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Abstract Previous studies have demonstrated that double phosphorylation of a

protein can lead to bistability if some conditions are fulfilled. It was also shown that

the signaling behavior of a covalent modification cycle can be quantitatively and,

more importantly, qualitatively modified when this cycle is coupled to a signaling

pathway as opposed to being isolated. This property was named retroactivity. These

two results are studied together in this paper showing the existence of interesting

phenomena—oscillations and bistability—in signaling cascades possessing at least

one stage with a double-phosphorylation cycle as in MAPK cascades.
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1 Introduction

Covalent modification cycles are one of the major intracellular signaling mecha-

nisms, both in prokaryotic and eukaryotic organisms (Alberts et al. 2001). Signaling

pathways are made up of chains or cascades of such cycles, in which the activated

protein in one cycle promotes the activation of the protein in the next one. In this
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Institut Non Linéaire de Nice, UMR 7335 CNRS, University of Nice Sophia Antipolis, 1361 route

des Lucioles, 06560 Valbonne, France

e-mail: jacques-alexandre.sepulchre@inln.cnrs.fr

A. C. Ventura

Instituto de Fisiologı́a, Biologı́a Molecular y Neurociencias, CONICET, Buenos Aires, Argentina

e-mail: alejvent@fbmc.fcen.uba.ar

A. C. Ventura

Departamento de Fisiologı́a, Biologı́a Molecular y Celular, Facultad de Ciencias Exactas y

Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, 2 piso, C1428EHA

Buenos Aires, Argentina

123

Acta Biotheor

DOI 10.1007/s10441-013-9177-5



way, an input signal injected at one end of the pathway can propagate traveling

through its building-blocks to elicit one or more effects at a downstream location.

The advantages of these cascades in signal transduction are multiple: a reaction

cascade may amplify a weak signal, it may accelerate the speed of signaling, can

steepen the profile of a graded input as it is propagated, filter out noise in signal

reception, introduce time delay, and allow alternative entry points for differential

regulation (Bluthgen et al. 2006; Ortega et al. 2002; Thattai and van Oudenaarden

2002).

The scheme in Fig. 1 is usually employed to represent a cascade. From a

systemic point of view, a cascade is a system composed of units, the output of which

is successively an input to the next unit. This kind of schematic representation

implicitly conveys the idea that a signaling cascade is only a feed-forward chain in

which signal transmission is analogous to a domino effect (Murray and Kirschner

1989; Gonze and Goldbeter 2001): the information flows in only one direction.

Adding explicit connections linking a particular level with an upstream location has

been the way bidirectional propagation has been explained until recently.

The model we proposed in (Ventura et al. 2008) shows that an intrinsic negative

feedback emerges naturally, exerted between each cycle and its predecessor. Similar

results were reported by Del Vecchio et al. (2008) giving the name of retroactivity
to the phenomenon. Our work showed that, because of that intrinsic negative

feedback, each unit of the cascade is actually coupled not only to the following one

but also to the previous one, meaning that a cascade can naturally exhibit

bidirectional propagation without invoking extra re-wiring. Therefore, the

schematic representation in Fig. 1 can be misleading. Our theoretical/computational

results were later on experimentally validated (Ventura et al. 2010; Kim et al. 2011;

Jiang et al. 2011) and further characterized (Ossareh et al. 2011; Wynn et al. 2011).

In (Ventura et al. 2008) we considered mainly the case of single-covalent

modification cascades with no much details devoted to the case of double-covalent

modification cascades. We could show that due to the mentioned negative feedback, a

cascade of single-covalent modification cycles displays damped temporal oscillations

under constant stimulation and, most important, propagates perturbations both

forwards and backwards. However, the case comprising double-phosphorylation is

Fig. 1 Schematic
representation of a cascade of
covalent modification cycles.
The ith cycle is composed of
two states of the same protein:
the inactive and the active states,
labeled Yi and Y�i , respectively.

In each step, the activation is
catalyzed by the activated
product of the previous step. The
deactivation is mediated by
another enzyme, E0i
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important in practise as it concerns the mitogen activated protein kinase (MAPK)

cascade, which is widely involved in eukaryotic signal transduction (Huang et al.

1996).

In what follows, starting from the mass-action-law kinetics and using a careful

perturbation analysis, we derive a consistent approximation of a double-phosphor-

ylation cascade with one variable per cycle (i.e two variables per level). This

simplified set of equations enables us to perform a mathematical analysis of the

cascade and the construction of the interaction graph for the underlying network. In

this way we show that the effect of retroactivity is to provide an intrinsic negative

feedback from the variables at each stage of the cascade on the variables of the

previous stage. This property is related, as will be explained, to the appearance of

sustained oscillations in the cascade.

Previous studies have demonstrated that double phosphorylation of a protein

generates bistability if some conditions are fulfilled (Ortega et al. 2006; Markevich

et al. 2004), while single phosphorylation cycles have always a single steady-state.

In this paper we also show that the bistable behavior originating in a double

phosphorylation cycle can reach, due to retroactivity, upper levels of a signaling

cascade, unable to display bistability by themselves.

2 A simplified Model for the Double Phosphorylation Cascade

We consider a signaling cascade in which each protein has two phosphorylation sites,

as illustrated in Fig. 2. We designate this case as ‘‘DP cascade’’, and distinguish it from

the case where only single phosphorylation occurs (‘‘SP cascade’’). Cascades

involving both single and double phosphorylation cycles are easily described

combining the equations for the SP and DP cascades (as it is the case for the MAPK

cascade, which involves SP for the first unit and DP for the second and third ones). The

three variables in each cycle in Fig. 2, Yi; Y
�
i and Y��i , represent the three intercon-

vertible forms of the protein, such as the dephosphorylated, singly and doubly

phosphorylated forms; the activated form Y��i acts as a catalyst for the two activation

reactions in the next step. In this cascade, the two deactivation reactions in each step

share the same phosphatase, denoted by E0i First we write the chemical equations. The

inter-conversion of the ith protein can be described by the following reactions:

Yi þ Y��i�1 �
ai1

di1

Ci1 �!
ki1

Y�i þ Y��i�1

Y�i þ Y��i�1 �
ai2

di2

Ci2 �!
ki2

Y��i þ Y��i�1

Y��i þ E0i �
a0i1

d0
i1

C0i1 �!
k0i1

Y�i þ E0i;

Y�i þ E0i �
a0i2

d0
i2

C0i2 �!
k0i2

Yi þ E0i; i ¼ 1; . . .; n;

ð1Þ

where Ci1;Ci2;C
0
i1 and C0i2 are intermediate enzyme-substrate complexes. We take

the convention to denote by index 1 and 2 respectively the first and the second
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covalent modifications, starting either from the deactivated species Yi or from the

activated species Y��i . The notation prime (0) is used for the deactivation steps,

involving a phosphatase in the case of the dephosphorylation.

Next, the kinetic equations describing the cascade are written using only the law of

mass action. For notational convenience we use variable names to denote both a

chemical species and its concentration. For instance, the instantaneous state of each

cycle is described by the variables Yi and Y��i , denoting respectively the concentra-

tions of the inactivated and of the activated protein i, whose total amount is denoted by

YiT. The kinetic equations are explicitly written in ‘‘Appendix 1’’ where we perform a

model reduction by using the quasi-steady state approximation. The kinetic equations

can be complemented by the corresponding conservation equations: YiT ¼ Yi þ Y�i þ
Y��i þ Ci1 þ Ci2 þ C0i1 þ C0i2 þ Ciþ1;1 þ Ciþ1;2 and E�i ¼ E0i þ C0i1 þ C0i2

The model reduction starts by considering dimensionless variables, as for

instance:

y��i ¼
Y��i

YiT
; y�i ¼

Y�i
YiT

; yi ¼
Yi

YiT
; cij ¼

Cij

Yi�1;T
; c0ij ¼

C0ij
E0iT

: ð2Þ

Two key dimensionless parameters are defined to perform the perturbation analysis:

�i ¼
E0iT
YiT

; gi ¼
Yi�1;T

YiT
: ð3Þ

The analysis shows that the state of each doubly phosphorylated cycle can be

described by two variables, xi ¼ y��i þ ciþ1;1 þ ciþ1;2. As usual, this assumes that the

total concentration of phosphatase in the cycle is much lower than the total con-

centration of targeted protein, resulting in ei� 1. The other parameters must satisfy:

Fig. 2 Schematic representation of a cascade of covalent modification cycles, involving double
phosphorylation. The ith cycle is composed by three states of the same protein: the inactive, the singly
phosphorylated, and the doubly phosphorylated states, labeled Yi, Y�i , and Y��i , respectively. In each step,

the activation is catalyzed by the activated product of the previous step. The deactivation is mediated by
another enzyme, E0i
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ki1gi� k0i2�i; ki2gi� k0i1�i: ð4Þ

Finally it is shown in ‘‘Appendix 1’’ that the dynamics of the variables xi and yi are

described by the following system of differential equations:

_xi ¼ Vi2xi�1

y�i
Keff ;i2 þ y�i

� V 0i1
xi

K 0eff ;i1 þ xi
; ð5Þ

_yi ¼ V 0i2
y�i

K 0eff ;i2 þ y�i
� Vi1xi�1

yi

Keff ;i1 þ yi
; ð6Þ

with the following conservation equation from which y�i has to be extracted:

xi þ yi þ y�i þ gixi�1

yi=Ki1 þ y�i =Ki2

1þ yi=Ki1 þ y�i =Ki2

� �
þ Oð�iÞ ¼ 1 ð7Þ

In the above differential equations, the factors Vi’s are defined by:

Vi1 ¼
ki1gi

�
; Vi2 ¼

ki2gi

�
; V 0i1 ¼

k0i1�i

�
; V 0i2 ¼

k0i2�i

�
;

where e is a real number enabling to take the limit where all ei and gi go to 0 at

once. (For example, define ei = aie and gi = bie, with fixed parameters ai and bi.)

In Eqs. (5)–(6) the effective Michaelis–Menten coefficients Keff,i’s are actually

functions given by:

Keff ;i1 ¼ Ki1 1þ y�i
Ki2

� �
;

Keff ;i2 ¼ Ki2 1þ yi

Ki1

� �
;

K 0eff ;i1 ¼ K 0i1 1þ y�i
K 0i2

� �
1þ yiþ1

Kiþ1;1
þ

y�iþ1

Kiþ1;2

� �
;

K 0eff ;i2 ¼ K 0i2 1þ xi

K 0i1 1þ yiþ1

Kiþ1;1
þ y�

iþ1

Kiþ1;2

� �
0
@

1
A:

ð8Þ

Let us notice that the set of equations Eqs. (5)–(8) in which the effective Keff,i’s

are replaced by the usual Michaelis–Menten constants Ki’s, represent a possible,

simple but not rigorous, generalization of the Goldbeter–Koshland model (Goldb-

eter et al. 1981) to a doubly phosphorylated cascade. This set of phenomenological

equations has been used by several authors in order to study properties of the MAPK

pathway (Kholodenko 2000; Angeli et al. 2004; Thalhauser and Komarova 2010).

As it will be shown in the next sections, the main difference between this new

derivation and the simpler case where the Keff,i’s are constants, is the dependency of

the dynamics at stage i of the cascade on the variables at stage i ? 1 of the cascade.

Moreover we will prove that this retroactivity plays the role of a negative feedback

loop on the variables.

Intrinsic Feedbacks in MAPK Signaling Cascades Lead

123



3 Intrinsic Negative Feedback and Sustained Oscillations in Biochemical
Networks

The existence of autonomous oscillations in biochemical networks can be discussed

in the framework of interaction graphs associated with dynamical systems. We

present a short summary of the underlying theoretical ideas which have been

developed in details by several authors (Thomas and D’Ari 1990; Snoussi and

Thomas 1993; Gouzé 1998).

3.1 The Interaction Graph of the Doubly-Phosphorylated Signaling Cascade

The deterministic evolution of a biochemical network is usually described by a set

of coupled ordinary differential equations in which variables correspond to the

concentrations of species xi ¼ ðx1; . . .; xmÞ and the rates of change of these

concentrations are given by nonlinear function of _xi ¼ Fiðx1; x2; . . .; xmÞ. Then one

can associate to the network a so-called interaction graph in the following way. The

nodes of the graph are simply defined by the species ðx1; . . .; xmÞ concentrations and

are labeled by the corresponding integer indexes 1; . . .;m. Then, according to the

value of rij ¼ sign oFi

oxj
ðxÞ

� �
2 f0;þ1;�1g; the nodes i and j are connected by a

signed arrow going from xj to xi. If rij = 0 there is no arrow. The construction of

this graph is motivated by the fact that the elements of the Jacobian matrix, defined

by JijðxÞ ¼ oFi

oxj
ðxÞ; describe the instantaneous influence of the node j on the node i of

the graph; for example if Jij(x) [ 0 it means that the rate of change of xj increases if

a positive perturbation of xj occurs, and conversely decreases if the perturbation of xj

is negative. Therefore when an edge of the graph is positive rij [ 0 one can say that

node j ‘‘activates’’ or ‘‘excites’’ node i of the graph. Conversely, a negative edge in

the graph, rij \ 0, means that node j ‘‘inhibits’’ or ‘‘represses’’ node i of the

network. In particular rij = 0 tells ones that the nodes i and j are uncoupled. In

several instances of biological networks (e.g. neural networks, genetic networks,

ecological networks), although the value of Jij(x) depends on x, its sign is constant

in all the phase space (Thomas and D’Ari 1990). In this case it is meaningful to

qualitatively characterize the biochemical network by its interaction graph.

Moreover, several qualitative properties about the dynamics of a biochemical

network can be deduced from the knowledge of its interaction graph (Thomas and

D’Ari 1990). These properties rely on the concept of circuit in the graph, that is an

oriented and closed path linking a series of connected nodes in the interaction graph.

The notion of semi-circuit is defined as the concept of circuit but on the non-

oriented graph. The sign of a circuit or of a semi-circuit in the interaction graph is

defined by the product of the signs of the edges along the path defining the circuit.

Amongst those properties, we recall a conjecture of Thomas proved by Gouzé in

(1998) : A necessary condition to get sustained periodic oscillations in a differential

system _xi ¼ fiðx1; . . .; xmÞ is the existence of a negative semi-circuit of length at

least 2 in its interaction graph.
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Let us apply this result to biochemical networks which are the double-

phosphorylation signaling cascades. Figures 3 show two possible interaction graphs

for such systems. The first one, Fig. 3a, depicts the interaction graph deduced from a

simplified model used in the literature for describing DP cascades (Kholodenko

2000; Angeli et al. 2004), that is the set of Eqs.(5)–(6) where the Michaelian

parameters Keff,i are constant. Indeed this first type of interaction graph seems to be

consistent with the usual picture of one-way signaling cascade drawn in Fig. 2. In

this case one sees that there are no negative feedback loops. At each level of the

cascade there are 2 arrows going from one stage to the next stage, with a positive

interaction from xi to xi?1 and a negative interaction from xi to yi?1. Inside one stage

there are 2 negative interactions so that any circuit in the whole interaction graph is

a positive circuit. Therefore, according to the Thomas’ rule proved by Gouzé,

autonomous oscillations should never be observed in double phosphorylation

cascades following this interaction graph. Moreover, in order to produce oscillations

in this system, it would be necessary to consider extra negative interactions, like for

example a negative interaction between the doubly phosphorylated protein in the

last stage of the cascade and the activation at the first stage of this system. Such

setting has been proposed and oscillations theoretically studied in this framework

(Kholodenko 2000).

On the other hand, in Qiao et al. (2007) the authors numerically explored the

possible behaviors of the MAPK cascades, without extra feedbacks, by considering

an extensive sampling of the parameter space around experimental values studied by

Huang et al. (1996). Amongst the results of their investigations they observed the

occurrence of autonomous oscillations in about 9 % of their sampled parameters.

Although they did not discuss the relation between their findings and the interaction

graphs, according to the theorem recalled above, the interaction graph of the MAPK

cascade should contain inherent negative feedback loops.

Therefore we study the DP signaling cascade by looking for negative feedback

loops in its interaction graph. As we already pointed out, our new 1-variable per

cycle model described by Eqs.(5)–(7) shows the existence of a coupling of one of

the variables at one stage of the cascades with the variables of the preceding stage.

In order to construct the interaction graph of this system, we have computed the

matrix elements of the Jacobian matrix corresponding to the interaction of variables

at stage i ? 1 on variables at stage i. The resulting computation, reported in

‘‘Appendix 2’’, shows that the variables at stage i ? 1 have all negative influences

on the variables at stage i:

o _xi

oxiþ1

\0
o _xi

oyiþ1

\0
o _yi

oxiþ1

\0
o _yi

oyiþ1

\0 ð9Þ

Figure 3b illustrates the corresponding interaction graph of the DP signaling cas-

cades as it can be computed from our simplified model.

Therefore, the negative retroactivity between the variables of one stage of the

cascade with the previous stage creates several negative closed circuits between the

cascade stages. For example there is a negative feedback loop between variables xi

and xi?1. So our study reconciliates the fact that sustained oscillations exist in the

DP signaling cascade with a consistent description of its interaction graph.
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3.2 The Simplest Cascade Admitting a Sustained Oscillatory Dynamics

In order to observe how sustained oscillations can show up in a signaling cascade as

a consequence of retroactivity, i.e the mentioned intrinsic negative feedback, we

wish to study the simplest situation where they can occur. A priori the simplest

situation would be to consider the single-phosphorylation cascade, because the

interaction graph of this system already possesses the negative loops necessary for

the existence of oscillations (Ventura et al. 2008). However, as we have already

numerically explored this system in a previous work, temporal oscillations can be

excited in the single-phosphorylated cascade but these oscillations are strongly

damped (Ventura et al. 2008). Indeed, the presence of negative feedback loops in

the interaction graph of a biochemical network is a necessary but not sufficient

condition to get sustained oscillations in the temporal dynamics of the system. As a

matter of fact, the presence of a double phosphorylation seems to be necessary in

order to observe autonomous oscillations in a cascade.

Therefore, we consider the simplified signaling chain formed by the top part of

the MAPK cascade; thus the first stage of the cascade is made of a single

phosphorylation cycle and the second stage is made of double-phosphorylation

cycles (cf. Fig. 9). This appears to be the minimal model to study the sought

oscillations because, as it is argued below, it enables the second stage of the cascade

to exhibit a bistability of steady states. The simplified model of such system is given

(a) (b)

Fig. 3 Interaction graph of the doubly-phosphorylated cascade. a According to the phenomenological
model (see text). b According to Eqs.(5)–(7) that we derived in order to take into account retroactivity
from one stage of the cascade on the previous one
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by a set of 3 coupled differential equations, which are a particular case of system of

Eqs. (5)–(7), and which can be written as follows:

_x1 ¼ V1

y1

K1 þ y1

� V 01
x1

K 01ð1þ y2=K21 þ y�2=K22Þ þ x1

ð10Þ

_x2 ¼ V22x1

y�2
K22ð1þ y2=K21Þ þ y2

� V 021

x2

K 021ð1þ y�2=K 022Þ þ x2

ð11Þ

_y2 ¼ V 022

y�2
K 022ð1þ x2=K 021Þ þ y�2

� V21x1

y2

K21ð1þ y�2=K22Þ þ y2

ð12Þ

with the approximate conservation law : y1 ¼ 1� x1; y�2 ¼ 1� x2 � y2

We numerically study the ‘‘response’’ of the system as the evolution of variable

y��2 ¼ x2 following the changes of the input parameter V1. The latter is the natural

control parameter, since it is proportional to the total kinase concentration in the first

stage of the cascade (E1T). Figure 4 shows an instance of output of the system when

V1 takes 3 different values. When the input enzyme is sufficiently low or high, the

response of the system is as usual stationary and corresponds respectively to an

inactivated or to an activated state of the doubly phosphorylated protein in the

second stage of the cascade. By contrast, for intermediate values of the input kinase,

the response of the system varies periodically in time between its activated and

deactivated states. For the upper value of V1, oscillations exist but are damped.

0 5 10 15
0.5

1

1.5

2

time (a.u.)

V
1

0 5 10 15
0

0.5

1

time (a.u.)

x 2

Fig. 4 Time evolution of the doubly phosphorylated protein y��2 ¼ x2 is shown whereas the input

parameter V1 of the cascade is varied in 3 steps. The two-stage signaling cascade is modelled by
Eqs.(10)–(12), the first stage being a single-phosphorylation and the second stage being a double-
phosphorylation. The bifurcation parameter V1 is proportional to the total kinase of the first stage (E1T).

The parameter values are 0\V1\2;V 01 ¼ 4;V22 ¼ 1:2102;V21 ¼ V 021 ¼ V 022 ¼ 102;K1 ¼ K 01 ¼ 10�1;

K12 ¼ K22 ¼ K 021 ¼ K 022 ¼ 10�2
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These time-dependent behaviors of the cascade variables indicate that the steady

state response becomes unstable in a range of V1 parameter. To investigate the

nature of this instability we used XPPAUT software (http://www.math.pitt.edu/bard/

xpp/xpp.html) to perform a numerical continuation of the steady state in function of

parameter V1. As shown on Fig. 5 (continuous curve), the steady state values of the

doubly phosphorylated proteins in the cascade follows a typical ultrasensitive

response in function of the input enzyme. However, the intermediate values (inside

the dotted closed curve drawn on the graph) correspond to an unstable output, that

would not be observed in an usual dose/response experiment. Instead, self-sustained

oscillations would occur, whose maxima and minima amplitudes are also plotted on

Fig. 5 The continuation method XPPAUT reveals that the oscillations appear and

disappear through supercritical Hopf bifurcations. In particular, the amplitude starts

from 0 and the period of oscillations is finite at the bifurcation points.

In order to understand the mechanisms behind the onset of oscillations, it is

instructive to look at the phase portrait of this system. From a general point of view,

the 3-dimensional phase space subtended by the system variables (x1, y2, x2) could

be relatively complicated. However one can look for simplifying hypothesis in order

to consider only the subspace subtended by variables (x1, x2). For example, in the

particular case where K21 = K22, one notices that the surface defined by _x1 ¼ 0 has

a graph which is independent on y2. Therefore its projection on the subspace (x1, x2)

defines a curve, which plays the role of a nullcline. The latter is represented by the

dashed (blue) line on Fig. 6. On the same subspace (x1, x2), one can represent the

curve defined by _x2 ¼ 0 and _y2 ¼ 0; drawn as a dash-dot (red) curve on Fig. 6.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
X2

0.6 0.8 1 1.2 1.4 1.6 1.8 2

V1

Fig. 5 The continous curve shows the steady state response of variable x2 in function of V1 (i.e. the
maximal velocity of the upstream enzymatic reaction, proportional to the input enzyme E1T. The steady
state is unstable in the intermediate region limited by the small circles on the curve. The latter
corresponds to Hopf bifurcation points, leading to a limit cycle in the intermediated region of parameters.
There, the dotted curve shows the extrema of the oscillation amplitudes of x2. The parameter values are
the same as in Fig. 4
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Then, the intersection of this curve with the surface _x1 ¼ 0 corresponds to a steady

state of the dynamical system.

Moreover, it turns out that the nullcline defined by the equations ( _x2 ¼ 0

and _y2 ¼ 0) is s-shaped. This can be interpreted by noting that the double-

phosphorylation cycle possesses a domain of bistable steady states as a function of

its input kinase x1. Furthermore, as a matter of fact, the flow along this s-shaped

nullcline points towards the folds of the bistable curve (cf. arrows on Fig. 6).

Therefore, these qualitative conditions favour the creation of a flow rotating around

the steady state in phase space, leading possibly to a limit cycle. This scenario is

confirmed by using a numerical method that reveals Hopf bifurcations, as described

above. In the meantime we understand that the oscillations persist only in a range of

parameter V1. Indeed, a change of this parameter affects the position of the surface

_x1 ¼ 0 (dashed line on Fig. 6), in such a way that for low or high values of the

parameter V1, the steady state moves respectively on the lower or on the upper

branch of the s-shaped curve, leading to the disappearance of oscillations.

4 Bistability

4.1 Bistability in an Isolated Double-Phosphorylation Cycle

We first consider an isolated double-phosphorylation cycle as shown in Fig. 7. As

illustrated, the interconvertible protein exists in three forms: unmodified (Yi), with

one modified residue ðY�i Þ and with two modified residues ðY��i Þ. As before, we

consider the standard two-step reaction model for enzymatic reactions. Let Ei be the

converter enzyme that converts Yi into ðY�i Þ and ðY�i Þ into ðY��i Þ, and let E0i be the

converter enzyme that converts back ðY��i Þ into ðY�i Þ and ðY�i Þ into Yi. The reactions

for the system are as in Eqs. (1) but replacing Y��i�1 by Ei.

In this section and since we want to solve for the steady-states of the system, we

could either use the simplified kinetic equations for the cascade as in Sect. 3.2 or the

full mechanistic model because both models share the same steady-states (provided

that in both cases we use a simplified conservation law, see below). The steady-

states are obtained by solving:

v1 ¼ v02
v01 ¼ v2

ð13Þ

with

v1 ¼
Vm1yi=K1

1þ yi=K1 þ y�i =K2

v2 ¼
Vm2y�i =K2

1þ yi=K1 þ y�i =K2

v01 ¼
V 0m1y��i =K 01

1þ y��i =K 01 þ y�i =K 02
v02 ¼

V 0m2y�i =K 02
1þ y��i =K 01 þ y�i =K 02

ð14Þ

Some definitions used above: yi ¼ Yi=YT ; y
�
i ¼ Y�i =YT and y��i ¼ Y��i =YT are the

dimensionless concentrations of species Yi, ðY�i Þ and ðY��i Þ, and YT is the total
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concentration of the interconvertible protein Y; Ki = Kmi/YT, where Kmi is the

Michaelis constant, Vmi = ki ET and Vmi

0
= ki

0
ET

0
for i = 1, 2 are the maximal rates of

step i. For convenience and following the calculations in (Ortega et al. 2006), we

define the following parameters: r ¼ Vm2=Vm1; r0 ¼ V
0
m2=V

0
m1; v ¼ Vm1=V

0
m1 and

h = rr0.
Assuming K1 = K1

0
= K2 = K2

0
: K for the sake of simplicity, the following is

obtained manipulating Eqs. (14):

h ¼ yiy
��
i

y�2i

ð15Þ

Assuming a simplified conservation equation, 1 ¼ yi þ y�i þ y��i , leads to:

yi ¼
�y��i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y��2i þ 4y��i h� 4y��2i h

p� �2

4y��i h

y�i ¼
�y��i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y��2i þ 4y��i h� 4y��2i h

p
2h

v ¼ y��i K þ y��i y�i þ hy�2i

r21y�i K þ y��i þ y�ið Þ

ð16Þ

The equations above are providing yi and Y�i as a function of Y��i and parameters, and

also and implicit equation for Y�i [the algebraic manipulations required the obtain

these equations were guided by Ortega et al. (2006)]. This last equation permits to

calculate the bifurcation point, for further details see Ortega et al. (2006). Figure 8

shows that, for the selected parameter values, there is a range of v that provides

bistable behavior for the double-phosphorylation cycle.

0.8 0.9 1

0

0.5

1

x
1

x 2

x 1 > 0

x1 = 0

x 1 < 0

x2 = 0 and y2 = 0

Fig. 6 Autonomous oscillations appearing in a two-stage signaling cascade modelled by Eqs.(10)–(12),
with same parameters as in Fig. 4. Plotting the nullclines in the subspace (x1,x2) reveals the unstable
steady state around which exists a limit cycle (closed curve). See text for further discussion. (Color figure
online)
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From the calculations above we can also derive the amount of free kinase Ei as

follows:

Ei ¼
EiT

1þ yi=K1 þ y�i =K2

ð17Þ

Given that yi and Y�i display bistability for a given range of parameters, the same is

true for the free amount of kinase Ei. This result still holds if the double-phos-

phorylation cycle is coupled to an upstream cycle that activates Ei, as we will show

in the following section.

4.2 Double-Phosphorylation Cycle’s Effect on an Upstream Cycle

We now consider a 2-stage cascade composed of a singly-phosphorylated protein

activating a double-phosphorylation cycle, as indicated in the scheme in Fig. 9.

Protein Y1 is transformed into ðY�i Þ by the action of an activator enzyme A and ðY�i Þ
back into Y1 by the action of an inactivator enzyme D.

In ‘‘Appendix 3’’ we include a detailed calculation of the steady-states for this

cascade that leads to the following results:

y�1 ¼
1

ð1þ xÞ þ y2=K þ y�2=K
ð18Þ

v ¼ y��2 Kð1þ xÞ þ y��2 y�2 þ hy�22

ry�2ðK þ y��2 þ y�2Þ
ð19Þ

with y2 and y�2 exactly as in Eq. (16). We are still considering equal K values for all

the reactions in the second stage just for the sake of simplicity and we are

Fig. 7 Isolated double-phosphorylation cycle. Steps 1 and 2 are those that add the first and second
covalent modification, respectively, while steps 10 and 20 those that remove them

0 0.5 1 1.5 2 2.5

0

0.2

0.4

0.6

0.8

1
y i**

Fig. 8 Variation of Y��i with respect to v. Parameter values are: h = 4, r = 2, K = 0.01. Red dashed
lines indicates the range of v that leads to two stable solutions for Y��i . (Color figure online)
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simplifying notation in v and r. Parameter x is defined as (k0 Km D)/(k Km

0
A), where

k and k0 are the catalytic rates and Km and Km

0
are the Michaelis constants for the

upper cycle, and A and D are the amounts of activator and inactivator assumed to be

approximately constant (see ‘‘Appendix 3’’). So x contains the information on the

upper cycle and is reduced to zero if there is no inactivator, as in the previous

section. x appears in the equation relating v and y��i in such a way that it does not

change the properties of this implicit equation for y��i , i.e., there is still a range of

parameters for which bistability is observed, see Fig. 10a.

Interestingly and according to Eq. (18), y�1 depends on y2 and y�2, which depend on

y��2 [see Eq. (16)], which has a bistable behavior, meaning that y�1 is itself bistable as

well, as illustrated in Fig. 10b.

5 Discussion and Conclusion

In recent years the study of signaling pathways, and in particular of MAPK

signaling cascades, has retained much attention in systems biology because it is

currently believed that acquiring a deep understanding of this type of system could

help to design new therapies against several pathological conditions such as cancer

(Ventura et al. 2009, Wagner and Nebreda 2009). Remarkably, in biochemistry

articles or textbooks, the signaling cascades are graphically represented by a series

of reactants (possibly detailing their activation by rapid interconverting species) that

are connected only by feedforward arrows. Each step in the chain is an enzymatic

reaction that is catalyzed by the activated reactant at the previous stage. However, as

we had already pointed out in a previous work, the usual graphical representation of

cascades in terms of enzymatic chemical reactions can elude the possible

retroactivity phenomenon appearing in these systems, due to the temporary

sequestration of the enzymes by their target reactants.1 In (Ventura et al. 2008) this

retroactivity phenomenon was analyzed in the simplest case, namely when a single

covalent modification occurs at each step of the cascade. In the present paper we

have analyzed the more complex case of double covalent modifications at each

Fig. 9 2-stages cascade composed by a single-phosphorylation cycle and a double-phosphorylation one

1 Generally speaking, it would be desirable, in graphical representations of biochemical reactions, to use

a specific type of arrow-symbol, whenever the phenomenon of sequestration is involved.

J-A. Sepulchre, A. C. Ventura

123



stage of the cascade. This work was indeed motivated by the study of the MAPK

signaling cascades, that are characterized by stages where a double phosphorylation

are necessary to activate the reactant kinase.

Following the same theoretical method as used in (Ventura et al. 2008), we have

derived a simplified model of the kinetic equations of the cascade, with only one

variable characterizing each phosphorylation/dephosphorylation cycle. The interest

of the analysis was not only to achieve a simplified model of the cascade dynamics,

but overall to show a form of the kinetic equations where the retroactivity

phenomenon clearly appears in the functional dependency of the variables. Indeed

the resulting equations have the typical Michaelian form but with effective

Michaelis–Menten factors which are in fact functions depending on the variables

associated with the next stage in the cascade. This simplification enables one to

explicitly compute the corresponding Jacobian matrix elements and to prove that the

retroactive interaction is always a negative feedback. Interestingly, the existence of

a negative feedback in the structure of the MAPK cascade had been demonstrated in

Fages and Soliman (2008), by using a computarized algorithmic method. The

interpretation of this result was made clearer by our analytical study which indicates

that the origin of this negative feedback is a sequestration effect.

The interaction graph of the double phosphorylation cascade was computed and

showed on Fig. 3. By examining that structure it is seen that several positive and

negative feedback loops can be drawn. Therefore the so-called Thomas rules

(Thomas and D’Ari 1990) are met, opening the possibility to observe autonomous

oscillations, as well as multistable behaviors in the dynamics. In fact, sustained

oscillations and bistability in a cascade, with at least one level having double-

phosphorylation, were reported in previous works. First of all, building on the

pioneering work of Huang et al. (1996), Qiao et al. (2007) conducted a systematic

numerical study of a detailed modeling of the MAPK cascade, where they

discovered a significative region of the parameter space where sustained oscillations

occured. In particular, by restricting the modeling to the different components of the

signaling cascade, they found that the minimal network to get autonomous

Fig. 10 a Variation of y��2 in a 2-stage cascade, with respect to parameter v. Parameter values are:

h = 4, r = 2, K = 0.01, and different values of x as indicated. b Variation of y��1 in a 2-stage cascade,

with respect to parameter v. Parameter values as in a, x values as indicated
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oscillations was a single-phosphorylation cycle connected to a double phosphor-

ylation cycle. This scheme corresponds, for instance, to the top part of the MAPK

cascade (Raf–Mek–Erk). These results were further studied by Zumsande and Gross

(2010), who applied their approach of generalized modeling to the study of complex

dynamical behaviors of MAPK cascades. The idea of this approach is to identify the

bifurcations of the system within a whole class of plausible models, by

parametrizing the underlying Jacobian matrix of the system equations, rather than

parametrizing the rate laws in the model (Gross and Feudel 2006). Using this

method, these authors found that a cascade made of a single phosphorylation cycle

activating a double phosphorylation layer could exhibit Hopf bifurcations and

thereby lead to the existence of autonomous oscillations. Let us note that the

generalized modeling method indicated that more complex dynamics and chaos

could arise in the MAPK cascade with at least 3 layers, due to the existence of

double Hopf bifurcation (Zumsande and Gross 2010). Corroborating these previous

studies, our work points out the essential role of the retroactivity in the onset of

sustained oscillations in MAPK signaling cascades. Indeed, we showed that here the

retroactivity gives rise to intrinsic negative circuits in the interaction graph of these

systems, a property that is necessary for the existence of autonomous oscillations.

Moreover we demonstrated that this feature is preserved in a class of simplified

kinetic equations of signaling cascades, that we rigorously derived from a scheme

based on the quasi-steady state approximations.

Using the simplified dynamics describing the top part of the MAPK cascade we

recover that indeed it is the minimal model to get autonomous oscillations in a

signaling cascade. These oscillations appear and disappear through Hopf bifurca-

tions, when the input kinase in the first cycle has intermediate values between the

ones leading to the inactivation or the activation of the cascade.

It is well known that covalent modification cycles with single phosphorylation

only allow a single steady-state (Feliu and Wiuf 2012), whereas double-phosphor-

ylation allows a bistability of steady states, for appropriate parameters (Ortega et al.

2006). In the last section of this paper, our results show that when a cascade is

formed by two such systems, the bistability of the DP cycle can persist, and

moreover is transmitted to the state variable of the first layer formed by the SP

cycle. Therefore the SP cycle can acquire a bistable behavior due to its interaction

on the second layer.

In conclusion, our studies showed the existence of interesting phenomena—

oscillations and transmitted bistability—in signaling cascades possessing at least

one stage with a DP cycle. In order to account for these phenomena it is crucial to

consider the intrinsic feedback, or the retroactivity, existing between one stage and

the previous stage in these signaling cascades. From the theoretical side, this

retroaction is clearly set in evidence by our simplified set of equations, obtained in

the framework of a rigorous quasi-steady state approximation.

Acknowledgments The international program of scientific collaboration PICS 05922 between CNRS

(France) and CONICET (Argentina) is acknowledged. ACV is a member of the Carrera del Investigador

Cientfico (CONICET) and was supported by the Agencia Nacional de Promoción Cient fica y Tecnolgica

(Argentina).

J-A. Sepulchre, A. C. Ventura

123



Appendix 1: Simplified Kinetic Equations of the Double phosphorylation
cascade

In this appendix we show how the 1-variable per cycle model (5)–(8) can be

obtained from a singular perturbation analysis of the full mass-action kinetic

equations. The procedure is standard, e.g. (Murray 2002).

According to the scheme in Eqs. (1), and using only the law of mass action, the

dynamics of the ith cycle in a cascade of n cycles is governed by the conservation

equations YiT ¼ Yi þ Y�i þ Y��i þ Ci1 þ Ci2 þ C0i1 þ C0i2 þ Ciþ1;1 þ Ciþ1;2 and

EiT

0
= Ei

0
? Ci1

0
? Ci2

0
and by the following differential equations:

dY��i

dt
¼ ki2Ci2 � a0i1Y��i E0i þ d0i1C0i1 � aiþ1;1Yiþ1Y��i þ ðkiþ1;1 þ diþ1;1ÞCiþ1;1

� aiþ1;2Y�iþ1Y��i þ ðkiþ1;2 þ diþ1;2ÞCiþ1;2

dYi

dt
¼ k0i2C0i2 � ai1YiY

��
i�1 þ di1Ci1

dCi1

dt
¼ ai1YiY

��
i�1 � ðki1 þ di1ÞCi1

dCi2

dt
¼ ai2Y�i Y��i�1 � ðki2 þ di2ÞCi2

dC0i1
dt
¼ a0i1Y��i E0i � ðk0i1 þ d0i1ÞC0i1

dC0i2
dt
¼ a0i2Y�i E0i � ðk0i2 þ d0i2ÞC0i2

ð20Þ

with i ¼ 1; . . .n; with the convention that Y��0 is related to the input stimulus,

whereas Yn?1 = Cn?1, j = 0 (j = 1,2).

As described in Sect. 2, we define the parameters ei = EiT

0
/ YiT and gi = Yi-1,T/

YiT. Michaelis constants are defined as usual as Kij = (kij ? dij)/aij and

Kij

0
= (kij

0
? dij

0
)/aij

0
. We define also new variables Xi = Yi

** ? Ci?1,1 ? Ci?1,2 that

reveal to be natural slow variables of the system. The variables are turned into

dimensionless ones in the following way:

xi ¼
Xi

YiT
; yi ¼

Yi

YiT
; cij ¼

Cij

Yi�1;T
; c0ij ¼

C0ij
E0iT

; e0i ¼
E0i
E0iT

: ð21Þ

The previous system of ODEs can be then written as:

dxi

dt
¼ giki2ci2 � �ik

0
i1c0i1 � �ia

0
i1YiT ðxi � ciþ1;1 � ciþ1;2Þe0i � K 0i1c0i1

� �
ð22Þ

dyi

dt
¼ �ik

0
i2c0i2 � giki1ci1 � giai1YiT yiðxi � ciþ1;1 � ciþ1;2Þ � Ki1ci1

� �
ð23Þ

dci1

dt
¼ ai1YiT yiðxi�1 � ci1 � ci1Þ � Ki1ci1ð Þ ð24Þ

dci2

dt
¼ ai2YiT y�i ðxi�1 � ci1 � ci1Þ � Ki2ci2

	 

ð25Þ
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dc0i1
dt
¼ a0i1YiT ðxi � ciþ1;1 � ciþ1;2Þe0i � K 0i1c0i1

	 

ð26Þ

dc0i2
dt
¼ a0i2YiT y�i e0i � K 0i2c0i2

	 

ð27Þ

with i ¼ 1; . . .; n; with again the convention that in these equations cn?1,j = 0, and

x0 = S denotes the input stimulus (e.g. some available active enzyme) normalized

by g1 Y1T. Here the conservation laws become xi þ y�i þ yi þ giðci1 þ ci2Þ þ �iðc0i1 þ
c0i2Þ ¼ 1 and c0i1 þ c0i2 þ e0i ¼ 1.

Now, in the limit where all �i ! 0; and assuming that ki1gi� k0i2�i and

ki2gi� k0i1�i; we get a slow dynamics for the variables xi and yi as compared with

the rates of change of the complexes ci and c0i; so that the quasi-steady state

approximation can be applied. Let us assume that � is a representative value of the

set f�1; �2; � � � ; �ng and consider a slow time-scale ~t ¼ �t with the time-derivative

with respect to ~t that is denoted by a dot, i.e. _x ¼ dx=d~t. By imposing that _cij ¼
_c0ij ¼ 0; a little calculation gives:

ci1 ¼ xi�1

yi=Ki1

1þ yi=Ki1 þ y�i =Ki2

ci2 ¼ xi�1

y�i =Ki2

1þ yi=Ki1 þ y�i =Ki2

c0i1 ¼
xi=K 0i1

ð1þ yiþ1=Kiþ1;1 þ y�iþ1=Kiþ1;2Þð1þ y�i =K 0i2Þ þ xi=K 0i1

c0i2 ¼
y�i =K 0i2

1þ yi=K 0i1 þ y�i =K 0i2

Finally, the substitution of these expressions in Eqs. (22) gives the new model Eqs.

(5)–(8), with Vij ¼ kijgi=� and V 0ij ¼ k0ij�i=�.

Appendix 2: Computation of the Interaction Graph

In this Appendix we prove inequalities (9) in order to show that in the interaction

graph (Fig. 3) the variables at stage i ? 1 of the cascade have a negative influence

on the variables at stage i. This can be achieved by computing the corresponding

elements of the Jacobian matrix as follows :

o _xi

oxiþ1

¼ V 0i1xi

ðK 0eff ;i1 þ xiÞ2
K 0i1 1þ y�i

K 0
i2

� �
Kiþ1;2

oy�iþ1

oxiþ1

ð28Þ

o _xi

oyiþ1

¼ V 0i1xi

ðK 0eff ;i1 þ xiÞ2
K 0i1 1þ y�i

K 0
i2

� �
Kiþ1;2

oy�iþ1

oyiþ1

ð29Þ

o _yi

oxiþ1

¼ V 0i2y�i
ðK 0eff ;i2 þ y�i Þ

2

K 0i2xi

K 0i1
yiþ1

Kiþ1;1
þ y�

iþ1

Kiþ1;2

� �2

Kiþ1;2

oy�iþ1

oxiþ1

ð30Þ
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o _yi

oyiþ1

¼ V 0i2y�i
ðK 0eff ;i2 þ y�i Þ

2

K 0i2xi

K 0i1
yiþ1

Kiþ1;1
þ y�

iþ1

Kiþ1;2

� �2

Kiþ1;2

oy�iþ1

oyiþ1

ð31Þ

and the remaining partial derivatives can be computed by using the conservation

law (7). These factors are always negative:

oy�iþ1

oxiþ1

¼ � 1

1þ giþ1xi
1=Kiþ1;2

ð1þyiþ1=Kiþ1;1þy�
iþ1
=Kiþ1;2Þ2

0
B@

1
CA

oy�iþ1

oyiþ1

¼ �
1þ giþ1xi

1=Kiþ1;1

ð1þyiþ1=Kiþ1;1þy�
iþ1
=Kiþ1;2Þ2

1þ giþ1xi
1=Kiþ1;2

ð1þyiþ1=Kiþ1;1þy�
iþ1
=Kiþ1;2Þ2

0
B@

1
CA

Appendix 3: Computation of the Steady-States for a 2-Stage Cascade

We consider the following reactions for the upper cycle in Fig. 9:

Y1 þ A �
a

d
CA �!

k
Y�1 þ A

Y�1 þ D �
a0

d0
CD �!

k0
Y1 þ D

ð32Þ

with A and D the activator and inactivator enzymes, respectively. Assuming A and D
are approximately constants and solving for the steady-states, we obtain:

y1 ¼ xy�1 ð33Þ

with x ¼ ðk0KmDÞ=ðkK 0mAÞ. This last result implies that the conservation law for the

protein in the upper cycle con be written (neglecting the complexes with the acti-

vator and the inactivator, but not those with the downstream targets, and dividing

the equation by Y1T) as: 1 = y�1(1 ? x) ? c1 ? c2, with c1 and c2 the normalized

complexes with the downstream (double-phosphorylation) cycle. By writing the

corresponding equations for c1 and c2, solving for the steady-state, and using the

previous conservation, we obtain Eq. (18).
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