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Abstract: The high exposure of coastal areas worldwide to natural and anthropogenic disasters
emphasizes the relevance of disaster management processes that ensure a prompt damage detection
and identification of affected areas. This paper aimed to develop a novel approach for disaster
monitoring in coastal areas using SAR data. The method was based on an interferometric coherence
difference analysis of Sentinel 1 data. To calibrate and validate the method, the Emma Storm, a severe
coastal storm that affected the southwest coast of the Iberian Peninsula in 2018, was chosen as a case
study. A coastal land use/land cover method optimization by optical and UAV field data resulted in
an overall improvement of about 20% in the identification of disaster-affected areas by reducing false
alarms by up to 33%. Finally, the method achieved hit and false alarm rates of about 80% and 20%,
respectively, leading to the identification of approximately 30% (7000 ha) of the study area as being
affected by the storm. Marshes and vegetated dunes were the most significantly impacted covers. In
addition, SAR data enabled the impact assessment with a time lag of 2 days, contrasting the 25-day
delay of optical data. The proposed method stands out as a valuable tool for regional-scale coastal
disaster monitoring. In addition, it can be automated and operated at a low cost, making it a valuable
tool for decision-making support.

Keywords: synthetic aperture radars; disaster monitoring; coastal hazards

1. Introduction

Coastal areas are essential environments for socio-economic development and human
well-being [1]. Currently, over 40% of the world’s population resides within 100 km of the
coast, and about 10% lives in coastal zones situated below 10 m of topographic altitude [2].
Furthermore, it is projected that the population density in these areas will increase by
around 25% by 2050 [3]. The significance of these areas is linked to their multiple uses and
opportunities due to their valuable ecosystem goods and services [4]. However, due to the
high population density, concentration of economic activities, infrastructure, and cultural
heritage assets, coastal areas are exposed to natural and anthropogenic disasters, which
endangers their long-term sustainability [5,6]. Those disasters are particularly exacerbated
by socio-economic conditions. It is estimated that over 28 million people living in deltas
of developing or least-developing economies are highly vulnerable to coastal flooding [7]
while projected scenarios of sea level rise are expected to have significant impacts on the
developing world [8,9]. Furthermore, the rapid population growth of developing countries
will increase the exposure and vulnerability conditions of coastal communities.

Sea level rise [10] and extreme climate events such as storms, cyclones, hurricanes,
flooding, and heavy precipitation [11,12] have significant impacts on coastal areas, making
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them the most critical coastal hazards on a global scale. Additionally, human activities, such
as construction of coastal infrastructure, sand mining, over-exploitation of coastal aquifers,
coastal urbanization, and coastal afforestation, among other interventions, increase the
coastal disaster risk and the vulnerability of coastal populations [13,14]. The primary
impacts resulting from these coastal hazards include coastal erosion [15] and flooding [16].

Disaster management is defined as the process aimed at reducing the potential impacts
of hazards, ensuring rapid support to victims, and developing effective disaster-recovery
actions [17]. An effective disaster management process, as stated in [18], comprises at
least four phases: mitigation, preparedness, response, and recovery. The first two phases
occur before a disaster, while the remaining two happen after a disaster. This work mainly
focuses on the response phase, which aims to detect damage quickly, assess it, and identify
affected areas in the aftermath of a disaster. The products derived from the response
phase are essential for subsequent stages, such as the recovery phase, as the urgency for
decision-making and post-disaster emergency relief is high [19].

Remote sensing (RS) techniques and Geographic Information Systems (GIS) play
a crucial role in all disaster management phases [3]. The great advances in computer
sciences that occurred in the last decades have led to an improvement in GIS systems for
disaster management [20]. However, in many cases, the response methods are not fast
enough because they are inefficient and highly laborious [21]. Thus, the automatic and
rapid generation of information and derived products is a key issue for early warning,
information, and monitoring systems.

One of the primary applications of RS tools and geospatial technologies involves
monitoring and detecting changes over the Earth’s surface using multi-temporal data [22].
Optical and multispectral RS sensors have been widely used for change detection studies
across various applications [23–29]. In coastal studies, this data type has been extensively
used to extract shoreline positional features [30–32] and to support automatic change
detection methods [33,34].

Satellite images acquired from Synthetic Aperture RADAR (SAR) sensors have been
underutilized in disaster monitoring studies due to their well-documented limitations,
which include the presence of speckle noise [35], the inherent difficulties associated with
geometric distortions, particularly in mountainous areas [36,37], and the complex and
time-consuming methods related to data pre-processing [38]. Thus, some authors have
proposed the combination of data from different sources, such as optical, SAR, or even
LiDAR data [39], in order to overcome these challenges.

However, SAR sensors offer operational advantages over optical sensors as they
operate in the microwave region of the electromagnetic spectrum and can work efficiently
in any meteorological condition, providing full day–night coverage (all-day/all-weather
conditions) [40,41]. They are referred to as active sensors because they do not require an
external energy source to operate. As a result, SAR time series data are a valuable tool for
coastal studies [42–44] and can provide fast and useful information during the recovery
phase of coastal disaster management.

The operational capabilities of SAR data have led to significant advancements in new
technologies and techniques over the last few decades [45]. SAR Interferometry (InSAR) is
considered the main radar technique for studying Earth’s surface dynamics [46]. It has been
utilized for monitoring surface deformations caused by earthquakes [47], landslides [48],
ground subsidence [49], flooding and wetland dynamics [50], forestry [51], and urban
studies [52], all of which are related to risk assessment. Nevertheless, the presence of
speckle scattering over water surfaces adds complexity to the assessment of flooding
events [53], which limits the effectiveness of SAR images for disaster monitoring in coastal
and beach areas. Additionally, InSAR has been widely used for topographic applications,
such as generating global DEMs like SRTM [54].

The main InSAR technique considered for disaster monitoring is coherence analysis [55].
It is based on the coherence magnitude, which measures the surface scattering correlation
between two SAR images acquired for the same location but at different times [56,57]. Since
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coherence is highly sensitive to changes in surface properties between acquisitions, a decrease
in coherence (decorrelation) is typically used to identify disaster-affected areas [58].

The coherence analysis technique has been extensively documented for various appli-
cations, including disaster monitoring. For instance, in desert areas of the Kubuqui Desert
and United Arab Emirates desert, ref. [59,60] applied it to monitor aeolian erosion and
dune motion, respectively, while ref. [61] studied fluvial and aeolian morphodynamics of
two paleo-channels in the Egyptian Sahara Desert. In addition, ref. [62,63] used coherence
analysis to monitor the activity of an open-pit iron mine in North Korea and four open-pit
coal mines in China, respectively, while ref. [64] detected hurricane-triggered flooding
in Houston, United States of America. Moreover, ref. [65] assessed a flooding event of
the Richelieu River in Quebec, Canada, which occurred in early 2011, and ref. [66] eval-
uated changes over temperate and tropical forests in Romania and Brazil. Furthermore,
ref. [57,67] used coherence analysis to study soil liquefaction, land subsidence, and surface
displacements produced by the Tohoku earthquake (Japan) and the Meinong earthquake
(Taiwan), respectively. Finally, ref. [68] detected active deformation areas due to volcanic
activity in the Canary Island archipelago, and ref. [69] monitored landslide events triggered
by heavy rainfalls in Cyprus.

The main aim of this work is to enhance existing InSAR techniques for disaster change
assessment in coastal areas by developing an improved approach that takes into account the
highly dynamic nature of these environments. The primary focus of this novel approach is to
improve the capabilities of SAR data for the post-disaster response phase. The methodology
involves conducting a coherence difference analysis using a Sentinel 1 (S1) dataset, while
considering various coastal land use/land cover scenarios. To calibrate and validate the
proposed method, the Emma Storm, a severe coastal storm that affected southern Spain in
2018, is chosen as a case study.

This paper is organized as follows: Section 2 provides an overview of the InSAR
technique with a focus on coherence difference analysis. It also includes the characterization
of the study area and the Emma Storm, as well as the proposed methodology and dataset
information. In Section 3, the results of the coherence analysis are presented, including
the method calibration and validation, and the assessment of the storm-affected area.
Section 4 discusses these results, taking into account the advantages and disadvantages
of the proposed approach. Finally, the main conclusions of this paper are summarized in
Section 5.

2. Materials and Methods
2.1. Fundamentals of InSAR Technique

SAR images contain two types of information: phase and amplitude. The phase means
the fraction of a complete wavelength cycle and represents the distance between the sensor
antenna and the surface target. The amplitude is the strength of the scattered radar signal
from the ground targets back to the sensor [57].

When working with a pair of Single Look Complex (SLC) SAR images acquired at
different times, a complex interferogram can be produced [70]. It consists of estimating
the backscatter amplitude and phase changes between observations and can be expressed
as follows:

(C2C1)= A1A2 ei(Φ2 − Φ1), (1)

where C stand for the complex value image, A is the amplitude, and Φ is the phase;
subscripts 1 and 2 refer to the master and slave images, respectively; e is the Euler’s number
and i means an imaginary number (i =

√
(−1)). Master and slave denotation usually refers

to the older and the more recent image, respectively.
The InSAR principle is based on the measurement of those phase differences between

complex-valued SAR images acquired from different orbital positions and/or at different
times. For this paper, we focus on those images acquired at different times and from differ-
ent orbital positions corresponding to the so-called repeat-pass across interferometry [71].
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Taking into account the distance difference between the sensor and the target surface in
master and slave images, the interferometric phase can be estimated as follows [41]:

Φ =
4π
λ
·B· sin (θ − α), (2)

where B is the spatial baseline between images, θ is the incidence look angle, and α the tilt
angle. The spatial baseline is a key parameter for the construction of an interferometric
system. It represents the spatial separation between both acquisitions and can be decom-
posed into a parallel baseline (B‖) and a perpendicular baseline (B⊥) (Figure 1). At the
same time, the temporal baseline (BTemp) represents the temporal separation between
acquisitions [51].
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When working with interferometric pairs (master and slave images) it is important
to take into account an adequate B⊥ because it defines the sensitivity of the system to
geometric decorrelation factors [41]. This issue will be explained in more depth in the
following section. In order to do so, it is necessary to understand the concept of the critical
baseline of the interferometric system. The critical baseline can be defined as follows:

B⊥, crit = λ ·Br
c
· Rtan(θ − ς), (3)

where B⊥,crit is the critical baseline value, λ is the radar wavelength, Br is the system range
bandwidth which leads to a zero geometric decorrelation, and R is the slant range distance.
Finally, ς is the terrain slope; meanwhile, a good estimation of B⊥,crit can be obtained by
using the incidence look angle only (θ).

2.2. Interferometric Coherence

The interferometric coherence (
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) represents the surface scattering correlation between
two SAR acquisitions [56]. Based on the equations presented in the previous section, it can
be expressed as follows [55]:

γ =
|< C1C2 >|√(

< |C1|2><|C2|2 >
) , (4)

where C1 and C2 are the master and slave complex-valued images, respectively. Brackets
(<>) represents the speckle filtering for radar noise reduction [72]. γ is also a complex
magnitude, whose modulus (|
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paper is mainly focused on estimating differences in
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decorrelation processes.

Coherence (γ) values are estimated at a pixel-by-pixel scale and range from 0 to 1;
a value of 1 indicates no change in the scattering properties between images. However,
when the observed surface changes, the complex backscatter is affected and causes a
decrease in the coherence values, which is called decorrelation. According to [58], the
interferometric coherence suffers from three main factors of decorrelation: radar thermal
noise decorrelation (
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T).
Decorrelation due to thermal noise is determined by the signal-to-noise ratio of the

radar system. In repeat-pass interferometry, both images’ radar signals are acquired by
the same antenna; so, the variation of thermal noise can be assumed to be the same. Thus,
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N do not influence the coherence estimation by adding a source of decorrelation between
acquisitions [57].

Geometric decorrelation is determined by the different illumination angles of the same
ground resolution pixel at the master and slave acquisitions. Thus,
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G arises from the θ
term involved in the critical baseline estimation (see Equation (3)). If the perpendicular
baseline is major then critical baseline
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where B⊥,crit is the critical baseline value, λ is the radar wavelength, Br is the system 
range bandwidth which leads to a zero geometric decorrelation, and R is the slant range 
distance. Finally, ς is the terrain slope; meanwhile, a good estimation of B⊥,crit can be 
obtained by using the incidence look angle only (θ). 

2.2. Interferometric Coherence 
The interferometric coherence (ץ) represents the surface scattering correlation 

between two SAR acquisitions [56]. Based on the equations presented in the previous 
section, it can be expressed as follows [55]:  

G becomes 0, causing a total decorrelation [73].
Finally, the temporal decorrelation is always present in the repeat-pass interferometry

and it strongly depends on the temporal baseline (Btemp). The coherence loss in InSAR
is primarily caused by changes in the geometry, structure, and dielectric properties of the
imaged surface [73]. As a general rule, decorrelation tends to increase as the temporal
baseline (i.e., the time interval between the two SAR images in a pair) increases [51].

The Coherence Difference Analysis (CDA) is based on the assumption that when
natural or anthropogenic-induced hazards (e.g., coastal hazards) trigger damage over a
defined area, the coherence estimation changes between the images acquired before and
after the event [57]. Following [67], the CDA is carried out by the comparison between
coherence maps generated from pre- and post-disaster SAR images. A master and a slave
image are stacked for obtaining the pre-disaster coherence map while the same process is
carried out for two post-disaster acquisitions. Finally, the coherence difference (
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When working with interferometric pairs (master and slave images) it is important 
to take into account an adequate B⊥ because it defines the sensitivity of the system to 
geometric decorrelation factors [41]. This issue will be explained in more depth in the 
following section. In order to do so, it is necessary to understand the concept of the critical 
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where B⊥,crit is the critical baseline value, λ is the radar wavelength, Br is the system 
range bandwidth which leads to a zero geometric decorrelation, and R is the slant range 
distance. Finally, ς is the terrain slope; meanwhile, a good estimation of B⊥,crit can be 
obtained by using the incidence look angle only (θ). 

2.2. Interferometric Coherence 
The interferometric coherence (ץ) represents the surface scattering correlation 

between two SAR acquisitions [56]. Based on the equations presented in the previous 
section, it can be expressed as follows [55]:  

diff) is
estimated as follows:

γdiff= γ pre − γ post =
(
γ

pre
N − γ post

N

)
·
(
γ

pre
G − γ post

G

)
·
(
γ

pre
T − γ post

T

)
, (5)

where pre and post super-indexes represent the pre- and post-disaster scenarios, respec-
tively. As mentioned above,
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range bandwidth which leads to a zero geometric decorrelation, and R is the slant range 
distance. Finally, ς is the terrain slope; meanwhile, a good estimation of B⊥,crit can be 
obtained by using the incidence look angle only (θ). 

2.2. Interferometric Coherence 
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N can be equal or nearly equal when images correspond to
the same acquisition sensor. In addition,
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where B⊥,crit is the critical baseline value, λ is the radar wavelength, Br is the system 
range bandwidth which leads to a zero geometric decorrelation, and R is the slant range 
distance. Finally, ς is the terrain slope; meanwhile, a good estimation of B⊥,crit can be 
obtained by using the incidence look angle only (θ). 

2.2. Interferometric Coherence 
The interferometric coherence (ץ) represents the surface scattering correlation 

between two SAR acquisitions [56]. Based on the equations presented in the previous 
section, it can be expressed as follows [55]:  

G does not affect the coherence estimation when
the InSAR system perpendicular baseline represents a highly insignificant value compared
with the sensor critical baseline [41]. Thus, it is possible to consider that the disaster event
led to a loss in the coherence by only affecting
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where B⊥,crit is the critical baseline value, λ is the radar wavelength, Br is the system 
range bandwidth which leads to a zero geometric decorrelation, and R is the slant range 
distance. Finally, ς is the terrain slope; meanwhile, a good estimation of B⊥,crit can be 
obtained by using the incidence look angle only (θ). 

2.2. Interferometric Coherence 
The interferometric coherence (ץ) represents the surface scattering correlation 

between two SAR acquisitions [56]. Based on the equations presented in the previous 
section, it can be expressed as follows [55]:  

T. Finally, coherence difference expression
can be re-written as follows:

γdiff= γ
pre

T − γ post
T . (6)

For the objectives of this paper, temporal decorrelation is considered the most signifi-
cant factor for the Coherence Difference Analysis (CDA). According to [74], these effects
occur randomly in the case of disaster events. However, temporal decorrelation is caused
by differences in the structure and dielectric properties of the ground scatterers. Structure
effects are related to geometric changes in scatterers’ roughness, size, or even land cover
type [75]. Dielectric properties effects are linked to the water content (i.e., soil moisture)
of the radar-illuminated surface [66], being an important parameter for storms, flooding,
coastal storm surges, or river floods, among others.

2.3. Study Area and the Emma Storm

The study area is located in the Gulf of Cadiz in the southwest coast of the Iberian
Peninsula. It extends from Cádiz to Bolonia (Figure 2). This delimitation resulted from the
intersection between the ascending and the descending path of S1 data (see Section 2.4.
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below). The coastline shows a general orientation of NNW–SSE with the exception of W–E
alignment associated with recent faults [76].
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Figure 2. Location of the study area in the Atlantic Coast of Cadiz, Andalusia, Spain (A,B) [WGS 84;
EPSG: 4326]. It is delimited by the overlap of ascending (red frame) and descending (purple frame)
SAR images (C). White dots (C) represent the main coastal settlements throughout the study area.

The study area can be characterized by a sandy shore with a relatively high fluvial
sediment supply from great river basins such as the Guadalquivir River. Sediment is mainly
composed by fine to medium quartz sand [76]. This coast presents low-lying areas (Cádiz
Bay, Río Salado, Conil de La Frontera, Estuary of Barbate) with alternating cliff pocket
beaches and open beaches with dune systems.

The study area can be considered as a mesotidal coast dominated by semidiurnal tides
with a mean spring tidal range from 2.96 m in Cádiz to 2.30 m in Barbate [77]. West wave
direction is the most frequent and WSW the most energetic direction. Low wave energy
characterizes the average condition (Hs < 1 m at 90% of the average year), although Hs > 3 m in
extreme conditions (105 h/year) [78]. The waves show increasing values from north to south,
characterized by a narrow continental shelf. Contrarily, meteorological tides increase from south
to north where values > 0.4 m are associated to the deeper low-pressure systems [79]. Prevailing
winds blow from WSW (called Poniente), and ESE (called Levante) with lower frequency, but
higher intensities control the aeolian sand transport in the study area [80].

The Emma Storm occurred between 28 February and 3 March 2018, affecting the SW
of the Iberian Peninsula. It was characterized by its long duration (~153 h) and extreme
wave height (4 m in average and reaching up to 6.8 at the peak). The prevailing wave
direction was WSW. It was associated to a deep low pressures system that impacted the
coast in spring tide condition, generating a storm surge of 0.4 that contributed to increasing
the TWL up to 4 m [81]. Severe damages were registered in the Atlantic coast of Spain and
Portugal, including a strong coastal erosion resulting in damages over walls, promenades,
houses, and overwash areas, resulting in water and sediment piling over roads, car parks,
and house yards [82].

2.4. Method Workflow

In order to develop the coastal land use/land cover enhanced method, five main
steps were conducted: datasets acquisition, interferometric coherence processing and post-
processing, coherence difference analysis, land use/land cover calibration and validation,
and regional storm-affected areas assessment. Figure 3 schematically summarizes these
steps, which are described in the following sections.
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2.5. Datasets
2.5.1. Satellite Data

A total of 80 Copernicus Sentinel-1 (S1) SAR images acquired between June 2016
and March 2018 were used for this study (Table S1 at Supplementary Materials). These
SAR images corresponded to Single Look Complex (IW Level-1 SLC) C-band (λ ∼= 5.6 cm)
products based on a dual polarization (VV/VH). Its spatial resolution was of about 5× 20 m
(range × azimuth) and its temporal resolution ranged between 6 and 12 days. The data
were divided into 40 ascending orbit images (Path: 74—Row: 113) and 40 descending orbit
images (Path: 154—Row: 471) (Figure 2). S1 open and free-of-charge data were retrieved
from ASF DAAC (https://asf.alaska.edu/; accessed on 10 March 2023) and processed by
the European Space Agency (ESA).

In addition, 8 optical Sentinel-2 (S2) MSI images for Conil de la Frontera (Figure 2)
acquired between 21 February 2018 and 28 March 2018 were retrieved from the Copernicus
Open Access Hub (ESA) (https://scihub.copernicus.eu/; accessed on 10 March 2023).
These data corresponded to Level-1C products with a spatial coverage of 100 × 100 km and
a spatial resolution of about 10 m in the RGB bands (Blue (~493 nm), Green (~560 nm), and
Red (~665 nm)). All the data were collected for relative orbit No 137 and with a temporal
resolution of 5 days.

https://asf.alaska.edu/
https://scihub.copernicus.eu/
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2.5.2. UAV Aerial Photographs

Pre-storm and post-storm aerial photographs recorded in UAV-based field surveys
were used. The images were georeferenced by using uniformly distributed RTK-DGPS
control points around a beach area of ~0.3 km2 located in Camposoto Beach, San Fernando
(Figure 2). It represented a spatial resolution of ~2.5 cm and was recorded at pre-storm
(19 January 2018) and post-storm (7 March 2018) conditions. More information about the
acquisition and images characteristics can be found in [80,83].

2.5.3. Coastal Zones Land Use/Land Cover Dataset

Finally, a high-resolution Coastal Zones Land Use/Land Cover layer for the coastline
of Europe (ECLULC) (71.2◦N–34.6◦S; 24.5◦W, 44.8◦E) was used. It contains 71 thematic
classes derived from a semi-automatic classification of very high-resolution satellite data.
This ECLULC dataset is characterized by minimum mapping unit of 0.5 ha and minimum
mapping width of 10 m. The positional accuracy is <5 m and the overall thematic accuracy
is ≥85% (see [84] for further details).

2.6. InSAR Processing

The S1 dataset was firstly collected and pre-processed in order to obtain 20 ascending
orbit (ASC) and 20 descending orbit (DESC) image pairs (Table S2 at Supplementary Mate-
rials), assuming a maximum time span of 12 days between acquisitions. These 40 image
pairs were subsequently processed in order to generate 40 coherence maps. Interferometric
coherence processing and post-processing was carried out by using the open-access and
free-of-charge European Space Agency SNAP Software (SNAP, ESA Sentinel Application
Platform v9.0, http://step.esa.int; accessed on 15 April 2023).

The coherence maps were obtained by following a classic interferometric workflow
for Sentinel acquisitions [85]: firstly, images were orbitally corrected by applying the
Sentinel Precise Auto-download orbit state vectors, back geocoded by SRTM1sec HGT for
DEM-assisted co-registration of image pairs, and shift-corrected in range and azimuth by
the Enhanced Spectral Diversity (ESD) operator. Subsequently, the coherence estimation
was carried out. As suggested in [56], a 7 × 7-pixel coherence estimation window was
applied. The post-processing steps for obtaining the final 40 coherence maps included
a multilooking by 3 × 1 range/azimuth looks, obtaining a ground range square pixel of
13.25 m for ascending maps and 14.30 m for descending ones; Lee Speckle Filter application
in order to reduce speckle noise [86]; and range doppler terrain correction for obtaining the
full ground range detected image in geo-coordinates (WSG84), resulting in a pixel spacing
of 13.96 × 12.55 m for ascending coherence maps and 13.94 × 14.70 m for descending ones.

The obtained coherence maps were divided into 36 time series dataset maps (18 ASC,
18 DESC), 2 pre-storm maps (1 ASC, 1 DESC), and 2 storm maps (1 ASC, 1 DESC). The time
series dataset coherence maps were estimated between 1 June 2016 and 9 February 2018
with a temporal resolution of about a month in order to consider seasonal variability; the
pre-storm coherence maps corresponded to the latest image pairs previous to the storm; the
storm coherence maps were obtained taking into account those SAR images that temporally
included the Emma Storm (Figure 4). The image availability allowed, on the one hand, to
generate 12 coherence maps with a temporal baseline of 12 days between 1 June 2016 and
4 March 2017. On the other hand, 28 coherence maps with a 6-day temporal baseline were
obtained from 4 March 2017 to 5 March 2018 (Table S1 at Supplementary Materials).
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2.7. Coherence Difference Analysis

The CDA was conducted following the procedure described in [57,67]. It was based
on different band arithmetic operations carried out using the graphical interface of the
open-access QGIS v3.24 Software [87] (https://qgis.org/es/site/; accessed on 15 April
2023) for geospatial data processing. As a first step, the difference between pre-storm and
storm coherence maps was estimated, obtaining a storm coherence difference map (see
Equation (6) and Figure 5).
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diff value attributable to the occur-
rence of the Emma Storm, a coherence difference threshold approach was carried out [67].
For this purpose, the coherence time series maps (18 ASC/18 DESC) were also processed
following Equation (6) by subtracting them from the pre-storm coherence maps. The ob-
tained maps were analyzed in order to estimate the mean and standard deviation values at
a pixel scale. Finally, the threshold estimation was made by the following:

γthre
diff = γmean

diff +
[
γstd

diff ·ϕ
]
, (7)

where γthre
diff represented the coherence difference threshold for each pixel, γmean

diff and γstd
diff

were the mean pixel value and the standard deviation for the coherence difference dataset,
respectively, andϕwas a coefficient that represented a weighting factor for standard deviation.

According to [67], it is assumed that coherence difference at each pixel obeys a normal
distribution by random surface cover changes. Thus, those pixels where γdiff was greater
than the γthre

diff could be considered to represent significant surface changes due to the
storm disaster event. Given the highly dynamic character of the coastal environments, the
threshold was estimated for different ϕ values (2, 2.25, 2.5, 2.75, and 3) in order to find the
most suitable one. Finally, the γdiff images obtained from pre- and post-storm coherence
maps were filtered by using the different γthre

diff values, obtaining the storm-affected area.
These maps were subsetted to the area of interest, i.e., the intersection area between

ascending and descending images (Figure 2), and filtered by using the Andalusian DEM [88]
in order to discard those pixels which exceeded 8 m.a.s.l. (meters above sea level). This
procedure was also carried out taking into account only those time series coherence maps
(12 ASC/12 DESC) of the year prior to the storm (March 2017–February 2018) in order to
analyze differences in the considered dataset time span.

https://qgis.org/es/site/
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2.8. Method Calibration by CLULC-Optimized Thresholds

In order to calibrate the CDA for assessing the best-fit threshold (ϕ) value, a coastal
land use/land cover (CLULC) classification was carried out for a test site corresponding to
Camposoto Beach, San Fernando (Figure 2). The CLULC assessment consisted of a manual
digitization of the different land coverages for pre- and post-storm UAV images and the
identification of change areas. Six classes were taken into account based on previous
knowledge of the study area: roads and railways, water, beach and non-vegetated dune
systems, vegetated dunes, marshes, and rural use. These steps were also conducted using
the QGIS v3.24 Software [87].

Subsequently, three skill indexes [89] were used in order to identify the best-fit thresh-
old for each CLULC. The hit ratio (H%) defined as a proxy of agreement between estimated
(radar) and observed (optical) storm-affected pixels, was calculated as follows:

H% =
Ech ∩ Och

Och
× 100, (8)

where Ech ∩ Och represented the affected area accurately estimated by the CDA and Och
was the whole observed change area by the CLULC change analysis. Since H% does not
take into account over-predicted pixels, the false alarm ratio (F%) was also considered and
defined as follows:

F% =
Ech/Och

Och
× 100, (9)

where Ech/Och were those pixels wrongly estimated by the CDA. Finally, the critical
success index (C%) was estimated as follows:

C% =
Ech ∩ Och
Ech ∪ Och

× 100, (10)

where Ech ∪ Och represented the union of the CDA-estimated affected area and the
observed change area by the CLULC analysis. The best-fit ϕ value for each coastal land
use/land cover was taken into account by considering the higher C% value.

2.9. Validation of CLULC-Optimized Method

In order to validate the best-fit threshold value estimation, a CLULC classification
was carried out for a second test site corresponding to Conil de La Frontera (Figure 2).
This assessment was carried out following the same methodology as proposed for the
Camposoto test site and taking into account the S2 dataset images.

2.10. Regional Extraction and Identification of Storm-Affected Areas

Finally, once the threshold values were calibrated and validated, the total storm-
affected area was estimated based on the ECLULC dataset [84]. For this purpose, the
47 identified classes for the <8 m surface were recategorized into seven new classes: urban
covers, rural covers, inland vegetation, vegetated dunes, beach and non-vegetated dune
systems, marshes, and water. As well as for Sections 2.8 and 2.9., GIS-based tools were
implemented by the graphical interface of QGIS v3.24 software [87].

3. Results
3.1. Coherence Difference Analysis

As a first step, the storm coherence difference maps were estimated for both ascending
and descending orbit images (Figure 6). Taking into account those pixels filtered by the
Andalusian DEM (<8 m.a.s.l.) for the ascending path, the pre-storm coherence showed
values ranging from 0.068 to 0.844 with (median = 0.574; Q1 = 0.373; Q3 = 0.769). The
storm coherence values were estimated between 0.062 and 0.776 with a (median = 0.151;
25th quartile = 0.093; Q3 = 0.339). The descending orbit maps showed pre-storm coherence
values from 0.063 to 0.840 (median = 0.419; Q1 = 0.203; Q3 = 0.665) and storm coherence
values ranging from 0.066 to 0.878 (median = 0.167; Q1 = 0.071; Q3 = 0.371). The observed
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differences in the statistics results between pre-storm and storm maps denote an important
decorrelation process between acquisitions. The ascending difference map showed values
between −0.294 and 0.716 (median = 0.318; Q1 = 0.031; Q3 = 0.513) while the descending
one ranged from −0.452 to 0.557 (median = 0.176; Q1 = −0.120; Q3 = 0.449). The spatial
variability of these results showed that urban areas experienced less decorrelation processes
than natural environments over coastal zones.
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Coherence time series difference was estimated for both ascending and descending pairs,
resulting in non-substantial variations. In the first case, the mean difference map ranged
between −0.318 and 0.566 (median = 0.123; Q1 = −0.087; Q3 = 0.325) while the standard
deviation map ranged between 0.041 and 0.256 (median = 0.127; Q1 = 0.095; Q3 = 0.204); in
the second case, the average difference map ranged from −0.392 to 0.491 (median = 0.103;
Q1 =−0.127; Q3 = 0.301) while the standard deviation was calculated between 0.033 and 0.298
(median = 0.157; Q1 = 0.110; Q3 = 0.229). The threshold maps were obtained taking into account
the five different values ofϕ (2, 2.25, 2.5, 2.75, 3) (Figures S1 and S2 at Supplementary Materials).

3.2. Calibration of Coastal Disaster-Affected Areas by CLULC-Optimized Thresholds

The CLULC classification for Camposoto test site was carried out taking into account
the pre- and post-storm UAV images (Figure 7). The total storm-affected area based on UAV
images was estimated as 7.54 ha, represented by marshes to non-vegetated dunes (2.36 ha),
roads and railways to non-vegetated dunes (1.22 ha), and vegetated dunes to non-vegetated
dunes (3.96 ha). These changes were associated to dune overturn and sand wash-over
fans processes, as described in [80]. The coherence difference thresholds were applied in
order to identify those pixels potentially affected by the Emma Storm over the test site.
Once the storm difference maps were filtered by the Andalusian DEM, the ascending and
descending orbit images were merged. In this way, 10 maps of the potential storm-affected
area were obtained according to the different ϕ values. Potentially storm-affected area
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for the 2016–2018 dataset ranging from 8.14 ha (ϕ = 3) to 33.21 (ϕ = 2); for the 2017–2018
dataset, it was calculated between 9.76 (ϕ = 3) and 35.58 (ϕ = 2).

Remote Sens. 2023, 15, x FOR PEER REVIEW  12  of  25 
 

 

Coherence time series difference was estimated for both ascending and descending 

pairs, resulting  in non-substantial variations. In the first case, the mean difference map 

ranged between −0.318 and 0.566 (median = 0.123; Q1 = −0.087; Q3 = 0.325) while the stand-

ard deviation map  ranged between 0.041 and 0.256  (median = 0.127; Q1 = 0.095; Q3 = 

0.204); in the second case, the average difference map ranged from −0.392 to 0.491 (median 

= 0.103; Q1 = -0.127; Q3 = 0.301) while the standard deviation was calculated between 0.033 

and 0.298  (median = 0.157; Q1 = 0.110; Q3 = 0.229). The  threshold maps were obtained 

taking into account the five different values of φ (2, 2.25, 2.5, 2.75, 3) (Figures S1 and S2 at 

Supplementary Materials). 

3.2. Calibration of Coastal Disaster‐Affected Areas by CLULC‐Optimized Thresholds   

The CLULC classification for Camposoto test site was carried out taking into account 

the pre- and post-storm UAV images (Figure 7). The total storm-affected area based on 

UAV images was estimated as 7.54 ha, represented by marshes to non-vegetated dunes 

(2.36 ha), roads and railways to non-vegetated dunes (1.22 ha), and vegetated dunes to 

non-vegetated dunes (3.96 ha). These changes were associated to dune overturn and sand 

wash-over fans processes, as described in [80]. The coherence difference thresholds were 

applied in order to identify those pixels potentially affected by the Emma Storm over the 

test site. Once the storm difference maps were filtered by the Andalusian DEM, the as-

cending and descending orbit images were merged. In this way, 10 maps of the potential 

storm-affected area were obtained according to the different φ values. Potentially storm-

affected area for the 2016–2018 dataset ranging from 8.14 ha (φ = 3) to 33.21 (φ = 2); for the 

2017–2018 dataset, it was calculated between 9.76 (φ = 3) and 35.58 (φ = 2). 

 

Figure 7. Comparison between 19 January 2018 and 7 March 2018 images and CLULC classification 

(A,B); total observed CLULC change area (C); and potentially storm-affected area for the considered 

thresholds and datasets (D) in the Camposoto test site. 

The performance assessed by using a constant threshold showed an H% index rang-

ing from ∼65% to ∼83% for the 2016–2018 dataset. The C% index diminished due to the 

overprediction of potentially affected areas fluctuating between ~27% and∼53%. The C% 

indexes were at maximum when the overprediction was reduced by using the maximum 

threshold limit (φ = 3). For the 2017–2018 period, a constant threshold of φ = 3 provided 

slightly worse estimations than for the larger period. 

Figure 7. Comparison between 19 January 2018 and 7 March 2018 images and CLULC classifi-
cation (A,B); total observed CLULC change area (C); and potentially storm-affected area for the
considered thresholds and datasets (D) in the Camposoto test site.

The performance assessed by using a constant threshold showed an H% index ranging
from ~65% to ~83% for the 2016–2018 dataset. The C% index diminished due to the
overprediction of potentially affected areas fluctuating between ~27% and ~53%. The C%
indexes were at maximum when the overprediction was reduced by using the maximum
threshold limit (ϕ = 3). For the 2017–2018 period, a constant threshold of ϕ = 3 provided
slightly worse estimations than for the larger period.

In order to optimize the threshold estimation by considering the different CLULC
classes, skill indexes were estimated for each CLULC by taking into account the pixel
classification at the pre-storm image (Table 1). Thus, beach and non-vegetated dunes, and
marshes best-fitting indexes were estimated with the threshold ϕ = 2 (C% = ~17%) and
ϕ = 3 (C% = ~65%), respectively. The vegetated dune class showed a best-fitting threshold
at ϕ = 2.5 with a C% index of ~51%, while the roads and railways class showed a C% value
of ~81% at the ϕ = 3 threshold.

Table 1. Critical success index (C%) estimated with the 2016–2018 dataset for the two considered test
sites and for each CLULC class. Bold values correspond to the best-fit threshold for.

1 June 2016–9 February 2018

Test Site ϕ
Beach

and Dunes
Vegetated

Dunes
Roads and
Railways Marshes

Camposoto 3 0 49 81 65
Camposoto 2.75 0 50 79 64
Camposoto 2.5 8 51 78 60
Camposoto 2.25 13 49 75 56
Camposoto 2 17 46 72 52

Conil de la Frontera 3 0 - - 77
Conil de la Frontera 2.75 0 - - 60
Conil de la Frontera 2.5 1 - - 44
Conil de la Frontera 2.25 4 - - 36
Conil de la Frontera 2 7 - - 36
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These different results were used for selecting a best-fit-ϕ value for each CLULC class.
The assessment of storm changes detection using space-varying threshold indicated a hit
ratio of ~79% and a relative ~33% diminish in false alarms, resulting in a critical success
index of ~63% being estimated for the Camposoto test site (Table 2). These results suggest
a better fit compared with those overall results obtained by applying a constant ϕ value for
the entire test site.

Table 2. Skill indexes estimated for the 2016–2018 dataset, taking into account the best-fit threshold
for each CLULC class.

1 June 2016–9 February 2018

Test Site H [%] F [%] C [%]

Camposoto 79 22 63
Conil de la Frontera 64 43 49

3.3. Validation of Coastal Disaster-Affected Area Detection Method

In order to validate the CLULC optimization method, it was evaluated in a different
test site (Conil de la Frontera). The CLULC classification for the Conil de la Frontera test
site was derived from pre- (21 February 2018) and post-storm (28 March 2018) S2 images
(Figure 8). A total storm-affected area of 37.36 ha was estimated. The observed changes
were represented by beach and non-vegetated dune to water (17.93 ha), marshes to water
(3.59 ha), and marshes to beach and dunes (15.84 ha) classes. These changes were associated
to erosion and dune overturn/sand wash-over fans processes as described in [73]. Based
on coherence difference thresholds, the potentially storm-affected area was estimated to
range from 36.27 ha (ϕ = 3) to 108.01 ha (ϕ = 2) for the 2016–2018 dataset; meanwhile, for
the 2017–2018 thresholds it was calculated between 52.88 ha (ϕ = 3) and 109.38 ha (ϕ = 2).
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Figure 8. Comparison between 21 February 2018 and 28 March 2018 images and CLULC classifi-
cation (A,B); total observed CLULC change area (C); and potentially storm-affected area for the
considered thresholds and datasets (D) in the Conil de la Frontera test site.

The performance assessment showed H% values between ∼50% and ∼67% for the
2016–2018 dataset according to different ϕ values. However, C% values were estimated
ranging from ∼41% to ∼31% due to the overprediction of potentially affected areas. Once
again, those storm-affected area maps obtained by a ϕ = 3 had the better fitting, according
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to the observed changes, and the 2017–2018 showed worse estimations than the aforemen-
tioned period.

Taking into account the individual estimation for each CLULC class, the beach and
non-vegetated dune best-fit measure was associated to a ϕ = 2 with a 7% value; for those
changes observed over marsh areas, the critical success index ranged from ∼36% to ∼77%
with a maximum fitting for ϕ = 3 (Table 1). Assuming these threshold values, the skill
indexes were also estimated, obtaining an H% value of∼65% and a relative∼17% diminish
in false alarms, resulting in a C% value of∼49% (Table 2). These results suggest a successful
validation of the previously presented estimations at the Camposoto test site.

3.4. Regional Assessment

The best-fit thresholds obtained from the test sites calibration and validation steps
were applied into the seven classes obtained by the ECLULC re-categorization. Emerging
from previous results, ϕ = 2 was considered for beach and dune areas, ϕ = 2.5 for vegetated
dunes, and ϕ = 3 for urban covers and marsh areas. For those classes not represented at
the test sites, their ϕ values were considered, taking into account the surface characteristics.
Based on coherence temporal decay of vegetation covers [57], for rural areas and inland
vegetation, ϕ = 2.5 was considered; for water surfaces, ϕ = 2 was considered because they
are naturally incoherent areas due to their great temporal decorrelation [87].

Thus, a total storm-affected area of 7142 ha was identified, representing ∼30% of
the total studied area (Figure 9). Marshes and vegetated dunes showed ∼50% of their
total surface under storm-affected conditions; beach and dunes (∼42%), inland vegetation
(∼30%), and rural (∼20%) covers followed in importance; urban covers and water surfaces
showed <8% of their total surface affected.
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4. Discussion

This paper presents a novel coherence difference analysis method for monitoring dis-
asters in coastal areas using repeat-pass interferometric S1 data. Remote sensing data have
been widely recognized as a valuable tool for supporting disaster response, as they can
help assess environments that are inaccessible or dangerous to survey in the aftermath of a
disaster [22]. Based on estimating coherence differences as an indicator of decorrelation pro-
cesses caused by an extreme weather event, the proposed method enables the detection of
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coastal storm-driven changes against the Emma Storm that occurred in late February/early
March 2018 for a study area located on the Atlantic coast of Cadiz in southwestern Spain.

The coherence difference analysis involved comparing pre- and post-storm SAR co-
herence images. It was based on the assumption that coastal hazards such as floods and
erosion caused by extreme waves and total water levels can lead to a loss in coherence
(decorrelation) due to changes in the surface backscattering between SAR images. Noise
and geometric decorrelation parameters were considered non-significant. The noise decor-
relation was considered to be negligible as all the SAR data used belonged to the same
sensor (S1). Geometric decorrelation was also excluded as the perpendicular baseline of
the InSAR systems (refer to Table S2 at Supplementary Materials) ranged from 9.07 m
to 182.49 m, which was significantly smaller than the critical baseline of S1 estimated at
approximately 5000 m [90].

Therefore, the loss of coherence detected by the proposed method was exclusively
attributed to temporal decorrelation. As stated in [74], this process occurs randomly during
disaster events, which allowed us to identify pixels potentially affected by the Emma Storm.
Temporal decorrelation resulting from changes in the structure and dielectric properties of
surface scatterers has been documented in various studies across different applications [91].
In this study, these changes were mainly observed through three significant alterations
in the geomorphological and landscape features of the test sites: shoreline retreat, dune
overturn, the generation of wash-over fans, and flooding in marsh areas. These storm
impacts on coastal areas have been previously documented by several authors [92–94],
including the province of Cádiz in Andalusia [79,95,96].

The short revisit time of the S1 satellite, ranging from 6 to 12 days, resulted in lower
temporal decorrelation between image pairs, leading to the generation of more consistent
coherence maps. It avoids the increase in temporal decorrelation due to higher temporal
baselines documented in InSAR studies [97]. Generally, higher coherence values in the
pre-disaster dataset lead to a better assessment of disaster-affected areas due to larger dif-
ferences with the post-disaster coherence estimates. In this study, the pre-storm coherence
maps had significantly higher values than the storm maps, as shown in Figure 6, improving
the quality of the disaster assessment.

The SAR approach presented in this study has advantages over optical remote sensing
methods in terms of its capability for all-day and all-weather operability, making it essential
for rapid mapping of storm-affected areas, a key information needed in the response and
recovery phases of coastal risk disasters. For instance, the high cloud coverage in the post-
storm S2 images until March 28 made it unaffordable to detect rapid storm changes based
on optical imagery (Figure 10). In contrast, the coherence difference analysis presented
in this study allowed for storm impact detection using SAR data with a shorter temporal
delay after the event.

On the other hand, due to the long elapsed time between pre- and post-storm optical
images, the assessment of land cover/use changes could only be carried out with a temporal
delay of about one month after the Emma Storm, which may have limited the detection
of early storm impacts in the Conil de la Frontera test site for method validation. As a
result, the estimated coherence difference values for both test sites may have varied due to
differences in elapsed time between pre- and post-storm optical and UAV images.

A major time gap between the disaster event and the image acquisition could lead
to a higher number of false alarm estimations as the method may have identified an area
that has already undergone natural recovery processes of a coastal environment. This
could result in false alarm estimations for areas that were actually affected by the storm, as
indicated by the method. In addition, variations in surface response to radar signals, caused
by changes in surface coverage or dielectric properties, may have occurred and not been
identified in the comparison with optical data. All these aspects must be considered in order
to develop robust and fast damage detection systems for the assessment of post-disaster
impacts and the identification of affected areas.
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Figure 10. Total cloud coverage of the 8 S2-MSI images (ligh-blue box). Camposoto (green frame) and
Conil de La Frontera (yellow frame) test sites and their cloud coverage are also represented [WGS 84;
EPSG: 4326]. The yellow star indicates the image corresponding to the Emma Storm.

The proposed method ultimately enabled the identification of storm-affected areas at a
regional scale. This approach, when combined with high-resolution and large-scale CLULC
classification, proved to be extremely useful for assessing compound disaster events, such
as marine, fluvial, runoff, and flash floods [98]. Furthermore, the results of this study
demonstrated that the coherence difference analysis conducted using an average pixel size
of approximately 14 m produced reliable estimates for regional-scale assessments.

The assumption that the coherence difference at each pixel of a time series dataset
obeys a normal distribution by random surface cover changes was verified for this work.
Based on this and considering coastal areas as highly dynamic environments, thresholds
were estimated for ϕ values ranging from 2 to 3. These weighting factors represented
those pixels exceeding the 97.7% and the 99.9% of the variability of the time series dataset
analysis, respectively. This approach is novel compared to previous studies, which only
used a unique weighting factor (ϕ = 3) for threshold estimation [57,67]. Applying the same
threshold for the entire test site showed critical success indexes ranging from ∼27% to
∼53% for both test sites. However, estimating an individual threshold-weighting factor for
each coastal land/use land cover improved the overall method accuracy by at least 19%.
This optimization in threshold estimation is another novel aspect of this paper, contrasting
with previous studies that only considered an individual threshold value for the entire
assessed area [57,67].

4.1. Regional Assessment

The calibration and validation steps ensured that the same best-fit thresholds were
identified for both test sites, indicating the robustness of the proposed method. However,
the results for Camposoto were generally better than for Conil de La Frontera, which could
be attributed to the difference in time span between the UAV and S2 image acquisitions.
Overall, the CLULC optimization method improves the critical success index (Figure 11).
For all the land use/cover classes, the C% values estimated using the best-fit threshold
were equal to or better than those obtained by considering a single threshold value of
ϕ = 3 for the entire test site. Non-vegetated dunes and beaches, as well as vegetated dunes,
represented the greatest improvement. In addition, although the method was not evaluated
for urban areas, it was highly accurate for temporarily stable surfaces, such as the road
areas observed in Camposoto.
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threshold for each CLULC class and the ϕ = 3.

The temporal coverage of the dataset also introduces variations in the results. The
dataset covering the period from 2016 to 2018 reported a 16% improvement in the final C%
value compared to the dataset covering 2017 to 2018. This phenomenon can be explained
by the fact that a longer time period of SAR image coverage produces a dataset with greater
variability. Therefore, in order to exceed the detection limit set by the threshold method,
the decorrelation triggered by the storm must be more significant. This assumption is sup-
ported by the fact that the improvement between the 2016–2018 dataset and the 2017–2018
dataset was mainly focused on reducing false alarms (Table 3). Thus, in highly dynamic
environments, coherence map datasets with greater variability tend to generate more ac-
curate significant coherence threshold estimations. Furthermore, both test sites showed
better estimates for the 2016–2018 period, which is another indicator of the robustness of
the proposed method.

Table 3. Skill indexes estimated for both the 2016–2018 and 2017–2018 datasets, taking into account
the best-fit threshold for each CLULC class.

1 June 2016–9 February 2018 4 March 2017–9 February 2018

Test Site H [%] F [%] C [%] H [%] F [%] C [%]

Camposoto 79 22 63 85 35 55
Conil de la Frontera 64 43 49 64 83 38

4.2. Method Limitations and Advantages

In contrast to the higher accuracy of coherence analysis obtained by other authors [57,62,67],
the assessment of storm change detection method reveals a lower accuracy. The following
paragraphs will discuss important issues related to the accuracy assessment of the results
presented in this paper.

Coastal areas are unique environments that are highly dynamic and fragile [99]. They
undergo changes on daily and even hourly timescales due to tidal fluctuations. This
temporal variability leads to a limitation of the coherence analysis assessment. In highly
dynamic environments, such as coastal areas, low correlation values are expected in time
series datasets. Previous studies have suggested that low InSAR coherence values are
anticipated in active dune systems [100]. Therefore, it becomes challenging to differentiate
decorrelation caused by storms from that caused by natural variability.

The reason for our method’s miss-estimation of the observed shoreline retreat as a
storm-affected area could be attributed to the constant decorrelation of the beach areas



Remote Sens. 2023, 15, 3233 18 of 24

even in images not affected by storm conditions. This is supported by the low skill indexes
obtained for the beach and dune classes. Additionally, the significantly better accuracy
obtained for the marshes and urban covers, which are more stable, further reinforces this
hypothesis. It is important to note that some urban areas identified as storm-affected
in the regional analysis may have exhibited coherence changes due to precipitation and
not necessarily related to coastal hazards. This is a potential weakness of the regional
assessment of disaster-affected areas.

Despite the decrease in accuracy, the coherence analysis method proposed in this
study using S1 data has several advantages for monitoring disaster-driven impacts on
coastal areas. As mentioned previously, radar sensors can operate under all-day and all-
weather conditions, providing a greater operational capability compared to optical sensors
or monitoring techniques based on field surveys or UAV flights which may be limited by
weather conditions [101].

Additionally, the S1 mission offers the benefit of providing free-access and high-
resolution data. Its most significant advantage is its great temporal coverage, with a short
revisit time of 6 days. This enables almost immediate SAR acquisitions for pre- and post-
disaster scenarios, as well as subsequent days, whereas the time span for optical assessment
is considerably longer.

An additional advantage of this approach is its ability to generate an automated
assessment for rapid post-disaster emergency relief. Once a temporal dataset has been
processed and threshold values have been adjusted for each present CLULC, any study
area can be monitored through automated procedures supported by the 6-day availability
of S1 data. The advantages of automatic approaches for disaster monitoring have been
studied in various environments and for different hazards [102].

Although this technique has been extensively used for monitoring diverse natural haz-
ards, there is very limited evidence for its use in coastal areas, particularly in beach/dune
systems. Most InSAR coherence assessments related to dune systems are focused on desert
regions [59,60,100]. Similarly, the few studies that have applied coherence analysis to coastal
areas are related to coastal wetlands. For example, [103] classified the water coverage of
the Liaohe Delta marshes in China, and [41] assessed changes in wetland environments of
the Yellow River Delta, China. The novelty of this paper lies in proposing a method that
can be widely used in a non-exploited environment such as coastal areas.

The advantages mentioned above demonstrate that the proposed method is a rapid
disaster change detection system with a high level of automation and low operational cost.
The main advantage of this method is its ability to assess the impacts over extended and/or
remote areas where natural and cultural assets could be affected by geo-hazards [104,105]
as well as for critical urban coastal areas.

5. Conclusions

This paper presents a novel approach for monitoring disasters in coastal areas using
interferometric SAR data. The proposed CLULC-optimized method was based on the
coherence decorrelation processes triggered by an extreme coastal storm event. For this
purpose, the Emma Storm, a severe coastal storm that affected southern Spain in 2018, was
chosen as case study.

The short revisit time (6 days) of S1 platform resulted in the generation of consis-
tent coherence maps. Moreover, its all-day/all-weather operability provided a significant
improvement compared to the capabilities of optical data and even UAV data when as-
sessing the Emma Storm impacts. The method enabled the assessment of disaster changes
with a time lag of 2 days after the storm occurrence, in contrast to the 25-day delay of
optical data and addressing the limitations of operability faced by UAV field surveys in
post-disaster landscapes.

The CLULC optimization improved the overall performance of the method by reduc-
ing the overprediction of potentially affected areas without affecting the hit ratio index.
Thus, the false alarm ratio diminished by 33% and 17% for Camposoto and Conil de La
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Frontera test sites, respectively. At this point, calibration and validation steps ensured the
robustness of the method. Moreover, considering a larger coherence dataset (2016–2018)
improved the method accuracy by 16% by including a greater temporal variability and also
reducing the overprediction scenarios.

Finally, the proposed method showed a good performance in Camposoto, with
skill scores of hit and false alarm ratios of approximately 80% and 20%, respectively, for
the 2016–2018 dataset. In Conil de La Frontera, these values were and 65% and 45%,
respectively. The proposed method allowed the identification of approximately 7100 ha
of the study area being affected by the Emma Storm. Marshes and vegetated dunes were
the most significantly impacted covers, with more than a half of their surface estimated
as being affected. In contrast, urban covers experienced the least degree of impact. This
assessment was conducted for a 90 km coastline sector and with a spatial resolution of
approximately 14 m.

Although the CDA approach has been widely used for disaster mapping, this study
introduces three novel aspects. Firstly, it applies the coherence difference method to yet non-
exploited environments such as coastal areas, particularly in beach/dune systems. Secondly,
it considers at least five weighting factors for the threshold-based coherence difference
analysis, enhancing the accuracy of the results. Lastly, it proposes a land use/land cover-
based threshold optimization which ensures the best-fit adjustment for different coastal
environments, improving the overall method accuracy by at least 19%.

Regardless of the limitations that need to be considered, the proposed method stands
out as a valuable tool for regional-scale coastal disaster monitoring. After adjusting the
threshold values for different land use/land cover classes in specific areas, it can be au-
tomated and operated at a low cost. Furthermore, it enables the assessment of natural
and cultural assets in extended and/or remote areas as well as urban coastal areas. It
is expected that this method can be applied to a wide range of coastal environments to
support the response phase of disaster management programs, making it a valuable tool
for decision-making support.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/rs15133233/s1, Table S1: Detail of the S1 SAR acquisitions considered for
this study; Table S2: title Detail of the 40 S1 SAR interferometric pairs; Figure S1: Coherence difference
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