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a  b  s  t  r  a  c  t

Demographic  models  are  commonly  used  to study  cetacean  population  dynamics  and  are  characterized
by a  wide  range  of age  classes.  The  primary  building  blocks  are  age-specific  survival  or  mortality  and  birth
rates, which  can  be  combined  using  a  Leslie  matrix  protocol  to provide  estimates  of  maximum  possible
rates  of  increase  for population  size.  In this  context,  specific  mortality  data  are  valuable  for  modeling
the  viability  of  threatened  species.  Depletion  of  prey,  pollution,  and  other  anthropogenic  disturbances
are  believed  to have  contributed  to  the  decline  of  populations,  but the  evidence  is less  conclusive  for
these  factors  than  for  bycatch.  In an attempt  to estimate  a population  growth  rate  that  incorporates
uncertainties  in  vital  parameters,  we  apply  a random  Leslie  analysis  to calculate  effective  growth  rate
for the time-dependent  mean-value  population.  Here  we provide  the  algorithm  to  implement  it  for a
general 13 × 13 random  survival  model.  An  effective  growth  rate  can be  characterized  by  studying  the
time  evolution  of  the  mean-value  population  vector  state  (in  an  age-structured  description).  We  show
that  the  asymptotic  behavior  of the mean-value  vector  state,  which  characterizes  the  population  growth
rate  when  the  model  has  random  vital  parameters,  exhibits  a value  that is below  previously  expected
potential  estimations.  We  demonstrate  the  procedure  using  bibliographic  revision  data  of  the harbor
porpoise  (Phocoena  phocoena)  in  Canadian  waters,  subjected  to  incidental  mortality.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The assessment of growth rate in wildlife populations is a fun-
damental demographic parameter (Skalski et al., 2005). A number
of studies have attempted to determine whether a population
was declining by performing demographic analysis (Barlow, 1985;
Wickens and York, 1997; Horvitz et al., 1997). These models can be
used to evaluate the effects of the removal of animals from a popu-
lation and are particularly useful in understanding the constraints
on population growth imposed the life history parameters (Barlow
and Boveng, 1991). Several methods have been used to estimate
survival (or mortality) rates from age-frequency distributions.

For small odontocetes and other cetaceans, rates of increase
have proven extremely difficult to measure in nature (Reilly and
Barlow, 1986; Forney, 2001). Nonetheless, estimates of this intrin-
sic rate are sometimes necessary when considering incidental
mortality quotas for populations under study (Smith, 1983; Lo and
Smith, 1986; Wade, 1993). Hence, long-term monitoring of mor-
tality is valuable in detecting unusual mortality events (Duignan
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et al., 1996; Vidal and Gallo-Reynoso, 1996) and increases in mor-
tality due to fisheries (Goodall et al., 1994; Nieri et al., 1999; Morizur
et al., 1999; López et al., 2003; Archer et al., 2010), or other anthro-
pogenic disturbances (Gaskin, 1982; Parsons and Jefferson, 2000;
Weijs et al., 2010). Bycatch, the unintended mortality of non-target
species, is widely recognized as one of the most serious environ-
mental impacts of modern commercial fisheries (Alverson et al.,
1994; Botsford et al., 1997). The most serious threat to the status of
the harbor porpoise (P. phocoena) is the incidental mortality caused
by entanglement in fishing gear (Gaskin, 1984; Woodley and Read,
1991; Read et al., 1993; Perrin et al., 1994; Trippel et al., 1996;
Moore and Read, 2008). Decreases in relative abundance have been
reported since the 1940s including recent studies throughout their
range (Jefferson and Curry, 1994; Read and Gaskin, 1988; Tregenza
et al., 1997; Trippel and Shepherd, 2004). Specific mortalities in the
Canadian waters of Bay of Fundy/Gulf of Maine have occurred since
the regular use of gillnets began in the 1960s (Gaskin, 1992; Read
and Hohn, 1995). Concern has been expressed over the impact of
these catches, since preliminary data indicate that the level of inci-
dental mortality may  be large relative to population size (Read and
Gaskin, 1988; Palka et al., 1996).

With suitable survey data, survival and mortality can be esti-
mated as age-specific. Unfortunately, there are no data on marked
individuals for harbor porpoise and limited age distribution data
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comes from bycatch samples. Thus we are forced to accept uncer-
tainties in vital parameters. It is widely accepted that many popu-
lation analyses underscore the considerable uncertainty that exists
regarding potential rate of increase (Caswell et al., 1998). In such
situations, the range of variation of vital parameters in linear and
non-linear models can contribute substantially to delineating man-
agement options and has important implications in conservation
biology (Taylor et al., 2000; Parra et al., 2006; Slooten, 2007; Jenkins
et al., 2009). These variations in vital parameters can frequently be
considered to emulate stochastic dynamics in time (Tuljapurkar,
1982; Tuljapurkar et al., 2003), or have random values (Gerrodette
et al., 1985; Caswell et al., 1998). In this sense, it is important to take
into account the effect of random contributions when calculating
rates of increase in age-structured models (Leslie, 1945). Interpa-
rameter relationships and the presence of correlations between
vital parameters are also important items to be considered in the
theory; for example: the correlated effect, induced by a reduction
in survival rate, on the age-fertility parameter. Sensitivity analysis
of linear models has shown that dominance of the same parameters
is linked to survival rates rather than fecundity in terms of effects
on increase in the population growth rate (Fifas et al., 1998). As
a matter of fact, uncertainty in the estimation of the population
growth rate has been largely limited to sensitivity analysis of the
vital rates (Caswell, 1978; Goodman, 1971; Mills, 1999; Skalski,
2007). An important contribution to that analysis was the study of
how much the variance in each vital rate contributes to overall vari-
ance in the growth rate � (Brault and Caswell, 1993). On the other
hand, by using Monte Carlo simulations an important piece of work
(Caswell et al., 1998) has been reported in connection with the char-
acterization of the uncertainty of the potential population growth
rate �, i.e.,  these authors study the distribution of the dominant
eigenvalue associated with a random Leslie matrix characterizing
a given biological model. Therefore, great emphasis was put on the
calculation of distribution of critical values defined by International
Commissions for the purposes of demographic policy makers.

Our purpose in the present work is quite unlike previous stud-
ies. Here we also consider the situation where vital parameters may
make random contributions (correlated or not). But in order to cal-
culate an effective growth rate from the time-evolution of the mean
population vector, the problem is mapped with a random Leslie
matrix model characterized by an implicit joint probability for its
entries. Then the effective growth rate �eff is defined in terms of the
asymptotic long-time behavior of the mean-value population vec-
tor state (Cáceres and Cáceres-Saez, 2011). In fact, the dominant
zero of the secular polynomial of a random Leslie matrix is the
inverse of the effective growth rate. This value strongly depends
on the probability distribution and the type of correlation between
the elements of the Leslie projection matrix. In the present work,
we exemplify our approach by modeling the rate of increase of a
harbor porpoise population under random (disordered) incidental
mortality. In addition, a general mathematical result for any type of
distribution, considering only two-point correlations, is presented
in Appendix A; this algorithm (for a 13 × 13 matrix model) could
be applied to other similar biological systems.

This approach to uncertainty is fundamentally different from the
approach described in Hilborn and Mangel (1997),  where models
are fitted to data using likelihood functions. In other words, param-
eters are estimated from data. In the present work, the parameters
are assumed to be known, albeit with random perturbations. Thus,
when we say that we “estimate” a population growth with uncer-
tainties in the vital parameters, it should be understood that this is
really a mathematical calculation using some complex mathemat-
ics. It is not an estimation in the statistical sense of estimating the
values of parameters from data using some minimization or maxi-
mization criterion. For instance, this difference is starkly clear in our
statement on Section 2.2.2, when we present the error bound in the

perturbative calculation of the effective growth rate �eff. This is why
the confidence interval in the estimation of �eff is a small number.
This is a statement on the mathematical error bound in the cal-
culation by neglecting higher order cumulants in the perturbation
theory, not the statistical confidence interval for the estimation of
the growth rate.

2. Methods

2.1. The age-structured model

Population growth rate is calculated here by using the familiar
Leslie matrix model: X(m + 1) = M · X(m), where X(m) is the age-
structured population vector state at time m (Leslie, 1945; van
Groenendael et al., 1988), i.e.:  X(m)j is the component j of the vector
state at time m and will represent the population at the age j. In the
present paper we  will consider that parameters in Leslie’ matrix
M, of dimension N × N, may  have a random contribution (time
independent disorder) that varies the vital parameters around its
mean values. These random deviations may  have cross-correlations
between them.

A simplified parameterization is used here, assuming a random
survival Leslie matrix model (Cáceres and Cáceres-Saez, 2011). For
the purposes of this assessment we  use the vital parameters of the
harbor porpoise derived from Read (1990),  and schedules of natural
mortality and several estimates of the proportion of the popula-
tion subjected to incidental mortality presented by Woodley and
Read (1991).  In the Bay of Fundy/Gulf of Maine the harbor porpoises
appear to form a discrete population unit (Gaskin, 1984; Palka et al.,
1996). For the applicability of the Leslie matrix and based on our
review of the empirical data, we  use reproductive rates (mj) and
survival probabilities (pj). Fecundity elements (fj) for age classes
are estimated as the product (mjpj). A summary of the compiled
information is provided in Section 2.3. In previous life history stud-
ies of the harbor porpoise, a few older individuals were found but
the vast majority were less than 10 years old (Read and Hohn, 1995).
In accordance with the maximum age of 12 years and the estima-
tion of the Age of First Reproduction (AFR) (Read, 1990), we  use a
13 × 13 Leslie matrix M and classify calf from 0 to 2 years and non-
calf from 3 to 12 years old (for the analysis concerning the life cycle
of the harbor porpoises see Section 2.3).

Due to lack of data, we  adopt here, as in Woodley and Read’s
paper, two  studies: Model A only two  different natural survival
probabilities for all life stages, and Model B a survivorship curve
for Himalayan thar (Hemitragus jemlahicus)  from Caughley (1966),
is used as a model life table for estimating the harbor porpoise
natural survival probability at different age stages. We  consider
that survival probabilities may  be modified by (random) incidental
mortality in addition to their natural dependence.

There are two sources of uncertainty in the estimates of inciden-
tal mortality: variability from year to year and sampling uncertainty
within the year. By using a Monte Carlo procedure (Caswell et al.,
1998) the authors reported a distribution for the mortality rate with
a mean around 0.0495. This generated distribution is skewed to
the right and contains considerable variability, but in principle this
function could be fitted with a Gamma  (Erlang) distribution (see Fig.
9 in Caswell et al., 1998). In order to exemplify our general method,
we will adopt a much simpler characterization for the uncertainty,
and then we  shall assume a uniform distribution in the domain
of values that were originally reported (Woodley and Read, 1991).
The present example is a model to show the friendly applicability
of our analytical procedure to tackle the complex problem of the
time-evolution of a random recurrence relation of the Leslie type.
However, the result of �eff strongly depends on the assumption of
the type of distribution and correlations among the demographic
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parameters in the random matrix, which is why the present algo-
rithm is an important contribution in order to incorporate random
variability from data.

Note that given a random Leslie matrix M,  and if we knew the
distribution of the dominant eigenvalue P(�) (this has been an
active topic of research in the last 10 years) this distribution could
not be used to get the asymptotic long-time behavior of the mean-
value of the population vector: 〈X(m � 1)〉.  In fact this calculation
would also require knowledge of the dominant Perron–Frobenius
eigenvector � as a function of �, in order to calculate the asymptotic
limit:

lim
m�1

∫
�m� (�)P(�)d�, (1)

which is a formidable task!, see for example Bharucha-Reid (1970)
and Frisch (1970).

Interestingly, we have recently reported (Cáceres and Cáceres-
Saez, 2011) that the asymptotic behavior of the mean-value vector
state 〈X(m � 1)〉  can be calculated by rigorous perturbation expan-
sion. From now on the mean-value 〈 · · · 〉 indicates an average over
all the random variables appearing in the Leslie matrix M.  A detailed
explanation of how to take a mean value on a random matrix is
shown in Appendix A, see for example Eqs. (A.2)–(A.6).  In general,
we have proved that asymptotically the long-time behavior is:

lim
m�1

〈X(m)〉∼�m
eff ˚, (2)

where �eff is the “effective growth rate” of the age-structured pop-
ulation, which can be calculated by rigorous perturbation.  ̊ is the
mean-value invariant population vector state which can be calcu-
lated from the residue of the mean-value Green function of Leslie’
recurrence relation (see Eq. (A.12) in Appendix A).

Our task here will be to give an algorithm and mathematical
results for modeling random survival cases in population dynam-
ics. In addition, we will show how to calculate the effective growth
rate �eff in a particular case, and compare it with the potential
growth rate calculated for the four values of the incidental mor-
tality reported in Woodley and Read’s paper (1991).  The extension
of these calculations considering different distributions and corre-
lations can also be implemented using the present algorithm. We
are confident that our approach will help in the understanding of
the age-structured time-dependent dynamic behavior associated
with biological populations at risk.

2.2. Random Leslie’ matrix model

2.2.1. The vital parameters
Vital parameters in a Leslie matrix are positive numbers, and the

fact that these numbers may  have uncertainties can frequently be
handled by adopting a range for their values. In order to simplify
the presentation of the paper, we introduce here the notation for
a general 13 × 13 Leslie matrix M,  where fj ≥ 0 are fecundity and
pj ∈ [0, 1] are survival probabilities for each age class j = 0, 1, 2, 3,
. . .,  i.e.,

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f0 f1 f2 f3 f4 · · · · · · f12

p0 0 0 0 0 · · · · · · 0

0 p1 0 0 0 · · · · · · 0

0 0 p2 0 0 · · · · · · 0

0 0 0  p3 0 · · · · · · 0

· · · ·  · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 0 · · · p11 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (3)

2.2.2. Working a random Leslie matrix
Assuming that the positive numbers in the Leslie matrix (3) may

have random contribution we  can rewrite M as the addition of two
matrices: one is a bona fide mean-value Leslie’ matrix H,  and the
other is a random matrix B characterized by a joint probability
for its elements P({Bqk}). In general the statistical characterization
must be done with care in order to preserve the fundamental prop-
erty that for each realization of the disorder M is a non-negative
matrix, then:

M = H + B; 〈B〉 = 0 (4)

Considering that the survival parameters may have random con-
tributions we  can write:

H =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m0〈p0〉 m1〈p1〉 m2〈p2〉 m3〈p3〉 m4〈p4〉 m5〈p5〉 · · · m12〈p12〉

〈p0〉 0 0 0 0 · · · · · · 0

0  〈p1〉 0 0 0 · · · · · · 0

0  0 〈p2〉 0 0 · · · · · · 0

0  0 0 〈p3〉 0 · · · · · · 0

·  · · · · · · · · · · · · · · · · · · · · · · ·
·  · · · · · · · · · · · · · · · · · · · · · · ·
0  0 0 0 0 · · · 〈p11〉 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(5)

and

B  =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m0ˇ0 m1ˇ1 m2ˇ2 m3ˇ3 m4ˇ4 m5ˇ5 ·  · · m12ˇ12

ˇ0 0 0 0 0 ·  · ·  ·  · · 0

0  ˇ1 0 0 0 ·  · ·  ·  · · 0

0  0 ˇ2 0 0 ·  · ·  ·  · · 0

0  0 0 ˇ3 0 ·  · ·  ·  · · 0

· · · · · · · · · · · · · · · ·  · ·  ·  · · ·  · ·
· · ·  · · · ·  · · · · · · · · ·  · ·  ·  · · ·  · ·
0  0 0 0 0 ·  · ·  ˇ11 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (6)

Here we  assume that we know the joint probability P({ˇj}) or the
moments 〈ˇj· · ·ˇj′ 〉. If we put ˇj = ˇ, ∀ j, i.e.,  we use only one random
variable, it will mean that the survival parameters for all individ-
uals are completely correlated with each other. It is more realistic
to assume that they are not correlated. In any case, any plausible
model can be worked out in the framework of our approach. In
the present application we will assume that ˇj are identically and
independently distributed (see Appendix A.1).

The matrix H will reproduce the familiar result from a non-
random Leslie’ dynamics, i.e.,  the growth rate of the population is
given by the positive eigenvalue of matrix H (the Perron–Frobenius
eigenvalue � > 0, Cáceres, 2003). In general this eigenvalue can be
studied from the largest positive root of the characteristic polyno-
mial:

det |H − �1| = 0, (7)

here 1 is the identity matrix. Using the structure of the matrix (3),
this polynomial can be written explicitly in the form:

P(�) = 1 −
13∑
l=1

fl−1

pl−1

l∏
j=1

pj−1

�
= 1 −

13∑
l=1

1
�l

fl−1

pl−1
(p0p1· · ·pl−1). (8)

Considering the correspondence � = er, the age specific repro-
ductive rate m(x) = f(x)/p(x), and the survival probability
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l(x) =
∏x

j=1pj−1 for an individual surviving the interval from birth
to age x. Formula (8) gives the familiar Lotka’s equation (Lotka,
1939) corresponding to the growth rate r in a time-continuous
representation:

1 =
13∑

x=1

e−rxm(x)l(x). (9)

The interesting point in Leslie’ analysis is that our matrix approach
allows us to tackle the random matrix problem in a perturbative
way. In Cáceres and Cáceres-Saez (2011) we showed that the
long-time behavior of the mean-value population vector state:
lim
m�1

〈X(m)〉∼�m
eff

˚,  is dominated by the smallest strictly positive

root z̃e(= 1/�eff ) of the secular polynomial P(z):

det

∣∣∣∣∣1 − z

(
H +

〈 ∞∑
k=0

[BG0Q]kB

〉)∣∣∣∣∣ = 0. (10)

It is important to point out that the polynomial (10) is a rigorous
perturbation expansion for small z (for any joint probability
P({Bnk})). Here G0 is the deterministic Green function (correspond-
ing to the mean-value Leslie matrix H = 〈M〉), see Appendix A.

For example, from (10) and neglecting all the random perturba-
tions, i.e.,  to O(B0), we get the secular polynomial:

det |1 − zH| = 0 (11)

which gives, with z = 1/�, the same result as presented in (7) using
a mean-value Leslie matrix.

The first perturbative contribution gives, up to O(B2), the secular
polynomial P(z):

det |1 − z(H + 〈BG0QB〉)| = 0. (12)

A confidence interval (CI) to indicate the reliability of the estimate
of ze can rigorously be calculated from the neglected terms in (10);
thus, an error bound for �eff can be calculated (Cáceres and Cáceres-
Saez, 2011). A crude estimation of the confident number of digits
in the effective growth rate �eff is given in terms of the size of the
variance associated with the random variables that appear in the
problem. Therefore the error in finding �eff from (12) is of order
O(B4), see Appendix A.

To be able to estimate the effective growth rate �eff = 1/ze in
terms of the smallest positive zero ze of the secular polynomial (12),
the first task is to calculate the matrix 〈BG0QB〉. This matrix can be
calculated straightforwardly. In Appendix A we  present this impor-
tant result for Leslie’ matrices of dimension 13 × 13, calculated from
any cross-correlation of the form: 〈ˇjˇk〉 = ıjk〈ˇ2

j
〉.

Higher order perturbations can also be analyzed in a similar way.
As we mentioned before �eff will strongly depend on the type of
correlations. For example we have shown in a 3 × 3 model that non-
isotropic correlated models lead to an unusual prediction for �eff
as a function of the correlation parameter, see Pool and Cáceres
(2010) where we did calculations up to O(B6) to compare with the
simulations.

In general, knowing G0 and noting that 〈B〉=0, from (6) the matrix
〈BG0QB〉 can be written (see Appendix A). Therefore, up to order
O(B2), to estimate �eff from systematic data we have to calculate
cross-moments of the associated random variables appearing in
the Leslie matrix M.  These moments can be obtained from sampled
data or from theoretical distributions.

In Fig. 1 we show the systematic procedure to eventually calcu-
late the secular polynomial (12) from sample data. Nevertheless, in
the next example we will work out, the calculation of the effective
growth rate will be based on bibliographic revision data of the har-
bor porpoise in Canadian waters (Woodley and Read, 1991). In this
paper the incidental mortality was a parameter ranged in a suitable

Fig. 1. The algorithm for calculating the effective growth rate �eff for a general ran-
dom Leslie’ model. From the sample data of age specific reproductive rates m(x) and
survival probabilities l(x), for an individual surviving the interval from birth to age
x,  write the matrix M of dimension (N × N), where N represents the number of age-
classifications in the model, thus the index j ∈ (0, 1, 2, . . .,  N − 1). Then split the Leslie
matrix in the form: M = H + B where B is a random matrix. From the mean-value
〈M〉  = H calculate the deterministic Green matrix G0. From the random variables {˛j ,
ˇj}, ∀ j ∈ (0, 1, 2, . . .,  N − 1) appearing in B any cross moment 〈˛j · · · ˛lˇk · · · ˇm〉 can
be  calculated. Then the cross moments 〈Biq · · · Bkl〉, ∀{i, q, k, l} ∈ (1, 2, . . .,  N) can be
specified. Note that the scalar Bqk is the element qk of the matrix B which can be
written in terms of the random variables {˛j , ˇj}. From these moments any Terwiel’s
cumulant can be written as a suitable product of matrices, in particular the second
cumulant: 〈BG0QB〉, see Appendix A for its general expression in the case N = 13.
Form 〈BG0QB〉 the secular polynomial P(z) (up to order O(B2)) can be written. The
effective growth rate is the strictly positive smallest root ze of P(z) = 0 .

domain of values, therefore in order to exemplify our approach we
can use these values, considering the incidental mortality to be a
random variable.

The calculation of the Perron–Frobenius eigenvalue �(H) corre-
sponding to Leslie’ matrix H = 〈M〉, and the smallest positive zero of
the secular polynomial (12) were calculated using the Mathematica
5.2 Software assuring up to 10−10 digits.

2.3. A life history example

2.3.1. Woodley & Read’s life table history parameters
Following criterion for sexually reproducing species, both pj,

and mj, are expressed in terms of females only. For the harbor
porpoise population we follow the suggestion from Woodley and
Read (1991) using an AFR = 3, the data of {mj}, and the fact that the
incidental mortality for calf (0, 1, 2-ages) would be greater than
non-calf by a factor of 43/30, we  can write Table 1:

In this table h is the incidental mortality, and nj the natu-
ral mortality variable for age j ≥ 0. In Woodley and Read (1991)
four probability values for the incidental mortality were used:
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Table 1
Harbor porpoise life history parameters from the prescription given in Woodley and
Read’s paper.

Vital parameters Age classification

m0 = m1 = m2 = 0 Null birth rate for age classes: 0, 1, 2
m3 = 0.10 Age-specific birth rate class: 3
m4 = 0.36 Age-specific birth rate class: 4
mj = m = 0.5 Age-specific birth rate classes: 5 ≤ j ≤ 12

p0 =
(

1 − 43
30 h)(1 − nj)

)
Calf survival probability

pj = (1 − h)(1 − nj) Non-calf survival probability
fj = mjpj Age-specific fertility

h = {0.0183 ; 0.0352, 0.0523, 0.1006}. The natural mortality rate of
phocoenid calves is still not known, and for non-calf individuals
this parameter was assumed to be the same for all age classes ran-
ging from 0.1 to 0.29 in Model A. In Model B, non-calf n′

j
s were

calculated for each age class from a smoothed age-frequency for-
mula (Caughley, 1966). The combination of natural mortality and
substantial incidental mortality reduces the likelihood that an indi-
vidual will achieve its maximum potential lifespan (Read and Hohn,
1995).

2.3.2. Incidental mortality
As we have commented before, we are going to exemplify

our approach by studying the effective growth rates of the
harbor porpoise population as a function of natural mortality nj, but
considering that the incidental mortality h is a random variable uni-
formly distributed in the interval [hmin = 0.0183 to hmax = 0.1006],
for the present purpose it is enough to consider this simplest dis-
tribution for h.

In the present example, we are going to obtain an effective
growth rate �eff in accordance with the time-evolution of the mean-
value population vector state 〈X(m)〉 associated with the analysis
presented in Woodley and Read (1991).  Similar analyses using dif-
ferent distributions for h, such as those reported in Caswell et al.
(1998), can also be tackled within our framework, but this interest-
ing study is left for future contributions. Thus, the present result is
not universal in the sense that �eff strongly depends on the distri-
bution and correlations used in the model. An interesting example
was presented using a non-trivial 3 × 3 correlated model in Pool
and Cáceres (2010) where the agreement between theory and sim-
ulation has also been shown.

2.3.3. Model A with constant non-calf survival probability pj
It is questionable that harbor porpoise demography can be

adequately described using a model that assumes equal non-calf
mortality rates for all age classes. Nevertheless, this model is rich
enough to offer the possibility of analyzing the effects of disorder
on the vital parameters in a straightforward way. Assuming that
there is a range of uncertainty for the incidental mortality h, the
parameters p0 and pj will have random interference through the
random variable h. Using the usual notation for the mean-values
of scalar random numbers 〈 · · · 〉 (see Eq. (A.6), etc., in Appendix A)
and the set of random variables with mean-values zero {ˇj}, we
can write Table 2:

Table 2
Random survival model for any distribution of the incidental mortality h inside the
domain of values proposed by Woodley and Read.

Random survival probability Random variables, {ˇj} h is distributed in:

p0 = 〈p0〉 + ˇ0 ˇ0 = 43
30 (1 − nj)(〈h〉 − h) h ∈ [hmin, hmax]

pj = 〈pj〉 + ˇj ˇj = (1 − nj)(〈h〉 − h) h ∈ [hmin, hmax]

Table 3
Random fertility inference from the random survival model.

Random fertility Random variables {ˇj} h is distributed in:

f3 = m3(〈p3〉 + ˇ3) ˇ3 = (1 − nj)(〈h〉 − h) h ∈ [hmin, hmax]
f4 = m4(〈p4〉 + ˇ4) ˇ4 = (1 − nj)(〈h〉 − h) h ∈ [hmin, hmax]
fj = m(〈pj〉 + ˇj) ˇj = (1 − nj)(〈h〉 − h) h ∈ [hmin, hmax]

Note that in Model A nj = n is a natural mortality parameter, then
the mean values are:

〈p0〉 = (1 − n)
(

1 − 43
30

〈h〉
)

,

〈pj〉 = (1 − n)(1 − 〈h〉).
From Table 1 it is simple to see the dependence of fecundity

on survival probabilities, thus if we  introduce uncertainty into the
survival parameters these dependences will also appear in the
corresponding fecundity parameters fj. To clarify this point, we
explicitly express age-specific fertility (see Table 3) in terms of the
set of random variables {ˇj}, i.e.:

In Model A it is assumed that natural mortality nj is the same for
all age classes, therefore 〈pj〉 = 〈p〉, ∀3 ≤ j ≤ 12, and we get that the
mean fertilities depend on 〈p〉 and mj only.

2.3.4. Model B with Caughley’s smoothed survival variation
As in Woodley and Read (1991) we  assume that the harbor por-

poise has a life history comparable to that of the Himalayan thar:
litter size of one, annual reproduction, with few individuals living
past age class 12. Up to an age of 12 years, the Himalayan thar
frequencies were smoothed according to the formula:

log10(y) 
 1.9673 + 0.0246x − 0.01036x2; x ≥ 1, (13)

where y is the frequency and x the age. Therefore, we can use
Caughley’s estimates for the age-structure of natural mortal-
ity: nj ≡ n(x = j) = 1 − yx+1/yx (Caughley, 1966). Incorporating this
age-structure into survival probabilities gives more reasonable
results for the stable proportion of the harbor porpoise population
(Woodley and Read, 1991).

By introducing smoothed function (13) into the vital parame-
ters of our random Leslie matrix, we retain the same separation as
before: a random part and a mean-value part as in Tables 2 and 3.
Now the only difference is that 〈pj〉 is different for each j ≥ 1. In this
way, we can improve the analysis of the cetacean population by
introducing Caughley’s smoothed survival variation into our ran-
dom model.

2.4. Example of application: uncertainty in the incidental
mortality

As previously mentioned, we now present the application of
an approach considering random incidental mortality quotas for
the porpoises inhabiting Canadian waters. Vital parameters in the
Leslie matrix were separated into two  contributions (5) and (6): a
mean-value matrix H and a random matrix B. The random fertili-
ties and survival probabilities follow from Table 2 and 3, and the
explicit values for the range of parameters follows from Woodley
and Read (1991); thus, thus, using a uniform distribution in this
range we  get (Table 4):

with j = 1, 2, 3, . . . 12. In Model A the natural mortality variable
nj was  chosen to be the same for each age class j > 0. In Model B
nj>0 was selected from the smoothed Caughley’s function, thus the
natural calf mortality n0 is the model-parameter. The matrix G0 can
easily be calculated using the mean-values from (5).  The matrix
〈BG0QB〉 can be calculated knowing G0 and the values 〈ˇ2

0〉, 〈ˇ2
j
〉,

see Appendix A.
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Table  4
Moments of the random variables ˇj using random incidental mortality h with
uniform distribution inside the domain of values proposed by Woodley and Read.

Uniform random variable h ∈ [hmin ; hmax] {hmin = 0.0183 ; hmax = 0.1006}
Mean value 〈h〉 = 5.9449 × 10−2

2nd-moment 〈h2〉 = 0.4098 × 10−2

Square dispersion �2
h

= 0.0564 × 10−2

2nd-moment of ˇ0 〈ˇ2
0〉 =

(
43
30 (1 − nj)

)2
�2

h

2nd-moment of ˇj 〈ˇ2
j
〉 = (1 − nj)

2�2
h

Table 5
Random vital parameters corresponding to Model A with constant natural mortality
nj for any age j > 0 .

Random vital parameters in Model A Age classification

p0 = 〈p0〉 + ˇj For calf age classes: 0 ≤ j ≤ 2
pj = 〈p〉 + ˇj For non-calf age classes: 3 ≤ j ≤ 12
fj = mj(〈p〉 + ˇj) For non-calf age classes: 3 ≤ j ≤ 4
fj = m(〈p〉 + ˇj) For non-calf age classes: 5 ≤ j ≤ 12
ˇj = 43

30 (1 − nj)(〈h〉 − h) Random variables for 0 ≤ j ≤ 2
ˇj = (1 − nj)(〈h〉 − h) Random variables for, 3 ≤ j ≤ 12
nj = n∈ [0.1–0.29] Natural mortality parameter 1 ≤ j ≤ 12

2.4.1. Analysis of Model A
In this case we use a random Leslie matrix M with the following

parameters (see Table 5):
Where 〈p0〉 and 〈p〉 are characterized for any value of the variable

nj>0, see Tables 2 and 4.

2.4.2. Analysis of Model B
In this case, using (13) we can write the random Leslie matrix

M with the following parameters (see Table 6):
Now 〈pj〉 is characterized for any value of the smoothed function

using nj ≡ n(x = j), see Eq. (13).

3. Results

3.1. Random incidental mortality analysis

In Fig. 2(a) and (b) we have plotted �eff as a function of the
non-calf natural mortality nj>0 and of the calf natural mortality
variable n0 respectively, considering that the incidental mortality

Table 6
Random vital parameters corresponding to Model B; natural mortality is age-
dependent using the smoothed Caughley parameterization for natural mortality
nj>0, from Eq. (13).

Random vital parameters in Model B Age classification

nj = 1 −10[0.0246–0.01036(2j−1)] Age specific natural mortality 1 ≤ j ≤ 12
p0 = 〈p0〉 + ˇ0 Calf survival for j = 0
pj = 〈pj〉 + ˇj Survival for 1 ≤ j ≤ 12
fj = mj(〈pj〉 + ˇj) Fertility for 3 ≤ j ≤ 4
fj = m(〈pj〉 + ˇj) Fertility for 5 ≤ j ≤ 12
ˇ0 = 43

30 (1 − n0)(〈h〉 − h) Random variable for j = 0
ˇj = (1 − nj)(〈h〉 − h) Random variable for 1 ≤ j ≤ 12

〈p0〉 = (1 − n0)
(

1 − 43
30 〈h〉
)

Survival mean value for j = 0

〈pj〉 = (1 − nj)(1 − 〈h〉) Survival mean value for 1 ≤ j ≤ 12
n0∈ [0.19–0.53], Calf natural mortality parameter

h is a random variable uniformly distributed in the range reported
in Woodley and Read (1991).  The present calculation �eff is located
around the middle of the four values of h used by Woodley and
Read. As mentioned earlier, the effective growth rate could also be
calculated by using a different distribution, for instance the one
generated by Monte Carlo calculations (Caswell et al., 1998). In
fact, the response (i.e., the rate �eff) will strongly depend on the
type of distribution used for the calculation of the secular poly-
nomial. By taking the ln �, this function would correspond to a
continuous-time generalization of the growth rate and is in accor-
dance with the analysis made in Figs. 1 and 2 in Woodley and Read’s
paper. The behavior of �eff = �eff(nj) is linear because of the lack of
an age-structure in Model A. In Model B, this linearity is lost as a
consequence of the incorporation of Caughley’s estimates for the
survival age-structure. On the other hand, the range of the random
variables {ˇj} is so small that the corrections to O(B2) are almost
undetectable from our plots in Fig. 2(a) and (b) when it is compared
with the contribution to O(B0).

In Table 7 we  show, for Model A and Model B a numerical com-
parison between ln �(H) and ln �eff as a function of nj>0 = n and n0
respectively. Note that always ln �(H) < ln �eff indicating that 〈X(m)〉
is partially dominated by the largest eigenvalue for any realization
of the disorder when the distribution is uniform, but for other dis-
tributions and/or much more complex cross-correlations between
vital parameters the response would be non-trivial; see, for exam-
ple Pool and Cáceres (2010).

a b

Fig. 2. Potential growth rate � (line (h = 0), dashes, dotted, dashes-dotted, etc.) for five values of h. From the top to the bottom: h = {0; 0.0183; 0.0352; 0.0532; 0.1006},
against the predicted effective growth rate �eff (crosses), considering h to be a uniformly distributed random variable with support: h ∈ [hmin = 0.0183, hmax = 0.1006]. (a)
as  a function of nj for the Model A (here natural mortality nj>0 is an age-independent model-parameter so nj = n∈ [0.1–0.29]); and (b) as a function of n0 for Model B (here
natural  mortality nj>0 is age-dependent, so calf mortality is the model-parameter n0∈ [0.19–0.53]). The CI (error bound) for �eff can be estimated as ∼10−8.
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Table 7
Numerical evaluation of the continuous-time growth rate ln �(H) calculated using the mean value Leslie’ matrix H = 〈M〉  and the corresponding effective growth rate ln �eff

calculated up to order O(B2) using the secular polynomial (12), as a function of natural mortalities n and n0 for Models A and B; respectively. In Model A natural mortality
nj>0 is an age-independent model-parameter, so nj = n∈ [0.1–0.29]. In Model B we use Caughley’s age-structured natural mortality nj>0 proposed from the Himalayan thar
life  history, using the calf mortality as the model-parameter n0∈ [0.19–0.53]. The CI for �eff can be estimated as ∼10−8.

Model A Model B

n ln �(H) ln �eff n0 ln �(H) ln �eff

0.10 0.0003899 0.0102869 0.19 −0.0160236 −0.0066621
0.11  −0.0107798 −0.0008873 0.20 −0.0177852 −0.0084354
0.12  −0.0220789 −0.0121839 0.22 −0.0213686 −0.0120320
0.13  −0.0335081 −0.0236166 0.24 −0.0250378 −0.0157128
0.14  −0.0450684 −0.0351713 0.26 −0.0287956 −0.0194784
0.15  −0.0567650 −0.0468715 0.28 −0.0326471 −0.0233505
0.16  −0.068599 −0.0587102 0.30 −0.0365975 −0.0273095
0.17  −0.0805757 −0.0706800 0.32 −0.0406532 −0.0313874
0.18  −0.0926965 −0.0828056 0.34 −0.0448185 −0.0355650
0.19  −0.104967 −0.0950692 0.36 −0.0491009 −0.0398641
0.20  −0.1173892 −0.1074961 0.38 −0.0535073 −0.0442863
0.21  −0.1299686 −0.1200794 0.40 −0.0580444 −0.0488436
0.22  −0.1427070 −0.1328459 0.42 −0.0627225 −0.0535379
0.23  −0.1556110 −0.1457196 0.44 −0.0675499 −0.0583815
0.24  −0.1686825 −0.1587847 0.46 −0.0725384 −0.0633871
0.25  −0.1819284 −0.1720346 0.48 −0.0776967 −0.0685679
0.26  −0.1953508 −0.1854865 0.50 −0.0830403 −0.0739265
0.27  −0.2089571 −0.1991829 0.52 −0.0885820 −0.0794870
0.28  −0.2227498 −0.2128591 0.53 −0.0914324 −0.0823495
0.29  −0.2367367 −0.2268378

One of our tasks was to show how to calculate the effective
growth rate �eff (crosses) and compare it with the potential growth
rate calculated from different values of incidental mortality h, i.e.,
�(h), see Fig. 2(a) and (b) (the line corresponds to the case h = 0).
In the present calculations we have used a uniform distribution
in accordance with data published by Woodley and Read (1991).
Model A shows, for the mean-value population vector, that the
effective growth rate: �eff = �eff(nj) is lower than 1 for any value
of natural mortality rates nj = n ≥ 0.11. Model B, which incorporates
Caughley’s estimates for survival probability does not produce a
stable mean-value population vector. The effective growth rate:
�eff = �eff(n0) is lower than 1 for any value of natural mortality rates
of calves n0 ≥ 0.19. A reminder that such (low) rates n0 < 0.19 are
unlikely to occur in nature.

4. Discussion

4.1. General considerations

The asymptotic behavior of the mean-value population vector
state 〈X(m)〉 has been characterized by an effective growth rate �eff,
which is an important result that cannot be calculated knowing
the distribution of the dominant Perron–Frobenius eigenvalue
P(�). As noted in Eq. (1) the asymptotic behavior of 〈X(m � 1)〉
would require knowledge of all the moments of �, which is a
formidable numerical task using P(�). Our effective growth rate
can be calculated using any joint distribution, and in general the
response �eff depends on the type of correlation used to character-
ize the random elements appearing in the matrix B. The interesting
point of calculating the mean-value invariant vector state  ̊ can
also be done within the present framework, see Appendix A, Eq.
(A.12).  The secular polynomial (up to order O(B2)) is character-
ized by the cumulant 〈BG0B〉, thus if the structure of B is of the
random-survival type (as presented in Eq. (6))  we have explicitly
calculated the matrix 〈BG0B〉 which can be used in many similar
biological problems. Thus, knowing the cross-correlations 〈ˇiˇj〉
from specific data or from some realistic statistical assumptions,
the value of �eff is reduced to the calculation of the smallest zero

of the secular polynomial P(z), see Eq. (12). In this case the error
bound in the estimation of �eff would be O(B4), see Appendix A.1.

4.2. Concerning random incidental mortality analysis

As we pointed out in the introduction, �eff is the relevant rate
that has to be considered when there are uncertainties in the vital
parameters. The naive approximation of using �(H) corresponds to
O(B0) and we have reported that �(H) does not contain any correla-
tion with the habitat of the population (Cáceres and Cáceres-Saez,
2011). Any cumulant of order k in the polynomial (10) represents
a particular structure of correlation that we need to evaluate care-
fully. The response to O(B2) depends on the size of fluctuations
and on the correlation structure in the elements of M.  As we have
noted, our analytical approach can be used to consider any distribu-
tion for the random variables appearing in B, the only restriction on
these random variables being to preserve the positivity of the Leslie
matrix M for any realization of the disorder. In the present study, we
have shown an application using a uniform probability distribution
for the incidental mortality h. Other probability characterizations
will be reported elsewhere. The important point of our approach is
that the estimation of the effective rate takes into account the vec-
tor state, and it is also possible to calculate the mean-value invariant
population vector state  ̊ with the same accuracy. Similar calcu-
lations have already been reported showing excellent agreement
with numerical simulations (Pool and Cáceres, 2010).

We see from Table 7 that even when large potential growth
rates are plausible for small values of calf natural mortality vari-
able n0 (if the incidental mortality is small), the overall result is
very drastic, in the sense that 〈X(m)〉 will not be stable because
�eff < 1. Here a uniform range of uncertainty in the vital parameters
has been taken into account to predict an effective growth rate for
the time-evolution of the mean-value vector state. Considering ran-
dom incidental mortality quotas for the study of harbor porpoise
demography from the Bay of Fundy/Gulf of Maine, the present anal-
ysis shows that this population cannot sustain even such moderate
levels of random incidental mortality.

The important conclusion of our rigorous perturbation analysis
is that the effective growth rate �eff [crosses in Fig. 2(a) and (b)] is



Author's personal copy

M.O. Cáceres, I. Cáceres-Saez / Ecological Modelling 251 (2013) 312– 322 319

below values predicting a stable population. This means that using
a uniform distribution the asymptotic behavior of 〈X(m)〉 is con-
trolled by an effective growth rate that is below values associated
with small indices of incident mortality h [dashes (hmin = 0.0183),
dotted (h = 0.0352) curves].

We  agree with Woodley and Read’s conclusions, and in fact our
results are even more critical in the sense that the dynamics of
the mean-value vector state indicates that only a dramatic decline
in calf natural mortality would allow the population to withstand
random incidental mortality quotas. To our knowledge, this is the
first time that the time-evolution of the mean-value vector state
has been used to define an effective growth rate.

We have followed the estimates of the phocoenid population
proportions affected by fishery bycatch, but in particular the lower
and upper limits may  be questionable values as used in Woodley
and Read’s paper. Nevertheless, we have shown that considering a
mean-value of incidental mortality quotas such as: 〈h〉
10−2 with
a small dispersion �2

h

 10−4, leads to dramatic conclusions con-

cerning the effective growth rate.
Currently, the major conservation issue on small cetacean popu-

lations is the adverse effect of incidental mortality (Read et al.,
2006; Moore et al., 2010; Wade, 1998). Progress has been made in
reducing bycatch (Hall, 2000; Hall et al., 2000), but much work still
remains to be done worldwide. We  are confident that the present
analysis will contribute to management options (Dawson et al.,
1998; Trippel et al., 1999; Barlow and Cameron, 2003). The evidence
of decline of the harbor porpoise population, like that of other dol-
phins, should remind us of the vulnerability of this species in the
oceans.

4.3. Concerning random time-dependent perturbations

It is worth noting here that many other growth rates have been
reported in connection with a random time-dependent environ-
ment (Tuljapurkar et al., 2003). For example, the stochastic growth
rate �s is defined in terms of a “cumulative population quantity”,
i.e., assuming a random time-dependent Leslie recurrence relation
of the form: X(m + 1) = M(m)  · X(m) (note that in this case M(m)
depends on m)  a stochastic growth rate is defined using a scalar
population instead of the age-structured vector state:

log �s = lim
m→∞

(
1
m

)
log

[∑
jX(m)j∑
jX(0)j

]
, (14)

where
∑

j indicates summing over the age-structure of the vector
state.

We  recall that only the case of a strong serial correlation
between habitat states corresponds to the random Leslie’ prob-
lem we have solved. On the other hand, a megamatrix growth rate
�M has been reported in connection with the model of a Markov
transition between habitat states (Pascarella and Horvitz, 1998),
but its definition is also given in terms of the time-average of
a “cumulative growth quantity” rather than using a vector state
as in our approach. In any case both quantity �s and �M are used in
modeling the stochastic change (in time) of the habitat. Neverthe-
less, Tuljapurkar et al. have recently reported that even when both
definitions are related to the same stochastic problem neither of
the growth rates �s or �M are completely equivalent (Tuljapurkar
et al., 2003).

We want to emphasize that our approach to solving a ran-
dom Leslie model is related to the uncertainties of the vital
parameters (i.e., a disordered environment), and the definition of
the effective growth rate �eff is a rigorous result related to the
asymptotic behavior of the mean value vector state. Furthermore,
we note here that a random time-dependent environment nat-
urally introduces a “stochastic” variable into the problem. This

last mathematical problem is quite different from the inclusion
of random variables in a Leslie matrix. In fact mathematically
speaking, the “disordered” case corresponds to the “stochas-
tic” one when considering an infinitely long-time correlation
in the stochastic variable (Brissaud and Frisch, 1974; Budde
and Cáceres, 1988). We  note that using experience from solid-
state physics, a random time-dependent perturbation, i.e.,  the
“stochastic case”, can be solved in a self-consistent approximation
(Harrison and Zwanzig, 1985).

Discrete population models can also be applied to populations
classified by multiple criteria. For example, Rogers (1966) describes
the growth of the human population of California and the rest
of the United States, and age-specific migration between the two
regions. The analysis could also be extended to populations in
several regions, the result being large partitioned-growth Leslie’
matrices. The self-consistent approximation we mentioned previ-
ously, is a good technique to tackle enlarged Leslie’ matrices with
transition rates between spatial locations. This kind of work will be
the subject of future contributions.
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Appendix A. Random Leslie matrix review

Consider the linear recurrence relation:

X(m + 1)j = (M · X(m))j, m = 0, 1, 2, . . .

=
∑

i

MjiX(m)i
(A.1)

where the N × N Leslie matrix M can be split into two  contributions:
M = H + B. As noted earlier, H represents the non-random part (it has
a Leslie form), and the random part B also has the Leslie form but
for each sample of disorder it does not need to fulfill the condition
Bij ≥ 0. This is so because for any realization of the disorder the gen-
eral condition is Mij ≥ 0. Thus, the joint probability P({Bij}) should
be chosen with care in order to fulfill the general condition Mij ≥ 0 .
A different situation occurs when we extract the scalar moments
〈Bij · · · Blk〉 from suitable experimental data; in this case we do not
need to assume any distribution but we  should be able to compute
the moments up to a given order O(Bk) from the data, see Fig. 1.

From now on any functional average will be written, in short
notation, in the form:

〈F(B)〉 =
∑

ij

P({Bij})F(B). (A.2)

If a random variable were continuous we  should understand:∑
→
∫

dBij. There is a great simplification in the algebra if we intro-
duce a Projection Operator acting on any functional of the random
matrix B. So from now on, we  will use the notation:

PF(B) ≡ 〈F(B)〉, (A.3)
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and for its complementary Projection Operator we get:

QF(B) ≡ (1 − P)F(B) = F(B) − 〈F(B)〉. (A.4)

The Projection Operators Q≡(1 − P) and P only work on the right
hand side of any random matrix B. For example we  can consider
the objects:

QBB=(1 − P)BB = BB−〈BB〉,
PBQB=〈BB〉 − 〈B〉2,

(A.5)

where BB is understood as the matrix multiplication operation, i.e.:

P(B2)lm = 〈B2〉lm ≡ 〈BB〉lm =
〈∑

p

BlpBpm

〉

=
∑

ij

P({Bij})
∑

p

BlpBpm =
∑

p

〈BlpBpm〉 (A.6)

etc.
Leslie’ recurrence relation (A.1) can be solved using the z-

transform in vector notation. The Green function of this problem
is G(z) = [1 − zM]−1. In order to consider the random problem, we
split Leslie’ recurrence relation into two contributions in the form:

X(m + 1) = H · X(m) + B · X(m), (A.7)

where the joint probability P({Bij}) or the moments 〈Bij · · · Blk〉 are
supposed to be known. The associated Green function of this new
problem is a functional of the random variables appearing in the
matrix B. To calculate the mean-value Green function we  use the
Projection Operators P and Q. We  showed (Cáceres and Cáceres-
Saez, 2011) that the mean-value Green function is:

〈G(z)〉 =
[

1 − z

(
H +

〈 ∞∑
k=0

[BG0Q]kB

〉)]−1

, (A.8)

where G0 is the deterministic Green function:

G0 ≡
[

1
z

1 − H
]−1

. (A.9)

From (A.8) the secular polynomial P(z), see Section 2 (Eq. (10)),
follows immediately.

To calculate the dominant zero ze from P(z) we  need to specify
the random matrix model B and give the joint probability P({Bij})
or know the scalar moments 〈Bij · · · Blk〉. In this way  we can ana-
lyze the stability of the mean-value population vector state for any
statistical model. We  choose here a particular model of disorder
as presented in Section 2 (Eq. (6)) (a correlated survival-fertility
model). Then considering the Terwiel cumulant structure given in
Section 2 (Eq. (10)), the first non-null contribution, up to O(B2),
gives in the form:

〈BG0QB〉 = 〈BG0B〉 − 〈BG0〈B〉〉 = 〈BG0B〉, (A.10)

where we used 〈B〉=0, this is a general result for any joint distribu-
tion P({Bij}).

Using a uniform distribution for h ∈ [hmin, hmax], we  find that all
the product of elements 〈BijBlk〉 are multiplied by the small disper-
sion: 〈h2〉 − 〈h〉2 ∼ 5 ×10−4. Thus calculating the dominant zero ze

from P(z) will introduce an error estimated by O(B4)∼(�2
h

)2∼10−8.

This is so because in this case all cumulants of order O(B3) are null.
In fact an error bound of this order can be rigorously introduced
from the neglected terms in (10), see Cáceres and Cáceres-Saez
(2011).

The particular cumulant 〈BG0QB〉 is the simplest one that comes
from the time-evolution (z-transform structure) of the perturbed

Green function. In general any cumulant can be calculated know-
ing the statistical properties that we chose for the set of random
variables (Cáceres and Cáceres-Saez, 2011).

In total analogy, if we want to study a perturbation up to O(B4)
we have to calculate the next non-null Terwiel cumulant (Terwiel,
1974; Cáceres, 2003, 2004), i.e.,:

〈BG0QBG0QBG0QB〉. (A.11)

This object looks much more complex, but it can also be handled
analytically with little effort.

The mean value invariant vector  ̊ can be calculated in the same
order of approximation as we used for the effective growth rate �eff
in the following form. If the Leslie matrix is irreducible the mean
value of the Green matrix: 〈G(z)〉, will have a simple pole of the form
(ze − z)−1. This means that in the limit z → ze the dominant diverging
form will be: 〈G(z)〉 
 (ze − z)−1G, where (−)G is the residue of 〈G(z)〉
at ze. Therefore, from Tauberian’s theorem for any initial condition
X(0) we get at the limit m � 1 that: X(m � 1)∼(1/ze)n+1G · X(0).
Here ze = 1/�eff and the matrix G has all its columns equal, thus
the invariant vector  ̊ can be read from any column in the form
(Cáceres and Cáceres-Saez, 2011):

 ̊ = G · X(0) (A.12)

A.1. Random correlated survival-fertility model: calculation of
〈BG0QB〉

Here we  want to present a general result (for Leslie’ matrices
of dimension 13 × 13) that can be used to calculate any second
cumulant such as: 〈BG0QB〉. Thus, up to O(B2) and using the sta-
tistical independence assumption for the set of random variables
{ˇj}, ∀ j = 0, 1, 2, . . .,  12, the cumulant 〈BG0QB〉 is characterized by
the elements 〈BG0B〉lk, where the indices {l, k} run as 1, 2, 3, . . .,  13;
i.e., using the random survival-fertility structure of B, see Section 2
(Eq. (6)), we get the general results:

〈BG0B〉1,l = 0, ∀l = 1, 2, 3.

〈BG0B〉1,l = 〈ˇ2
l−1〉(gl,l+1ml−1 + gl,1m2

l−1), ∀l = 4, 5

〈BG0B〉1,l = 〈ˇ2
l−1〉(gl,l+1m + gl,1m2), 6 ≤ l ≤ 12

〈BG0B〉1,13 = 〈ˇ2
12〉g13,1m2

〈BG0B〉2,1 = 〈ˇ2
0〉g1,2

〈BG0B〉2,l = 0, 2 ≤ l ≤ 13

〈BG0B〉3,1 = 0

〈BG0B〉3,2 = 〈ˇ2
1〉g2,3

〈BG0B〉3,l = 0, 3 ≤ l ≤ 13

〈BG0B〉4,l = 0, ∀l = 1, 2

〈BG0B〉4,3 = 〈ˇ2
2〉g3,4

〈BG0B〉4,l = 0, 4 ≤ l ≤ 13

〈BG0B〉5,l = 0, ∀l = 1, 2, 3

〈BG0B〉5,4 = 〈ˇ2
3〉(g4,5 + g4,1m3)

〈BG0B〉5,l = 0, 5 ≤ l ≤ 13

(A.13)
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〈BG0B〉6,l = 0, ∀l = 1, 2, 3, 4
〈BG0B〉6,5 = 〈ˇ2

4〉(g5,6 + g5,1m4)
〈BG0B〉6,l = 0, 6 ≤ l ≤ 13
〈BG0B〉7,l = 0, 1 ≤ l ≤ 5
〈BG0B〉7,6 = 〈ˇ2

5〉(g6,7 + g6,1m)
〈BG0B〉7,l = 0, 7 ≤ l ≤ 13
〈BG0B〉8,l = 0, 1 ≤ l ≤ 6
〈BG0B〉8,7 = 〈ˇ2

6〉(g7,8 + g7,1m)
〈BG0B〉8,l = 0, 8 ≤ l ≤ 13
〈BG0B〉9,l = 0, 1 ≤ l ≤ 7
〈BG0B〉9,8 = 〈ˇ2

7〉(g8,9 + g8,1m)
〈BG0B〉9,l = 0, 9 ≤ l ≤ 13

〈BG0B〉10,l = 0, 1 ≤ l ≤ 8
〈BG0B〉10,9 = 〈ˇ2

8〉(g9,10 + g9,1m)
〈BG0B〉10,l = 0, 10 ≤ l ≤ 13
〈BG0B〉11,l = 0, 1 ≤ l ≤ 9
〈BG0B〉11,10 = 〈ˇ2

9〉(g10,11 + g10,1m)
〈BG0B〉11,l = 0, 11 ≤ l ≤ 13
〈BG0B〉12,l = 0, 1 ≤ l ≤ 10
〈BG0B〉12,11 = 〈ˇ2

10〉(g11,12 + g11,1m)
〈BG0B〉12,l = 0, 12 ≤ l ≤ 13
〈BG0B〉13,l = 0, 1 ≤ l ≤ 11
〈BG0B〉13,12 = 〈ˇ2

11〉(g12,13 + g12,1m)
〈BG0B〉13,13 = 0,

where we have introduced the simplified notation for the ele-
ments of the deterministic Green matrix (A.9): G0

lk ≡ gl,k, ∀{l, k} =
1, 2, 3, . . . , 13. We  note that these expressions can be used for any
distribution characterizing the moments 〈ˇjˇl〉 = ıjl〈ˇ2

j
〉. The case

when the set {ˇj} is not statistically independent can also be han-
dled in a similar way.

Any statistics are incorporated by evaluating 〈ˇ2
j
〉, ∀j =

0, 1, 2, 3, . . . , 12. In the present case, using a uniform distribution
for h we get

〈h〉 = (hmax + hmin)
2

,

〈h2〉 = (h3
max − h3

min)

3(hmax − hmin)
,

then:

〈ˇ2
0〉 =

(
43
30

(1 − nj)
)2

�2
h

,

〈ˇ2
j
〉 = (1 − nj)

2�2
h

,

with �2
h

≡ 〈h2〉 − 〈h〉2. Note that because in Model A there are only
two values of survival probabilities we finally get 〈ˇ2

0〉 /= 〈ˇ2
j
〉 = 〈ˇ2〉

for 1 ≤ j ≤ 12. In Model B each 〈ˇ2
j
〉 will be different because in that

case we are using Caughley’s smoothed function nj to characterize
pj.
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