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This article reports on the first application of a modified version of the bilinear least-squares

model to absorbance-pH second-order data recorded for complex samples. The latter are

composed of fruit drink powders, where four different analytes and additional background

components occur. The analytes are the common juice colorants tartrazine, yellow sunset, allura

red and indigo carmine. The data have been measured after generating a double pH gradient

within a flow injection system. The selected chemometric methodology adequately exploits the

second-order advantage, needed to take into account the background interferents present in real

samples. Due to severe spectral overlapping between the acid and basic forms of each of the

colorants in the working pH range, other second-order multivariate calibration methods such as

parallel factor analysis and multivariate curve resolution-alternating least-squares could not be

successfully applied to the presently studied samples. Recoveries of 94.8, 104.7, 109.3 and 105.3%

were obtained for yellow sunset, indigo carmine, allura red and tartrazine respectively in the real

test samples.

Introduction

Multi-way analysis is becoming popular due to the availability

of high-order instrumental data and the proliferation of

chemometric algorithms for data processing.1 A particularly

appealing property of multi-way data is the second-order

advantage,2 a term coined to describe the analysis in the

presence of unsuspected interferents. Second-order, i.e.,

matrix data for a given sample can be produced in a variety

of ways, among which an attractive possibility is to take

advantage of the analyte acid–base properties. For example,

a sample can be subjected to a pH gradient within a flow

injection analysis (FIA) system, with the FIA peak subse-

quently registered at a number of wavelengths by diode

array detection. Spectra can be obtained at different times

along the FIA peak, equivalent to recording spectra at

different pH values. This FIA/diode array detection mode

represents an important experimental advantage.3–5 The

absorbance changes due to variations in the proton-transfer

species composition with the pH give rise to absorbance-pH

matrix data, and grouping these type of data for a set of

samples will produce a three-way array.

A variety of chemometric methods is available to analyze

three-way data, namely generalized rank annihilation

(GRAM),6 parallel factor modeling (PARAFAC),7,8 multi-

variate curve resolution coupled to alternating least-squares

(MCR-ALS)9 and the prize-winning bilinear least-squares

(BLLS).10,11 However, absorbance-pH matrix data pose

special challenges to these multivariate algorithms, due to the

fact that the species’ concentrations are correlated along the

pH dimension, i.e., the sum of individual species correspond-

ing to a given analyte is constant. This introduces linear

dependencies in the pH data dimension, requiring the

application of constraints during data processing for successful

calibration and prediction. Specific software developed for

linear dependent data are some versions of PARAFAC

(PARAFAC2,12 PARALIND13), MCR-ALS, residual

bilinearization RBL14 and a recent modification of BLLS.15

The most popular alternatives seem to be MCR-ALS and

PARAFAC, whose software is easily available through the

internet.16 However, as shown in the present report, these

two algorithms are not able to handle extreme collinearities

which may also be present in the spectral dimension, as those

shown by the analytes herein studied. Therefore, we have

explored the alternative use of a recently modified BLLS

methodology, which takes into account the presence of

pH-equilibrating species.15 This latter method is shown to be

highly efficient in analyzing data with severe correlations in

both the spectral and pH dimensions.

In this report, we focus on the analysis of dyes in foodstuff.

Color is an important characteristic of foods because it allows

one to capture the desired aesthetic and organoleptic qualities

of a particular foodstuff, and this is the main reason for the

importance allotted to colorants in food industry. Some

synthetic colors may be pathogenic, especially when they are

consumed in excess, and thereby they should be evaluated by

both manufacturers and health organizations.17,18
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Tartrazine (T, trisodium 5-hydroxy-1-(4-sulfophenyl)-4-

(4-sulfophenylazo) pyrazole-3-carboxylate), yellow sunset (Y,

6-hydroxy-5-[(4-sulfophenyl)azo]-2-naphtalenesulfonic acid

disodium salt), allura1 red (R, 6-hydroxy-5-[(2-methoxy-5-

methyl-4-sulfophenyl)azo]-2-naphtalenesulfonic acid disodium

salt) and indigo carmine (I, 5,59-(2-(1,3-dihydro-3-oxo-2H-

indazol-2-ylidene)-1,2-dihydro-3H-indol-3-one) disulfonate)

are four synthetic dyes available as yellow (T and Y), red

(R) and blue (I) powders, and are present in powder drinks

either alone or in suitable combinations. Several methods

have been proposed for the determination of these colorants,

liquid chromatographic techniques being the recommended

ones for analyzing mixtures of several colorants.19–22 Owing

to the complexity of these type of samples, other separative

techniques such as capillary electrophoresis have been

applied.23,24 Spectrophotometric methods, especially when

assisted by chemometric tools, have also been discussed for

solving mixtures of two or three colorants.25,26 Additional

techniques have been employed, including differential pulse

polarography,27 square wave adsorptive voltammetry28 and

mass spectrometry.29

The present work attempts to demonstrate that the com-

bination of pH gradient/diode array detection in a flow

system is a convenient way of simultaneously measuring the

concentration of four colorants with strongly overlapping

spectra, in the presence of uncalibrated interferents. Critical to

the success of the analytical determination is the employment

of an adequate chemometric methodology for data analysis in

the presence of strong correlations.

Experimental

Apparatus

Spectrophotometric measurements were performed on a

Hewlett Packard 8452A spectrophotometer with a diode array

detector and a Hellma 178-010-QS flow cell with an inner

volume of 18 mL. A Gilson Minipuls 3 peristaltic pump was

used as the propulsion device. A Rheodyne 5041 injection

valve was used. Reactor and tubing of PTFE (id 0.5 mm)

were used.

Reagents

All solutions were prepared from analytical grade chemicals

and purified water (18 mV) by using a B-pure system. The

buffer solution was prepared by mixing 96.1 mL of potassium

dihydrogen phosphate (Mallinckrodt) (9.073 g L21) and

3.9 mL of di-sodium phosphate (Mallinckrodt) (9.464 g L21).

The final pH of this solution was 5.5. Three commercial

samples were analyzed: Tang orange flavor (J1), Tang

tangerine flavor (J2) and Clight apple flavor (J3) (Kraft

Foods Argentina S.A.), all purchased in the local market. The

available pKa values for the analytes are as follows:30

tartrazine, 9.4, yellow sunset, 10.4, allura red, 11.4 and indigo

carmine, 12.2.

Flow injection methodology

A simple FIA assembly (shown in Fig. 1) was used to generate

a double on-line pH gradient. Standard solutions and samples,

prepared as described below, were used as a carrier stream,

and 50 mL of NaOH 0.1 M were injected to create the pH

gradient. For each FIA peak, spectra were collected in the

range of 340–750 nm each 2 nm. The number of different

points along the pH dimension was 76, taken at intervals of

2 s. In this way, matrices of size 206 6 76 were registered for

each injected sample.

Preparation of calibration and validation samples

Pure standard solutions of the four colorants were used for

calibration. The standards were prepared from stock solutions

of 1.000 g L21. Six standard solutions of each analyte were

prepared with concentrations of 2.0, 4.0, 8.0, 12.0, 16.0 and

20.0 mg L21 to be used in the calibration step, and thus the

calibration set consisted of 24 different solutions. Linearity

was verified in this concentration range.

A ten sample set was built for validating the employed multi-

variate model. The analyte concentrations arose from a Plackett–

Burman design (Table 1). The extreme concentrations for the

design were 4.0 and 8.0 mg L21 for all colorants. They were

obtained starting from the stock solutions (see above). Their

total spectral-pH evolutions were measured in random order,

after injection into the above described FIA system.

Real powder drinks samples

Three real powder drink samples were studied: J1 (containing

two colorants: T and A), J2 (three colorants: R, T, and A), and

J3 (containing four colorants: I, R, T and A). The samples

were prepared by placing 24.0 g of commercial powder in a

250.0 mL flask and completing to the mark with the phosphate

buffer solution described above. Each sample was subjected to

different dilutions in order to ensure that the final analyte

concentrations were within the calibration ranges (this was

made by checking that the sample spectra had absorbances of

comparable magnitude to those of the calibration samples).

The dilutions performed were the following: J1, 1 : 10; J2, 2 : 10

and J3, 3 : 10. Standard additions of the colorants were made

in order to perform a recovery study. In this way, in separated

samples, three levels of each declared colorant were added. The

levels were 2.0, 4.0 and 8.0 mg L21. This procedure originated

six samples for sample J1, nine for sample J2 and twelve for

sample J3 (Table 2). Their total spectral evolutions were

registered in random order, and in different days than the

calibration/test samples.

Fig. 1 Flow injection system used for the generation of a double pH

gradient: IV, injection valve; R, reactor; D, diode array detector; W,

waste; q 5 0.54 mL min21.
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Data processing

For application of the BLLS algorithm to each test

sample, the total absorbance-pH matrices for the calibration

set, all of size 206 6 76, were first vectorized in order to

apply the mathematical expressions described below.

Residual bilinearization was then applied to all samples

requiring the second-order advantage. The number of

interferents was assessed by increasing a trial number of

components until the BLLS prediction residuals stabilize

at a value compatible with the instrumental noise level.

The latter was estimated by suitable blank replication

measurements.

Theory

The original BLLS formulation is discussed in detail in the

relevant references, and thus only a brief description is

presented here. BLLS employs concentration information into

the calibration step, without including data for the unknown

sample. This is done in order to estimate pure-analyte matrices

at unit concentration (Sn) for specific calibrated analytes (n).

For this purpose, the I calibration data matrices Xc,i

(each of size J 6 K) are first vectorized and grouped into a

JK 6 I matrix VX:31

VX 5 [vec(Xc,1)|vec(Xc,2)|…|vec(Xc,I)] (1)

Table 1 Prediction on model validation samples

Sample

Yellow sunset/mg L21 Indigo carmine/mg L21 Allura red/mg L21 Tartrazine/mg L21

Actual Pred. Actual Pred. Actual Pred. Actual Pred.

1 4.0 3.8 8.0 8.4 8.0 8.7 8.0 8.4
2 8.0 7.5 8.0 8.5 8.0 8.7 4.0 4.7
3 8.0 7.5 4.0 4.8 8.0 8.7 4.0 4.4
4 8.0 7.5 4.0 4.3 4.0 4.9 8.0 8.2
5 4.0 3.7 8.0 8.1 4.0 4.3 4.0 4.1
6 4.0 3.7 4.0 4.0 8.0 8.3 8.0 8.1
7 8.0 7.5 8.0 8.6 4.0 4.7 8.0 8.5
8 8.0 7.8 4.0 3.9 4.0 4.3 4.0 4.2
9 6.0 5.9 6.0 6.0 6.0 6.3 6.0 6.3

10 6.0 5.8 6.0 6.1 6.0 6.2 6.0 6.2
Mean recovery (%) 94.8 104.7 109.3 105.8

Table 2 Prediction on real samples and real added samples

Sample

Yellow sunset/mg L21 Indigo carmine/mg L21 Allura red/mg L21 Tartrazine/mg L21

Actuala Pred. Actuala Pred. Actuala Pred. Actuala Pred.

J1 — 3.8 — 0.2 — 0.3 — 6.6
J1–T2 — 4.2 — 0.2 — 0.1 8.4 8.2
J1–T4 — 3.4 — 0.2 — 0.2 10.4 10.2
J1–T8 — 3.4 — 20.3 — 20.3 14.4 15.5
J1–A2 5.7 5.8 — 0.3 — 0.3 — 5.8
J1–A4 7.7 7.3 — 0.4 — 0.4 — 5.9
J1–A8 11.7 12.7 — 0.8 — 1.1 — 7.3
J2 — 2.3 — 3.1 — 0.4 — 1.6
J2–T2 — 2.2 — 3.4 — 0.4 3.3 3.6
J2–T4 — 2.3 — 3.6 — 0.5 5.3 5.6
J2–T8 — 2.4 — 4.1 — 0.7 9.3 9.7
J2–A2 4.3 4.4 — 2.9 — 0.4 — 1.3
J2–A4 6.3 6.4 — 3.2 — 0.5 — 1.2
J2–A8 10.3 10.7 — 3.0 — 0.7 — 0.7
J2–R2 — 2.2 — 3.2 2.4 2.5 — 1.3
J2–R4 — 2.0 — 3.4 4.4 4.7 — 1.3
J2-R8 — 2.0 — 3.0 8.8 9.4 — 1.1
J3 — 3.1 — 0.1 — 0.7 — 3.8
J3–T2 — 3.1 — 0.3 — 0.9 6.0 5.9
J3–T4 — 3.2 — 0.4 — 1.0 8.0 8.6
J3–T8 — 3.1 — 0.4 — 1.0 12.0 11.5
J3–A2 5.1 5.4 — 0.1 — 0.5 — 3.3
J3–A4 7.1 7.6 — 0.4 — 0.8 — 4.8
J3–A8 11.1 11.7 — 0.0 — 0.8 — 3.7
J3–R2 — 3.0 — 0.0 2.8 2.8 — 3.2
J3–R4 — 3.0 — 0.0 4.8 5.1 — 3.4
J3–R8 — 2.9 — 0.0 8.8 9.6 — 3.4
J3–I2 — 3.3 2.2 2.1 — 0.5 — 3.5
J3–I4 — 3.6 4.2 4.4 — 0.6 — 3.9
J3–I8 — 3.5 8.2 9.2 — 0.9 — 3.9
a The actual concentration was computed as the sum of the average value predicted by BLLS on four samples and the amount added in the
standard addition procedure (see text).
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where ‘vec’ implies the unfolding operation. Then a direct

least-squares procedure is employed to obtain the pure-analyte

information, analogous to first-order classical least-squares

multivariate calibration:31

VS 5 VXYT+ (2)

where Y is an I 6 Nc matrix collecting the nominal con-

centrations of the calibrated analytes, Nc is the number of

calibrated analytes, and VS (size JK 6 Nc) contains the

required Sn matrices in vectorized form:

VS 5 [vec(S1)|vec(S2)|…|vec(SNc
)] (3)

To obtain the profiles in both dimensions which are present

in the J 6 KSn matrices, two procedures have been discussed

in the literature:10,11 the least-squares (LS) profile estimator

and the singular value decomposition (SVD) profile

estimator;10,11 the most reliable and simple seems to be the

latter one. In this case, the component profiles are obtained by

single-component singular value decomposition (SVD1) of

each of the Sn matrices, obtained after suitable reshaping of

the unfolded vec(Sn):10,11

(gn, bn, cn) 5 SVD1(Sn) (4)

where gn is the first singular value, and bn and cn are the J 6 1

and K 6 1 left and right eigenvectors of Sn, respectively. This

completes the calibration process.

After calibration, concentrations are estimated in test

samples by direct least-squares,10,11 provided no interferents

occur in the unknown sample:31

yu 5 Scal
+vec(Xu) (5)

where Xu is the J 6 K matrix data for the test sample, yu is an

Nc 6 1 vector holding the estimated concentrations of the Nc

analytes in the sample, and Scal is a calibration JK 6 Nc

matrix given by:

Scal 5 [g1(c1flb1)|g2(c2flb2)|…|gNc
(cNflbNc

)] (6)

where fl implies the well-known Kronecker product.

When a single analyte occurs, Scal in eqn (6) contains a

single column. However, if the analyte have pH dependent

forms, its corresponding Sn will contain information from

several equilibrating species, and therefore it may be necessary

to consider more than one component for the singular value

decomposition in eqn (4). This will render, for a given analyte,

different values of gn, e.g., gn1, gn2, etc., where the first

subscript identifies the analyte and the second one the proton

equilibrating species. Similarly, different profiles for each

dimension (bn1, bn2, cn1, cn2, etc.) will be obtained, which will

consist of linear combinations of the true spectral profiles for

the equilibrating species of the analyte.

For a single analyte (n 5 1), an expression similar to eqn (5)

is then employed for concentration estimation, where Scal is

now given by:

Scal 5 [g11(c11flb11)|g12(c12flb12)|…|g1Ns
(c1Ns

flb1Ns
)] (7)

where Ns is the total number of equilibrating species for the

analyte. Hence, even when a single analyte occurs, yu is in this

case an Ns 6 1 vector containing the predicted concentration

of the calibrated analyte (there are Ns values because each of

them is obtained from each of the analyte species).

For more analytes, each of which have equilibrating species,

the general equation for Scal will be:

Scal 5 [g11(c11flb11)|g12(c12flb12)|…|g1Ns1
(c1Ns1

flb1Ns1
)|…

|g21(c21flb21)|g22(c22flb22)|…|g2Ns2
(c2Ns2

flb2Ns2
)|…]

(8)

where Ns1, Ns2, etc. are the number of species associated with

each analyte.

The occurrence of uncalibrated compounds in a test sample

is investigated after the calibration step is completed. If an

interferent occurs, the situation is handled by a separate

residual bilinearization (RBL),10,11 in which profiles for the

interferent are found, and incorporated into an expanded

version of Scal:

Sexp 5 [Scal|gint(cintflbint)] (9)

where the profiles bint and cint are obtained by a procedure

involving the minimization of the residual matrix Eu,

computed while fitting the sample data to the sum of the

various component contributions:

Xu~
XNc

n0~1

gn0bn0 cn0ð ÞTyn0 ,uzgintbint cintð ÞTzEu (10)

During the minimization, the interferent profiles are

estimated by SVD of a residual matrix Ec, obtained by

subtracting the analyte contributions to the total signal Xu:

Ec~Xu{
XNc

n0~1

Sn0yn0 ,u (11)

(gintbintcint) 5 SVD1(Ec) (12)

Eqn (10) is suitable for analytes having a single species each.

In the event that different analytes have a different number of

species, then the latter expression should be modified to

accommodate for this possibility:

Xu~
XNc

n0~1

XNs

s0~1

gn0s0bn0s0 cn0s0ð ÞTyn0s0,uzgintbint cintð ÞTzEu (13)

An iterative method has been described for applying

RBL.10,11 However, in certain cases the latter procedure has

been found to diverge instead of converging to the desired

analyte concentrations. We used instead a Gauss–Newton

minimization procedure of ||Eu|| in eqn (13), implemented

under MATLAB, during which gint, bint, and cint are found by

singular value decomposition of Eu. The procedure renders the

value of yns,u required to minimize Eu in eqn (13).

The prevailing idea within BLLS is a two-step calibration–

prediction mode, where concentration prediction is guided by

a least-squares minimization. The second-order advantage is

left for a subsequent stage, in which the matrix residuals are

analyzed in order to estimate the interferent profiles. The latter
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serve to expand the loadings, and to correctly estimate the

analyte concentrations, even in the presence of unexpected

constituents. Notice that no initialization or constraining

procedures are required.

Results and discussion

Spectral behavior of the analytes

Fig. 2 shows the absorption spectra of tartrazine, yellow

sunset, indigo carmine and allura red at pH 5.0 and 12.0,

where their acid and basic forms can be observed. One of the

main difficulties shown by the currently studied system is

visually illustrated in Fig. 2: extreme collinearities occur in the

spectral dimension, because the acid and basic forms of each

analyte display similar spectral shapes. This spectral overlap

between analyte species is the main reason complicating the

analysis by methods such as PARAFAC or MCR-ALS. The

spectrum for a blank powder drink sample (i.e., without

colorants) is also shown in Fig. 2 at the pH values selected for

the analytes. As can be seen, an intense overlap occurs among

the spectra for the analytes and background, a fact which

complicates the analysis by first-order multivariate techniques,

and highlights the usefulness of the second-order advantage

discussed below.

In order to circumvent these difficulties, a suitable

methodology for producing second-order data was designed,

combining a flow injection system where a double pH gradient

is created, and diode array spectrophotometric detection (see

below). This type of data permits quantitation even in the

presence of unexpected interferents, thanks to the implementa-

tion of the powerful second-order advantage. Fig. 3 shows the

three-dimensional plot of the total spectral-pH evolution for

the validation sample 1 (which contains all four analytes), after

injection into the FIA system. The variation in signal along

the FIA peak can be readily appreciated, as a decrease in

absorbance near the center of the FIA time dimension, due to

the injection of an alkaline solution in the acid carrier stream.

Optimization of the FIA system

In order to check the suitability of the double pH gradient

generated in the FIA system, tartrazine solutions prepared

with different pH buffers were injected, and the FIA signals

were registered at 430 nm. Then, a tartrazine solution of pH 5.5

(the KH2PO4/K2HPO4 described above) was used as a carrier

and a volume of 0.1 M NaOH was injected. In this way, it

could be corroborated that a double pH gradient was induced

on the carrier stream, with values ranging from 5.5 (the pH of

the carrier) to 12.8 close to the center of the FIA peak, to 5.5.

It should be noticed that the exact correspondence between pH

values and FIA time is not required for the success of the

analytical protocol, provided that the generated pH gradient is

reproducible from sample to sample.

The optimization of the FIA system was carried out using

tartrazine. All the variables were optimized as a compromise

between the width and the height of the FIA peak, because the

dispersion of the injected volume was responsible for the

generation of the pH gradient. As the FIA assembly was

simple, the injected volume (30–100 mL), the length of the

reactor (1300–1900 mm) and the flow rate (0.36–0.72 ml min21)

were varied, and the optimum values were found to be 50 mL,

1400 mm, and 0.54 ml min21. The NaOH concentration was

also tested between 0.05–0.15 M, and the best was 0.1 M.

Analysis of the synthetic validation set

The use of either PARAFAC (with suitable constraints) or

MCR-ALS did not furnish acceptable results for the presently

studied samples. The most probable cause is the extreme

spectral overlapping between the acid and basic forms of the

analytes, which introduces an additional source of linear

dependency besides the already existing one in the pH

dimension. Therefore, analysis of the set of synthetic samples

was carried out by using BLLS. For the successful application

Fig. 2 Solid lines, the four absorption spectra measured for solutions

of the pure analytes tartrazine, yellow sunset, allura red and indigo

carmine (all at 8.0 ppm), at acid pH (5.0), and indicated as T(a), Y(a),

R(a) and IC(a) respectively. Dashed lines, the corresponding spectra

at basic pH (12.0), indicated as T(b), Y(b), R(b) and IC(b). Spectra of

a solution containing the background of the powder drink are also

shown at pH 5 5.0 (solid) and pH 5 12.0 (dashed), indicated as

Blank(a) and Blank(b).

Fig. 3 Three-dimensional plot of the spectral-pH evolution for the

validation sample 1, after injection into the FIA system.
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of BLLS to the present problem, two parameters should be set:

the number of components (i.e., analytes and interferents), and

the number of species for each analyte. The number of species

per analyte was optimized by trial tests, while the number of

interferents was tuned by comparison of the BLLS prediction

residuals for each sample with the instrumental noise level

(assessed by suitable blank replication). It was found that

satisfactory results can be obtained by setting the number of

components to four, and the number of species to one for all

analytes (see below). The number of components agrees with

the known sample composition of the validation set, while the

number of species is understandable on the basis of the high

spectral collinearity between the acid and basic form of each

analyte. In this latter case, the SVD analysis of each of the

analyte matrices Sn indicates that the first principal component

explains most of the variance, and that no additional

components are therefore needed.

The application of BLLS to the validation samples yielded

analyte profiles and estimated concentrations. All spectral

profiles agree well with those corresponding to standards.

Four components and single species for each analyte were

included, as suggested by the consideration of BLLS prediction

residuals, as shown in Fig. 4 top for a typical validation

sample. As can be seen, the model with four components and

single analyte species shows a prediction residual comparable

to the instrumental noise, while more complex systems only

produce a slight decrease in prediction residual which is

not justified. Prediction on the synthetic set with the four-

component BLLS model yielded the results quoted in Table 2.

The latter (recoveries ranged from 94.8 to 109.3%) can be

considered as acceptable in view of the complexity of the

samples being analyzed. The best results are obtained for IC,

as expected since this analyte shows a spectrum which is

significantly different in shape in comparison with the

remaining three analytes.

Analysis of real powder drink samples

Real powder drink samples and additional ones obtained after

analyte standard addition were studied. The analysis of these

real samples was made in the manner described above for the

synthetic set using BLLS, but using six components instead of

four. In this case, the number of chemical species for each

analyte was known from the previous analysis of the validation

set (i.e., one species for each analyte), while the number of

interferents had to be increased to two. This latter number

was necessary to decrease the BLLS prediction residuals for

each sample, until it stabilizes at a value compatible with the

instrumental noise level. Fig. 4B shows that, among the

different trial models, the one with six components and a single

species for each analyte is the simplest one with a prediction

residual comparable to the instrumental level.

Prediction with this BLLS model furnishes the spectral and

pH profiles for each component and species, which are shown

in Fig. 5A and 5B for a typical real sample. In comparison with

Fig. 2, the analyte spectra can be readily matched with those of

standards. In the case of the interferent spectral profiles, they

consist of principal components of the matrix of prediction

residuals, and are thus a linear combination of real spectra. In

this sense, they are not strictly comparable to those shown

for a blank sample in Fig. 2. Nevertheless, BLLS is successful

in obtaining the correct analyte profiles to be employed

for concentration prediction in complex real samples. The

recovered pH profiles shown in Fig. 5B are also indicative of

the difficulties found in analyzing the present system: the

shapes of the analyte profiles are all similar along the pH

dimension, adding to the already strong collinearity in the

spectral mode.

The prediction results for the real samples are shown in

Table 2. As can be seen, excellent recoveries are obtained in

most of the spiked samples. Table 3 shows the obtained

probabilities for t-paired tests when comparing the amount of

added dyes and those predicted by BLLS modeling. As can

be seen, only two cases show significant differences (p value

lower than 0.05). In order to get further insight into the

accuracy, linear regression analysis of added versus predicted

Fig. 4 (Top) Changes in BLLS prediction residuals for a typical

validation sample, as a function of the trial number of components,

and for five different combinations of equilibrating species for each

analyte. The nomenclature is [Ns1 Ns2 Ns3 Ns4], where the successive

numbers refer to the species for T, Y, R and IC. The horizontal black

plane marks the instrumental noise level. (Bottom) Similar to (top) for

a typical real sample.
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concentration values (Table 2) for yellow sunset and tartrazine

were applied on the three real spiked samples. The estimated

intercept and slope (â and b respectively) were compared with

their ideal values of 0 and 1 using the elliptical joint confidence

region (EJCR) test, in this case by using an ordinary least

squares fitting (OLS).32 The ellipses are seen to contain the

theoretical (a 5 0, b 5 1) point for both analytes. This fact is

indicative that constant and proportional bias is absent. On

the other hand, more precision for the estimation of the yellow

sunset concentration can be observed considering the size of

the corresponding ellipses. In addition, the analysis of four

replicates showed that the largest coefficient of variation (CV)

was near to 10%. Similar CV values were found for the analyte

concentrations in real samples without standard addition.

Conclusions

Second-order data generated in various ways provide, after

adequate chemometric analysis, valuable information concern-

ing underlying physical phenomena. More importantly, they

permit quantitation of selected analyes in complex multi-

component samples, even in the presence of uncalibrated

constituents. The presently analyzed example challenges the

most advanced second-order multivariate methodologies with

data showing strong spectral overlapping coupled to linear

dependencies in the pH dimension. Bilinear least-squares

appears to be a promising technique for processing these data,

yielding analyte profiles and concentrations in samples where a

strong background occurs.
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