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Abstract
In this topical review we discuss the connections between chaos, decoherence
and quantum cosmology. We understand chaos as classical chaos in systems
with a finite number of degrees of freedom, decoherence as environment
induced decoherence and quantum cosmology as the theory of the Wheeler–
DeWitt equation or else the consistent history formulation thereof, first in mini
super spaces and later through its extension to midi super spaces. The overall
conclusion is that consideration of decoherence is necessary (and probably
sufficient) to sustain an interpretation of quantum cosmology based on the
wavefunction of the Universe adopting a Wentzel–Kramers–Brillouin form
for large Universes, but a definitive account of the semiclassical transition in
classically chaotic cosmological models is not available in the literature yet.

PACS numbers: 04.60.−m, 05.45.Mt, 03.65.Yz

1. Introduction

The goal of this topical review is to explore the connections between the concepts of chaos,
decoherence and quantum cosmology. Each of these has a long history and development
independently of the other two, and the relationships between chaos and decoherence are
varied and deep. When it comes to their relationship to quantum cosmology, on the other
hand, it is fair to say that the available literature barely scratches the surface of the subject.
Therefore our goal is not only to review what has been done to date, but also to show areas
which remain underdeveloped, sometimes in spite of the fact that the necessary tools are
already available in non-quantum cosmological contexts.

Two warnings to the reader are called for. First, we shall make no attempt to be systematic
in our presentation of chaos [10, 16, 32, 80, 251, 259] and decoherence [124, 256, 278], we shall
only pinpoint those aspects of these subjects which have been found to be relevant to quantum
cosmology. Most importantly, we shall neither attempt a complete presentation of quantum
cosmology itself [35, 36, 184, 273, 274] . For the purposes of this review, quantum cosmology
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means the theory of the Wheeler–DeWitt equation restricted to Friedmann–Robertson–Walker
mini super spaces (to be defined below), later enlarged to midi super spaces by including also
linearized primordial fluctuations (whereby the former mini super spaces come to be regarded
as quantum open systems). We have made this choice not because we think this is the most
important or promising brand of quantum cosmology (if asked point blank, we would rather
give that award to the loop quantization program [12, 13]) but because that is the framework
in which the connections of quantum cosmology to chaos and decoherence have been most
systematically addressed, and where the language remains closest to the other area where
cosmology and quantum physics intertwine, namely, the generation of primordial fluctuations
during inflation [72, 228, 229] .

Let us try to put the above choice of subject matter in perspective.
It is certainly not coincidence that after a strong paradigm of quantum field theory based

on the renormalization program emerged in the 1950s and early 1960s, people started to worry
about extending it to other areas of physics, such as condensed matter theory [93, 94, 115, 257],
turbulence [189, 190] and gravity [110, 111]. In the case of gravity, which is a constrained
system development had to await for the unraveling of the Hamiltonian structure of the theory
[100]. Once this was accomplished by Arnowitt, Deser and Misner (ADM) [11, 220], the road
was open for a systematic quantization of gravity on the lines of Dirac’s quantization [98, 99,
101, 141]. This program was undertaken by Wheeler, DeWitt and collaborators, and resulted
in the formulation of the Wheeler–DeWitt equation, which is the cornerstone of our subject
[95, 96, 279, 192, 193].

This first wave of quantum cosmology research stumbled upon the problem of actually
finding solutions to the constraints of the theory (namely, states). Rather than making no
progress at all, Misner and others hit upon the idea of working on (very) restricted models where
the momentum constraints where trivial, and only the Hamiltonian constraint, or Wheeler–
DeWitt equation, remained as dynamical law [27, 30, 215–218, 254, 255]. At first, these
so-called mini super space models were offered as just mathematically consistent models
which shared one important property (time-reparametrization invariance) with full quantum
cosmology, and could therefore be of use to explore outstanding issues such as the emergence
of time and the correct interpretation of the theory. Eventually mini super spaces came to be
regarded as all that and also as some kind of Born–Oppenheimer approximation to the full
theory, so that the study of minisuperspaces was directly relevant to cosmology [194, 195].
The problem of actually solving the constraints of the theory was reopened much later by the
loop quantization program, which we shall not discuss here [12, 13].

At about this point the program developed by Wheeler, Misner and their associates
merged with a powerful current coming from the (then) Soviet Union, where Landau, Belinskii,
Lifshitz, Khalatnikov and their collaborators had made foundational work on the fluctuations of
Friedmann–Robertson–Walker cosmologies [200], and described the homogeneous Bianchi-
type cosmologies, including the notorious Bianchi type IX model [24–26, 175, 179–181, 198].
In time, Bianchi IX came to play a role, with respect to cosmology and chaos, not unlike the
one played by the Schwarzschild black hole with respect to gravity and thermodynamics.

A third moment in the development of quantum cosmology came when the emphasis
shifted from the analysis of the Wheeler–DeWitt equation in general, to the identification of
which particular solution to that equation described the state of our Universe, and the correct
way to derive cosmological predictions from it. Here the foundational work is no doubt that of
Hartle and Hawking, which brought the formalism of Euclidean path integrals to bear on the
subject [136, 140, 149, 150, 152–154], and of Vilenkin [275, 276], who proposed a boundary
condition for the wavefunction of the Universe allowing a direct link to inflationary cosmology.
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If at the time of Misner’s Mixmaster cosmology the main issue was how our Friedmann–
Robertson–Walker model could have emerged from such chaotic, anisotropic early stages
[22, 62, 84, 103, 211–214, 243, 263], after the inflationary paradigm became dominant that
question (if not answered [50, 52, 75, 76]) lost poignancy, since it was accepted that as long
as there were one single inflationary patch in the whole Universe that could account for
our existence. Thereby the relevant question became not only the properties of the classical
Universe emerging from the primordial quantum state of the Universe, but also how such a
classical Universe could have emerged at all.

This was the first point of contact between chaos and quantum cosmology, because, as
in quantum mechanics more generally, a classical Universe was identified with a Wentzel–
Kramers–Brillouin (WKB) solution to the Wheeler–Dewitt equation [136], and it is known
since Einstein that nonintegrability set strong limits to the applicability of the WKB
approximation [107]. It soon became clear that if classicality was identified with WKB form,
then an Universe could be classical near the cosmological singularity and turn quantum upon
expansion, quite the opposite to expectations [60, 88, 197, 236].

In ordinary quantum mechanics, it is generally accepted that properties of a system become
actual when they are measured and recorded. This presupposes there are measuring and
recording devices external to the system itself, and whose behavior is classical in at least some
important respects. Clearly such a framework is inappropriate for cosmology, where the system
encompasses the whole Universe. This led Hartle and Gell-Mann to develop from scratch a
quantum theory of closed systems, by adopting the consistent histories approach to quantum
mechanics [104–106, 120–123, 144–148, 156, 177, 178, 234]. This meant to concentrate not
on the wavefunctions of the Universe at a given point in cosmological evolution, but rather on
full histories of the Universe and their mutual consistency.

Same as in quantum mechanics at large, the emergence of a classical state from
the quantum maelstrom involves a process of loss of quantum coherence, the so-called
decoherence. Since we will take as axiomatic that the quantum mechanics of a closed system
is unitary, if decoherence occurs it means the system is not closed. It is interacting with an
environment, and by simplicity we shall consider only cases where the environment is actually
a physical system on its own right. More abstract settings, for example the environment being
high order correlations of the system itself, are conceivable [3, 66, 68]; we shall not consider
them here for pedagogical (and space) reasons. This leaves us squarely within the so-called
environment induced decoherence paradigm [244, 247, 248, 269, 271, 285–290].

Actually, environment induced decoherence explains how an ensemble of classical
Universes emerges from the quantum state. There is a second part to the question, which
is how a single classical Universe is then selected from the ensemble. This process has many
points in common with spontaneous symmetry breaking and also with quantum measurement
theory, and we regret we have nothing new to offer beyond what is already known in those
fields [1].

The goal of the environment induced decoherence program is not to explain why the
density matrix of the system (in our case, the system is the Universe, or rather its projection
upon the mini super space) becomes diagonal, since the density matrix is always diagonal in
some basis, but rather to point out some preferred basis, and to show that the density matrix
inexorably becomes diagonal in that basis.

The problem of choosing one single preferred basis out of the bewildering array of
possibilities (in the consistent histories program there is the equivalent problem of which
variables should be monitored as part of the description of the consistent history set) is not
particularly new in science. Max Weber confronted essentially the same problem in trying to
find a consistent way of describing capitalism [277]. Weber’s answer was that the selected
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basis should answer to certain internal consistency requirements (in our case, for example, the
predictability sieve [248, 291] to be introduced below provides such a consistency check), but
should reflect our interests also—the choice of preferred basis is informed by exactly what we
are trying to describe. Weber’s criteria are also good for quantum cosmology.

Once we accept that our problem is the emergence of a classical ensemble of Universes
with respect to a restricted set of properties chosen a priori, then environment induced
decoherence has much to say about the conflict between the semiclassical limit and
nonintegrability we have found above. Indeed, not only the validity of the WKB approximation
is restored, but also the process of decoherence is largely universal, that is, environment
independent [291, 292, 294, 293]. We shall give a precise description of what we mean below.

Surprisingly, however, the consequences for quantum cosmology of these insights from
environment induced decoherence have not been worked out yet to our knowledge. This will
be the point where we part with the reader, pointing out the new lands we could quickly
conquer, if we set to work on it.

This paper is organized as follows. In section 2 we provide the necessary background
on classical and quantum Hamiltonian cosmology, and the consistent histories formulation
of the latter. In section 3 we discuss classical cosmological chaos, both in Bianchi IX and
in Friedmann–Robertson–Walker models, and how the fact of classical chaos raises some
foundational issues for quantum cosmology. In section 4 we discuss decoherence in cosmology,
by regarding the mini super spaces considered so far as quantum open systems embedded into
an environment of gauge invariant primordial fluctuations. We conclude pointing out a few
highlights from the literature.

2. Quantum cosmology

2.1. Hamiltonian cosmology

The first step in implementing the quantum cosmology program is to formulate general
relativity in a language adequate for its quantization. This language is the canonical formulation
[11, 220, 254, 255].

We begin by writing the so-called ADM decomposition of the interval element

ds2 = g(4)
μνdxμdxν = −N̄2dt2 + g(3)

ab

(
dxa + N̄adt

) (
dxb + N̄bdt

)
. (1)

We follow Misner–Thorne–Wheeler (MTW) conventions throughout [220], indexes μ, ν run
from 0 to 3, indexes a, b run from 1 to 3 and x0 = t. We also assume natural units with
� = c = 1. g(3)

ab is the induced metric on t = constant surfaces.
The Einstein–Hilbert action reads

S = m2
p

∫
d4x

√
−g(4)R(4) (2)

plus eventually a cosmological constant, mp is Planck’s mass and we have discarded a total
divergence. Further integrations by parts allow us to reduce this to

S = m2
p

∫
d4x N̄

√
g(3)
[
K̄abK̄ab − K̄2 + R(3)

]
(3)

where

K̄ab = 1

2N̄

[
N̄a|b + N̄b|a − ∂g(3)

ab

∂t

]
(4)

is the extrinsic curvature of the t = constant surfaces and K̄ = g(3)abK̄ab. The symbol | denotes
a covariant derivative with respect to g(3)

ab.
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The action (2) does not depend on the time derivatives of the lapse N̄ or shift N̄a. These
are Lagrange multipliers enforcing the constraints of the theory. The canonical momenta
conjugated to g(3)

ab are

π(3)ab = −m2
p

√
g(3)
[
K̄ab − K̄g(3)ab

]
. (5)

The Hamiltonian density is (discarding a total divergence)

H = N̄H̄0 − 2N̄aH̄a, (6)

where

H̄0 = 1

m2
p

√
g(3)

[
π(3)abπ(3)

ab − 1

2
π(3)2

]
− m2

p

√
g(3)R(3), (7)

H̄a = π(3)ab
|b , (8)

π(3) = g(3)
abπ

(3)ab and R(3)is the intrinsic scalar curvature computed from g(3)
ab. The constraints

of the theory are H̄0 = H̄a = 0; the H̄0 and H̄a are the generators of coordinate transformations.
H̄0 is the so-called Hamiltonian constraint, while the H̄a are the momenta constraints.

The space of all three metrics is the so-called super space [97, 114]. The kinetic term
in the Hamiltonian H̄0 may be written as proportional to (1/2) G(ab)(cd)π (3)

abπ
(3)

cd with the
super space ‘metric’

G(ab)(cd) = g(3)acg(3)bd + g(3)adg(3)bc − g(3)abg(3)cd . (9)

Point by point, this metric has signature (− + + + ++), with the ‘time-like’ direction
corresponding to the conformal degree of freedom of the 3-metric, as we shall show presently.

2.2. Singling out the conformal degree of freedom

A model where matter is represented by a single conformally coupled scalar field is possibly
the simplest one which nevertheless is rich enough to allow for the discussion of chaos and
decoherence. It will therefore be our model of choice to illustrate the different points to follow.
With this in mind, we begin by formulating general relativity in a way where the dynamics of
the conformal degree of freedom is singled out.

Let us write the four dimensional metric as g(4)
μν = a2ḡμν .The three dimensional metric

shall be g(3)
ab = a2gab. a = e� is a generic scalar field. ḡμν admits an ADM decomposition as

above, with lapse N̄ = aN and shift N̄a = Na. To make this decomposition unique we should
enforce some condition on gab, such as constraining the determinant g constant. After splitting
variables in the 3 + 1 way and separating out the conformal degree of freedom we get the
connection as

�(4)σ
μν = �̄σ

μν + δσ
μ�,ν + δσ

ν �,μ − ḡσλḡμν�,λ. (10)

The Riemann tensor

R(4)ρ
σμν = R̄ρ

σμν + δρ
ν �;σμ − ḡρλḡσν�;λμ − δρ

μ�;σν + ḡρλḡσμ�;λν

+ (δρ
μ�,ν − δρ

ν �,μ

)
�,σ − (

δρ
μḡνσ − δρ

ν ḡμσ

)
ḡλτ�,λ�,τ

− (ḡσμ�,ν − ḡσν�,μ

)
ḡρλ�,λ. (11)

The Ricci tensor

R(4)
σν = R̄σν − ḡσν ḡτλ�;λτ − (d − 2) �;σν + (d − 2)

[
�,ν�,σ − ḡσν

(∇̄�
)2
]

(12)

and the scalar curvature

R(4) = 1

a2
{R̄ − (d − 1)(2∇̄2� + (d − 2)(∇̄�)2)} (13)

5
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where

∇̄2� = 1

N
√

g
∇μ[gμν − nμnν]N

√
g�,ν

(∇̄�)2 = [gμν − nμnν]�,μ�,ν. (14)

Of course, here d = 4; setting d = 3 we obtain the formulae appropriate to the intrinsic
curvature in the t = constant surfaces.

The extrinsic curvature

K̄ab = a

{
Kab − 1

N
[�,aNb + �,bNa + gab(�,0 − Ne�,e)]

}

= aKab − 1

N
[a,aNb + a,bNa + gab(a,0 − Nea,e)]. (15)

The action

S = m2
p

∫
d4x N

√
ga2

{
R − 1

3
K2 + KbaKba − 6

N2

(
�,t − Na�,a − NK

3

)2
}

+ m2
p

∫
d4x 2N

√
g{−�a2 + 3gaba,aa,b}. (16)

The canonical momentum conjugated to a is

P = −12m2
p

N
a
√

g

[
�,t − Na�,a − NK

3

]
, (17)

while the canonical momenta conjugated to the gab are (recall that gabgab,0 = 0)

πab = −a2m2
p
√

g
[
Kab − 1

3 gabK
]
. (18)

As expected, the kinetic term associated to the conformal degree of freedom appears with a
negative sign.

2.3. Adding conformal matter

We now add to the above model a conformal scalar field �̄. The action is

Sm = −1

2

∫
d4x

√
−g(4)

{
g(4)μν�̄,μ�̄,ν +

[
m2 + (d − 2)

4 (d − 1)
R(4)

]
�̄2

}
(19)

where d = 4. We write �̄ = a−(d−2)/2� and proceed to make explicit the conformal degree
of freedom as above to get

S =
∫

d4x N
√

g

(
m2

pa2 − �2

12

)[
R − 1

3
K2 + KbaKba

]

− 6m2
p

∫
d4x N−1√g

(
a,t − Naa,a − 1

3
NKa

)2

+ 2m2
p

∫
d4x N

√
g
{−�a2 + 3gaba,aa,b

}
+ 1

2

∫
d4x N−1√g

(
�,t − Na�,a − 1

3
NK�

)2

− 1

2

∫
d4x N

√
g

[
gab�,a�,b + m2a2�2 − 1

3
��2

]
. (20)

So now the canonical momenta conjugated to gab read

πab = −
(

m2
pa2 − �2

12

)√
g

[
Kab − 1

3
gabK

]
. (21)
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The canonical momentum conjugated to a remains the same

P = −12m2
p

N
a
√

g

[
�,t − Na�,a − NK

3

]
(22)

and the field canonical momentum is

p = N−1√g
(
�,t − Na�,a − 1

3 NK�
)

(23)

leading to the Hamiltonian density

Nπab

[(
m2

pa2 − �2

12

)√
g

]−1

πab + 2πabNa|b − P

[
N

24m2
p
√

g
P − Naa,a − Nc

|c a

3

]

+ p

[
N

2
√

g
p + Na�,a + 1

3
Nc

|c �

]
− N

√
g

(
m2

pa2 − �2

12

)
R

− 2m2
pN

√
g{−�a2 + 3gaba,aa,b}

+ 1

2
N

√
g

[
gab�,a�,b + m2a2�2 − 1

3
��2

]
. (24)

2.4. The Wheeler–DeWitt equation

We proceed now to quantize the theory along the lines of Dirac’s quantization for constrained
systems [98, 99, 101, 141].

Leaving aside the subtleties associated with the super space geometry, the basic idea
is to replace the super space ‘coordinates’ gab by the operators ‘multiplication by gab’, and
the momenta πab by the variational derivative with respect to gab. After sorting out operator
ordering ambiguities the constraints are mapped into operators. The states of the theory are
then the joint null eigenstates of the constraints. Particularly, the Hamiltonian constraint

H0
 = 0 (25)

takes the form of a time-independent Schrödinger equation for the so-called wavefunction of
the Universe 
. This is the Wheeler–DeWitt equation [95, 96, 279, 192, 193].

It is natural to seek an operator ordering such that the Wheeler–DeWitt equation ends
up being covariant in super space, if it is understood that 
 is itself a scalar. If we introduce
indexes A, B running from 0 to 5 to represent all independent pairs of indexes (ab) and write
xA ≡ gab then the Wheeler–DeWitt equation becomes a wave equation is super space

H0
 =
{

1√−G
∂A

√−GGAB∂B + m4
pgR + ξR

}

 = 0, (26)

where GAB = G(ab)(cd) is the super space metric, G < 0 its determinant and R its curvature.
The undetermined constant ξ is a remnant of operator ordering ambiguity. In the following we
shall assume ‘minimal’ coupling ξ = 0 (see however [134, 217]).

Actually, it is very hard to solve the constraints of the theory in these variables. This has
led Ashtekhar and others to take on the problem from a different viewpoint, eventually leading
to the loop quantum cosmology program. We shall not discuss these developments here.

2.5. The Hartle–Hawking and Vilenkin boundary conditions

Given that the Wheeler–DeWitt equation is analogous to a Schrödinger equation is super
space, Hartle and Hawking have proposed to solve it by importing the Euclidean path integral
methods of ordinary quantum theory. Their ansatz reads [136, 140, 149, 150, 152–154]


 [gab] =
∫

Dgμν e−SE[gμν]. (27)

7
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Here gab is a 3-metric defined on some Cauchy surface �. The integral is over all four
dimensional non-singular Riemannian manifolds having � as their boundary, and over all
Euclidean metrics on them such that gab is the induced metric on �. Observe that while the
physical space is supposed to originate from a big bang, which therefore defines a boundary to
the past, the Euclidean metrics in the Hartle–Hawking proposal have no boundary other than
�. SE is the Einstein–Hilbert action for the Euclidean metric.

The integral in 27 is ill defined because SE is not nonnegative definite. This is related to
the signature of the super space metric GAB. One possible way out is to perform a ‘second’
Wick rotation (the first one was going from Lorentzian to Riemannian metrics), that is, one
integrates over Euclidean metrics with complex conformal factors. 
 [gab] then is defined
through analytical continuation, and may become complex in the process [136].

Vilenkin has proposed an alternative to the Hartle–Hawking where the Universe is created
from nothing through a quantum tunneling process [275, 276].

2.6. Mini super space models

Mini super space models are Hamiltonian systems that result from parametrizing the metric
and matter fields in the Universe leaving only a finite number of time-dependent but space-
homogeneous degrees of freedom indetermined. The parametrization should be such that
introducing the restricted metric in the Einstein–Hilbert action and then taking variations
with respect to the parameters should be equivalent to introducing the restricted metric in the
Einstein equations themselves. Observe that spatial homogeneity does not mean that the fields
are independent of the space coordinates, but only that there is a group of motions which acts
transitively on space and leaves the restricted metric invariant [217].

In a typical mini super space model the parametrization is chosen in such a way that
the momenta constraint hold identically at the classical level. If the qα are the independent
parameters, then the Einstein–Hilbert action becomes

S = m2
p

∫
dt N

[
1

2N2
fαβ q̇α q̇β − U (q)

]
. (28)

We have the freedom to choose N, which could depend on the qα . q̇ denotes a time derivative,
of course, only after we have chosen N we will know what kind of time is t.

The canonical momenta are introduced in the usual way

pα = m2
p

N̄
fαβ q̇β (29)

leading to the Hamiltonian constraint

H0 = 1

2m2
p

f αβ pα pβ + m2
pU [q] = 0. (30)

The theory is quantized by replacing qα by the operator qα· and pα by (−i) ∂/∂qα . Operator
ordering is chosen in such a way that − f αβ pα pβ becomes the D’Alambertian associated to
the metric fαβ .

It is clear that simply ignoring the degrees of freedom other than the qα is, at least,
a violation of Heisenberg’s principle. However, if it can be shown that the qα are in some
way the ‘slow’ degrees of freedom, then the mini super space may be regarded as the Born–
Oppenheimer approximation to quantum cosmology. Eventually, the theory may be improved
by including the zero point energy of all other degrees of freedom into U [q]. We shall return
to this below.

8
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2.7. The interpretation of QC

We shall now discuss different proposals for an interpretation of the wavefunction of the
Universe [8, 133, 135, 142, 143, 182, 184, 276].

Of course, the simplest interpretation is just to assume Born’s rule: let |
|2 be the
probability density for three geometries in super space. One obvious problem is that 
 is not
usually square integrable; however there are ways to factor out this divergence and come up
with a viable normalization [139].

A more conceptual problem is the following. We are used and intend to think of cosmology
in terms of evolution. We wish statements such as ‘the Universe becomes classical when such
a such occurs’ to make sense. The Born rule would allow us to say than a smooth isotropic
Universe is more or less likely than a foamy fractal one, but gives us no clue about which
comes first. Of course there is no ‘time’ strictu sensu in quantum cosmology, but the fact itself
of the Lorentzian nature of the super space metric suggests there is a causal structure, with well
defined Cauchy surfaces arranged in increasing order of some ‘Heraclitean’ variable [270].
Indeed, for most practical purposes, the volume of a spatial three section, or the average scale
factor for open Universes, is a good enough ersatz for ‘time’.

The analogy of the Wheeler–DeWitt equation with the Klein–Gordon equation moreover
teaches us how to construct a current whose flux over Cauchy surfaces is conserved. This
suggests to normalize 
 to unit total flux, and to consider the normal component of the current
as a measure of relative probability within a given Cauchy surface. For the mini super space
above this is just the ordinary probability current (−i)

(

∗
,a − 

∗

,a

)
. As we can see, it

is not nonnegative definite, and therefore the probability interpretation is untenable. Even if
we restrict ourselves to ‘positive frequency waves’ for which the normal component of the
current is non-negative, the set of allowed wavefunctions will be different for different Cauchy
surfaces, a very unsatisfactory state of affairs.

The drawbacks of these (and other, more sophisticated ones) interpretations of 
 suggest
than something drastic may be called for. Basically, we may take as an observational fact
that the Universe became classical as it expanded, and in many examples 
 adopts a WKB
form for large values of the scale factor. If we merge these two insights, we obtain the ‘WKB
interpretation’ of quantum cosmology, namely, a wavefunction of the WKB form means that
an observer within that Universe will perceive around her a classical Universe evolving under
the particular solution of the Einstein equations such that p = S,a [136].

The situation when there is a coherent superposition of different WKB solutions is much
more unclear [183] . It seems some degree of decoherence is necessary to turn such a pure state
into an ensemble of WKB alternatives, each of which can then be interpreted as the prediction
of a particular classical Universe. The square absolute values of the coefficients in the original
superposition give the relative probability of each Universe within the ensemble.

Most importantly, and finally getting squarely into our subject matter, the WKB
interpretation will come under fire when the underlying Hamiltonian system is not integrable,
because then 
 may not take a WKB form at all, certainly not for large Universes [60, 88,
197, 236]. It is here that we shall see that only a joint consideration of chaos and decoherence
yields a viable quantum cosmology

2.8. Hartle Gell-Mann formalism

To analyze this question we shall adopt the consistent histories approach to quantum mechanics,
in the version advanced by Gell-Mann and Hartle [40, 42, 104–106, 120–123, 144–148, 156,
177, 178, 234]. The idea is to define a history by a set of projectors Pα acting at times ti.
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In canonical terms, a history is given by an evolution of the state vector such that at every
time ti, it belongs to the proper space of Pα (ti). In path integral terms, the projectors are
represented by window functions wα [x (ti)], which take on unit value if the instantaneous
configuration x satisfies the requirements of the history α, and vanish otherwise. The limiting
case of a fine-grained history, namely, when x (t) is specified for all times, is assigned an
amplitude exp iS/�, as usual in the Feynman path integral formulation. The amplitude for a
coarse-grained history defined by window functions wα [x (ti)] is defined by the superposition

A[α] =
∫

Dx eiS/�ψ[x(0)]

{∏
i

wα[x(ti)]

}
. (31)

The probability is naturally expressed in terms of a closed time path integral

P[α] =
∫

Dx Dx′ ei[S−S′]/�ρ[x(0), x′(0)]

{∏
i

wα[x(ti)]}{
∏

i

wα[x′(ti)]

}
. (32)

In this way we may assign a probability to any coarse-grained history, but these probability
assignments are not generally consistent, namely, the probabilities of two mutually exclusive
histories do not generally add up. Indeed, let us define the decoherence functional of two
histories α and β:

D [α, β] =
∫

Dx Dx′ ei[S−S′]/�ρ
[
x (0) , x′ (0)

] {∏
i

wα [x (ti)]

}⎧⎨
⎩
∏

j

wβ

[
x′ (t j

)]⎫⎬⎭ (33)

P[α] = D[α, α] but P[α ∨ β] = D[α, α] + D[β, β] + 2 ReD[α, β] �= P[α] + P[β]. The
probability sum rule P[α ∨ β] = P[α] + P[β] only applies when the third term vanishes, and
in particular when there is strong decoherence,D[α, β] = 0 for α �= β. As physicists, who
deal with reality, we shall be satisfied that a set of mutually exclusive histories is consistent
when |D[α, β]| 	 D[α, α],D[β, β] whenever α �= β.

To a certain extent, the consistent histories approach has the WKB interpretation built in,
because the probability of any history will be negligible, at least in the limit mp → ∞ unless
the history contains stationary points of the Einstein–Hilbert action.

A simple set of consistent histories refers to the values of conserved quantities [151]. First
observe that the path integral expression (33) translates into the canonical expression

D[α, β] = Tr

⎧⎨
⎩T̃

⎡
⎣∏

j

Pβ (t j)

⎤
⎦ T

[∏
i

Pα(ti)

]
ρ(0)

⎫⎬
⎭ . (34)

The projectors at different times are related in the usual way Pα(t) = U (t)Pα(0)U†(t).
If a projector commutes with the Hamiltonian, then it is time-independent, and expression
(34) collapses unless all projectors are indeed identical. The only histories with nonzero
probabilities are those defined by ranges of conserved quantities in the initial state, and they
are automatically consistent if these ranges do not overlap.

3. Chaos and cosmology

The paradigmatic chaotic dynamical system is probably the Baker transformation [102]. This
is a map of the unit square into itself. If (x, y) is a point in the square, then it is mapped into
(2x − [2x] , (y + [2x]) /2), where [] stands for integer part. Alternatively, if

x =
∞∑

i=0

c−i2
−i−1

10
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y =
∞∑

i=1

ci2
−i (35)

with every ci = 0 or 1. Then the original point is represented by the doubly infinite sequence
ci = c(0)

i , and it is mapped into the sequence c(1)
i = c(0)

i−1. The mapping is obviously time-
reversal invariant and area preserving.

There are two typical ways to quantify the chaoticity of the Baker transformation. Suppose
we have two points a distance dx apart. Then each iteration will increase this distance by a
factor eλ, where λ = ln 2. We say the map has a positive Lyapunov exponent. Since it is area
preserving, it must have a negative Lyapunov exponent too, in this case, for points separated
along the y direction.

Now suppose we measure the c(n)

0 components over a large number of iterations. No matter
how many times we do it, we shall always be one bit of information short of predicting the next
outcome. We say the map has a Kolmogorov entropy SK = ln 2. We notice the Kolmogorov
entropy is just the same as the (only) positive Lyapunov exponent. This is a particular instance
of the so-called Pesin theorem.

The Baker transformation is discontinuous at the x = 1/2 line, but this is nonessential.
We could as well stretch the square and fold it back into itself without cutting it, obtaining the
so-called Smale horseshoe. This way many points in the square are not mapped back into it,
but there is an uncountable set of points that belong to the square and remain in it after any
number of iterations, either back or forth. Restricted to this set, the dynamics is quite the same
as the original Baker.

The amazing thing is that the phase space of nonintegrable Hamiltonian systems generally
contains subsets where the dynamics reproduces the Smale horseshoe [10, 199, 249].

3.1. Chaotic cosmological models

As we said in the introduction, mini super spaces are usually restricted to homogeneous
spacetimes. That still leaves open the alternative that space may be isotropic (and thus the
model belongs to the Friedmann–Robertson–Walker (FRW) class) or anisotropic (thus falling
under one of the nine types of the Bianchi classification). We shall be mostly concerned with
the first (FRW) case, as it is the most directly relevant to inflationary cosmology. However,
nontrivial dynamical behavior was first found in the Bianchi IX type mini super space, and this
beautiful problem still is a major motivation in the development of the subject. Therefore, we
shall point out some few entry points to the literature on Bianchi IX models before resumming
our analysis of FRW ones.

3.1.1. The Bianchi IX models. The metric of a homogeneous spacetime may be written as

ds2 = −N̄2(t) dt2 + gab(t)σ
a ⊗ σ b. (36)

The σ as are three independent one-forms obeying

dσ a = Ca
bcσ

b ∧ σ c. (37)

Homogeneity shows in the Ca
bc being space-independent. The Ca

bc are antisymmetric in (b, c)

but may be of mixed symmetry with respect to a. Classifying them according to their symmetry
we obtain the nine Bianchi types. The most interesting for our purposes are Bianchi I, where
all Ca

bc = 0, and Bianchi IX, where Ca
bc = εabc is totally antisymmetric.

In the Bianchi I case, also known as Kasner Universe, we may simply take σ a = dxa.
Then the solution of the vacuum Einstein equations reads

ds2 = −N̄2(t) dt2 + t2q1 (σ 1)2 + t2q2 (σ 2)2 + t2q3 (σ 3)2. (38)

11
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The exponents satisfy q1 + q2 + q3 = q2
1 + q2

2 + q2
3 = 1. They may be parameterized in terms

of a single parameter u ranging from 1 to ∞ as

q1 = −u

1 + u + u2

q2 = 1 + u

1 + u + u2

q3 = u + u2

1 + u + u2

(39)

or some permutation thereof.
The Bianchi IX evolution may be understood as a sequence of ‘Kasner epochs’, themselves

grouped within ‘Kasner eras’. In each Kasner epoch, the metric may be approximated by 38
(with the appropriate one forms, of course) and therefore characterized by a parameter u with
some well defined value. If u > 2, then the Kasner epoch eventually evolves into another
Kasner epoch with u′ = u − 1. However, if 1 < u < 2, then the Kasner era ends, and another
era begins with u′ = 1/ (u − 1).

It follows that if un is the value of u at the first epoch of the nth era, then the number
of epochs in the era is [u] − 1 ([] standing for integer part). Let us ‘compactify’ the uns by
writing xn = u−1

n . Then 0 < xn < 1, and each xn is retrieved from the preceding one through
the mapping

xn = 1

xn−1
−
[

1

xn−1

]
. (40)

This mapping has a positive Kolmogorov entropy, and thus it is strongly chaotic. To the best
of our knowledge, this insight was the first quantitative indication of chaos in cosmological
models [26, 20, 216].

The Bianchi IX Universe has been subsequently analyzed by a large variety of techniques,
confirming the original insight [19, 21, 23, 28, 29, 31, 43–45, 84, 86, 87, 108, 116, 117, 155,
157, 158, 221, 219, 232, 250, 252, 253, 266, 283].

We are not aware of a direct proof of Bianchi IX chaos in terms of Ashtekhar variables.
Bianchi IX may be regarded as a perturbation of Bianchi VIII, which is explicitly integrable.
However, when one tries to carry the computation from Bianchi VIII to Bianchi IX, perturbation
theory breaks down. This is of course in agreement with expectations, but falls short of an
actual proof of non integrability [126, 77].

3.1.2. The Friedmann–Robertson–Walker models.. A Hamiltonian system with n degrees
of freedom is integrable if it has n constants of motion in involution, which means that all
the Poisson brackets between any two of these constants vanish. A FRW mini super space
has only one geometrical degree of freedom, the radius of the Universe a, and at least one
constant of motion, the Hamiltonian itself. Therefore, to be non integrable it must contain
non gravitational degrees of freedom, i.e. matter fields, as well. The simplest FRW mini super
space model where chaos may be investigated has, besides a, a single homogeneous scalar
field φ. It is extremely suggestive that already this basic setup leads to nontrivial dynamical
behavior [37, 51, 57].

The model investigated by Calzetta and El Hasi is spatially closed; the matter field is
free, massive and conformally coupled. The model describes a periodic Universe undergoing
a sequence of big bangs and collapses. Non integrability becomes apparent when the whole
sequence is considered [227], rather than a single cosmic cycle. More realistic models including
more matter fields already show observable consequences of chaos within a single cosmic cycle
[58, 85]. See also [233, 268].

12
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By now the consensus is that FRW Universes filled with a scalar field are non integrable
except for a few exceptional cases. The field may be real or complex, and conformally or
minimally coupled, and there may be a cosmological constant or not [82, 204, 205]

Let us discuss briefly the model analyzed by Calzetta and El Hasi [57]. It assumes a FRW
spatially closed geometry, that is, a line element

ds2 = a2(η)[−dη2 + dχ2 + sin2 χ(dθ2 + sin2 θ dϕ2)] (41)

where 0 � ϕ � 2π , 0 � θ � π , 0 � χ � π , and η stands for ‘conformal’ time. For
concreteness, we shall consider only models starting from a cosmic singularity, that is, we
restrict η to be positive, with a(0) = 0. Also, as indicated by the dynamics, we shall assume
that after the Big Crunch ( that is, when a returns to 0 ), a new cosmological cycle begins,
now with a � 0. Therefore, a complete periodic orbit describes the birth and death of two
Universes. The scalar curvature R = 6 and the conformal volume of an spatial surface is
v = 2π2. It is convenient to rescale the conformal factor a = as/

√
24πmp, the homogeneous

matter field φ = φs/
√

2π and the field mass m = √
24πmpμ. Calling Ps and ps the canonical

momenta conjugated to as and φs, respectively, we get the Hamiltonian

H = (
1
2

)[−(P2
s + a2

s

)+ (
p2

s + φ2
s

)+ μ2a2
s φ

2
s

]
. (42)

The Hamiltonian constraint is H = 0. We introduce the ‘adiabatic’ amplitude and phase
j and ϑ

φs =
√

2 j

ω
sin ϑ (43)

ps =
√

2ω j cos ϑ (44)

where ω2 = 1 + μ2a2
s is the instantaneous frequency of the field. This transformation is

canonical if we change the geometrical momentum from Ps to P1, according to

Ps = P1 + μ2as j

2
(
1 + μ2a2

s

) sin 2ϑ. (45)

The Hamiltonian becomes H = −(H0 + δH), where the unperturbed Hamiltonian

H0 = (
1
2

)[
P2

1 + a2
s

]− jω (46)

and the perturbation

δH = μ2asP1 j

2ω2
sin 2ϑ +

[
μ2as j

4ω2

]2

(1 − cos 4ϑ) . (47)

The dynamics of as, as generated by H0, is obviously bounded. The point as = 0 is a fixed
point; it is stable if μ2 j � 1, and unstable otherwise. In this second case, there is an homoclinic
loop associated with it. However, this orbit does not satisfy the Hamiltonian constraint; rather,
we have H0 = − j on the homoclinic loop.

The equations of motion are simpler if written in terms of a new variable X = ω, rather
than as itself. The transformation is canonical if we associate to X the momentum

PX = XP1

μ
√

X2 − 1
. (48)

In the large j limit, with H0 ∼ 0 and μ fixed, X � 1 for most of an orbit, and the Hamiltonian
simplifies to

H0 =
(

μ2

2

)
P2

X +
(

1

2μ2

)
[(X − μ2 j)2 − (μ2 j)2 − 1]. (49)
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If we parametrize

PX =
√

K

μ
cos 2α (50)

X = μ2 j + μ
√

K sin 2α (51)

then

H0 =
(

1

2

)[
K − (μ j)2 − 1

μ2

]
. (52)

We have succeeded in integrating the unperturbed motion, only that, because the last
reparametrization involves j, the angle canonically conjugated to it is no longer ϑ , but

θ = ϑ − μ
√

K cos 2α. (53)

The perturbation causes resonances between the variables α and θ and thus destroys the
integrability of the system. Resonances occur whenever ω j ± nωK = 0, ω j,K being the
frequencies associated to θ and α, respectively. We have ω j = μ2 j and ωK = −1/2. We thus
find a tower of resonances, corresponding to all positive values of n; the nth resonance occurs
at jn = n/2μ2, independently of K. If we further impose the Hamiltonian constraint, then K
must take the value Kn = (μ jn)

2 = (n/2μ)2.
It can be shown that the nth resonance is surrounded by a stochastic layer whose width

scales as n1/3/2μ2. For large n each resonance is much wider that the separation 1/2μ2 between
resonances. Thus the stochastic layers merge and the behavior of the perturbed system becomes
chaotic.

3.2. Chaos and quantum cosmology

Though the ubiquity of chaos in cosmological models is interesting for its own sake, for the
purposes of this review the point is how classical chaos impacts on quantum cosmological
models. To analyze this issue, we shall show that a WKB solution for small Universes may
diverge from the exact solution as the Universe expands, thus making the WKB interpretation
of quantum mechanics unviable as is [60, 88, 197, 236].

To see in simple terms why a WKB solution of the Wheeler–DeWitt equation departs
from the exact solution when the underlying classical cosmological model is chaotic, let us
consider again the procedure whereby the WKB solution is obtained in a multidimensional
mini super space model.

Let us return to a generic mini super space model as described in equations (28)–(30).
Adopting the ‘covariant operator ordering, the Wheeler–DeWitt equation becomes

H0 =
{

−1

2m2
p f 1/2

∂

∂qα
f 1/2 f αβ ∂

∂qβ
+ m2

pU [q]

}

 = 0 (54)

where f = det fαβ . We regard 
 as a scalar defined on the mini super space manifold. We
postulate a solution of the form


 = �1/2 eim2
pS. (55)

We ask that (54) holds order by order in m2
p. In the limit m2

p → ∞ the dominant terms are
O
(
m2

p

)
and O (1). The first yields

1

2
f αβ ∂S

∂qα

∂S

∂qβ
+ U [q] = 0 (56)
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and the second

f αβ ∂S

∂qα

∂

∂qβ
ln[ f 1/2�] + ∂

∂qα
f αβ ∂

∂qβ
S = 0. (57)

We understand (56) as meaning the more general equation
1

2
f αβ ∂S

∂qα

∂S

∂qβ
+ U [q] = E (58)

plus the constraint E = 0. We recognize (58) as the Hamilton–Jacobi equation for the mini
super space evolution. The general solution will take the form S = S [qα, JA], where the JA

are parameters regarded as world scalars. In general E = E [JA], only configurations such that
E = E [JA] = 0 are physical.

Observe that (57) admits the solution [224, 272]

� = f −1/2 det
∂2S

∂qγ ∂JA
. (59)

To reveal the geometric content of (59), observe that we may use S to generate a canonical
transformation to new variables

�A = ∂S

∂JA
(60)

and then

� = f −1/2 det

[
∂qγ

∂�A

]−1

. (61)

The WKB wavefunction will blow up everytime the matrix inside the determinant becomes
singular, that is, at caustics of the classical evolution. In a regular evolution these caustics
are isolated; in a chaotic evolution caustics proliferate and the WKB wavefunction becomes
arbitrarily ‘spiky’. The exact solutions of the Wheeler–De Witt equation, on the other hand,
are regular and cannot reproduce this behavior, therefore the WKB and exact solutions diverge
from each other [32, 235].

This effect has been demonstrated through numerical solutions of the Wheeler–DeWitt
equations and their WKB approximations for the conformal field FRW mini super space in
[60] and [88].

4. Decoherence and cosmology

4.1. Environment induced decoherence

In this review, we shall stick to the position that the quantum mechanics of a closed system is
unitary, and that therefore any decoherence effect must be caused through the interaction of
the system proper with an environment. As we have remarked in the introduction, while the
formalism itself seems to place no requirements on which systems qualify as environments,
in practice not all choices are equally compelling.

In the discussion of classical equations from quantum dynamics, Gell-Mann and Hartle
[122] pointed out that for a large and possibly complex system the variables that will become
classical habitually are the local densities of conserved hydrodynamic variables integrated
over small volumes. To show that some variables become classical involves showing that they
are readily decoherent and that they obey deterministic evolution equations. Hydrodynamic
variables such as energy, momentum and number are of such characters because they are
conserved quantities [4–6, 41, 137, 138]. In [71] it is shown that these variables obey
deterministic equations in spite of being strongly coupled to the environment because their
inertia is correspondingly very high.
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When such a natural choice is not forthcoming, one possibility is to choose an environment
that warrants stability and predictability of the system proper dynamics. This leads to choose
the environment by employing the Paz and Zurek’s predictability sieve [247, 291, 293]. The
predictability sieve is the most general criterion available for the selection of the preferred
basis. It has ben applied to cosmology in [185].

For simplicity, we shall only consider cases where system proper and environment are
actually two different systems. We shall only consider histories where the path ψα(t) of the
system proper is specified, while the path ξα(t) of the environment is left unconstrained. If we
assume an uncorrelated initial condition, then computing the decoherence functional reduces
to a path integral over the environment

D(α, α′) = ρs(ψi, ψ
′
i ) ei[Ss(ψ

1)−Ss(ψ
2)+SIF (ψ1,ψ2)] (62)

where Ss is the free action of the system, ρs is the initial density matrix for the system, and SIF

is the Feynman–Vernon influence action [46, 47, 112, 113, 127]

eiSIF(ψ1,ψ2) =
∫

dξi dξ ′
i dξ f

∫ ξ f

ξi

Dξ 1
∫ ξ f

ξ ′
i

Dξ 2 ρE (ξi, ξ
′
i ) ei[SE (ξ 1,ψ1)−SE (ξ 2,ψ2)] (63)

where SE is the action of environment, including the system–environment interaction and ρE

is the environment initial density matrix. The weak decoherence condition is recovered when

e−Im[SIF (ψ1,ψ2)] 	 1 ⇒ Im[SIF(ψ1, ψ2)] � 1. (64)

We observe that the influence action SIF = � is also the Schwinger–Keldysh (or closed time
path—CTP) effective action for the environment under the approximation that system variables
are treated as c-numbers, that is, Feynman graphs containing system propagators as internal
lines are neglected [14, 15, 62, 63, 65, 81, 174, 176, 258, 265, 284]. This analogy implies that
if we seek the effective dynamics for the system by looking at the stationary phase points of
the decoherence functional, then this dynamics will be causal and dissipative. On the other
hand, we may use the Feynman–Vernon trick of deriving the influence action from coupling
the system to a random external source; then we see that the system dynamics is stochastic as
well.

The physical basis of dissipation and noise in the system dynamics is discussed in detail in
[72]. What is going on is that the time evolution of the system variables excites the environment
through parametric amplification. System and environment become entangled, and thus tracing
over the second decoheres the first. The energy for the environment excitation comes from the
system, whose own dynamics is therefore damped. The back reaction from the environment on
the system has a random component (in the absence of special correlations in the initial state)
which is perceived by the system as noise. The unitarity of the underlying theory enforces
certain relationships between dissipation and noise, in an equilibrium situation these are just
the fluctuation-dissipation theorem.

We shall now see how the above applies to quantum cosmology.

4.2. Midi super space models

The basic setup (a different strategy is pursued in [89–92]) to discuss decoherence in quantum
cosmology is to assume the mini superspaces we have studied above are simply the relevant
sector of the theory, thus defining everything else in super space as the environment [160–163,
169, 171, 245, 246, 261]. However, since we do not really know how to do quantum cosmology
(in the Wheeler–DeWitt sense) in super space, some further simplification is called for. A
common approach is to reduce the number of degrees of freedom at the classical level, obtaining
a theory with still infinite degrees of freedom but no general diffeomorphism invariance,
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and thus more amenable to quantization. The resulting theory is called a midi super space.
In this review we shall consider midi super spaces consisting of a Friedmann–Robertson–
Walker Universe plus homogeneous scalar matter and linearized fluctuations around them.
There are still many midi super spaces answering to this description, as we may consider all
scalar, vector and tensorial perturbations, and then further different ways of splitting them
into relevant variables and environment. For example, we may consider scalar fluctuations
as relevant and tensorial as environmental, or the scalar fluctuation occupation numbers as
relevant and the mode phases as environment, or some scalar fluctuations as relevant and the
rest as environment, and so on [39, 59, 68, 79, 118, 166, 167, 168, 170, 186–188, 191, 196,
203, 209, 210, 225, 226, 262].

A basic discussion of decoherence, dissipation and noise in a FRW minisuperspace
coupled to a massive conformally coupled free scalar field is given in [67]. However in this
work linearized gravitational fluctuations were totally neglected, to the effect that the momenta
constraints were violated. This may raise doubts about the soundness of the analysis. We shall
now show that a more detailed analysis employing so-called gauge invariant variables [7, 17,
109, 125, 228, 229, 231, 264] yields essentially the same results. If anything, the effects of
noise and dissipation have been underestimated.

For the sake of discussion we shall consider only the conformal factor of a spatially
closed Friedmann–Robertson–Walker Universe and a homogeneous, conformally coupled
massive real scalar field as relevant variables, and the scalar linearized fluctuations around
them as the environment. In principle there are four different scalar fields associated to metric
fluctuations, as we may perturb the lapse N = 1 + A, the shift Na = γ abB,b, the conformal
factor a → a + δa = a (1 + (1/2) ψ) or the 3-metric gab = γ + E|ab − (1/3) γab�E. There
is one more scalar field associated to the matter fluctuations � = φ + ϕ. Here γab is the
natural metric of a three sphere in the corresponding coordinates. We must also decompose
the canonical momenta associated to the conformal factor P = P0 + δP and matter field
p = p0 + δp. The other geometrodynamic momenta are expressed in terms of a single scalar
momentum conjugated to E. These make eight degrees of freedom per point.

Neither all of these fluctuations are independent, nor they are physical. Upon a coordinate
change xμ → x′μ = xμ + ξμ the metric changes into g′(4)

μν = g(4)
μν − ξμ;ν − ξν;μ and the field

into �′ = � − ξμ�,μ. The corrections to the background quantities are scalar perturbations
provided ξa = ξ,a. A crucial observation is that these ‘gauge’ transformations mix the canonical
variables with the lapse and shift variables [267]. Since we have two scalar functions ξ and ξ0

to play with, we may impose two arbitrary conditions. We choose B = E = 0. If we are given
a coordinate system where these conditions do not hold, we may perform a coordinate change
as above with ξ = a2E/2 and ξ0 = a2(B − E,t/2). This means that instead of the original
fluctuations, we take as degrees of freedom the fluctuations in the frame where B = E = 0.
Since this frame is (at least locally) unique, the resulting degrees of freedom are ‘gauge
invariant’.

The two ‘gauge fixing conditions’ B = E = 0 play formally the role of two new
primary constraints on the theory, and so there also bring two secondary constraints meaning
Ḃ = Ė = 0. Together with the two true secondary constraints H0 = Ha,,a = 0 we have
in total six conditions the linearized fluctuations must satisfy, bringing the number of true
degrees of freedom to just two. Moreover, the resulting theory may be brought through a
canonical transformation into the theory of a canonical scalar field with a variable mass (see
below). The difference with respect to the analysis in [67] is that the mass depends not only
on the conformal factor (as is the case in the classical theory) but also on the homogeneous
matter field. In other word, the time-dependent homogeneous matter field and the canonical
gauge invariant variable are gravitationally coupled. Therefore, not just the expansion of the
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Universe, but matter field fluctuations too, may bring forth parametric amplification of the
canonical gauge invariant field.

Let us expand on the relationships among the linearized fluctuations. Observe that if
B = E = 0 then Kab = 0 and then πab = 0. This in turn implies E,t = 0, so the gauge
condition is consistent. To check whether πab,t = 0 at the linearized level, we must compute
the variation of the Hamiltonian w.r.t. variations δab with γ abδab = 0. This implies that g = γ

is not varied.
Recall that on the background we have Ra

bcd = δa
c γbd − δa

dγbc, Rab = 2γab and R = 6.
Therefore δR = 2γ bdγ acδdc|ba . The variation of the Hamiltonian reads

−2
√

γ

{[
N

(
m2

pa2 − �2

12

)]
|bc

+ N

(
m2

pa2 − �2

12

)
|bc

}
traceless

δbc. (65)

Therefore consistency of the gauge condition in the linearized theory requires(
m2

pa2 − φ2

12

)
A + 2m2

pa2ψ − φ

3
ϕ = 0. (66)

We must still consider the constraints of the theory. The scalar momentum constraint reads(
Pa,a + p�,a

)− γ

3
[γ −1(Pa + p�)],a = 0. (67)

Linearizing we get

P0aψ + 2p0ϕ − aδP − φδp = 0 (68)

and the Hamiltonian constraint

− 1

24m2
p
√

γ
P2 + 1

2
√

γ
p2 − 6

√
γ

(
m2

pa2 − �2

12

)
− 2m2

p
√

γ {−�a2 + 3γ aba,aa,b}

+1

2
√

γ

[
γ ab�,a�,b + m2a2�2 − 1

3
��2

]
= 0 (69)

whose linear part reads

− 1

12m2
pγ

P0δP + 1

γ
p0δp − 6m2

pa2ψ + φϕ + 2m2
pa2�ψ

+1

2

[
m2a2(φ2ψ + 2φϕ) − 2

3
φ�ϕ

]
= 0. (70)

We may use both constraints to express ψ and δP as functionals of ϕ and δp, or vice versa. If we
make the first choice, then the dynamics of ϕ and δp is described by an effective Hamiltonian
density

Heff = H − δPδa,t . (71)

We read δa,t out of the original Hamilton equations

δa,t = − 1

12m2
p
√

γ
[δP + AP0] . (72)

We also expand the scalar linear fluctuations into eigenfunctions of the spatial Laplace operator

ϕ =
∑

L

fL (x) ϕL (t) ; δp = √
γ
∑

L

fL (x) δpL (t) (73)

� fL = −L2 fL (74)

where L represents the integers L, K, M with L � 0, −L � K, M � L, and L2 = L (L + 1). We
assume the fL are orthonormal. Then the linearized equations for different modes decouple.
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Solving the linearized equations for each mode, all perturbations may be expressed in terms
of ϕL and δpL. The effective Hamiltonian becomes a sum over modes, each mode being a
squeezed harmonic oscillator. These may be reduced by standard methods to the Hamiltonian
of a harmonic oscillator with a time-dependent instantaneous frequency [72]. The frequency
will depend on the scale factor, the homogeneous scalar field and their derivatives, though
the latter dependences shall be suppressed by powers of the Planck mass. Therefore not only
the expansion of the Universe, but also a time-dependent matter field, will lead to parametric
amplification of the fluctuations.

4.3. Decoherence and particle creation

We shall now carry out an analysis of noise, fluctuations and dissipation in the minisuperspace
as induced by the gauge invariant fluctuations.

As we have seen, each mode of the gauge invariant scalar variable may be reduced to a
parametric oscillator. Quantization proceeds by further decomposing each Fourier amplitude
in its positive and negative frequency parts, defined by a suitable choice of time parameter. This
is accomplished by developing the corresponding mode on a basis of solutions of the Klein–
Gordon equation, so normalized that the positive frequency function has unit Klein–Gordon
norm, the negative frequency function has norm −1, and they are mutually orthogonal in the
Klein–Gordon inner product. Such a basis of solutions constitute a particle model. Properly
normalized particle models are related to each other through Bogolubov transformations.
Further identification of the coefficient of the positive frequency function in the development
of the field, as a destruction operator, allows for the second quantization of the theory. The
particle model is also associated to a vacuum state, which is the single common null eigenvector
of the destruction operators, and to a Fock basis, built from the vacuum through the action of
the creation operators [34, 230, 237–242].

It is also well known that in a generic dynamic spacetime, there is no single particle
model which can be identified outright with the physical concept of ‘particle’; however,
oftentimes it is possible to employ a variety of criteria (such as minimization of the particle
number as detected by a free falling particle detector, Hamiltonian diagonalization, conformal
invariance, analytical properties in the Euclidean section of the spacetime, if any, etc) to single
out a preferred particle model in the distant past (or ‘IN’ particle model) [55, 142], and another
in the far future, or ‘OUT’ particle model. In general, these models are not equivalent, the
vacuum of one model being a multiparticle state in the other. In our problem, the choice of
boundary conditions for the path integral above amounts to a definite choice of the IN particle
model, and the IN quantum state, in each branch of the closed time path [73].

Since the CTP effective action is independent of the OUT quantum states, we have more
freedom in choosing an OUT particle model. It is convenient to choose a common OUT
particle model for both evolutions (that is, the Cauchy data on the matching surface η = ηo are
the same although the actual basis functions will be different). The positive-frequency time
dependent amplitude functions f± for the conformal model in each branch are related to those
F of the OUT model by f± = α±F + β±F∗ at η = ηo, where α±, β± are the Bogolubov
coefficients in each branch, obeying the normalization condition |α±|2 − |β±|2 = 1. The CTP
effective action is found to be [67, 72]:

� =
(

i

2

)
ln[α−α∗

+ − β−β∗
+] (75)

This expression is an exact evaluation of the Gaussian path integral defining the influence
action.
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If we regard the saddle points of the decoherence functional as the actual classical
trajectories, we see that the decoherence functional is essentially the Feynman–Vernon
influence action for the minisuperspace variables interacting with the environment provided
by the gauge invariant fluctuations; the influence functional is also closely related to the
Schwinger–Keldysh effective action. By following through with this analogy, it is easy to
show that the resulting equations of motion are real and causal.

The lesson for us is that there can be decoherence (Im � > 0) if and only if there is particle
creation in different amounts in each evolution. (This is also implicit in [245, 246].) Indeed,
we can always choose the OUT model so that α+ = 1, β+ = 0, yielding � = (i/2) ln α−. The
condition for decoherence in this case is then |α−| > 1. But since |α−|2 = 1 + |β−|2, this can
only happen if there is particle creation between these two particle models.

To quantify the above considerations, let us return to the FRW plus a massive conformal
field mini super space. Let us consider the system evolution to be close to the nth resonance.
This means ω j = n/2, ωK = −1/2. We assume n � 1 and m � mp. Since the field
oscillations are much faster than the expansion and contraction of the Universe we may
freeze the conformal factor at its peak value. Therefore in the background a = n/m
and P0 = 0, while, with a convenient choice of phase, φ = √

12(mp/m) sin nη and
p = 2nπ2

√
12(mp/m) cos nη. Under these conditions the gauge invariant fluctuations become

A = ψ = 0 and δP = (2p0/a)ϕ = 4π2
√

12mp(cos nη)ϕ. Therefore the Lth mode ϕL is a
periodically driven oscillator with instantaneous frequency �2 = ω2

0 + ω2
1 cos 2nη [72] with

ω2
0 = n2 + L2 + L2

0 (L2
0 = 1 + 8π4) and ω2

1 = 8π4. Because ω0 � ω1 this is a very narrow
resonance and the effects of parametric amplification will not be strong.

However, when we include chaos in our considerations the overall effect is that the
instantaneous frequency for each mode acquires a random component. This situation has been
studied by Zanchin et al [281, 282], who show that randomness amplifies particle creation
in all modes. Therefore we are led to the same conclusion than [201], namely, the relevant
parameter range for chaos is also the most favorable one for particle creation, and therefore
for decoherence.

The physical mechanism underlying decoherence in the decoherent history scheme of
Gell-Mann and Hartle is the same as in the environment-induced scheme based on a reduced
density matrix obtained by tracing over the environmental degrees of freedom, namely the
entanglement of system and environment through particle creation [48, 49, 56, 74, 164, 165].
Since the energy of the created particles must be supplied by the minisuperspace variables, it
is clear that the back reaction of the environment on the system proper will have a damping
effect. Moreover, quantum fluctuations in the number of created particles result in fluctuations
in the back reaction, which are perceived by the system proper as a stochastic driving [72]. The
joint effect of dissipation and noise may induce a qualitative change in the dynamics of the
system proper, which is most conspicuous when this system is chaotic [201]. Cosmological
models where this stochastic driving is explicitly taken into account are discussed in [53, 54,
67, 70, 78, 172, 173, 202, 206–208].

4.4. Chaos, decoherence and quantum cosmology

In ordinary quantum mechanical systems, the best way to visualize the effect of noise and
dissipation on quantum chaos is the Wigner function [280]. Recall the dynamics of a chaotic
system, for example in the neighborhood of an equilibrium state, is exponentially contracting
in some directions in phase space, while expanding along others. Up to terms of order �

2

the Wigner function obeys the classical Liouville transport equation. Therefore when the
system is chaotic, it tends to produce structure in arbitrary short scales along the contracting

20



Class. Quantum Grav. 29 (2012) 143001 Topical Review

directions of the dynamics, while smoothing out along the expanding directions. However,
when noise and dissipation are factored in, the resulting diffusion introduces a shortest scale
where structure may be produced. On the other hand, the expansion of the Wigner function
along the unstable directions is limited by the Liapunov exponents, closely related to the
Kolmogorov entropy through Pesin’s theorem. The combination of these two effects implies
that the volume of the set where the Wigner function is substantially non zero increases in time,
until it saturates. Since the logarithm of this volume is the thermodynamic entropy, we find that
the thermodynamic entropy of the system proper is increasing at a rate which is determined
by the Kolmogorov entropy of the system itself. Observe that the rate of entropy increase
is largely independent of the system–environment interaction. This simple but compelling
picture of the effect of decoherence on quantum chaos has been put forward by Paz and Zurek
[294] and since confirmed by detailed numerical simulations [2, 9, 18, 33, 38, 119, 128, 132,
222, 223, 260].

To see whether this scenario obtains in quantum cosmology recall that in quantum
cosmology we regard the wavefunction of the Universe as a scalar field on minisuperspace.
The density matrix is therefore akin to a Schwinger function, namely the expectation value
of the product of the field evaluated at two different locations. If the minisuperspace is flat,
then the Wigner function may be introduced as a Fourier transform of the density matrix with
respect to the difference between its arguments. In the general case, however, mini super spaces
are described by curved manifolds. In this general case, notwithstanding, a local momentum
space may be introduced by using the same techniques as applied to derive quantum kinetic
theory from quantum field theory on curved spaces [61, 64, 72, 129–131].

The Wigner function will generally obey two equations, a ‘mass shell condition’ and a
first order dynamic equation. Both equations are covariant in phase space. In the WKB limit,
a well defined concept of time arises, namely the time of the classical solution around which
the fluctuations are defined. In this limit the dynamic equation becomes equivalent to the usual
equations investigated by Paz and others.

Therefore it seems appropriate to conclude that noise and dissipation due to parametric
excitation of gauge invariant fluctuations restores the validity of the WKB limit by avoiding the
proliferation of spikes in the wavefunction of the Universe, and produce both decoherence and
entropy production at a rate determined largely by the mini super space dynamics. However,
it is fair to say that this issue has not been explored in the literature with the detail it demands,
and therefore our arguments do not intend to be taken as anything but strong hints

5. Final remarks

In this review we have briefly recalled forty something years of efforts towrads the
unraveling of the relationships between chaos, decoherence and quantum cosmology. The
result notwithstanding seems patchy and inconclusive, because some obvious leads have not
been thoroughly followed up yet. The most glaring gap, in my view, is whether the translation
of the substantial body of work on Wigner functions for classically chaotic systems may hit
some snag due to the specifics of reparametrization invariant theories. To the best of my
knowledge this issue has not been investigated beyond the semiclassical approximation.

Given the size of the reference section, it may be useful to conclude by pointing out a few
highlights; this is of course a very subjective choice on top of the arbitrary selection which
created the reference list in the first place.

To begin with, any discussion of quantum cosmology should be set within the framework
of our current understanding of the very early Universe. Mukhanov’s [228] stands out among
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many excellent books and is also a very good introduction to the formalism of gauge invariant
variables.

Besides the foundational work such as [95, 149, 275] and [279], references [136] and
[184] are excellent entry points to all aspects of quantum cosmology. Similarly, the books by
Giulini et al [124], Schlosshauer [256] and Weiss [278] are well known introductions to the
physics of quantum open systems. The classic exposition of the Gell-Mann/Hartle formalism
is [120].

The foundational papers of cosmological chaos [26] and [216] are undisputed
masterpieces. Together with the review [20] they cover much of what is there to be said.
For an updated state of the art see [155].

With regards of chaos in FRW cosmologies, the early paper [57] already raised many
relevant issues. For the state of the art see [82, 204, 205].

The 1993 Kananaskis meeting [159] was arguably a turning point in the development of
the subject. Although I have quoted several individual papers from its Proceedings, the volume
as a whole has a remarkable sinergia.

To the best of my knowledge, [60] was the first detailed demonstration of the divergence
between solutions of the Wheeler–DeWitt equation in a mini super space and their WKB
approximations. See also [88].

Our discussion of decoherence in quantum cosmology was essentially the application to
the quantum cosmological context of tools which are well proven in the much wider fields of
environment induced decoherence and nonequilibrium quantum field theory. For more general
introductions to these subjects see [248] and [72], respectively. References [169] and [67]
may be regarded as blueprints for a decoherent quantum cosmology program. For the further
progress of the stochastic cosmology program see [173].

In spite of the strong theoretical foundations [32] and ground breaking work by Habib
and others [129–131], the application of Wigner functions to classically chaotic cosmological
models is still underdeveloped. I call on my readers to finish up the task.
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Cambridge University Press)

[291] Zurek W H 2002 Decoherence and the transition from quantum to classicalrevisited Los Alamos Sci. 27 2
[292] Zurek W H 2003 Decoherence, einselection, and the quantum origin of the classical Rev. Mod. Phys. 75 715
[293] Zurek W H, Habib S and Paz J P 1993 Coherent states via decoherence Phys. Rev. Lett. 70 1187
[294] Zurek W H and Paz J P 1994 Decoherence, chaos and the second law Phys. Rev. Lett 72 2508

30

http://dx.doi.org/10.1088/0264-9381/7/7/013
http://dx.doi.org/10.1103/PhysRevB.37.9810
http://dx.doi.org/10.1016/0375-9601(90)90983-U
http://dx.doi.org/10.1103/PhysRevD.25.3159
http://dx.doi.org/10.1063/1.529102
http://dx.doi.org/10.1103/PhysRevD.48.5730
http://dx.doi.org/10.1103/PhysRevD.40.2598
http://dx.doi.org/10.1103/PhysRevD.40.1071
http://dx.doi.org/10.1073/pnas.14.2.178
http://dx.doi.org/10.1103/PhysRevD.33.3560
http://dx.doi.org/10.1103/PhysRevD.39.1116
http://dx.doi.org/10.1103/PhysRev.40.749
http://dx.doi.org/10.1103/PhysRevD.57.4651
http://dx.doi.org/10.1103/PhysRevD.60.023505
http://dx.doi.org/10.1103/PhysRevD.28.1235
http://dx.doi.org/10.1103/PhysRevB.22.3385
http://dx.doi.org/10.1103/PhysRevD.24.1516
http://dx.doi.org/10.1103/PhysRevD.26.1862
http://dx.doi.org/10.1063/1.881293
http://dx.doi.org/10.1143/PTP.89.281
http://dx.doi.org/10.1103/RevModPhys.75.715
http://dx.doi.org/10.1103/PhysRevLett.70.1187
http://dx.doi.org/10.1103/PhysRevLett.72.2508

	1. Introduction
	2. Quantum cosmology
	2.1. Hamiltonian cosmology
	2.2. Singling out the conformal degree of freedom
	2.3. Adding conformal matter
	2.4. The Wheeler–DeWitt equation
	2.5. The Hartle–Hawking and Vilenkin boundary conditions
	2.6. Mini super space models
	2.7. The interpretation of QC
	2.8. Hartle Gell-Mann formalism

	3. Chaos and cosmology
	3.1. Chaotic cosmological models
	3.2. Chaos and quantum cosmology

	4. Decoherence and cosmology
	4.1. Environment induced decoherence
	4.2. Midi super space models
	4.3. Decoherence and particle creation
	4.4. Chaos, decoherence and quantum cosmology

	5. Final remarks
	Acknowledgments
	References

