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Abstract. We present a dynamical model describing a predictable human behavior like the tuning pro-
cess between singers. The purpose, inspired in physiological and behavioral grounds of human beings, is
sensitive to all Fourier spectrum of each sound emitted and it contemplates an asymmetric coupling be-
tween individuals. We have recorded several tuning exercises and we have confronted the experimental
evidence with the results of the model finding a very well agreement between calculated and experimental
sonograms.

PACS. 43.66.Ba Models and theories of auditory processes – 43.75.Cd Music perception and cognition
– 43.75.Rs Singing

1 Introduction

When we think in music, we commonly do it in relation
to feelings and emotions arising from the sub-cortical lim-
bic system of the brain [1]. However, music or sound per-
ception is a very complex sequence of transductions, be-
ginning with the input of pressure waves to the ear and
ending with cognition operations developed in the brain’s
external neocortex [2]. Consequently, an overall under-
standing of what music means in human beings requires
physical, biological, neural, physiological and behavioral
grounds [3]. In this work we are going to focus on the
tuning process between singers. The capability of human
beings to sing in tune is strongly dependent on his nat-
ural conditions, training and previous experience. Then,
results of tuning experiments can be very different even
for the same initial conditions. To avoid subjectivity we
have restricted the possible solutions by imparting a clear
watchword oriented to achieve tuning in the same note
or in an octave. In this way we were able to analyze ex-
perimentally basic human behavior and consequently to
propose a phenomenological mathematical model describ-
ing it. While there are many works regarding synchroniza-
tion [4–7] (i.e. phase adjust) this is, up to our knowledge,
the first model that account for the evolution of spectra
of frequencies interacting between them.

A musical note is a complex periodic oscillation that
can be discomposed into a sum of sinusoidal excitations,
the harmonics, each one with a frequency multiple of a
particular frequency called the fundamental. Then, if ω0
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is the fundamental frequency, the Fourier spectrum of a
note is composed by peaks at ω0, 2ω0, 3ω0, etc. The pitch
indicates how high or low is a particular note and is labeled
with the value (or name) of the fundamental. The relative
intensities which each harmonic participate in the sound
define its timbre [3].

A noise, in turn, is a sum of excitations without any
relationship between the individual frequencies although
the boundary between music and noise is subjective and
one can listen to musicality in a given noise or find a noisy
musical sound. In the same way the idea of consonance
or dissonance is also a subjective, even cultural, concept.
Nevertheless there are physiological reasons to understand
the consonance: the medium ear contains a conduct with
variable transversal section, the cochlea, inside which a
wave is formed. From the hydrodynamical point of view,
the cochlea is split-up in two channels separated by the
basilar membrane. The differences in pressure at both sides
of the membrane produce deformations resulting in a res-
onance pattern detected by a series of thin receptors, the
hair cells, which are connected to neurons [2]. Thus, the
electrical signal sent to the brain is in fact a transduc-
tion of the geometrical representation of the deformation
of the basilar membrane. The set of nodes of the wave is
consistent with only one note (i.e., with only one Fourier
spectrum) and then, two notes will be more consonant as
more nodes in common they have [1]. Mathematically, the
consonance is reflected in a simple ratio between the fun-
damental frequencies of each note. For example, if ω10 and
ω20 are the fundamentals of two notes, a sequence from
consonance to dissonance is ω20/ω10 = 1, 2, 3/2, 4/3 etc.
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The intervals between ω10 and ω20 are denominated the
same note, octave, fifth, fourth, etc., respectively. For the
purpose of this work, we define tuning as the process in
which two or more sound emitters change their pitches in
way of equaling all or part of their Fourier spectra.

2 Looking for the model

In order to elaborate a mathematical model which repre-
sents the main features of the tuning process, we are going
to extract basic ideas from some well-known responses of
the auditory system and also from prototype experiments:

(i) The interaction term have to be a function which goes
to zero when the ratio between frequencies is a simple
fraction. In this way, we cover the physiological and
mathematical grounds of consonance.

(ii) Two complex tones with the same Fourier family but
differing only in that one of them has the fundamen-
tal missing, will be listened by the singer as the same
pitch. This ability of human beings was characterized
and explained through the concept of virtual pitch
perception introduced by Terhardt [8,9]. We have
verified this response doing several experiments re-
questing to the singer to tune a guitar’s sound which
was sequentially filtered in its lower harmonics. In
consequence, the functional response should be pro-
portional to all the spectrum more than a single fre-
quency.

(iii) The point of subjectivity of “how I listen to my part-
ner and how predisposed I am to interact with him”
can yields different final results of tuning exercises
even for the same couple of singers and with the same
initial condition. The model must contemplate this
possibility.

(iv) Finally, and with the aim to define terminology, it
is useful to analyze a very simple tuning exercise: a
singer is asked to maintain his pitch while the partner
is moved until both are tuned. None of them know
the initial note of the other. The sonogram (tempo-
ral evolution of the Fourier spectrum) of this exer-
cise is shown in Figure 1. At the beginning there is
a brief interval of about 0.2 s in which the singers
locate their initial note then, an period of approxi-
mately one second lapses, and finally they effectively
start the exercise. We interpret the first interval as
the necessary time to accommodate the singing ap-
paratus (vocal cords, resonators, air emission, etc.) to
produce a musical sound. The time spent in this ac-
tion can be reduced with training. The second stage
is necessary to perform the cognitive operation to lis-
ten to all the notes emitted and to take the decision
to move the pitch up or down to tune. The remaining
time is dedicated to feedback in order to achieve tun-
ing. We are going to name this last stage as dynamical
tuning. In the example of Figure 1, and because the
watchword imparted, one of them acts like if he does
not listen to the other. In other words, there is an
asymmetric coupling between them.

Fig. 1. Sonogram corresponding to a singer (a female) tuning
a note emitted and maintained by other singer (a male). The
colormap on the right indicates the scale of relatives intensities
of each harmonic. In the first 0.2 s the singers accommodate
the emission, then they listen to the other and after one second
they start with the dynamical tuning. We have verified that the
time required for each stage is quite constant over a hundred
of records with different pairs of singers.

Keeping in mind these precepts, we propose the fol-
lowing set of equations describing the coupled dynamical
evolution of complex tones emitted by N singers:

dωi0

dt
=

∑

j

∑

µ

KijIjµ sin
(

2mπ
ωjµ

ωi0

)
, i = 1, ..., N. (1)

ωjµ is the frequency of the µth harmonic of the jth
individual within the group, Ijµ is the relative intensity
of the corresponding harmonic in the Fourier expansion
defining the timbre of the sound, Kij is an off-diagonal
matrix (Kii = 0) representing the effective relative mag-
nitude of the coupling between pairs of singers and m is
an integer constant.

The sine argument is the responsible to drive the
equilibrium of the equations since when the relationship
mωjµ/ωi0 is an integer, the temporal derivative goes to
zero. This sine function is indeed the key point of the
model. The condition for the roots works as the mathe-
matical representation of the natural behavior of singers
to maximize the coincidence of nodes in the resonance
pattern of the basilar membrane. In this sense, the good-
ness of the sine-like interaction is independent of m since
regardless the particular value of m, this functional re-
sponse fits the requirements of point (i). In a more gen-
eral approach, the set of equation (1) should include a
sum over m but, as we are going to see later, the trends
of the experimental records can be reproduced with only
one family of m−like functions.

The absolute magnitude of the coupling is given by
all the right side of equation (1) and the product K × I
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defines the temporal scale of the process. A coupling pro-
portional to all Ijµ guarantees a response to the Fourier
family more than a frequency in particular [point (ii)]. Kij

can be thought in zero order approximation as a magni-
tude of the volume of the emission, but as this matrix is
asymmetric in general (Kij �= Kji), it can contemplate the
alternative that one of the singers emits always the same
pitch independently of the movement of the rest. Kij = 0
means “the i-singer is not coupled with the j-singer” either
because he does not listen to the group or he has decided
not to change his pitch. By adopting different values for
Kij we can obtain different final results for the same pair
of singers and starting with the same notes respectively
[point (iii)].

By construction, this model is oriented to describe the
dynamical tuning, i.e., when the singers start to move their
frequencies by interaction.

3 Results and discussion

The individuals selected to all the experiences were non-
professional singers but most of them have or had some
training in collective singing. We formed 24 pairs of singers
and we recorded more than one hundred experiences. The
exercises were simple: firstly the initial note is indicated;
each singer listens to only his own note. Then, they si-
multaneously start and change their pitches until to find
tuning. The watchword was “to arrive to the same note”,
which for a medium-trained singer covers the possibility
to tune in an octave. This last alternative is more prob-
able when the separation between the initial pitches is
large and/or when we treat with a female-male couple.
We have not taken into account those records in which
the watchword was not properly understood. We also dis-
carded records in which one of the singer is near to the
limit of his range.

The numerical resolution of the system of equations
was done through an one step solver based on a Dormand-
Prince-Runge-Kutta formula [10] in which the frequencies
were assumed constants in the brief interval corresponding
to the discretization adopted (�1 ms). The numerical ab-
solute error for the fundamental frequencies was 10−5 Hz.
In each case the initial values of fundamental frequen-
cies (ωi0) and harmonic intensities (Ijµ) were extracted
from an Fourier analysis of a small initial interval of
the corresponding experimental records. Strictly, the har-
monic intensities change with the frequency [I = I (ω)].
However this ω−dependence is noticeable only when the
pitch of the sound emitted is close to the boundaries of the
range (especially upper limit). Therefore, considering that
most of the exercises imply pitches in the medium region
of the range, we assume the harmonic intensities as con-
stants [I �= I (ω)]. In consequence, and due to we present
examples on pairs of singers, the only adjusting param-
eter in the simulations is the ratio between the effective
couplings K21/K12.

Figure 2 shows results for typical examples of tun-
ing exercises and its corresponding simulation. We have
drawn on left panel the experimental sonogram of the

Fig. 2. Three different tuning examples. Left panel: Exper-
imental sonograms corresponding to the dynamical tuning.
Same colormap as in Figure 1. Right panel: Results of the
model given by equation (1) with m = 1. The values of the
fundamental frequencies (ωi0) and the relative intensities of
the harmonics (Ijµ) are taken from a Fourier Analysis per-
formed over the interval 0 s – 0.5 s of the corresponding exper-
imental record. The drawing of simulations does not take into
account the Fourier intensities. (a) a baritone and a mezzo-
soprano moving their pitches together and converging in an
intermediate note of ω = 219 Hz. The agreement was achieved
with a symmetric coupling: K21/K12 = 1. (b) Two tenors
starting with a weak consonance and ending in a same note
of 185 Hz aprox. For this case the coupling was asymmetric,
K21/K12 = 25. (c) An example of tuning in an octave per-
formed by a baritone and a soprano. In this case the coupling
ratio used in the simulation was K21/K12 = −1.

dynamical tuning and on right panel the results of the
model given by equation (1). Figure 2a corresponds to a
baritone and a mezzo-soprano who start with relatively
near pitches (ω10 = 187 Hz and ω20 = 258 Hz) and af-
ter 2.5 s they converge in a common note of intermedi-
ate value (ω = 219 Hz). Both experimental and theo-
retical results show an asymmetric dynamical evolution
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of each spectrum in spite of the coupling is symmet-
ric in this case (K21/K12 = 1). In Figure 2b the ex-
ercise for two tenors is drawn, one of them practically
maintaining (by own decision) his pitch. Here we can ob-
serve as the initial interval means a type of consonance
since there is a coincidence in harmonics of high order
(ω20/ω10 = 220 Hz/185 Hz � 6/5) but as the instruction
is to move towards to the same note one of the singers
changes his pitch up to lock all the spectrum with the
other. In this case we reproduce the experimental evolu-
tion by adopting an asymmetric coupling (K21/K12 = 25).
Figure 2c is an example of a tuning in an octave for
a baritone-soprano couple. The initial interval is a fifth
(ω20/ω10 = 272 Hz/181 Hz � 3/2) and after the dynam-
ical tuning they converge to an octave with fundamental
frequency of ω10 = 146 Hz for the baritone. In this exam-
ple the ratio between effective couplings is K21/K12 = −1.
In all the cases the time required for the dynamical tuning
is about 1.5 s – 2 s independently of the training or the
quality of the singer.

Theoretical results shown in Figure 2 are very encour-
aging since they reproduce almost exactly the experimen-
tal records but it is worth to mention a word of caution.
The minus sign in the relation between effective couplings
of the simulation presented in Figure 2c seems to be non
intuitive. However it is not a conceptual barrier since in
this case we need that the fundamental frequencies go
away one of another in order to tune in an octave. So,
the minus sign changes the direction of the derivative fa-
cilitating the movement of fundamentals in the correct
sense.

In addition to the precedent qualitative argument, we
have performed a stability analysis of equation (1). Partic-
ularizing to the case of N = 2 and taking into account that
sound emitters are singers, which implies ωi,µ−1 = µωi0,
the condition for the stable equilibrium is [11]

[
K21

∑

µ

(−1)2mµ/r µI2µ + r3K12

∑

ν

νI1ν

]
> 0, (2)

where r = ω20/ω10. As we can observe, the validity of
equation (2) it is possible for a wide range of K21/K12 (our
free parameter). In particular, the situation of Figure 2c
corresponds to r = 2 and m = 1 and an odd number of
harmonics for the second singer, that is, an example where
the equation (2) can be verified with a ratio K21/K12 < 0.

We remark that we have wanted to fit the experimen-
tal records with only one type of m−like functions. In the
context of this paper, the constant m works as a degree of
freedom of the model. In many cases –mainly when there
is not tuning at the same pitch– the model with m = 1 is
not able to reproduce the experimental evidence although
by fixing m = 2 we recover a good agreement. Clearly, the
stability domains in the time scale selected for the equa-
tion system change with m and then it is necessary to ana-
lyze what is the proper value of m for each case. This addi-
tional degree of freedom allow us to explore other possible
solutions. Figure 3 shows an interesting situation in which
we have changed the watchword asking to the singers “to

Time (s)

F
re

qu
en

cy
 (

H
z)

0 0.5 1  1.5
200

600

1000

1400

0 0.5 1 1.5 2
200

600

1000

1400

Time (s)

F
re

qu
en

cy
 (

H
z)

Fig. 3. A tenor and a mezzo-soprano tuning in consonance,
from a fourth towards a fifth. Left panel: Experimental sono-
gram. Same colormap as in Figure 1. Right panel: Results of
the model given by equation (1) with m = 2. The fundamen-
tal frequencies (ωi0) and the relative intensities of the har-
monics (Ijµ) are taken from the Fourier Analysis performed
over the interval 0 s – 0.2 s of the corresponding experi-
mental record. The coupling ratio used in the simulation was
K21/K12 = −0.15.

arrive to a pleasant sensation”. Here we can study what
consonance means for each couple since the watchword
can be interpreted in a more subjective fashion. The ex-
ample shown in Figure 3 is part of an exercise lasting 12 s
approximately in which the singers cross several stages of
dynamical tuning. The sequence was firstly a fourth and
then three different fifths, each one in a more comfortable
sector of their ranges. We selected the first movement from
a fourth (ω20/ω10 = 420 Hz/319 Hz� 4/3) towards a fifth
(ω20/ω10 = 425 Hz/283 Hz� 3/2). The record was re-
produced by taking K21/K12 = −0.15 and m = 2. We
notice that because his subjectivity the results emerging
from this second watchword were diverse and very singer-
dependent and we not always reached a good simulation.

4 Conclusions

As a summary, in this work we propose a model describing
a particular and predictable human behavior like the tun-
ing process between singers. The calculations were done
taking as input parameters the experimental values of ini-
tial fundamental frequencies and harmonic intensities so
that we use only one free parameter, the ratio between
the effective couplings. We were able to reproduce almost
exactly the dynamical evolution for several situations and
we believe that this model containing the main features of
the tuning process could be the starting point to further
investigations in this field.
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