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Abstract Elucidating the determinants of tomato nutri-

tional value and fruit quality to introduce improved vari-

eties on the international market represents a major

challenge for crop biotechnology. Different strategies can

be undertaken to exploit the natural variability of Solanum

to re-incorporate lost allelic diversity into commercial va-

rieties. One of them is the characterization of selected

germplasm for breeding programs. To achieve this goal, 18

RILs (S. lycopersicum 9 S. pimpinellifolium) were com-

prehensively phenotyped for fruit polar metabolites and

quality associated traits. Metabolites were quantified by

GC–MS and 1H NMR. Integrative analyses by neuronal

clustering and network construction revealed that fruit

properties are strongly associated with the metabolites as-

partate, serine, glutamate and 2-oxoglutarate. Shelf life and

firmness appeared to be linked to malate content. By a

comparative analysis of the whole data set, ten RILs pre-

sented higher number of traits with positive effect than the

S. lycopersicum 9 S. pimpinellifolium hybrid. Thus, these

lines can be proposed as promising candidates for breeding

programs aimed to improve fruit quality.

Keywords Tomato � Fruit quality � Solanum

lycopersicum � Metabolomics

1 Introduction

Tomato (Solanum lycopersicum L.) is an important horti-

cultural crop world-wide and the second most consumed

non-cereal vegetable after potato (http://faostat3.fao.org/).

Its fruits are a source of essential minerals and nutrients for

the human diet, such as vitamins A and C and other an-

tioxidants (Willcox et al. 2003; Fitzpatrick et al. 2012).

Cherry tomato [S. lycopersicum var cerasiforme (Alef.)

Voss.] was probably domesticated from S. pimpinellifolium

L. and is likely the ancestor of cultivated big-fruited

tomato. Domestication was initiated by indigenous people

of the Andes who kept and propagated seeds from wild

plants with bigger and tastier fruits. During this process

186 sweeps were selected representing 8.3 % of the gen-

ome (Lin et al. 2014).

Tomato breeding, on the other hand, began in Europe

when improved cultivars were generated to meet several

needs including fresh market and processing industries

(Foolad 2007). At the beginning of the 20th century, public

institutions from USA and new private companies became
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interested in this practice. Since then until now, vast re-

search and economic efforts have been invested in tomato

improvement. It was recently reported that selection during

improvement process affected 4,807 genes, representing

7 % of the genome, of which 1 % has also undergone

double selection because of previous domestication process

(Lin et al. 2014).

Over the history of tomato breeding four clear periods

can be defined according to the major target of improve-

ment (Bai and Lindhout 2007). Initially, efforts were fo-

cused on yield (i), which increased seven-fold in

processing tomato between the 20 and 30 s. This was due

to incorporation of diseases resistances, a good perfor-

mance of the selected F1 hybrids to fertilization, the use of

pesticides (Warren 1998), enhanced tolerance to abiotic

stresses and an increase in fruit sugar content (Foolad

2007). In fresh tomato, yield enhancement was achieved by

crosses with wild relative species (Swamy and Sarla 2008).

On this regard, many quantitative trait loci (QTL) for yield

and related traits as fruit weight, total soluble solids or

lycopene content were found non-randomly distributed in

the genome (Fulton et al. 1997; 2000).

The second period began in the 1980s, when shelf life

(ii) became the most important issue for fresh market

tomatoes. In that time, the effort was focused on eluci-

dating the mechanism of ripening since this process di-

rectly affects shelf life. Many studies were concentrated in

identifying the principal components involved in fruit

ripening and softening including the role of ethylene (Alba

et al. 2005) and the enzyme polygalacturonase (Giovannoni

2001). As a result, several ripening-related genes and QTLs

were characterized and mapped. One of them, rin (ripening

inhibitor) has been used in marker assisted selection (MAS)

programs with promising results (Foolad 2007). In the

1990s, flavor (iii) became the new target for breeding

programs. This is a very complex trait mainly because it is

determined by quite a lot of genetic and non-genetic fac-

tors, not all of them are identified or well characterized

(Causse et al. 2002; Klee 2013). It has been postulated that

the ratio between sugars and organic acids is the main

determinant of tomato flavor (Bucheli et al. 1999) but

several aromatic volatile compounds also have major in-

fluences on this trait (Goff and Klee 2006; Tieman et al.

2012; Rambla et al. 2014). Even though the great effort to

improve fruit flavor, only increments in soluble solid and

decreases of acidity were obtained in few cases (Foolad

2007). Finally, in the last and current stage, the breeding

goal has been re-orientated to the fruit nutritional quality

(iv) (Bai and Lindhout 2007).

Over the history of tomato breeding diverse techniques

have been applied. Initially they were based on phenotypic

selection and progeny testing and later, with the advent of

molecular markers and linkage maps, MAS improved the

efficiency and reduced the time of the traditional programs

(Yang et al. 2004; Foolad 2007) and QTL allow identifying

complex traits in F2 and backcross populations (Paterson

et al. 1988). However, these materials resulted disadvan-

tageous for genetic mapping (Foolad 2007). This problem

was overcome a few years ago with the development of

recombinant inbred lines (RILs) and introgression lines

(ILs) that harbor specific genomic regions of wild relative

species. Nowadays, with the full tomato genome sequence

available (Sato et al. 2012), candidate genes for important

traits are being rapidly identified (Causse et al. 2004; Price

2006; Bermúdez et al. 2008; Kamenetzky et al. 2010;

Goulet et al. 2012; Lee et al. 2012; Sauvage et al. 2014)

and breeders may obtain novel and improved varieties by

introgressing useful alleles from wild relative species to the

cultivated varieties. Since these species represent a source

of natural genetic variation, of which only 5 % is harbored

by cultivated tomato (Miller and Tanksley 1990; Bretó

et al. 1993), introgression lines represent powerful tools for

crop improvement maximizing the potential of wild

germplasm. Moreover, RILs constitute an original germ-

plasm source for exploiting favorable new genetic combi-

nations involved in fruit quality through the generation of

Second Cycle Hybrids (SCHs) (Liberatti et al. 2013). Be-

cause S. pimpinellifolium displays high sweetness and vi-

tamin C contents, disease-resistance and improved stress

tolerance (Foolad et al. 1998; Foolad 2007; Tigchelaar

1986), and also its genome has been recently sequenced

(Sato et al. 2012); the comprehensive metabolic profiling of

RILs derived from this species is of major interest to assess

fruit nutritional quality.

Metabolite profiling alone or combined with other ap-

proaches has been used to identify key compounds in-

volved in development, stress tolerance, and nutritional

metabolites in many agricultural important plants (Hu et al.

2014). Those metabolites are useful and helpful for plants

and either human health and diets (Hall et al. 2008; Gechev

et al. 2014). This approach was likewise applied to explore

natural variability in wild related species in order to find

valuable source for the improvement of agriculturally im-

portant traits (Schauer et al. 2005; Rambla et al. 2014). It

was also used to discover enzyme function, reconstruct

important pathways and define it regulation (Bermúdez

et al. 2014; Araújo et al. 2012). Additionally, metabolic

profiling coupled with GWA studies allow the identifica-

tion of 44 SNP loci associated to 19 metabolic traits and

provide 5 candidate genes involved in the genetic archi-

tecture of fruit metabolic traits (Sauvage et al. 2014).

Molecular breeding, on the other hand, has been adopted

in most biotechnological strategies to develop new crops

(Moose and Mumm 2008; Saito and Matsuda 2010). For

functional understanding of phenotypes it is essential to

integrate genomic information to characterize gene-to-
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metabolite associations (Carreno-Quintero et al. 2013).

Metabolic analysis has been increasingly and successfully

used to assist elite germplasm selection (Fernie and

Schauer 2009; Rao et al. 2014). In tomato, the first study

using metabolite profiling showed that metabolic traits

correlated with phenotypic traits such as yield or harvest

index, exposing the challenge to use metabolites as

biomarkers (Hermann and Schauer 2013). In this regard,

the major aim of this work was to characterize metabolic

based (Wahyuni et al. 2012) and related agronomic traits of

18 select tomato RILs (S. lycopersicum 9 S. pimpinelli-

folium) to provide valuable information to improve fruit

quality and metabolic-based traits. To achieve this goal we

firstly applied a well-established gas chromatography

coupled to mass spectrometry (GC–MS) platform, exam-

ining polar extracts of tomato fruit pericarp (Roessner-

Tunali et al. 2003) complemented with proton nuclear

magnetic resonance (1H NMR) metabolite profiling method

(Mattoo et al. 2006; Sorrequieta et al. 2013). Secondly, we

evaluated trait relations using clustering methods and net-

work analyses (Guimerà and Nunes Amaral 2005).

2 Materials and methods

2.1 Plant material

Plant material consisted of S. lycopersicum (cv Caimanta),

the red-fruited wild species S. pimpinellifolium (LA722),

F1 hybrids between both species and eighteen tomato RILs.

RILs were obtained after seven generations of selfing and

five cycles of antagonistic and divergent selection for fruit

shelf life and weight (Zorzoli et al. 2000; Rodrı́guez et al.

2006); they represent a novel source of public germplasm.

Seeds of the 18 RILs, their parents and F1 were ger-

minated in seedling trays at the end of June and trans-

planted to greenhouse after a month according to a

completely randomized design. Plants were grown at the

Experimental Station ‘‘José F. Villarino’’ (33� SL and 61�
WL), Argentina. Plant density in the field was ap-

proximately 4 plants per square meter (70 cm between

grooves, 40 cm between plants into each groove).

2.2 Fruit phenotype analyses

Twelve agronomic, both morphological and biochemical

traits were measured according to Gallo et al. (2011). Six

plants and ten fruits per plant were evaluated for mor-

phological fruit traits including: diameter, weight, height,

shape (height/diameter ratio), pericarp thickness, locule

number, firmness, shelf life, color index (a/b) and re-

flectance percentage. Biochemical traits: pH, titratable

acidity, soluble solids and soluble solids/acidity ratio, were

measured in three independent fruit pools per line har-

vested from six plants. All characters were measured at

ripe stage (when fruit has fully acquired its final color)

except for shelf life that was evaluated at breaker stage

(10 % of fruit surface has acquired red (or final) color).

2.3 Metabolite profile analyses

Metabolite profiles were obtained by both GC-time of

flight-(tof)-MS and 1H NMR analyses (as described below)

from pericarps of six fruits harvested from six independent

plants at ripe stage. Fruits were collected from the 2nd and

3rd floors.

2.3.1 Sample preparation, extraction and GC–MS

analyses

The relative levels of metabolites were determined from

frozen pericarp samples following the protocol established

by Roessner-Tunali et al. (2003) for tomato tissue. Fresh

tomato tissue pericarps were harvested at ripe stage, rapidly

frozen in liquid nitrogen and stored at -80 �C until ana-

lysis. For sample extraction *250 mg of frozen pericarps

were manually grounded in liquid nitrogen. All the powder

obtained was extracted in 3000 ll of cold methanol and

120 ll of internal standard (0.2 mg/ml ribitol in water) was

added for quantification. The mixture was incubated for

15 min at 70 �C, mixed vigorously with 1500 ll of water

and centrifuged at 2200 g. The methanol/water supernatant

was reduced to dryness under vacuum. Samples were

stored at -80 �C until GC–MS analysis. The dried extract

was re-dissolved and derivatised for 120 min at 37 �C (in

60 ll of 30 mg/ml methoxyamine hydrochloride in pyr-

idine) followed by a 30 min treatment at 37 �C with a

mixture of 100 ll of N-methyl-N-[trimethylsilyl] tri-

fluoroacetamide and 20 ll of retention time standard

mixture composed by 0.4 ml ml-1 of the same 13 fatty

acid methy esters (FAMEs) used by (Lisec et al. 2006).

Sample volumes of 1 ll were then injected in the GC–MS

using a splitless mode and a hot needle technique.

The GC-tof–MS system was composed of an AS 2000

autosampler, a GC 6890 N gas chromatographer (Agilent

Technologies, Santa Clara, CA, USA), and a Pegasus III

time-of-flight mass spectrometer (LECO Instruments, St.

Joseph, MI, USA), provided with an Electron Impact ion-

ization source. GC was performed on a MDN-35 capillary

column, 30 m in length, and 0.32 mm in inner diameter,

0.25 mm in film thickness (Macherey–Nagel). The injec-

tion temperature was set at 230 �C, the interface at 250 �C,

and the ion source adjusted to 200 �C. Helium 5.0 was used

as the carrier gas at a flow rate of 2 ml/min. The analysis

was performed under the following temperature program:

2 min of isothermal heating at 80 �C, followed by a 15 �C

RILs analysis for quality improvement
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per min ramp to 330 �C, and holding at this temperature for

6 min. Mass spectra were recorded at 20 scans per sec with

a scanning range of 70 to 600 m/z. The experimental set

was composed by 126 samples (18 RILs, both parents and

F1 hybrid 69 replicates each), they were separated in three

runs of 54 samples each one, including 6 RILs, parents and

F1 hybrids for comparison in each run. To homogenize

variation through a single run, samples were injected in the

following order: replicate #1, #2…#6 of all lines. A sample

of Arabidopsis leaves were included in each run, randomly

distributed to check machine sensitivity, one of the most

important GC–MS quality control (see Lisec et al. 2006).

Both chromatograms and mass spectra were evaluated us-

ing ChromaTOF software, version 3.00 (LECO Instru-

ments, St. Joseph, MI, USA),.peg files were exported to

.cdf using a baseline off set of 1(‘just above the noise’), an

average of 5 points for smoothing, a peak width of 10 and a

signal to noise ratio of 10. Identification and semi-quanti-

tation of the compounds detected in the GC-TOF–MS

metabolite profiling experiment were performed with

TagFinder 4.0 software (Luedemann et al. 2008). Then .cdf

files were converted to .txt with the Pick Apex finding tool

of TagFinder, considering a smooth width apex finder of 10

and an intensity threshold of 50. Retention time indexes

(RI) were calculated using data of the standards included.

Data matrix was obtained using a time scan width of 400

RI based on FAMEs (Kind et al. 2009) and a Max-Intensity

aggregation of peaks. Mass pairs were automatically ex-

tracted with the pBuilder.MassPairFinder tool of TagFin-

der. Finally, metabolites were identified by comparison

with spectral data from the public library GMD@CSB.DB

(The Golm Metabolome Database; Kopka et al. 2005); this

library includes RIs, molecular weight (m/z) and the as-

sociated MS spectra (see online resources Table S1 for

metabolites annotation data).

The standardization of the complete metabolite profiling

experiment was made in accordance with Lisec et al.

(2006). All samples were measured in three independent

GC–MS runs, since datasets measured at different times are

not directly comparable because of varying tuning pa-

rameters of the GC–MS machine over time; we therefore

normalized the data by using the S. lycopersicum parental

species of each measured batch as a reference (Roessner

et al. 2001).

2.3.2 Sample preparation and 1H NMR analyses

Absolute levels of metabolites were determined from frozen

pericarp samples following the protocol published by Sor-

requieta et al. (2013). One gram of fresh weight of pericarp

frozen in liquid nitrogen without peel was extracted in

0.3 ml of 1 M phosphate buffer (pH 7.4) prepared in D2O.

The solution was centrifuged at 13,500 g for 15 min at 4 �C

and the supernatant filtered to remove any insoluble mate-

rial. One mM of internal standard (TSP: 3-(trimethylsilyl)

propionic-2,2,3,3-d4 acid sodium salt) was added to the

resulting transparent soluble fraction and the solution was

subjected to spectral analysis at 600.13 MHz on a Bruk-

erAvance II spectrometer. Proton spectra were acquired at

298 K by adding 512 transients of 32 K data points with a

relaxation delay of 5 s. A 1D-NOESY pulse sequence was

utilized to remove the water signal. The 90� flip angle pulse

was always *10 ls. TSP was used for both, chemical shift

calibration and quantitation, that is, proton spectra were

referenced to the TSP signal (d = 0 ppm) and their inten-

sities were scaled to that of TSP. Spectral assignment and

identification of specific metabolites was established by

fitting the reference 1H NMR spectra of several compounds

using the software Mixtures, developed ad hoc as an al-

ternative to commercial programs (Abriata 2012). Briefly,

the programme allows easy visualization and basic editing

of spectra. It also provides a wizard that aids in fitting

spectra from a database of known compounds to the signals

in the spectrum. Fitted signals are integrated and integrals

are exported to a standard spreadsheet file for further ana-

lysis (see online resources Table S1 and Fig. S1 for

metabolites annotation data). Further confirmation of the

assignments for some metabolites was obtained by acqui-

sition of new spectra after addition of authentic standards.

Analysis of the 1H NMR data of the pericarp of different

mature fruits were performed as previously described

(Sorrequieta et al. 2013).

2.4 1H NMR and GC–MS methods comparison

A comparative analysis between 1H NMR and GC–MS

data was performed in order to evaluate the confidence

between both technologies. The normalized values for the

16 compounds quantified in common by both methods

were correlated by applying Pearson’s coefficient

(Table 1). Although both methods use different extractions

solvents the general correlation was a moderate and highly

significant (r = 0.60, p \ 0.0001). Few metabolites,

namely fructose, glucose, glutamine, sucrose and trypto-

phan, displayed non-significant correlation between both

technologies. Particularly, tryptophan, sucrose and glu-

tamine show low 1H NMR signals (see online resources

Fig. S1); this makes difficult the calculation of these

metabolites contents by 1H NMR. Additionally, the use of

phosphate buffer in the 1H NMR protocol may result in a

residual neutral invertase activity, modifying sucrose and

fructose/glucose levels. This could explain the lack of

correlation between GC–MS and 1H NMR measurements.

We then decided to keep data from 1H NMR and GC–MS

separately and evaluate the association between those

metabolites with the *omeSOM tool (see below).
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2.5 Statistical analyses

In order to compare agronomic and metabolic trait differ-

ences between RILs and the parental line S. lycopersicum

(cv. Caimanta), collected data were analyzed using the

t test algorithm embedded into Microsoft Excel software

(Microsoft Corporation, Redmond, WA, USA) considering

a p value \0.01 as significant.

2.6 Data integration

Agronomic and metabolic data were firstly analyzed by HC

(Hierarchical clustering) and visualized using MeV software

(Saeed et al. 2006). Secondly, they were integrated into a

self-organizing map for *omic data (*omeSOM) developed

by Milone et al. (2010). Self-organizing maps (SOM) rep-

resent a special class of neural networks that use competitive

learning, which is based on the idea of units (neurons) that

compete to respond to a given subset of inputs. Each neuron

corresponds to a cluster and is associated with a prototype or

weight vector. Given an input pattern, its distance to the

weight vectors is computed and only the neuron closest to

the input becomes activated. Results were visualized using

the softwarés graphic interface (*omeSOM, available on:

http://sourcesinc.sourceforge.net/omesom/). This tool trains

a two-dimensional SOM for clustering, allowing repre-

senting complex high-dimensional input patterns in the form

of a simple low-dimensional discrete map. Therefore, SOMs

can be appropriate for cluster analysis when looking for

underlying or so-called hidden patterns in data. Once

trained, the software allows the visualization of coordinated

variations of all integrated elements in order to easily reveal

relations among the different kind of included data. A vi-

sualization neighbourhood (Vn) can be set, which defines

the radius of adjacent neurons that will be considered as a

unique group. Data matrix was constructed with all agro-

nomic and metabolic data. Each data point, the ith agro-

nomic or metabolic trait for the jth RIL, was normalized by

mean (l) and standard deviation (r) as follows:

~xij ¼
xij � li

ri

Metabolite data obtained by both 1H NMR and GC–MS

technology are expressed relative to one of those measured

in the parental S. lycopersicum (cv Caimanta). In order to

reveal all the possible associations, directed and inverted

patterns were used to train the *omeSOM model as de-

scribed by Milone et al. (2010).

With the aim to define the Vn value to be considered as

informative, obtain a better visualization of neurons that

were related among them and also compare the SOM

method (innovatively applied to breeding here) with the

traditional used analysis (correlation), a network recon-

struction was performed using NetDraw (Analytic Tech-

nologies, Lexington, KY). The same data matrix used for

SOM analysis was employed to compute the correlations.

Each nodes (agronomic—diamonds—or metabolic—

circles—traits) were represented as edges and correlations

(Pearson with p \ 0.001) between traits were represented

by connector lines. Correlation coefficient and sig-

nificances between traits were calculated with InfoStat

software (Di Rienzo et al. 2011). Positive and negative

correlations and coefficient values are indicated by differ-

ent color and thickness of the lines, respectively.

2.7 Mode of inheritance assessments

For both metabolic and agronomic traits measured in the

parents and in their offspring (F1 hybrid), differences in

mean values were analyzed by ANOVA and Tuckey test.

Those traits showing significant differences (p \ 0.05)

were classified into the following mode-of-inheritance

categories and classes defined by Lisec et al. (2011), in

which the effect of the S. pimpinellifolium allele is com-

pared with the S. lycopersicum allele: recessive (only S.

pimpinellifolium is significantly different from S. lycoper-

sicum whereas the offspring is similar to S. lycopersicum),

additive (the F1 is between the parents, which are

Table 1 Comparative analysis of metabolite profiles from tomato

pericarps obtained by GC–MS—polar extracts—and 1H NMR

methods

Pearson coefficient p value

1H NMRGC–MS 0.60 \0.0001

Alanine 0.75 0.0002

Asparagine 0.82 \0.0001

Aspartate 0.90 \0.0001

GABA 0.61 0.0040

Citrate 0.62 0.0035

Fructose 0.39 0.0857

Glucose 0.49 0.0267

Glutamate 0.84 \0.0001

Glutamine 0.53 0.0165

Isoleucine 0.67 0.0012

Malate 0.83 \0.0001

Phenylalanine 0.60 0.0051

Sucrose -0.03 0.9167

Threonine 0.79 \0.0001

Tryptophan -0.17 0.5609

Valine 0.75 0.0001

Comparison between GC–MS and 1H NMR methods was performed

using Pearson correlation analysis. Values represent the correlation

coefficient between both methods considering all data and partitioned

by metabolites. p values indicate significant correlation (p \ 0.01)
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significantly different from each other), dominant (both the

homozygous S. pimpinellifolium and the hybrid showed

similar values but differed significantly from S. lycoper-

sicum), or overdominant (the F1 is significantly higher or

lower than both parents).

3 Results and discussion

3.1 Variation in the metabolic fruit composition

in parental species, F1 and in the RIL

population

The RIL population used in this study was obtained by

divergent-antagonistic selection for fruit weight and shelf

life traits (Zorzoli et al. 2000; Rodrı́guez et al. 2006). It was

previously characterized with molecular markers (Pratta

et al. 2011b) and evaluated for different traits related to

tomato crop productivity (Gallo et al. 2011; Pratta et al.

2011a, b). Since many efforts have been invested in

recording agronomical valuable information, it constitutes

an excellent source of public germplasm for breeding

programs. Here, we focus the analysis on variations of the

metabolite content in mature fruits by applying two stan-

dardized methods (1H NMR and GC–MS) for metabolite

profiles. A total of 60 different metabolic traits (16 with 1H

NMR and 59 with GC–MS) were quantified in ripe fruits

harvested from the two parental lines, their interspecific F1

hybrid and 18 selected RILs (see online resource Table S1).

These metabolites correspond to amino (23) and organic

acids (9), TCA cycle intermediates (5), soluble sugars (6),

sugar alcohols (4), phosphorylated intermediates (3), few

fatty acids (4), alkaloids (2), nucleotides (1), amides (1)

and others (2) (for details see online resource Table S2).

A high level of divergence in terms of primary meta-

bolism was evident when comparing metabolite contents

between the parental lines. Most of the measured amino

acids (9), all tricarboxylic acid (TCA) cycle intermediates

(with the exception of succinate), dehydroascorbate, glu-

carate, nicotinate, turanose, xylose, erythritol, galactinol,

inositol, glycerol-3P and the two measured alkaloids

(calystegine A3 and calystegine B2) were significantly

more abundant in S. pimpinellifolium than in cultivated

tomato (see online resource Table S2, p \ 0.01). By con-

trast, only the levels of the amino acids methionine, serine,

threonine, tyrosine and galacturonate were significantly

lower in the fruits of the S. pimpinellifolium than in culti-

vated species (see online resource Table S2, p \ 0.01). It

has been reported that these two tomato species have

similar fruit water content (Schauer et al. 2005). Thus, the

variations observed in the metabolite levels would indeed

reflect differences in fruit composition. Our results are in

good agreement with a previous report on the free amino

acid composition over the same parental accessions but

under different environmental conditions (Pratta et al.

2011a). This observation suggests strong heritability of

these traits as was reported for many of the metabolite

measured here by Schauer et al. (2008). Since, the exis-

tence of variation between parental species of a RIL

population is a key pre-requisite for any breeding program;

our results suggest that the chosen material and the ap-

proach selected is valid for improving nutritional quality.

A subset of metabolites displayed highly variable levels

in the RILs with respect to their contents in the parental S.

lycopersicum fruits (Fig. 1a, online resource Table S2).

Among them, the amino acids b-alanine, GABA, gluta-

mate, proline and 5-oxoproline showed the highest in-

creases in a considerable number of RILs (Fig. 1b, online

resource Table S2). The organic acids glucarate and qui-

nate together with the TCA cycle intermediates malate,

pyruvate and 2-oxoglutarate, displayed variable levels in

the RIL population. In contrast, only two soluble sugars

showed significant variations namely sucrose and, to a

lesser extent, xylose. Besides, the contents of glycerol-3P,

galactinol and erythritol also varied significantly among the

RILs. Remarkably, the levels of calystegine B2, an alkaloid

present in a wide range of Solanaceae species (Asano et al.

1997; Bekkouche et al. 2001), displayed a variation be-

tween four and 13-fold. Evaluating the proportion of every

metabolite category varying in the RIL population (and

also in the F1 hybrid) with respect to the cultivated parent

(Fig. 1a, online resource Table S2), we found that five

RILs (6, 7, 8, 9 and 10) displayed significant differences in

all metabolite categories. These genotypes, together with

the RILs 4, 17 and 18, showed the highest number of

significant changes. The remaining lines also revealed

significant variations; however, the proportion of altered

metabolites in each category was considerably lower.

Zooming into each category, the amino acid proline and the

alkaloid calystegine B2 were the metabolites displaying the

highest values of relative changes in all analysed lines,

followed by the organic acid quinate and the sugar sucrose.

In contrast, all fatty acids showed very similar values to

those measured in the cultivated parent (Fig. 1b).

3.2 Data integration and clustering using

the *omeSOM model (SOM) to expose

associations between traits

Having established the metabolic and agronomic variation

into the studied material (online resource Table S2) we

next focused our attention on integrating all data aiming to

detect connections between yield-associated and metabolic

traits. For this propose the *omeSOM model was used

(Stegmayer et al. 2009; Milone et al. 2010). The first step

for clustering with *omeSOM is the definition of the map
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size. In order to obtain the best value, we assayed a range

of map sizes and evaluated the relative distance between

the same metabolites measured by GC–MS and 1H NMR

methods (Table 2). The relative distance is defined as the

number of neurons between the position of a metabolite in

the map measured with GC–MS and the same compound

measured with 1H NMR, divided by the total number of

neurons in the map. All map sizes evaluated (from 7 9 7 to

11 9 11) displayed similar relative distance values

(Table 2, online resource Fig. S2). On the other hand, we

explored the neuron components looking for well-estab-

lished associations to find a biologically meaningful map

size. The 9 9 9 map displayed neurons grouping all

characters associated to fruit shape. This result is in

agreement with previously reported analyses performed

with the same RIL population (Pratta et al. 2011b).

Moreover, malate content, fruit firmness and shelf life traits

fell into the same neuron showing a relationship that is in

accordance with the findings reported by Centeno et al.

(2011). In addition, the 9x9 map also performed a high

cohesion of the elements, meaning that the pattern of

variation of the components into the same neuron was very

similar. Consequently, the 9x9 map was chosen for further

analyses.

The obtained map (Fig. 2, online resource Table S3)

contained a total of 81 neurons grouping the 14 agronomic

and 60 metabolic traits. We firstly evaluated if metabolites

measured by both methods (1H NMR and GC–MS) clus-

tered together or in close proximity. For those located in

the same neuron (or in close proximity Vn B 2; see online

resource Table S3) and showing significant Pearson cor-

relation coefficients (C0.65, Table 1) both measurements

were considered equally confident and thus, kept separately

for the rest of the study. For the other compounds we

choose the methodology showing the lowest standard de-

viation values among replicates of the same lines (see

online resource Table S2).

Analyzing the upper-left region of the map, 32 neurons

integrated all measured characters. Within these, six were

integrative neurons grouping metabolic with agronomic

traits (Fig. 2, black squares); 25 neurons grouped only

metabolic characters (Fig. 2, blue squares) and one neuron

contained only a single agronomic trait (shape index)

(Fig. 2, red squares). In order to identify putative metabolite

regulators of the complex agronomical traits evaluated, we

next concentrated our further analyses on integrative neu-

rons and also on groups of neighboring neurons (Vn = 1

and 2), which also harbour informative associations between

characters (Fig. 2; neurons 3, 4 and 12; neurons 7 and 8).

3.3 Metabolic and agronomic traits relations

From the evaluation of integrative neurons (Fig. 2) it could

be proposed the existence of different associations between

metabolic with agronomic traits. Although these links must

be further investigated and experimentally validated, they

represent the first step toward new biomarkers as selection

tools in breeding programs. Inverse associations between

fruit morphology traits (diameter, height, weight, pericarp

thickness and locule number) and the primary and

Fig. 1 Metabolic variations in

polar extracts of ripe tomato

pericarps from a RIL population

derived from a cross of S.

lycopersicum (cv.

Caimanta) 9 S.

pimpinellifolium (LA722).

a Proportion of significantly

altered metabolites (increase or

decrease relative to the

cultivated species) for each line

(and the wild parent and F1

progeny) for each chemical

category. b Hierarchical cluster

analysis (represented by a heat

map) of the quantitative

variation detected in all

metabolic and agronomic traits

measured in the RIL population.

Amino acids are depicted in the

three-letter code. DHA

dehydroascrobate, PT pericarp

thickness, SSC soluble solid

contents, TA titratable acidity
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secondary metabolites erythritol, glutamate (1H NMR),

dodecanoate, calystegine A3 and calystegine B2 are ex-

posed in neuron 1. The group including neighbor neurons

3, 4 and 12 associated acidity, arginine and ethanol con-

tents (neuron 3) with phenylalanine, 5-oxoproline,

succinate, juice pH and soluble solids/acidity ratio, with the

last three characteristics being inversely associated (neuron

4). Last neuron of this group (neuron 12) included soluble

solids and proline contents. Another group, composed by

neurons 7 and 8 showed strong association between fruit

Fig. 1 continued
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firmness, shelf-life, glycerate and malate contents (mea-

sured both by GC–MS and 1H NMR), and inversely with

fructose contents (neuron 7). Finally, color index was in-

versely associated with reflectance, asparagine and thre-

onine contents (neuron 8) (Fig. 2). This integrative analysis

of the data might suggest novel relations between the

components, exposing those traits which can be considered

to design breeding programs. The SOM model applied ap-

pears as a valuable tool representing complex high-dimen-

sional input patterns into a simpler low-dimensional discrete

map, easing the results interpretation. Since it was the first

time that this method is used, instead of the correlation

analysis commonly performed to evaluate trait relations, we

decided to compare both results –SOM and a network cor-

relation analysis- in order to evaluate the consistency be-

tween them. Additionally, this comparison gives us a

statistical frame to establish an informative neighborhood

value (i.e. how many neighbor neurons that contain sig-

nificant associations must be considered) and also simplify

the visualization of the clusters. Correspondence between

Pearson and Spearman correlation matrices was assayed

with a Mantel test (999 permutations, Rxy = 0.91,

p \ 0.001). Since both matrices were highly correlated, we

selected the most widely used Pearson correlation coefficient

for the network reconstruction. Figure 3 shows the resulting

unrooted network where nodes indicate metabolic (circles)

and agronomic (diamonds) traits; the number inside the node

designates the corresponding *omeSOM neuron number

where this trait was located; and connector lines depict sig-

nificant correlations between characters (p \ 0.001). Dif-

ferent nodes colors denote metabolic pathways according to

KEGG categories (http://www.genome.jp/kegg/) and class-

es of agronomic traits according to Guimerà and Nunes

Amaral (2005).

Both SOM and network analysis (Fig. 3) display highly

similar results, since correlation among elements of the

same and close neighbor neurons were significant. This

indicates that *omeSOM is an accurate tool to reveal trait

relations and also that in cases where Pearson correlation

significances are not high, the SOM method can expose

novel links between variables which are easy to visualize.

Interestingly, the topology of the constructed network is in

agreement with the SOM map analyzed. But, it reveals that

integrative neurons are not the only informative ones but they

must be considered as clusters with their neighbors. Results of

network reveals that neuron 1, instead considered as separated

neuron, is highly correlated with the elements of neighbor

neurons 2 and 10, indicating that Vn = 1 is a very informative

neighbor value. They are included in one of the major clusters

named C1-10-2. On the other hand, neurons 7, 8 and 9 should

be integrated with their neighbors 18 and 27 (Vn = 2 and 3

respectively), since the elements of all of them are highly

correlated. They compose the other major cluster named C7-

8-9-18-27. On the contrary, elements in neurons 3, 4 and 12

displayed dissimilar results in SOM and correlation analysis.

Even when they are in close proximity in the SOM map they

do not form a cluster in the network, indicating that this group

is not supported by both analytical methods.

This result indicates that informative Vn value is vari-

able along the map, but the value threshold of 3 is the

higher to be considered.

The most cohesive cluster, C1-10-2, represents a core-

group with the strongest and most numerous relations be-

tween its components. It comprises those traits defining the

morphology of the fruits (diameter, weight, height, locule

number and pericarp thickness) strongly correlated

(negatively) with the amino acids glutamate and aspartate,

with the TCA cycle intermediate 2-oxoglutarate, with the

fatty acid dodecanoate and also with the contents of the

two measured alkaloids; calystegine A3 and B2; they are

all putative regulators of morphology traits. Evidence

about the influence of glutamate and 2-oxoglutarate in fruit

development via GABA shunt have been proposed by

Kisaka et al. (2006). Additionally, downregulation of the

2-oxoglutarate dehydrogenase has major consequences on

this process which extend to the end of ripening (Araújo

et al. 2012). On the other hand, calystegines exhibit se-

lective inhibition of glycosidases which is universally re-

quired for normal cell function (Kvasnicka et al. 2008).

Based on their structural similarities to sugars, it has been

Table 2 Relative distance (Vnr) between the same metabolite mea-

sured by GC–MS—polar extracts—and 1H NMR and analyzed by

*omeSOM with different map sizes

Metabolite Map size

7 9 7 8 9 8 9 9 9 10 9 10 11 9 11

Alanine 0.08 0.08 0 0.07 0.00826

Asparagine 0.02 0.02 0.025 0.01 0.00826

Aspartate 0 0 0.012 0.01 0.01653

GABA 0 0.02 0.037 0.02 0.00826

Citrate 0.04 0.09 0.086 0.07 0.06612

Fructose 0.16 0.14 0.136 0.07 0.04959

Glucose 0.04 0.02 0.012 0.05 0.04959

Glutamate 0.02 0.02 0.012 0.01 0.00826

Glutamine 0.02 0.02 0.025 0.02 0.02479

Isoleucine 0.02 0.02 0.025 0.01 0.00826

Malate 0 0 0 0 0

Phenylalanine 0.08 0.08 0.086 0.06 0.05785

Sucrose 0.08 0.09 0.086 0.08 0.05785

Threonine 0.04 0.03 0.025 0.02 0.01653

Tryptophan 0.06 0.08 0.074 0.04 0.03306

Valine 0.02 0.02 0.025 0.01 0.02479

Relative distance was calculated as Vn/total neurons in the map.

Metabolites were obtained from tomato pericarps
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suggested that in mammal cells calystegines may interact

with enzymes of carbohydrate metabolism and could be

functional in diets preventing a steep increase in blood

glucose after a carbohydrate-rich meal (Jocković et al.

2013). These hints toward mechanistic links, therefore

suggest that the relation between these traits found in the

current study, will likely provide a valuable tool for tomato

breeding programs.

Fig. 2 *omesom model of 81 neurons grouping 60 different

metabolic and 14 agronomic traits from the 18 analyzed RIL, the

parent S. pimpinellifolium (LA722) and the F1 hybrid. Metabolites

were measured in polar extracts from tomato pericarps. Directed and

inverted relations are shown in the left and right quadrants respec-

tively. Black neurons group metabolic and agronomic traits, blue and

red neurons group only metabolic and only agronomic traits,

respectively. Histograms showing components variation along the

lines analyzed are presented for those neurons grouping at least one

agronomic trait. References: Neuron 1: fruit diameter (inv, blue line),

height (inv, green line), weight (inv, red line), pericarp thickness (inv,

light blue line), locule number (inv, violet line), calystegine A3 (blue

dotted line), calystegine B2 (green dotted line), dodecanoate (red

dotted line), erythritol (light blue dotted line) and glutamate (1H

NMR) (violet dotted line). Neuron 3: acidity (blue line), arginine

(blue dotted line) and ethanol (green dotted line) (1H NMR). Neuron

4: pH (inv, blue line), soluble solids (SSC)/acidity (inv, green line),

phenylalanine (blue dotted line), 5-oxoproline (green dotted line) and

succinate (inv, red dotted line). Neuron 7: Fruit shelf life (blue line),

Fruit firmness (green line), fructose (inv, blue dotted line), glycerate

(green dotted line), malate (red dotted line) and malate (1H NMR)

(light blue dotted line). Neuron 8: reflectance (blue line), color index

(inv, green line), asparagine (blue dotted line) and threonine (green

dotted line). Neuron 12: Soluble solids (blue line) and proline (blue

dotted line). Neuron 31: Fruit shape (blue line) (Color figure online)
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The other central cluster, C7-8-9-18-27, includes agro-

nomic characters related to fruit attributes such as color,

firmness and shelf life, traits for which this RIL population

was initially selected. They showed strong connections

between each other (Fig. 3) and with the vast majority of

amino acids and notably with malate and glycerate con-

tents. In this regard, Centeno et al. (2011) previously re-

ported that changes in malate metabolism result in an early

water-loss phenotype of the tomato fruits with a conse-

quent effect on post-harvest shelf life. Transgenic lines

displaying reduced levels of malate dehydrogenase and

fumarase activities presented elevated levels of soluble

sugars, suggesting that osmotic potential may be a con-

tributing factor to the water-loss phenotype. Our finding

although likely operating by a different mechanism adds to

the link between malate metabolism and shelf life of

tomato fruits. Additionally, association between asparagine

and threonine (neuron 18) was also observed by Sauvage

et al. (2014), who found that variations in the contents of

these two amino acids were linked to the same SNP locus,

annotated as a Copine-like protein. They proposed that this

locus is close to one or several pleiotropic effect

gene(s) directly involved in the biosynthetic pathway of

these amino acids.

Somehow unexpected, fruit biochemical characters

(juice pH, acidity and soluble solids) showed few con-

nections with the metabolic complement of the fruits.

However, the association of proline with soluble solids

resulted particularly interesting because of nitrogenous

compounds -in the form of amino acids, peptides and

proteins, minerals and pectic substances- are also consid-

ered part of the soluble solids. Additionally, in grape, this

amino acid is proposed as an indicator of the berry ripeness

(Carnevillier et al. 1999; Mulas et al. 2011), therefore it can

be also considered the use of proline as an indicator of fruit

ripeness in tomato.

3.4 Assessment of the mode of inheritance

of metabolic and agronomic traits

Given that a number of metabolic and agronomic traits

differed significantly either between the parents or with

Fig. 3 Network analysis of metabolic and agronomic traits from the

18 analyzed RIL, the parent S. pimpinellifolium (LA722) and the F1

hybrid. Metabolites were measured in polar extracts from tomato

pericarps. Circles and diamonds indicate metabolic and agronomic

traits, respectively. Connections represent significant Pearson corre-

lation (p \ 0.001) between edges, blue and black lines depict

negative and positive correlations, respectively. Line thickness is

proportional to the correlation coefficient values (ranging between

-0.94 and 0.97). Numbers inside the nodes indicate *omesom neuron

number and Vn value indicate neighborhood between neurons

calculated as described in Milone et al. (2010). Metabolic nodes are

coloured according to KEGG pathways categories (www.genome.jp/

kegg/) (Color figure online)
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respect to the F1 offspring used in this study, we then

analyzed these differences aiming to assess the mode of

inheritance of the measured traits. Based on these com-

parisons we classified each trait into the following cate-

gories: recessive, additive, dominant or overdominant (see

‘‘Materials and methods’’ section). Out of all 12 possible

classes proposed by Lisec et al. (2011) nine were identified

in our data set (see online resource Fig. S3). Sixty traits

could be classified within the mentioned classes: 47 and 13

of the metabolic and agronomic traits measured, respec-

tively (online resource Fig. S3). However, a minor pro-

portion of the traits could not be classified because they

showed no significant differences between both parents and

the F1 hybrid. The mode of inheritance of all classified

traits can be seen in online resource Table S2. A high

number of metabolic traits appeared to be recessive (29),

where the F1 mean value is equal to the mean value of the

S. lycopersicum parent. This class includes a large number

of amino acids and TCA cycle intermediates. By contrast,

the vast majority of the agronomic traits exhibited either

dominant or additive mode of inheritance (see online re-

source Table S2). No agronomic traits were detected to

exhibit overdominance and only five metabolic traits

showed this mode of inheritance: the amino acids alanine,

aspartate, GABA (1H NMR) and glycine and the

monosaccharide xylose (online resource Table S2).

Mode of inheritance of yield associated traits in tomato

has been analyzed in detail by Semel et al. (2006). By using

S. pennellii near isogenic lines (NIL) in heterozygosity

these authors have shown that four traits exhibited

heterosis (overdominance): seed number per plant, fruit

number, total yield, and biomass. Other phenotypes, how-

ever, such as fruit weight, plant weight, soluble solids

content and seed morphology, showed no heterotic effects.

Our results are coincident with these findings, even when

we use an interspecific F1 hybrid to evaluate the in-

heritance mode, which can expose more epistatic effects

than those detected in NILs. Regarding the mode of in-

heritance of the metabolic traits, evidences for changes in

metabolites in hybrids have been documented in Ara-

bidopsis (Gärtner et al. 2009; Lisec et al. 2009), maize

(Lisec et al. 2009; Riedelsheimer et al. 2012) and also in

tomato fruits from the above mentioned NIL heterozygotes

(Schauer et al. 2008). More than 60 % of the metabolic

traits analyzed here shared the same mode of inheritance

reported by Schauer et al. (2008), but notably none of them

presented overdominance. Since our analysis involves a

two-parental-hybrid system, the identification of over-

dominant traits could result from epistatic allelic interac-

tions in the S. lycopersicum 9 S. pimpinellifolium hybrid,

even considering that these two genomes are evolutionary

closer than the donor parent (S. pennellii) of the NIL sys-

tem used by Schauer et al. (2008) (Kamenetzky et al. 2010;

Sato et al. 2012). On the other hand, the potential of tomato

MAGIC populations as source of genetic diversity was

recently reported (Pascual et al. 2014). Another study, us-

ing a genome-wide association approach, identifies puta-

tive candidate genes involved in the genetic architecture of

fruit metabolic traits (Sauvage et al. 2014).

Attractively, from the extensive metabolic charac-

terization conducted here, the link between different traits

and the heritability evidenced in this paper, it can be pro-

posed several candidate RILs for the generation of SCH. In

this regard, the heat map presented in Fig. 4 displays a

summary of the changes for each RIL relative to the cul-

tivated tomato. When taking the analyzed traits displaying

positive effects, RILs 1, 2, 3, 4, 7, 9, 10, 16, 17 and 18 can

be considered as candidate lines. All of them displayed

higher number of traits with positive effect than the S.

lycopersicum 9 S. pimpinellifolium hybrid. In agreement

with this selection, a recent work (Liberatti et al. 2013)

showed that the SCH produced with three of these lines

(RILs 1, 9 and 18) display longest shelf life and higher

soluble solid values; among the few traits in common be-

tween both reports.

On another hand, RIL 4 displayed increased levels of

chlorogenate. This antioxidant is considered a very im-

portant compound for human health since it can limit low-

density lipid (LDL) oxidation protecting against degen-

erative age-related diseases, and it also removes par-

ticularly toxic reactive species by scavenging alkylperoxyl

radicals and may prevent carcinogenesis by reducing the

DNA damage they cause (Niggeweg et al. 2004).

pH and titratable acidity contribute to tomato flavor

intensity, being particularly responsible for the sourness of

the fruit. Both measures are, however, very complex and

uncertain since the profile and concentration of compounds

defining them vary greatly among accessions and varieties

(Fernandez-Ruiz et al. 2004). Even when the best pH value

for fresh tomato consumers was not determined, commer-

cial lines have a pH range from 4.0 to 4.6. Conversely, pH

values below 4.5 are required for processing tomatoes,

since they reduce pathogens growth preserving product

storability (Bucheli et al. 1999; Foolad 2007). The majority

of lines showed pH values lower than 4.5 (RILs 1, 4, 5, 7,

9, 10, 11, 13, 16, 17). Thus, any of them would be ap-

propriate for processing industry.

Overall, assessments presented in this paper demonstrate

that wild tomato species offer breeders a great potential for

exploiting genetic variability and enhancing fruit weight,

shelf life and chemical composition of the fruits. Moreover,

*omeSOM analyses and network construction illustrate the

power of these tools when applied in combination into

tomato breeding programs. The approach used here opens

new routes to the understanding of the nutritional traits

which have been undervalued in classical breeding.

M. G. López et al.

123



4 Concluding remarks

Here, integration of data from GC–MS and 1H NMR

technologies permitted a ‘‘double check’’ of a limited

number of metabolites adding to the accuracy of the

profiles. Based on the combination of these technologies,

we provide metabolic information from a group of selected

RILs, evidenced links among metabolites and agronomic

traits and established the inheritance of the traits evaluated.

We have highlighted the potential of the metabolic ana-

lyses to assess agronomical important traits in tomato.

Additionally, this study revealed that S. pimpinellifolium, a

wild tomato species, introduced a broad metabolic vari-

ability which can be of importance for tomato breeding

programs. All these information assessed with modern

analytical tools, facilitated the identification of candidate

lines for breeding programs towards the tomato nutritional

quality improvement.
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