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Abstract

This paper presents the results of modeling, sensor fusion
and model verification for a four-wheel driven, four-wheel
steered mobile robot moving in outdoor terrain. The model
derived for the robot describes the actuator and wheel dy-
namics and the vehicle kinematics, and includes friction
terms as well as slip. An Unscented Kalman Filter (UKF)
based on the dynamic model is used for sensor fusion, feed-
ing sensor measurements back to the robot controller in an
intelligent manner. Through practical experiments with the
robot, the UKF is demonstrated to improve the reliability
of the sensor signals significantly, and the model is seen to
show surprisingly good agreement with the practical exper-
iments.
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1 Introduction
This paper reports part of the work carried out in connec-
tion with a recent project1 concerning the construction of a
robot for autonomous surveying of agricultural fields. The
robot has to navigate to certain waypoints (measurement
locations), where digital images of the crops, weeds, etc.
can be acquired. Image analysis may then be used in or-
der to obtain estimates of the crop and weed density at
each measurement location. This information will be com-
bined for each location to yield a digitized weed map of
the field, opening up opportunities for the farmer to adjust
the application of fertilizer and pesticides according to the
state of the field (so-called precision farming). The robot
is equipped with GPS and various onboard sensors, which
will not only help in the exact determination of the location
where each image is taken, but also provide measurements
for an estimation of the robot’s position and orientation for
use in tracking control algorithms.

The robot is equipped with independent steering and
drive motors (8 DC motors in total). The motors are con-

1The ”API II” project, a collaboration between various Danish agricul-
tural industry-related companies, the Danish Agricultural Research Center
and Aalborg University, Denmark

trolled by individual controllers implemented in four mi-
crocontrollers, one for each wheel, which are connected
to a main computer via a CAN-bus. Rotation speed or
torque references can thus be set individually for each mo-
tor from the main onboard computer, a PC104 with a 133
MHz AMD5x86 CPU and 32 MB RAM running Linux.
The robot is furthermore equipped with various sensors; a
row camera is used for navigating relative to crop rows, a
doppler radar is used to measure ground speed, and a com-
pass is mounted to obtain the orientation of the robot. The
robot is also equipped with a gyro to measure yaw accel-
erations. An antenna is mounted for communication via a
WLAN interface connecting the robot to a centrally posi-
tioned computer, which handles generation of the overall
path plan for the system, storing image data etc.

Figure 1. The API II robot. The dimensions of the robot
are 150cm (length) by 100cm (width) by 107cm (height).
It weighs 226.5kg.

In the literature on modeling and control of wheeled
mobile robots, the equations of motion are typically de-
rived using the Lagrangian approach [1, 2] or Newton-
Euler methods [6, 8] . It is typically assumed in such
modeling approaches that there is neither slip nor skidding,
since the model is often used directly for control design.
This assumption is not likely to be satisfied in outdoor en-
vironments, however. In this paper, we present a dynamic
model of the robot that describes the dynamics from input
torques on the wheels to resulting translational and rota-
tional velocities of the robot body. The model takes the



actuator and wheel dynamics and the vehicle kinematics
into account, and includes friction terms as well as slip. By
calculating the equations of motion in a fixed non-inertial
frame, we avoid having to convert velocities and positions
between moving coordinate frames. We also present a val-
idation of the model against actual test data.

The purpose of this first-principles model is to apply
it in an Unscented Kalman Filter (UKF), which can be used
for sensor fusion, feeding sensor measurements back to the
robot controller in an intelligent manner. This gives various
benefits, such as improved accuracy and, in some cases, in-
creased bandwidth of the sensor measurements. A further
aim of the modeling and sensor fusion work presented here
is to be able to use it in fault detection and fault tolerant
control, but these issues will be dealt with in a later publi-
cation.

2 Mechanical Model
In the following, the mechanical model of the robot is pre-
sented.

2.1 Model Framework
The position and orientation of the robot is described by a
posture vector χ̄ = [x̄, ȳ, θ̄]T ∈ R

2×S, which is defined in
an inertial reference frame N ; coordinates defined in this
frame will be denoted by (̄·). Given that the robot will be
moving in outdoors terrain, it is also necessary to take into
account the non-even terrain. This will be done by intro-
ducing a non-inertial reference frame M, in which we will
derive the model as if the robot is moving in a plane. When
the robot is moving in uneven terrain (given by a roll angle
ψx ∈ S and a pitch angle ψy ∈ S), its trajectory can be
found by rotating M relative to N before integrating the
accelerations found in M. The equations of motion are de-
veloped in this frame; coordinates defined in M will there-
fore be unadorned. Mapping from N to M is performed
by multiplying by the rotation matrix

Rψ̄ =
[

cos ψ̄x 0 sin ψ̄x

− sin ψ̄x cos ψ̄x sin ψ̄y cos(ψ̄y) (cos ψ̄x)2 sin ψ̄y

− sin ψ̄x cos ψ̄y − cos ψ̄x sin ψ̄y cos ψ̄x cos ψ̄y

]

Another (non-inertial) reference frame B is fixed be-
low the center of mass (CoM) of the robot at ground level.
This reference frame is aligned with the robot, with the x-
axis pointing in the forward direction of the robot; coor-
dinates defined in this frame will be denoted by (̃·), i.e.,
χ = [x̃ ỹ θ̃]T ∈ R

2 × S is the posture vector in the B
frame. Mapping from M to B is performed by multiplying
by the rotation matrix

Rθ̃ =





cos θ sin θ 0
− sin θ cos θ 0

0 0 1





The robot and its two primary reference frames are
illustrated in Figure 2, where also the posture vector and

the orientation βi, i = 1, . . . , 4 of each wheel is shown.
The position of the contact point of each wheel is fixed with
respect to the B-frame.

M

B

β1

ICR

4

β2

β3

θ
κ β4

x, y

Figure 2. Definitions of the B and M frames with the steer-
ing angles of the wheels and the posture vector shown in the
M frame. κ4 indicates the line between the center of the
robot and the 4th wheel. The ICR (instantaneous center of
rotation) is the point where lines through the contact point
of each wheel perpendicular to the instantaneous velocity
of the wheel intersect.

The positions of the wheels relative to the center of
mass are defined by four vectors of constant length κi,
which are fixed in the B frame at corresponding angles γ̃i.
The values κ1 = 0.782m,κ2 = 0.613m,κ3 = 0.646m
and κ4 = 0.808m were found experimentally along with
the corresponding angles γ̃1 = 37.8◦, γ̃2 = 128.5◦,
γ̃3 = 233.8◦ and γ̃4 = 319.9◦ by using four weights to
determine the mass distribution of the complete robot.

The dynamic modelling of the robot is inspired by car
models used in the automotive industry with [5] as a spe-
cific example, where a simple differential braking exten-
sion to the standard motor-cycle model with one front and
one rear wheel is used. The model sought here is a rela-
tively simple model that captures the particular features of
the robot. It is thus chosen to model one wheel at a time,
and then construct the model of the vehicle motion based
on the forces and torques with which the wheels affect the
main body.

2.2 Actuators
Firstly, all four wheels can be placed in steering angles in-
dependent of one another and of the ICR (see Figure 2).
Secondly, the individual wheels can provide independent
propulsion forces to the robot. The actuators are simple
DC-motors, so their models are straightforward:

βi
βref,i

=
KsKm,s

(Jm,sRa,s)s2 + (bsRa,s +K2
m,s)s+KsKm,s

(1)



where βi, i = 1, . . . , 4 is the steering angle of wheel i, Ks

is a feedback gain, Km,s = 0.1Nm/A,Ra,s = 1.43Ω and
Jm,s = 3.1 × 10−4kgm2 are the steering motor gain con-
stant, armature resistance and inertia, respectively. bs =
3.0 × 10−3Nms/rad is a friction coefficient and s is the
laplace operator.

The propulsion motors are modelled slightly differ-
ently, since the mass of the robot m = 226.5kg has a sig-
nificant influence on the resulting torque through the back-
electromotoric force. That is, the motor inertia is consid-
ered negligible compared to the inertia of the robot, which
means that the motor dynamics are ignored in the model.
The propulsion model for wheel i is found to

τi =
Km,p

Ra,p
τref,i −

(

K2

m,p

Ra,p
+ bp

)

φ̇i (2)

where τi is the resulting torque of wheel i, Km,p =
0.31Nm/A and Ra,p = 0.017Ω are the propulsion motor
gain constant and armature resistance, respectively. bp =

0.37Nms/rad is a friction coefficient. φ̇i is the rotation
speed of wheel i. All of the parameters were found experi-
mentally.

2.3 Tire Model
The robot motion is generated by the friction between the
wheels and the ground. These friction forces are modelled
in the following.

In figure 3 a general free-body diagram is shown,
from which the dynamic model will be derived. The forces
Fxi ∈ R

3, i = 1, . . . , 4 are the propulsion forces supplied
by the actuators, while vi = [ẋ ẏ 0]T is the actual velocity
of wheel i and αi ∈ S is the slip angle of wheel i at any
given time. The slip angle is defined as the angle between
the actual velocity of the wheel and the orientation of the
wheel given by the steering angle.

β1

α1
Fy1

Fx1

Fx4

Fx2

Fx3

Fy3

v1

Fy4

Fy2

κ1B

θ

θ̇

Figure 3. The general setup for the dynamic robot model.

The purpose of the tire model is to describe the side-
ways friction forces between the tires and the ground,
which make the robot capable of turning when the wheels

turn. This friction results in the forces Fyi ∈ R
3 as shown

in Figure 3 which depend on the slip angles of the wheels
(αi). In the literature—see e.g., [5]—the friction forces are
typically modeled as being directly proportional to the slip
angle. This simple model does not take speed-dependent
friction phenomena such as viscous friction into account,
however, and the following model is therefore used:

‖Fyi‖ = −(cf1 + cf2‖v‖)αi (3)

where the positive scalars cf1 = 40N and cf2 =
4000Nm/s are so-called cornering stiffness coefficients
representing stiction and speed-dependent friction phe-
nomena, respectively. ‖v‖ =

√

ẋ2 + ẏ2 is the translational
speed of the robot in the M-frame. The coefficients depend
on the composition of the soil on which the robot drives,
and were found through numerical fitting to experimental
data.

The slip angle αi ∈ [−π
2
, π

2
] is defined heuristically

from Fxi to the actual velocity of the wheel vi in quadrant 1
and 4 and from vi to Fxi in quadrant 2 and 3. vi is a sum of
two contributions, one from the velocity of the CoM v and
one from the rotation of the robot around the CoM, which is
given as vti = θ̇κi (see below). Since vti is perpendicular
to the line κi connecting the CoM and the contact point of
wheel i, vi can be written as follows:

vi = v + vti =





ẋ− θ̇κ̃i sin(γ̃i + θ)

ẏ + θ̇κ̃i cos(γ̃i + θ)
0



 (4)

Through some slightly tedious geometry, the slip angle can
then be calculated as

α∗

i = tan−1

(

ẏ + θ̇κi cos(γ̃i + θ)

ẋ− θ̇κi sin(γ̃i + θ)

)

− βi − θ (5)

αi =







π − α∗

i for π/2 ≤ α∗

i < 3π/2
α∗

i − 2π for 3π/2 ≤ α∗

i

α∗

i for α∗

i < π/2
(6)

where the manipulations in (6) are performed in order to
ensure that αi ∈ [−π

2
, π

2
].

2.4 Equations of Motion
The translational motion of the robot is governed by the
acceleration in the M-frame, χ̈ = [ẍ ÿ θ̈]T . The force
acting on the robot yielding translational motion is given as
the sum of the sideways friction forces Fyi, the propulsion
forces Fxi and the centripetal forces which affect the robot.
In Figure 3 the sideways friction and propulsion forces are
shown; these forces can be projected onto the M-frame
in a fairly straightforward manner. The centripetal force
is calculated based on the ICR (see Figure 2). Define the
rotation vector ω = [0 0 θ̇]T ; the acceleration caused by
the centripetal force ac is given by

ac = ω × (ω × r) = ω × v (7)



where r ∈ R
3 is the vector from the ICR to the CoM of the

robot.
Finally, as the robot is modelled with the possibility

of tilt, it is necessary to include the effect that gravity has
on the robot. In the M-frame the gravity force F̃g is simply

F̃g =





magx
magy
magz



 = Rψ̄





0
0

−mg



 (8)

The rotational motion of the robot is generated by the
wheel forces Fxi and Fyi, i = 1, . . . , 4 projected onto the
line perpendicular to the line between CoM and the point of
contact of wheel i. The angular acceleration around CoM
can then be found by multiplying the projected forces by
the arms (κi), summing over the four wheels and dividing
by the moment of inertia.

The total model can thus be seen to be on the form

¨̄χ = R−1

ψ̄
a(χ, χ̇, φ̇, βref , τref ) (9)

where

a =
4

X

i=1

2

6

6

6

4

1

m

“

cos(βi + θ)‖Fxi‖ − sin(βi + θ)‖Fyi‖
”

− ẏθ̇ − agx

1

m

“

sin(βi + θ)‖Fxi‖ + cos(βi + θ)‖Fyi‖
”

+ ẋθ̇ − ãgy

1

I

“

sin(βi − γ̃i)κ̃i‖Fxi‖ + cos(γ̃i − βi)κi‖Fyi‖
”

3

7

7

7

5

‖Fxi‖ = τi/rw represent the propulsion forces and F̃yi are
given by the tire model (3) The moment of inertia I and the
wheel radius rw have been measured to I = 95kgm2 and
rw = 0.23m, respectively.

In Figure 4 a block diagram of the integrated model is
shown. From this figure, it is clearly illustrated that the
equations of motion described in the M-frame are gov-
erned by the wheel orientations and applied torques.

3 Sensor Fusion
The purpose of the sensor fusion is to estimate the state
vector of the robot [χ̄T ˙̄χT ] = [x̄, ȳ, θ̄, ˙̄x, ˙̄y, ˙̄θ] using the
dynamic model derived above.

When dealing with state estimation in mobile robot
applications the prevailing approach is to use a kinematic
model for the robot in an Extended Kalman Filter (EKF)
[3]. This approach leads to some undesired effects, how-
ever, as it removes part of the feedback loop in the filter
due to the fact that a kinematic model often calculates the
velocities of the robot ( ˙̄χ) directly from the odometry data
obtained from the wheels. This means that only the esti-
mation of χ benefits from the favorable properties of the
filter used for the estimation. Another undesirable effect
is that part of the EKF approach is to use linearized system
and measurement models for calculating the estimate of the
mean and covariance of the state vector.

In order to avoid these potential problems, another ap-
proach is undertaken here where the robot model (9) is used
in an Unscented Kalman Filter (UKF). This is done in or-
der to investigate if the more advanced filter and the model
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Figure 4. The integrated model complete with actuators,
robot model and sensor models.

derived above yield a more accurate estimation compared
to an EKF with a standard kinematic model.

The UKF was first proposed in [4] and has later been
refined by [7] – it addresses the problem with the first or-
der linearization used in the EKF which can introduce large
prediction errors in the estimation process. It is based on
the so-called Unscented Transformation, which is used to
calculate mean and covariance values for a random variable
through a deterministic sampling approach. Define an aug-
mented system state vector ξ ∈ R

2 × S×R
3 ×R

6 by pos-
sible non-additive process and measurement noise terms ν
as ξ = [χ̄T ˙̄χT νT ]. The Unscented Transformation now
propagates this augmented system state using a number
of carefully selected sample points X0,k−1, . . . ,X2n,k−1,
where n is the number of states in the augmented state
vector, through the non-linear model to evaluate the mean
and covariance of the state estimate (refer to the algorithm
shown in Table 1).

This approach means that the linearization of the
model needed for an EKF – which would have been com-
plicated for the dynamic model due to the discontinuous
tire-model – is not needed, and the dynamic model can be
used directly in the UKF. The measurement model includes
all sensor measurements, except the row camera. Figure
5 shows a block diagram of how the UKF receives mea-
surement signals and calculates the corresponding state es-
timates.

There is a discontinuity in the compass output θ, as it
wraps around at 2π is solved by letting the old estimated
state of the angle (in ξ̂k−1) wrap when the compass out-
put does, thus keeping them aligned. The different sensors
output measurements at different sampling rates and as it is



Predict:
X0,k−1 = ξ̂k−1

Xj,k−1 = ξ̂k−1 +

„

q

(n + κu)P+

k−1

«

j

, j = 1, . . . , n

Xj,k−1 = ξ̂k−1 −

„

q

(n + κu)P+

k−1

«

j−n

, j = n + 1, . . . , 2n

Xk|k−1 = f(Xk−1, u)

ξ̂−
k

=
2n
X

j=0

W m
j Xj,k|k−1

P−
k

=
2n
X

j=0

W c
j (Xj,k|k−1 − ξ̂−

k
)(Xj,k|k−1 − ξ̂−

k
)T + Qk

Zk|k−1 = h(Xk|k−1)

ẑk =
2n

X

j=0

W m
j Zj,k|k−1

Update:

Pẑk ẑk
=

2n
X

j=0

W c
j (Zj,k|k−1 − ẑk)(Zj,k|k−1 − ẑk)T + Rk

P
ξ̂
−

k
ẑk

=
2n

X

j=0

W c
j (Xj,k|k−1 − ξ̂−

k
)(Zj,k|k−1 − ẑk)T

Kk = P
x̂
−

k
ẑk

P−1

ẑk ẑk

ξ̂+

k
= ξ̂−

k
+ Kk(zk − ẑk)

P+

k
= P−

k
− KkPẑk ẑk

KT
k

Table 1. UKF algorithm based on the (discrete-time) sys-
tem model ξk = f(ξk−1, ν

ξ
k−1

, uk−1, zk = h(ξk, ν
z
k−1

)).
Wi are weighting factors, P is the covariance estimate and
K is the Kalman gain. For further details, see [7].
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Figure 5. The operation of the UKF.

undesirable to use an old sensor measurement the different
sensors are disabled when they do not have new data. This
is done by raising the corresponding value in the measure-
ment noise Rk very large and thereby effectively disabling
the involved sensor.

4 Simulation and Verification
In Figure 6 the result of a representative verification drive
is shown. The simulation data is generated by feeding the
recorded control signals from the robot through the dy-
namic model (9). It is clear that there is good consistency
between the measured and the simulated results, especially

when considering the velocity.
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Figure 6. Comparison between simulation and actually
driven path. Top to bottom: Path driven by the vehicle;
velocity in the x̄-direction; velocity in the ȳ-direction; ori-
entation; rotation. The two bottom figures show the control
signals.

In Figure 7 the result from a test of the two sensor fu-
sions is shown and it can be seen that both filters perform
satisfactorily in the estimation of the posture (χ). How-
ever a clear difference can be seen in the velocity estimates
where the UKF exhibits a much lower noise level than the



EKF. The high frequency noise on the EKF estimate origi-
nates from noise in the odometry measurements.
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Figure 7. Comparison between sensor measurements, Ex-
tended Kalman Filter and Unscented Kalman Filter (x̄, θ
and ˙̄y selected as examples).

5 Conclusion

This paper presented a first-principles model for a four-
wheel driven, four-wheel steered mobile robot for au-
tonomous agricultural field surveying. The model takes
friction and slip of the wheels into account, and calculates
sideways and propulsion forces, which in turn governs the
accelerations of the robot body. The model is based on
Newtonian mechanics. The purpose of constructing the
model was, in addition to obtaining an effective simulation
model, to apply it in sensor fusion and (eventually) fault de-
tection and fault-tolerant control. The Unscented Kalman
Filter algorithm was then presented, and a practical appli-
cation of the model and sensor fusion was validated in ac-
tual test runs in an outdoor environment.

There is no doubt that both the EKF and the UKF per-
form satisfactorily and that there in most cases are only
little difference on their performance. The major advan-
tage with using the combination of the UKF and the dy-
namic model compared to the traditional EKF and kine-
matic model combination is the clear improvement in the
velocity estimates. Also the UKF performs somewhat

better when operating without the absolute measurements
from the GPS.

It can also be concluded that while the UKF have a
theoretically better estimation accuracy the practical results
show that this advantage is diminished when the filter are
executed at a relatively high sampling frequency (in this
case 50Hz), since sampling fast reduces the linearization
errors. A by far larger source of estimation errors is mod-
elling uncertainties which in this case mainly originates
from the wheel skidding and slipping. This is the reason
for the better performance of the UKF in this case, as it is
based on the tire friction model presented in Section 2.3.

In future research, a natural extension to the UKF
would be to incorporate a parameter estimation which con-
tinuously estimates the friction of the surface through the
cornering stiffness.
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