� is

determined, not only by the spectral properties of Ĉ, but — not surprisingly — also by the number and the
location within the RVE of the sampling points employed in the integration.

The foregoing remark naturally leads to wonder whether it is possible to select the sampling indices I so as
to ensure the positive definiteness of K� (assuming, obviously, that Ĉ enjoys this property). To shed light on
this question, let us first divide Eq. (93) by V?

T
ĈV? (notice that hypothesis (64) precludes the possibility of V?

being zero)
�G ¼ G

V?
T
ĈV?

¼ 1þ V?
T
ĈVk

V?
T
ĈV?

: ð94Þ
Suppose now, for the sake of argument, that Ĉ is also symmetric. Such being the case, the above equation can
be legitimately rewritten as:
�G ¼ 1þ cos ðV?;VkÞĈ
kVkkĈ
kV?kĈ

; ð95Þ
where
cos ðV?;VkÞĈ ¼
hV?;VkiĈ
kV?kĈkV

kkĈ
: ð96Þ
In the above equation, h�; �iĈ symbolizes the inner product defined by Ĉ (i.e., hx; yiĈ ¼ xTĈy), whereas k � kĈ
denotes the norm associated to such an inner product ðkxk2

Ĉ ¼ hx; xiĈÞ. From Eq. (94), it can be deduced that
a sufficient (yet not necessary) condition for �G > 0, and thus for K� to be positive definite, is that
kVkkĈ
kV?kĈ

< 1 ð97Þ
for all nonzero V 2 RangeðB̂�Þ, or equivalently (setting V ¼ B̂�U):
kR̂B̂�UkĈ
kðI � R̂ÞB̂�UkĈ

< 1 ð98Þ
for all nonzero U 2 Rnu .
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Useful guidelines on how to choose I so as to make positive definite the Jacobian matrix K� can be inferred
from inequality (98). Firstly, given a fixed number of sampling points p, expression (98) indicates that such
points should be selected so that the columns of the gappy strain basis matrix

B̂� ¼ PðIÞB
� ¼ B̂�1 B̂�2 . . . B̂�nu

� �
are, loosely speaking, “as orthogonal as possible” to rangeðR̂Þ ¼ RangeðŴÞ

— the column space of the gappy stress basis matrix Ŵ ¼ PðIÞW. In so doing, the factor defined as
fĈ :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPnu
i¼1kR̂B̂�i k

2
Ĉ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPnu

i¼1kðI � R̂ÞB̂�i k
2
Ĉ

q ; ð99Þ
would diminish, and so would, consequently, the left-hand side of inequality Eq. (98). In practice, however,
factor fĈ cannot be used as a criterion for guiding the selection of sampling points, simply because it is defined
in terms of the norm induced by Ĉ, and this matrix virtually changes at every time step and iteration. One has
to be content to estimate this factor using other norm; for instance, employing the standard euclidean norm
k � k, one gets
fĈ � fF :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPnu
i¼1kR̂B̂�i k

2
q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPnu

i¼1kðI � R̂ÞB̂�i k
2

q ¼ kR̂B̂�kF

kðI � R̂ÞB̂�kF

; ð100Þ
where k � kF stands for the Frobenius norm.
Aside from seeking orthogonality between B̂� and R̂, expression (99) suggests that another way of lowering

factor fF may be to reduce the ratio defined as
bF :¼ kR̂kF

kI � R̂kF

: ð101Þ
Since R̂ and, consequently, I � R̂ are matrices representing orthogonal projections, we have that

kR̂kF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rankðR̂Þ

q
¼ ffiffiffiffiffi

nr
p

and kI � R̂kF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p � s� nr
p

. Therefore,
bF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nr

p � s� nr

r
: ð102Þ
Observation 6.2. From the above expression, thus, one can conclude that increasing the number of sampling
points p while keeping the number of stress modes nr constant also contributes to reduce factor fF in Eq. (98),
and, hence, to improve the spectral properties (positive definiteness) of the Jacobian matrix K�. Notice that
this property is totally consistent with the fact that, in the limiting case of taking all Gauss points (p ¼ ng), the
reduced matrices R̂ and B̂� degenerate into their full order counterparts R and B�, for which the condition
R B� ¼ 0 holds — they span subspaces that are mutually orthogonal — hence making fF ¼ fĈ ¼ 0.
7. Selection of sampling points

The last theoretical issue to be discussed in the present work is the selection — among the full set of Gauss
points of the underlying finite element mesh — of appropriate sampling or interpolation points. At the very
least, the set of sampling indices I ¼ fi1; i2 . . . ipg must be chosen so that the gappy expanded basis matrix
has full rank (see Section 6.2):
rank Ŵex
ðIÞ

� �
¼ rank ŴðIÞ B̂�ðIÞ

h i� �
¼ nr þ nu: ð103Þ
Any set of sampling indices fulfilling this necessary condition is said to be admissible.
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7.1. Optimality criteria

7.1.1. Accuracy

As in any other model reduction problem, the overriding concern when choosing the sampling points is the
accuracy of the approximation: we would like to position such points so that maximum similarity between the
“high-fidelity”, finite element solution and its reduced-order counterpart is obtained. More specifically, since
the output of interest in our BVP is the macroscopic stress response, the aim is to find the set of sampling
points I that minimizes the following error estimate:
16 Th
offline
17 Th
18 Ind

the res
of Gau
EM ;rðW; IÞ :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXnsnp

i¼1

kri
M � r�iMðW; IÞk

2

vuut ; ð104Þ
where ri
M ¼ rMðt�MkjÞ denotes the finite element, macroscopic stress response corresponding to the kth

(k ¼ 1; 2 . . . nstp) time step of the “training”16 strain trajectory t�M
j (j ¼ 1; 2 . . . nhst); and r�iMðW; IÞ its low-

dimensional approximation.
Using the Cauchy–Schwarz inequality, and approximating the pertinent integrals by Gauss quadrature, we

can write
E2
M ;r 6

1

V

Xnsnp

i¼1

Z
X
kriðxÞ � r�iðx; W; IÞk2 dX � 1

V

Xnsnp

i¼1

Xng

g¼1

k ffiffiffiffiffiffi
wg
p

riðxgÞ �
ffiffiffiffiffiffi
wg
p

r�iðxg; W; IÞk2

¼ 1

V

Xnsnp

i¼1

kRi � R�iðW; IÞk22 ¼ 1

V
kX � X�ðW; IÞk2

F ; ð105Þ
where X ¼ R1 R2 � � � Rnsnp
� �

and X�ðW; IÞ ¼ RðIÞðPðIÞXÞ. The error estimate for the macroscopic stres-
ses defined in Eq. (104) is, thus, bounded above by the Frobenius norm of the difference between the
(weighted) stress snapshot matrix X and its oblique projection, X�, onto RangeðWÞ. This bound, hereafter des-
ignated by er, admits the following decomposition17
e2
r ¼

1

V
kX � X�?ðWÞk2

F þ
1

V
kX�?ðWÞ � X�ðW; IÞk2

F ; ð106Þ
X�? being the orthogonal projection of X onto the range of Ŵ, i.e., X�? ¼ WWT X . Note that the first term of
the right-hand side of Eq. (106) only depends on the stress basis matrix, but not on the employed sampling
indices; it provides, thus, an estimate of the stress truncation error. The term that actually measures the quality,
in terms of accuracy, of a given set of admissible sampling points is the second one — it provides an (a priori)
estimate of the stress reconstruction error. We shall denote this term by erec

r :
erec
r :¼ 1

V
kX�?ðWÞ � X�ðW; IÞkF : ð107Þ
For this reason — and also because the cost of evaluating expression Eq. (107) is independent of the number
of Gauss points,18 and therefore significantly lower than in the case of the original error estimate EM ;r — we
shall use in what follows erec

r as error estimator for guiding the selection of sampling points.

7.1.2. Spectral properties

Yet the optimality of a given set of sampling points cannot be measured only in terms of accuracy of the
approximation. As demonstrated in Section 6.4, the number and particular placement of such points influence
also the spectral properties (positive definiteness) of the Jacobian matrix of the equilibrium equation, and
e term “training”, which, incidentally, is borrowed from the neural network literature [38], is used throughout the text to refer to the
generation of snapshots.
is decomposition follows easily from the Pythagorean theorem (just notice that WT ðX � X�?Þ ¼ 0).
eed, since W is column-wise orthogonal, minimizing Eq. (107) is equivalent to minimizing the difference between the coefficients of
pective projections. The number of coefficients is equal to the number of snapshots, which is normally much lower than the number
ss points.
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therefore, the convergence characteristics of the accompanying Newton–Raphson algorithm. We saw that, to
preserve the positive definiteness of the full-order Jacobian matrix, one should strive to choose the sampling
indices I so as to make the factor — defined previously in Eq. (100)
19 A g
the glo
fF ðW;B�; IÞ ¼
kR̂ðIÞB̂�ðIÞkF

kðI � R̂ðIÞÞB̂�ðIÞkF

ð108Þ
as small as possible.

7.2. Optimization approach: basic and stabilizing sampling points

Unfortunately, the minimization of the approximation error represented by expression Eq. (107) and the
minimization of Eq. (108) are in general conflicting goals. For instance, numerical experiments show that
when the selection is driven exclusively by accuracy considerations, the resulting Jacobian matrix becomes
indefinite at certain states of deformation — especially when inelastic deformations are severe — leading occa-
sionally to convergence failures. These goals must be therefore balanced in order to arrive at an accurate and
at the same time robust solution scheme.

To accommodate these conflicting requirements, we propose here a heuristic strategy that basically consists
in treating the minimization of Eqs. (107) and (108) as two separated, sequential problems — in the spirit of
the so-called “greedy” optimization algorithms19 [44]. The set of sampling points is assumed to be divided into
two disjoint subsets I r and IB:
I ¼ Ir [ IB: ð109Þ

The first subset I r ¼ fi1; i2; � � � ipr

g is obtained as the minimizer of the error estimation given in Eq. (107), viz.:
Ir ¼ arg min
K# f1;2...ngg

erec
r ðW;KÞ: ð110Þ
Once the set I r is determined, the remaining sampling indices IB ¼ fj1; j2 � � � jpB
g ðpr þ pB ¼ pÞ are calculated as
IB ¼ arg min
K# f1;2...ngg

fF ðW;B�; Ir [ KÞ: ð111Þ
Remark 7.1. It must be noted here that the minimization problem represented by Eq. (110) is in essence the
same problem addressed in (standard) interpolatory-based, model reduction approaches for determining,
given a set of empirical basis functions, the optimal location of associated interpolations points. For this
reason, we shall refer to the set of points arising from solving this minimization problem as the standard or

basic sampling points — these are, for instance, the Best Interpolation Points of Nguyen et al. [53]. By contrast,
the necessity of introducing points that attempt to solve problem (111) is a consequence of expanding the
stress approximation space in the first place — the main innovative feature of our approach — and it is
therefore not present in other model reduction strategies. We shall call fxIBð1Þ; xIBð2Þ . . . xIBðpBÞg the set of
stabilizing sampling points.

The number of basic sampling points must satisfy the necessary condition pr P nr=s. In general, taking
pr ¼ nr suffices to ensure highly satisfactory approximations. How many, on the other hand, stabilizing sam-

pling points have to be added to safely render positive definite the Jacobian matrix — for at least a represen-
tative range of macroscopic state deformations — is a question that can only be answered empirically. In the
examples presented in the next section, it has been found that a conservative answer is to use as many stabi-
lizing sampling points as displacement basis modes ðpB ¼ nuÞ.

To deal with the discrete minimization problem (110), we have used here the Hierarchical Interpolation

Points (HPI) method proposed by Nguyen et al. [53]. The essence of this method is to construct, in a
greedy fashion, the set of indices by solving a sequence of one-dimensional minimization problems. The
reedy method is any algorithm that solves the problem by making the locally optimal choice at each step with the hope of finding
bal optimum.
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minimization problem (111) is also addressed using a heuristic based on the greedy paradigm. In particular,
the kth (k ¼ 1; 2 . . . pB) index is selected by solving the following, one-dimensional minimization problem:
IBðkÞ ¼ arg min
j2f1;2...ngg

fF ðW;B�;KðjÞÞ ð112aÞ

K ¼ Ir [ fIBð1Þ; IBð2Þ � � � IBðk � 1Þ; jg: ð112bÞ
8. Summary

Lastly, for the reader’s convenience and easy reference, the online reduced-order problem, along with the
offline steps that leads to the hyperreduced operators appearing in the online problem, are summarized in
Boxes 8.1 and 8.2.

Box 8.1. Offline stage. Pre-computation of reduced basis and hyperreduced operators.
1. Compute FE displacement fluctuations and stress snaphots for representative, input macro-strain his-
tories. Apply — see Appendix B — the elastic/inelastic POD to the resulting snapshot matrices to obtain
the displacement fluctuation and stress basis matrices (U 2 Rn�d	nu and W 2 Rng �s	nr , respectively).

2. Calculate the weighted matrix of fluctuating strain modes B� 2 Rng �s	nr using Eqs. (26) and (47).
3. Select a set I of sampling indices optimal for the basis matrices W and B� following the procedure

sketched in Section 7.
4. Finally, using W; B� and I , construct the hyperreduced-order matrices B̂�� 2 Rp�s	nu and T 2 Rs	p�s; the

expressions for these matrices read:
B̂�� ¼ ðI � R̂ÞB̂� ¼ ðI �PðIÞRÞðPðIÞB�Þ ð113Þ
and
T :¼ 1

V
ffiffiffiffiffi
w1
p

I
ffiffiffiffiffi
w2
p

I � � � ffiffiffiffiffiffiffiwng

p
I

� �
R ð114Þ
where R ¼ WðŴT ŴÞ�1
ŴT and Ŵ ¼ PðIÞW.

Box 8.2. Online stage (solution of the hyperreduced-order RVE equilibrium problem for given macroscopic
strains).
1. Initial data: U�n 2 Rnu (reduced vector of displacement fluctuations at tn), �Mn (macroscopic strain vector
at tn), and fnnðxI1

Þ; nnðxI2
Þ; . . . nnðxIpÞg (internal variables at tn at the selected sampling points).

2. Input data: �Mnþ1 (macroscopic strain vector at tnþ1).
3. Given the above initial and input data, find U�nþ1 2 Rnu such that
B̂��T R̂ �Mnþ1;U
�
nþ1

� �
¼ 0; ð115Þ
where
R̂ ¼ ffiffiffiffiffiffiffi
wI1

p
rT ðxI1

; �Þ ffiffiffiffiffiffiffi
wI2

p
rT ðxI2

; �Þ � � � wIpr
T ðxIp ; �Þ

� �T ð116Þ
(here, rðxI i ; �Þ denotes the stress vector evaluated at the i� th sampling point through the correspond-
ing constitutive equation).

4. Output data: Once Eq. (116) has been solved for U�nþ1, update the macroscopic stress vector as
rM jnþ1 ¼ T R̂ �Mnþ1;U
�
nþ1

� �
: ð117Þ
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9. Numerical results
This section is intended to illustrate the performance and assess the efficiency of the proposed model reduc-
tion strategy in solving the fine scale BVP corresponding to a porous metal material under plane strain
conditions.

9.1. Microstructure description

The voids are elliptical in shape (with eccentricity equal to 0.3), randomly distributed (with porosity equal
to 0.3), and have aligned major axes ranging in length — according to the cumulative probability distribution
displayed in Fig. 3(b) — from 0.2 to 1.5 mm. The mechanical behavior of the metal matrix is modeled by a
rate-independent, Von Mises elastoplastic model endowed with the following non-linear, isotropic hardening
saturation law (consult Ref. [60] for details on the implementation of this elastoplastic model):
20 Th
gradien
Washi
ruðaÞ ¼ r0 þ �Haþ ðr1 � r0Þð1� expð�adÞÞ: ð118Þ

Here, ru stands for the yield stress, a P 0 denotes the equivalent plastic strain; and
r0 ¼ 75:0 MPa; r1 ¼ 100:0 MPa; d ¼ 2500:0 and �H ¼ 5000 MPa are material constants. The Young’s mod-
ulus and Poisson’s coefficient, on the other hand, are equal to Em ¼ 75 GPa and mm ¼ 0:3, respectively (these
material constants corresponds approximately to Aluminum).

9.2. RVE and finite element discretization

The size of the RVE was determined by conducting finite element analyses on square domains of increasing
size subject to vanishing displacement fluctuations boundary conditions. It was found that the macroscopic
stress responses calculated under representative macroscopic strain paths (stretching along the longitudinal
and transversal directions, and shearing) of all samples above 20 	 20 mm2 were practically indistinguishable.
This fact indicates that any subvolume of 20 	 20 mm2 (or greater) can be considered as a Representative Vol-
ume Element (RVE) of the porous material under study.

The finite element discretization corresponding to the particular 20 	 20 mm2 RVE employed in the ensu-
ing simulations is shown in Fig. 3(a). The number of (four-node bilinear) elements is ne ¼ 9746, and the num-
ber of nodes n ¼ 11825. The employed quadrature formula, on the other hand, is the standard 2 	 2 Gauss
rule, the total number of Gauss points amounting thus to ng ¼ 4 ne ¼ 38984. To overcome incompressibility
issues while maintaining the displacement-based formulation presented in the preceding sections, the com-
monly known as “B-bar” approach is adopted.20 The constitutive differential equations are integrated in time
using the classical (fully implicit) backward-Euler scheme.

9.3. Sampling of parameter space

The first step in the process of constructing the reduced basis is the sampling of the input parameter space; we
saw in Section 3.1 that, in the fine-scale BVP, this process amounts to select representative macroscopic strain
histories. The three macroscopic strain histories ðnhst ¼ 3Þ used in the case under study are depicted in Fig. 4.
In each of these strain trajectories, one of the (independent) strain components follows a linear ascending path
while the magnitude of the other two components is set to zero. The time domain for each strain history is
discretized into nstp ¼ 50 equally spaced steps, resulting in a total number of nsnp ¼ nhst � nstp ¼ 150 snapshots.

Remark 9.1. The task of sampling the input parameter space is somehow akin to the experimental process
whereby material parameters of standard phenomenological models are calibrated in a laboratory. In this
analogy, the RVE plays the role of the corresponding experimental specimen, whereas the macro-strain
is means that, in this case, the reduced “B-matrix” B�ðxÞ appearing in the formulation of the HP-ROM is not constructed using the
ts of the shape functions, as indicated by Eq. (23), but rather using the modified “B-matrix” emanating from the three-field Hu–

zu variational principle [60].
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Fig. 3. (a) Finite element mesh of the RVE corresponding to the porous metal material. (b) Cumulative probability distribution followed
by the length of the pore major axes.

Fig. 4. Macro-strain trajectories used for generating the displacement and stress snapshots.
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training trajectories represent the loading paths of the pertinent calibration tests. Hindsight and elementary
physical considerations can therefore aid in restricting the number of strain histories (and hence of snapshots)
necessary to characterize the response. For instance, if the behavior of the materials that compose the RVE is
governed by rate-independent constitutive models (as in the case at hand), we know beforehand that it is not
necessary to study the response under varying rates of deformation.

Strategies for efficiently sampling the input parameter space in general model reduction contexts can be
found in Refs. [12,13,15,42].
9.4. Dimensionality reduction: a priori error analysis

The finite element displacement fluctuation and stress fields computed at each time step of the input strain tra-
jectories shown above are multiplied by their corresponding weighting matrices ( �M and W1=2) and stored, in the
snapshot matrices �Xu 2 Rn�d	nsnp (n � d ¼ 11825 � 2 ¼ 23650) and X 2 Rng �s	nsnp (ng � s ¼ 38984 � 4 ¼ 155936),
respectively. Then, these matrices are subjected to the SVD-based, elastic/inelastic dimensionality reduction pro-
cess sketched in Section 3.2.1 — and described more in detail in Appendix B — in order to generate an optimal set
of basis vectors for both the displacements fluctuation and stress solution spaces.
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To elucidate which of these basis vectors constitute the “essential” modes of the response, we plot in Fig. 5
the dimensionless POD truncation error estimates defined, for the displacement fluctuations, as:
Fig. 5.
numbe
magnifi
~euðnuÞ :¼ k
�Xu � �X�uðnuÞkF

k�XukF

; ð119Þ
and for the stresses:
~etrun
r ðnrÞ :¼ kX � X�?ðnrÞkF

kXkF

; ð120Þ
�X�uðnuÞ and X�?ðnrÞ being the orthogonal projection of �Xu and X onto the span of the first nu and nr basis
vectors, respectively. It can be observed in Fig. 5 that both error measures decrease monotonically with
increasing order of truncation — this is a mere consequence of the optimality properties of the SVD —
and at approximately the same rate; the decay is more pronounced from 1 to 6 modes, and becomes more
gradual thereafter, tending asymptotically to zero as the number of modes increases. The truncation error
for both stresses and displacement fluctuations at nr ¼ nu ¼ 6 is around 5%. In terms of dimensionality reduc-
tion, this means that the data contained in the snapshot matrices can be “compressed” to a factor of
ðnu=nsnpÞ � 100 ¼ ð6=150Þ � 100 ¼ 4% and still retain 95% of the information — the essential information.
The first 6 basis functions (3 elastic and 3 inelastic) for both stresses and displacement fluctuations, therefore,
are to be regarded as essential modes in the characterization of the mechanical response of the concerned
RVE. By way of illustration, we plot in Fig. 6 the contour plots of the euclidean norm of such 6 essential dis-
placement fluctuations modes (kUik; i ¼ 1; 2 . . . 6).
9.5. Sampling points

9.5.1. Basic sampling points

Once the stress and displacement fluctuation basis vectors have been determined, the next offline step con-
sists in the selection — among the full set of finite element Gauss points — of an optimal set of sampling points.
Following the strategy described in Section 7.2, we carry out such a selection by first computing the location of
what we have called basic sampling points fxIrð1Þ; xIrð2Þ . . . xIrðprÞg. To assess the efficiency of the employed
Hierarchical Interpolation Points Method, abbreviated HIPM, we plot in Fig. 7 the estimates for both the
POD truncation (shown previously in Fig. 5) and total stress error versus the number of stress modes nr

(in using this algorithm, it is assumed that pr ¼ nr). The total stress error estimate is defined as
POD truncation error estimates ~eu (for the displacement fluctuations, see Eq. (119)) and ~etrun
r (for the stresses, see Eq. (120)) versus

r of basis vectors employed in the approximation (nu and nr, respectively). The portion between 6 and 11 modes is shown in
ed form.



Fig. 6. Contour plots of the euclidean norm of the first 6 displacement fluctuations modes (kUik; i ¼ 1; 2 . . . 5). Deformed shapes are
scaled up by a factor of 15.

Fig. 7. Estimates for the POD truncation (~etrun
r , see Eq. (120)) and total (~er, see Eq. (121)) stress error versus number of basis vectors

employed in the approximation (nr). The total error estimate is computed using only the set of basic sampling points (~er ¼ ~erðnr; IrÞ, with
pr ¼ nr). The portion between 6 and 11 modes is shown in magnified form.
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~erðnr; IrÞ :¼ kX � X�ðnr; IrÞkF

kXkF

ð121Þ
where X�ðnr; IrÞ denotes the oblique projection (calculated using sampling points I r) of X onto the span of the
first nr basis vectors (W1;W2 . . . Wnr). It can be appreciated in Fig. 7 that both the total error and the truncation
error curves are practically coincident, a fact that indicates that the contribution of the reconstruction error:
~erec
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~e2

r � ~etrun 2
r

q
¼ kX

�?ðnrÞ � X�ðnr; I rÞkF

kXkF

ð122Þ
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(the error introduced as a result of using only pr sampling points instead of the entire set of finite element
Gauss points, see Section 7.1.1) is negligible in comparison to the discrepancies due to truncation of the POD

basis. For nr ¼ pr ¼ 6, for instance, the reconstruction error is less than 3% of the total stress error. In view
of these results, it becomes clear that further refinements in the algorithm for selecting the basic sampling points

are in principle not necessary: the employed HIPM optimization algorithm, however heuristic, satisfactorily ful-

fills this purpose. If one wishes to lower the stress approximation error, it is far more effective to simply increase
the level of truncation.

9.5.2. Stabilizing sampling points
Concerning what we have termed “stabilizing sampling points”, Fig. 8(a) contains the graphs, for varying

levels of truncation, of factor fF defined in Eq. (100) as a function of the number of stabilizing sampling points
pB. To study the influence of including such points on the spectral properties — positive definiteness — of the
stiffness matrix, these graphs are accompanied, see Fig. 8(b), by the plots of the minimum eigenvalue lK

min (over
all time steps and iterations for each case) of the symmetric part of the reduced-order Jacobian matrix K� ver-
sus pB. It can be seen that fF decreases monotonically as the number of stabilizing sampling points increases,
and such a decrease is reflected, as theoretically anticipated in Section 6.4.1, in the improvement of the spectral
properties of the reduced-order Jacobian matrix (higher lK

min as pB raises). For clarity, the minimum number of
stabilizing sampling points required, for each level of truncation, to render positive definite K� is plotted in
Fig. 9. From this plot, it can be gleaned that, roughly, the higher the level of truncation (and thus the number
of basic sampling points), the more stabilizing sampling points appear to be needed to ensure the positive def-
initeness of K�. For nr ¼ pr ¼ 6, adding just one stabilizing sampling points suffices, while for nr ¼ pr ¼ 11, 7
points are required.

Observation 9.1. The values shown in Fig. 9 correspond to the minimum pB that leads to positive definite K�

when the prescribed strain path coincides with any of the “training” strain trajectory (displayed in Fig. 4).
Unfortunately, there is no guarantee that the Jacobian matrix will also exhibit this desirable property for
prescribed strain histories different from the training ones. Thus, in view of such uncertainty, and in the
interest of robustness, it is preferable to stay on the side of “caution” in this regard and use more stabilizing
sampling points that the minimum number indicated by the analysis based on the training strain trajectories. It
is the authors’ experience that a “safe” estimate for pB is to simply take pB ¼ pr — that is, equal number of
basic and stabilizing sampling points. In adopting such a rule, the authors have not observed any convergence
failures whatsoever, neither in the example under consideration nor in other cases not shown here.
The location of the first pr ¼ 6 basic sampling points and the corresponding pB ¼ 6 stabilizing sampling
points is depicted in Fig. 10.

9.6. A posteriori errors: consistency analysis

The error measures displayed previously in Figs. 5 and 7 only depend on the outcome of the SVD of the
snapshot matrices; they can be calculated, thus, before actually constructing the reduced-order model. Error
analyses based on such measures serve the useful purpose of providing a first hint of how many stress and
displacement fluctuations modes are needed to satisfactorily replicate the full-order, finite element solution,
and thereby, of prospectively evaluating the viability of the reduced basis approach itself.

However, these a priori error estimates do not tell the whole story. Expression (121) for the stress approx-
imation error presumes that the stress solution at the chosen sampling points is the one provided by the finite
element model, thus ignoring the fact that, actually, in the reduced-order model, and for the general case of
nonlinear, dissipative materials, the stress information at such points at a given time step is already polluted by
truncation (in displacement fluctuations and stresses) and reconstruction (in stresses) errors originated in pre-
vious time steps. To quantify the extent to which this amalgam of accumulated errors affects the predictions
furnished by the HP-ROM, it is necessary to perform a consistency analysis.

Generally speaking, a reduced basis approximation is said to be consistent if, in the limit of no truncation, it
introduces no additional error in the solution of the same problem for which the data used in constructing the



Fig. 8. (a) Factor fF (defined in Eq. (99)) versus number of stabilizing sampling points pB for varying numbers of basic sampling points pr

(with pr ¼ nr ¼ nu). (b) Minimum eigenvalue lK
min (over all time steps and iterations for each pr) of the symmetric part of the reduced-order

Jacobian matrix K� versus number of stabilizing sampling points pB.

Fig. 9. Minimum number of stabilizing sampling points required to make the Jacobian matrix K� definite positive for each level of
truncation nr ¼ nu ¼ pr (deduced from Fig. 8).
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basis functions were acquired [14]. In the BVP under consideration, thus, consistency implies that, when using
as input macro-strain paths the same trajectories employed in the “training” process, results obtained with the
HP-ROM should converge, as nr and nu increase, to the solution furnished by the full-order, finite element
model. This condition can be checked by studying the evolution of the error measures defined as



Fig. 10. Location within the RVE of the finite elements (marked in red) that contains the first pr ¼ pB ¼ 6 basic and stabilizing sampling
points. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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~eROM
u ðnu; nr; IÞ :¼ k

�Xu � �X�ROM
u ðnu; nr; IÞkF

k �XukF

ð123Þ
for the displacement fluctuations, and
~eROM
r ðnu; nr; IrÞ :¼ kX � X�ROMðnu; nr; IrÞkF

kXkF

ð124Þ
for the stresses. (The superscript “ROM” is appended to highlight that, unlike �X�u and X� in Eqs. (119) and
(121), �X�ROM

u and X�ROM are matrices of displacement fluctuation and stress snapshots computed using the HP-
ROM). Fig. 11(a) and (b) contain the graphs of these a posteriori error measures, along with their respective a
priori counterparts ~eu (Eq. (119)) and ~er (Eq. (121)), versus the level of truncation. It becomes clear from these
graphs that consistency, in the sense given above, is observed in terms of both displacement fluctuations and
stresses: the a posteriori error measures ~eROM

u and ~eROM
r mimic essentially the decreasing tendency of their a

priori counterparts ~eu and ~er, respectively. It can be seen also that the a priori error estimations ~eu and ~er con-

stitute (rather tight) lower bounds for their a posteriori counterparts ~eROM
u and ~eROM

r , respectively. This can be
better appreciated, for the stresses, in Fig. 12, where the ratio ~eROM

r =~er versus the level of truncation is plotted.
The degree of approximation that can be achieved using the proposed HP-ROM is quantified in a more

“engineering” fashion in Fig. 13, where we plot, for the case of the first training strain history (stretching
in the longitudinal direction), the longitudinal, macroscopic stress–strain curves computed using the FE model,
on the one hand, and the HP-ROM with nu ¼ nr ¼ 6; 7; 8 modes, on the other hand. Observe that the max-
imum deviation from the FE response when using 6 modes (3 elastic and 3 inelastic) takes place at the onset of
plastic yielding and is below 8%; remarkably, as deformation continues, this deviation gradually diminishes,
being practically negligible at the end of the process. Furthermore, by just increasing the order of truncation to
nr ¼ nu ¼ 8, differences between the HP-ROM and the FEM responses become virtually imperceptible at all
levels of deformation. Resemblance between HP-ROM and FEM results can also be appreciated in terms of
stress distribution in the contour plots shown in Fig. 14. Visually, there are no discernible differences between
the two contour plots.
9.7. “Training” errors

The studies presented in the preceding subsections were aimed at examining the errors incurred in approx-
imating the snapshot solution space Vsnp

u by the reduced-order subspace V�u 2 Vsnp
u spanned by the POD basis

vectors — in the terminology of Section 3.1 — and to check that when V�u ! Vsnp
u , the solution provided by



(a) (b)

Fig. 11. Comparison of the evolution of a priori and a posteriori error measures versus the level of truncation (using nu ¼ nr ¼ pr ¼ pB).
(a) Displacement fluctuations (see Eqs. (119) and (123)). (b) Stresses (see Eqs. (121) and (124)).

Fig. 12. Ratio ~eROM
r =~er between the a posteriori and a priori measures for the stress approximation error against the level of truncation

(using nu ¼ nr ¼ pr ¼ pB).
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the HP-ROM converges to that obtained with the FEM. But recall that the snapshot space Vsnp
u is but a (pre-

sumably representative) subspace of V�u, the manifold of Vh
u induced by the parametric dependence of the fine-

scale BVP on the prescribed macroscopic strain history. Consequently, in general — for an arbitrary input
strain trajectory — the HP-ROM solution will not converge to the solution provided by the FEM. To com-
plete the error assessment analysis, thus, it is necessary to estimate also the errors inherent to the sampling of
the parameter space — we call them training errors — and judge whether the selected training strain trajecto-
ries generate a snapshot subspace that is indeed representative of such a solution space21 V�u.

Ideally, one should carry out this error assessment by picking up, guided by some sound, statistically-based
procedure, a sufficiently large set of strain paths and by comparing the solutions computed by the FEM and
HP-ROM under such input strain paths for varying levels of truncation. Such a degree of rigor, however, is
beyond the scope of the present work. Here, we limit ourselves here to analyze the quality of the HP-ROM
approximation obtained for two different input strain histories, namely, a uniaxial compression test, and a
biaxial loading/unloading test.

9.7.1. Uniaxial compression

The first strain path employed for the assessment is displayed in Fig. 15(a); it represents a monotonic com-
pression in the transversal direction (the model, see Fig. 4, was trained using only stretching and shear, but not
21 To put it in less mathematical terms — by appealing to the analogy, introduced in Remark 9.1, between the training of the RVE
reduced-order model and the calibration of standard phenomenological models — we have “calibrated” our HP-ROM using the training
tests displayed previously in Fig. 4, and we have shown that the model is able to exactly replicate the behavior of the RVE in these tests
when nu ¼ nr is sufficiently large. Similarly to the situation encountered when dealing with standard phenomenological models, it remains
now to assess the capability of the proposed HP-ROM to predict the behavior of the RVE under conditions different from those used in
the “calibration” (training) process.



Fig. 13. Longitudinal macroscopic stress versus longitudinal macroscopic strain computed using FEM and HP-ROM with
nr ¼ nu ¼ 6; 7; 8.

Fig. 14. Contour plot of transversal stresses computed at the end of the first “training” strain history using (a) FEM (b) HP-ROM with
nr ¼ nu ¼ 6. Deformed shapes are exaggerated (by a factor of 20).

J.A. Hernández et al. / Comput. Methods Appl. Mech. Engrg. 276 (2014) 149–189 181
compression, tests). For purposes of evaluating the quality of the HP-ROM approximation, it is convenient to
introduce the following macroscopic22 stress error estimate:
22 Re

(125)
�

in Eq.

minim
~EROM
r;M :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPnt
stp

i¼1kri
M � r

�i;ROM
M ðnr; nu; IÞk2Pnt

stp

i¼1kri
Mk

2

vuut ; ð125Þ
where ri
M and r

�i;ROM
M denote the macroscopic stress at the ith time step computed by the FEM and the HP-

ROM, respectively. This error estimate is plotted in Fig. 15(b) versus the level of truncation nu ¼ nr. Observe
that the error goes to zero as the number of employed modes increase. In this particular case, thus, there is no

additional error due to sampling of the parameter space.
call that the output of interest in solving the fine-scale BVP is the macroscopic stress tensor; thus, the error estimate defined in Eq.

~EROM
r;M

�
provides a more meaningful indication of the quality of the approximation than the stress error measure defined previously

(124) ~eROM
r

� �
. The latter is more suited for examining convergence properties of the HP-ROM approximation, since the

ization problem that underlies the SVD is posed in terms of the Frobenius norm.



Fig. 15. (a) First strain trajectory employed for assessing training errors. (b) Plot of the macroscopic error estimator ~EROM
r;M (see Eq. (125))

corresponding to this testing trajectory versus level of truncation (nr ¼ nu).

Fig. 16. Second strain trajectory employed for assessing training errors.
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Remark 9.2. This simple example fittingly illustrates one of the acclaimed advantages of POD/Galerkin
reduced-order approaches over “black box” methods such as artificial neural networks — that are also based
on the partitioned offline-onlinecomputational paradigm — POD/Galerkin reduced-order approaches
preserve the “physics” of the problem one wishes to model and, as a consequence, are able to make
physically-based extrapolations. For instance, in this case, the reduced-order model is able to exactly replicate
(for sufficiently large nu ¼ nrÞ the macroscopic compressive behavior of the RVE, even though no information
regarding this deformational state has been supplied to the model in the calibration (training) phase; the HP-
ROM is “aware”, figuratively speaking, that the matrix material in the RVE exhibits similar behavior in
tension and compression (J2 plasticity).
9.7.2. Biaxil loading/unloading test
A more severe test for assessing errors associated to the training process is provided by the strain trajectory

shown in Fig. 16. Indeed, while the training strain histories of Fig. 4 only included monotonic, uniaxial
stretching, the strain history displayed in Fig. 16 consists of a cycle of biaxial, loading/unloading stretching

(time steps 1 to 100) and biaxial loading/unloading compression (time steps 101 to 200). The graph of the mac-
roscopic error estimator (125) corresponding to this input strain path as a function of the level of truncation is
represented in Fig. 17(a). It can be readily perceived that, in this case, and in contrast to the situation encoun-
tered in the previously discussed input strain trajectory, the macroscopic stress does not go to zero as the



(a)

(b)

Fig. 17. (a) Macroscopic error estimator ~EROM
r;M (see Eq. (125)) versus level of truncation (nr ¼ nu) for the case of testing trajectory shown in

Fig. 16. (b) Local speedup factor Sloc (defined in Eq. (126)) reported for this case versus level of truncation. This plot is accompanied by the
graph of the ratio ng=p, where ng ¼ 38984 is the total number of Gauss points of the finite element mesh, and p ¼ 2nr the number of
sampling points employed for numerically integrating the HP-ROM.
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number of POD modes included in the basis increases. Rather, the graph drops sharply from 24% to approx-
imately 5% at nr ¼ nu ¼ 5 (second inelastic mode), and then fluctuates erratically, with no apparent trend,
between 3% and 10% — a level of accuracy that, nevertheless, may be deemed more than acceptable in most
practical applications. A more clear picture of the accuracy of the approximation for the particular case of
nr ¼ nu ¼ 6 can be obtained from the stress–strain diagrams shown in Fig. 18.

9.8. Speedup analysis

Lastly, we turn our attention to one of the main concerns of the present work: the issue of computational
efficiency. For a given error level, how many times can the proposed HP-ROM speed up the calculation of the
RVE response with respect to the reference finite element model? Let us define the local speedup factor as the
ratio
23 Th
applyin
homog
quickly
Sloc :¼ tFEðn; ngÞ
tROMðnr; nu; pÞ

; ð126Þ
where tFE and tROM denote the CPU times required to compute the FE and HP-ROM macro-stress responses,
respectively, induced by a given input strain history23 In Fig. 17(b), we show the graph of the speedup factor
reported in the case of the input strain path of Fig. 16 as a function of the number of POD modes included in
e computational cost associated to the offline stage — generation of snapshots plus the comparatively negligible expenses of
g the POD and selecting the sampling points — has been deliberately ruled out from this speedup analysis because, in two-scale
enization contexts, the RVE equilibrium problem is to be solved a sheer number of times and, consequently, this overhead cost is
amortized.



Fig. 18. Longitudinal and transversal macroscopic stress versus longitudinal macroscopic strain computed using the FEM and the HP-
ROM with nr ¼ nu ¼ 6 (for the case of the testing trajectory shown in Fig. 16).
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the analysis (recall in this respect that nu ¼ nr ¼ p=2). We plot also in Fig. 17(b) the ratio ng=p, i.e., the relation
between the total number of integration points in the finite element model (ng ¼ 38984) and in the reduced
order model ðpÞ. It can be gleaned from Fig. 17(b) that the reported speedup factors are of the same order
of magnitude as the ratio ng=p; i.e.:
Sloc �
ng

p
¼ ng

2nr
; ð127Þ
(this indicates that the evaluation of the stresses at the integration points dominates the total computational
cost). Although these results are no doubt influenced and biased by the particular programming language and
coding style employed — we use an in-house, non-vectorized Matlab program operating in a Linux platform
— and, consequently, this trend may not be exactly observed when using other programming languages and/
or platforms, they serve to provide an idea of the tremendous gains in performance that can be achieved using
the proposed ROM; for nr ¼ p ¼ 6 modes, for instance, the computational cost is reduced by a factor above

3600, while still capturing 95% of the full-order, high-fidelity information — the essential information.

10. Concluding remarks

One of the most striking features of the proposed reduced-order model is perhaps the conceptual simplicity
of the RVE equilibrium equation in its hyperreduced-order form: the sum of (reduced) internal forces at the
pre-selected sampling points must give identical result either calculated using observed stresses or fitted stres-
ses. Although this condition appears, in hindsight, rather reasonable, even obvious — it ensures maximum
resemblance between reduced-order and full-order responses at the sampling points — it seems difficult to
arrive at it without the benefit of the integration procedure — based on the notion of expanded approximation

space — advocated in the present paper.
The hyperreduced form of the RVE equilibrium equation excels not only in its conceptual simplicity; the

corresponding solution scheme is also very simple to implement. Taking as departure point an existing FE
code, one only has to replace the typical loop over elements in the FE code by a loop over the pre-selected
sampling points fxI1

; xI2
; . . . xIpg. The stress vectors and corresponding constitutive tangent matrices obtained

at each stage of the loop are stored in the gappy weighted vector R̂ and the matrix Ĉ, respectively, and, then
the residual vector and the Jacobian matrix are computed as B̂��

T
R̂ and B̂��

T
Ĉ B̂�, respectively. Notice that no

assembly process is needed, nor has one to worry about imposing boundary conditions. Once convergence is
achieved, the macroscopic stress value is simply calculated as rM ¼ TR̂. It should be emphasized again that
the operation count in both solving this hyperreduced RVE equation and updating the macroscopic stress vector

depends exclusively on the reduced dimensions nu and p (number of fluctuation modes and number of sampling
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points, respectively). Likewise, storage of history data (internal variables) is only required at the pre-selected

sampling points. Computational savings accrue, thus, not only in terms of number of operations, but also
in terms of memory requirements.

The success of the proposed homogenization strategy is predicated on the assumption that displacement
and stress fields induced by the parametric dependence on the input macroscopic strain can be approximated
by (relatively) low-dimensional functions. Numerical results shown in the preceding section seem to suggest
that, in general, this assumption may be expected to hold in the case of materials governed by strain hardening

laws in the small strain regime — regardless of the geometrical complexity, number and distribution of heter-
ogeneities within the RVE. However, it is by no means apparent that this conclusion can be easily extended to
more (kinematically and phenomenologically) complex scenarios, involving large deformations, strain locali-
zation, decohesion, etc. For instance, can the deformational behavior of an RVE affected by multiple propa-
gating cracks be represented also in a parsimonious manner, as in the case of strain hardening? Or will the
number of modes necessary to accurately replicate its response combinatorially increase with the number
of potential crack paths (i.e., with the geometrical complexity of the RVE)? Undoubtedly, in these complex,
nonlinear scenarios, the task of sampling the parameter space — i.e., of choosing the macro-strain histories at
which to obtain the snapshots — will become quite complicated, due to the richness of possible deformational
patterns (void closure, propagating discontinuities . . .), and thus difficult to carry out on intuitive basis (as it
has been done in the present paper). Therefore, it would be desirable to systematize this crucial task, as well as
to provide some statistical means to certify, so to speak, the representativeness of the chosen snapshots. Like-
wise, topological variations caused by these phenomena may render POD-based compression algorithms inap-
propriate for collapsing the dimensions of the snapshots space; in such cases, nonlinear dimensionality
reduction methods such as the Isomap algorithm [43] may be more suitable. Research in these fronts is
currently in progress and will be reported in forthcoming publications.
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Appendix A. Proper Orthogonal Decomposition

The formal statement of the POD problem goes as follows: given the ensemble of snapshots
fu1; u2; . . . unsnpg, find a set of nu < nsnp orthogonal basis functions fU1;U2; . . . Unug Ui 2 Vsnp

u

� �
such that the

error defined as
24 No
dynam
euðnuÞ :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXnsnp

k¼1

kuk � P�ukk2
L2ðXÞ

vuut ð128Þ
is minimized. Here, P�uk represents the projection of uk onto the subspace spanned by the basis functions
fUignu

i¼1, and k � kL2ðXÞ symbolizes the L2 norm. We shall denote by Ui ði ¼ 1; 2 . . . nuÞ the column vector con-
taining the values of basis function Ui at the nodes of the underlying finite element mesh. Likewise, the matrix
formed by such vectors, U ¼ U1 U2 � � �½ � 2 Rn�d	nu , will be hereafter called the reduced basis matrix.

The reduced basis matrix U can be computed from the snapshot matrix Xu by means of the Singular Value
Decomposition (SVD) as follows (see Ref. [16] for more details). We first define the matrix24
MIJ :¼
Z

X
N IðxÞNJ ðxÞ dX I ; J ¼ 1; 2 . . . n: ð129Þ
te that, except for the density factor, this matrix M is similar to the “mass matrix” appearing in finite element implementations of
ical problems. For implementational purposes, one can simply use a lumped version of such a matrix.
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Let M ¼ �MT �M be the Cholesky decomposition of M, and let �Xu denote the matrix defined as:
�Xu :¼ �MXu: ð130Þ
Then, we compute the reduced SVD [37] of �Xu, that is, the factorization
�Xu ¼ �U �S �VT ; ð131Þ
where �V 2 Rnsnp	r (r is the rank of �Xu) and �U 2 Rn�d	r stand for the matrices of right and left singular vectors,
respectively; and �S 2 Rr	r is a diagonal matrix containing the singular values of Xu. The ith column of the re-
duced basis matrix U is finally related to the ith left singular vector of �Xu through expression
Ui ¼ �M�1 �U i; i ¼ 1; 2 . . . nu: ð132Þ
Appendix B. Elastic/inelastic reduced basis matrix

This appendix is devoted to provide further details concerning the actual numerical implementation of the
elastic/inelastic partitioned strategy, presented in Section 3.2.1, for the computation of the reduced basis matri-

ces U (displacement fluctuations). The steps to arrive at the desired matrix basis U are summarized in the
following.

1. Compute finite element stress solutions for representative, input macro-strain histories.
2. Store the displacement fluctuation solutions computed at each time step of these macro-strain trajectories in

the displacement fluctuations snapshot matrix Xu 2 Rn�d	nsnp :
Xu ¼ U1 U2 � � � Unsnp
� �

ð133Þ
3. Pick up from Xu a minimum of me (me ¼ 6 for 3D problems, and me ¼ 3 for plane strain) linearly indepen-
dent columns corresponding to purely elastic solutions. Store these columns in a matrix Zel

u .
4. Perform the reduced Singular Value Decomposition (SVD) of the matrix defined as
�Zel
u :¼ �MZel

u ð134Þ
where �M is the matrix of the Cholesky factorization of M (M ¼ �MT �M). A basis matrix for RangeðZel
u Þ is

finally obtained as
Del :¼ �M�1 �Del ð135Þ

�Del 2 Rn�d	me being the matrix of left singular vectors arising from the SVD of �Zel

u . In principle, Del may be
used as the desired elastic basis matrix Uel. However, Del does not enjoy any optimality property with re-
spect to Xu — it is only optimal with respect to the matrix Zel

u of chosen elastic snapshots.
5. For consistency in the approximation, thus, it is preferable to derive Uel from the “elastic component” of

Xu — the orthogonal projection of Xu onto RangeðDelÞ — the expression for this projection reads:
Xel
u ¼ DelðDelT

MXuÞ: ð136Þ
The elastic basis matrix can be finally calculated from Xel
u as:
Uel :¼ �M�1 �Uel; ð137Þ
where �Uel is the matrix of left singular vectors emerging from the reduced SVD of �Xel
u :¼ �MXel

u ; i.e.,
�Xel

u ¼ �Uel �Sel
u

�Vel
u

T
.

6. Calculate the “inelastic component” X in
u of the snapshot matrix Xu as:
X in
u ¼ Xu � Xel

u ; ð138Þ
that is, X in
u is the orthogonal projection of Xu onto the orthogonal complement, in RangeðXuÞ, of

> RangeðUelÞ.



J.A. Hernández et al. / Comput. Methods Appl. Mech. Engrg. 276 (2014) 149–189 187
7. It is now on this inelastic snapshot matrix X in
u that we apply the POD in order to identify and unveil the

essential or most “energetic” inelastic fluctuation modes. This is done by first carrying out the reduced
SVD of �X in

u ¼ �MX in
u :
�X in
u ¼ �Din �Sin

u
�V in

u
T
: ð139Þ
The ith POD basis vector of X in
u is then given by:
Uin
i ¼ �M�1 �Din

i ; i ¼ 1; 2 . . . nu � me: ð140Þ
8. The desired basis matrix U 2 Rn�d	nu adopts finally the form:
U ¼ ½Uel Uin� ¼ Uel
1 Uel

2 . . . Uel
me

zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{Elastic modes

Uin
1 Uin

2 . . . Uin
nu�me

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Essential inelastic modes
2
64

3
75 ð141Þ
Appendix C. Block matrix pseudoinverse of the expanded basis matrix

The inverse of a 2 	 2 symmetric block matrix is given by the following expression (see, for instance, Ref. [11]):
M�1 ¼
A B

BT C

� ��1

¼ A�1 þ A�1BS�1BTA�1 �A�1BS�1

�S�1BTA�1 S�1

" #
ð142Þ
where
S ¼ C� BTA�1B ð143Þ
is the so-called Schur complement of A in M. This formula can be used to derive closed-form expressions for
the modal coefficients cad and cin (see Section 6.2). The departure point is Eq. (67):
cad

cin

� �
¼ ð½Ŵ B̂��ÞyR̂ ¼ ŴT Ŵ ŴT B̂�

B̂�
T
Ŵ B̂�

T
B̂�

" #�1

ŴT

B̂�
T

" #
R̂; ð144Þ
where ð½Ŵ B̂��Þy designates the pseudo-inverse of the gappy expanded basis matrix. By setting:
A ¼ ŴTŴ; B ¼ ŴTB̂�; C ¼ B̂�
T

B̂� ð145Þ
and by inserting Eq. (142) into Eq. (144), one obtains upon expansion:
cin ¼ S�1ð�BTA�1ŴT þ B̂�
TÞR̂ ð146Þ
and
cad ¼ A�1 þ A�1BS�1BTA�1
� �

ŴT � A�1BS�1B̂�
T

� �
R̂

¼ A�1ŴTR̂þ A�1B S�1 �BTA�1ŴT þ B̂�
T

� �
R̂

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{cin

¼ A�1ŴTR̂þ A�1Bcin: ð147Þ
By substituting back Eq. (145) into the above equation, and taking into account that:
Ŵy ¼ ðŴTŴÞ�1
ŴT ð148Þ
one finally gets:
cad ¼ ŴyðR̂� B̂�cinÞ; ð149Þ

cin ¼ S�1B̂�
T

I � ŴŴy
� �

R̂; ð150Þ
where
S ¼ B̂�
TðI � ŴŴyÞB̂�: ð151Þ
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