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ABSTRACT: In this work we investigate the performance of several
simulation techniques, i.e., Canonical Molecular Dynamics, Canonical
Monte Carlo, and the Optimized Multicanonical Monte Carlo, to study
melting-like transitions of Co/Au nanoalloys that are compared to those
of pure Co and Au clusters of the same size. A surprising enhancement in
the thermal stability of core/shell Co13Au42 is observed compared to both
pure clusters of the same size and shape. The novel property is analyzed
using energetic and vibrational contributions throughout a detailed
microscopic dynamic analysis.

I. INTRODUCTION

In recent years the study of small metal clusters and
nanoparticles has been the focus of several research areas,
such as catalysis, solid-state physics, chemical-physics, bio-
medicine, and optics, to mention only some outstanding
applications.1

Very recently, much effort has been devoted toward the
possible use of metallic nanoparticles in biomedicine.2−5 It is
well established now that the strong optical absorption and
scattering of metallic nanoparticles is due to the localized
surface plasmon resonance,6 a phenomenon which opens
frontiers to the development of novel biomedical applications.
The resonant extinction, which can be tuned to the near-
infrared (nIR), allows the metallic nanoparticles to act as
molecular contrast agents in a spectral region where tissue is
relatively transparent. The localized heating due to resonant
absorption, also tunable into the nIR, enables new thermal
ablation therapies and drug delivery mechanisms.7 The use of
bimetallic nanoparticles with a core−shell configuration will
enhance strongly the possibilities of a practical use of the
resonant extinction. For instance, nanoparticles with a core−
shell configuration where the magnetic core (i.e., Co, Ni, and
Fe) is coated by a shell layer of a material which is
biocompatible (i.e., Au) can present a more robust structure,
so that they are very promising advanced materials.8−16 Such
structures are useful for studying proximity effects and structure
stabilization, as the shell (Au) can protect the core (Co) from
oxidation. Additionally, the shell provides a platform for surface
modification and/or a further functionalization (i.e., thiolated-
DNA and protein adsorption), linking magnetic properties and
biocompatibility.17

Thermal stability is one of the basic requirements for a
nanoparticle to be used in biological applications. It is therefore
of crucial importance to study the thermal behavior of pure
metallic nanoparticles as well as of binary metallic particles, the
latter being in the core−shell configuration. One of the most
important issues to be studied is the melting behavior, i.e. the
solid−liquid phase transition. Metal nanoparticles usually have
a much lower melting temperature than the corresponding bulk
metals due to large surface-to-volume ratio. A common
phenomenon observed by both experimentally and by means
of theoretical calculations is that the melting point decreases
with decreasing particle size.18−21

The study of the melting of nanoalloys depending on their
size and composition has gained increasing attention in the past
few years. From a theoretical viewpoint, melting of pure metal
nanoparticles and nanoalloys has been studied by classical
thermodynamic methods (see ref 1 and references therein).
Many of these studies have employed computer simulations
methods, which are very well suited to analyze the melting
process in detail. In particular, the atomic structure and the
energetic contributions can be extracted during the simulations
in simultaneous. Many simulations have shown that nanoalloys
may undergo complex structural transformations before
complete melting (see ref 1). For example, with increasing
temperature nanoalloys may fluctuate between homotops,
keeping their overall geometric structure fixed. In addition,
surface melting and/or demixing may also occur with increasing
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temperature before the complete melting of the whole
nanoparticle.
The most common simulation methods in this field are

canonical Monte Carlo (cMC) and canonical molecular
dynamics (cMD). Both have been widely used in simulating
the melting of nanoalloys and of nanoparticles in general.
However, a comparison of these different simulation techniques
is missing or only scarcely developed in the literature.
In the present work we choose Co, Au, and Co/Au

nanoalloys as model systems, because of the great interest in
them for applications in different fields. Cobalt-containing
nanoparticles are chemically reactive and ferromagnetic. Joining
gold with cobalt, we expect to obtain core−shell structures,
with a cobalt core and a gold shell, because these metals mix
very weakly in bulk and gold has a lower surface energy. In
these core−shell structures, a much less reactive and much
more biocompatible metal is in contact with the external
environment, while the Co core still retains its magnetic
properties.
From the point of view of the bulk materials, Au and Co

present a marked difference in melting temperatures: 1337
(Au) and 1768 K (Co) which makes the study of their core−
shell nanoalloys even more attractive. The present paper is
structured as follows. In section II the methodological
background and computational details are outlined. The results
and their analysis are presented in section III. section IV
contains the discussion and conclusion.

II. METHODOLOGIES AND COMPUTATIONAL
TECHNIQUES

In all simulation techniques that will be used in the following,
the interactions between atoms are modeled by a potential
derived within the second-moment approximation of the tight
binding model (SMTB).22 Within this model, the potential
energy is calculated as follow:
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The first term on the right-hand side represents the atomic
repulsion at short distances and the second one the attractive
part of the potential. The SMTB potential parameters for Co−
Co, Au−Au, and Co−Au that are used in most of the
simulations are listed in Table 1. These parameters are taken

from ref 23. Another set of parameters for the Co−Co
interactions (taken from ref 24) has been used to check the
results in some cases. We note that both parameter sets are able
to reproduce the correct stability of anti-Mackay and chiral
icosahedra in agreement with density-functional calculations.25

Global Optimization Searches. Global optimization
searches were used to look for the lowest-energy structures at

the given sizes and compositions. The global-optimization
algorithm is basin hopping and its variants, as detailed in refs 26
and 27.

Canonical Molecular Dynamics (cMD). Molecular
dynamics simulations were performed by a homemade code
in the canonical ensemble (NVT). Temperature is controlled
by the Andersen thermostat. The equations of motion were
solved by the Velocity Verlet algorithm, with a time step of 5 fs.
In most cases, the heating rate was of 1 K/ns. Slower rates

have been used in some cases to check the convergence of the
results. All reported cMD caloric curves are the result of an
average of at least ten independent runs. Each run starts from
the lowest energy structure found by the global minimization
searches.

Canonical Monte Carlo (cMC). In this case, the
simulations were carried out by means of an off-lattice Monte
Carlo algorithm in the canonical scheme, where the positions of
the atoms were allowed to change. Unlike in the case of lattice
models, where atoms may assume only certain positions in a
pregiven lattice, in this type of simulations the atoms can access
any point in space. The only restriction applied to their motion
is given by the transition probability between the initial and
final state as prescribed by Metropolis algorithm.28 “Short-
jumps” allow description of the vibrational motion of all atoms
in the neighborhood of their equilibrium positions.29

The number of particles N and the volume V were fixed all
through the simulations and the temperature T was allowed to
increase from 1 × 10−4 K until 1000 K in 500 steps of 30000
MC-step each. Thus, in this stepwise procedure the system
explored the configuration space at different temperatures,
allowing the accumulation of the average potential energy and
its fluctuation with temperature. A total of ten independent
simulations were averaged for each melting run, all starting
from the lowest energy structure found by global optimization.

Optimized Multicanonical Monte Carlo (mMC). A more
sophisticated Monte Carlo method has been also implemented.
This will be denoted in the following as optimized multi-
canonical Monte Carlo (mMC). This method combines the
Trebst et al. optimization of the ensembles for equilibration in
broad-histogram Monte Carlo simulations30 with the multi-
canonical algorithm.31 In our method the conformational
sampling of the system is obtained through a hybrid Monte
Carlo procedure, where the move is done by the molecular
dynamics, in an unphysical statistical ensemble which adopts,
instead of the Boltzmann weight, an artificial one ensuring
maximum number of roundtrips between low (E−) and high
(E+) potential energy (E) values per unit computer time.30

According to Trebst et al.,30 a certain weight w(E) in a general
ensemble, defining the acceptance probabilities for moves based
on the standard Metropolis scheme
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is preliminarily necessary to be able to sample all the system’s
energy range of interest (E−,E+). With the aid of this weight a
Monte Carlo simulation is performed and three histograms are
collected: the histogram H of the potential energy E and the
histograms H− and H+ of the so-called “labeled walker”. This
simply means that the sampled energy values contribute to the
histogram H− until the value E+ is reached. Since then the
histogram H+ is updated instead of H− until the value E− is
reached again and H− begins to be further updated instead of

Table 1. SMTB Potential Parameters Used for Au−Au, Co−
Co, and Au−Co Interactions (from refs 23 and 24)

Au−Au Co−Co Au−Co

A/eV 0.210 0.189 0.141
ξ/eV 1.818 1.907 1.614
p 10.35 8.80 10.66
q 4.178 2.960 3.113
r0/Å 4.073 3.620 3.850
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H+, and so on. During the simulation a convenient number of
roundtrips in (E−,E+) must be realized to form accurate
histograms H− and H+. Trebst et al. considered the random
walk in energy as a diffusion process in the energy space, and
developed an analytical procedure to optimize the flow of the
sampling process across the energy range so as to maximize the
roundtrip rate, by using a Fick’s law formalism, and relating the
optimal sampling distribution to the local diffusivity profile.30 In
such a way they obtained a recipe for building the optimal
biasing weight in an iterative fashion by using the above-
mentioned energy histograms. The result of their analysis is
that given the starting w(E), a better weight is obtained by

′ =w E w E
H E

f E
E
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With the new weight w′(E) a new run can be performed and
eqs 3 and 4 used to obtain an even better weight. After a certain
number of iterations the optimal weight will be at convergence
and the random walker will perform the maximum number of
roundtrips per given computer time in (E−,E+). From the point
of view of the systems we are interested in, maximizing the
number of roundtrips helps in escaping more efficiently from
the different local minima and funnels in the potential energy
surface, thus ensuring the most complete sampling of the
energy landscape for a given computational time. Further, since
maximizing the roundtrip speed implies spending more time in
those regions of the energy landscape where the diffusivity is
low,30 the method ensures more thorough sampling of the
energy landscape‘s bottlenecks, corresponding to the regions
where phase transitions take place, which are very delicate to be
accurately sampled. Though very appealing, this method is not
self-sufficient since it requires a starting weight allowing for the
sampling of the entire range (E−,E+) to be known. In the case
of nanoclusters and nanoalloys this means that a weight must
be available to sample from energy E− pertaining to zero Kelvin
(the energy of the global minimum), or to any temperature
below the relevant phase transitions we want to study, to some
energy E+ well above the melting point of the system. Of course
this weight is not known, and if it is so, the complete
thermodynamic of the system should be already solved. For
systems of moderate complexity, this weight can be constructed
by means of some generalized ensemble technique such as
parallel tempering,32 Wang−Landau algorithm,33 1/k sam-
pling,34 multicanonical method,31 and so on. Moreover the
thermodynamic properties can be calculated directly by
reweighting from those weights without resorting to the
optimization of the ensemble. Anyway, it is known35,36 that
these methods in their basic formulation run into troubles if the
system’s energy landscape presents a very complex topography
though narrow bottlenecks, multiple minima, and multifunnel
structure, which is the case of metallic nanoclusters and
nanoalloys, since they experience dramatic slowdown in
crossing the phase transition regions of the potential energy
surfaces, and the “tunneling times” between low and high
energies severely increase, thus leading to inefficient/inaccurate
sampling of the whole energy spectrum. Our idea was then to
take advantage of the capabilities of the generalized ensemble
methods to build up the weights to sample wide ranges of the

energy space, and contrast their difficulties in overcoming
entropic barriers by means of the ensemble optimization30

which speeds up the random walk in E by enhancing the
sampling exactly in those critical regions of the potential energy
landscape which make the generalized ensemble techniques to
run in troubles. The multicanonical31 and the ensemble
optimization30 techniques were then combined in an original
protocol to build the weight and optimize it on the fly rather
than applying each method sequentially, which could be
impossible in the most complex cases. It is worth mentioning
that the choice of the multicanonical method is not mandatory,
and other methods could have been chosen as well. In the
multicanonical method, a weight proportional to the reciprocal
of the system’s density of states is iteratively built up and used
to sample the potential energy surface. The algorithm can be
briefly described as follows: in a first iteration a standard
canonical simulation at a high temperature T where the system
is melted is performed and the histogram H1 of the energy is
collected. The visited energies will be in some range (E0

1,E1
1).

Then a biased potential E′ = E + kBT ln[H1(E)], (kB being the
Boltzmann constant), is used to perform a second iteration.
Such a biased potential produces roughly a uniform sampling of
the energy values in the range visited in the preceding iteration,
and extends the new range of visited energies to a broader
(E0

2,E1
2), containing the preceding range. Some technicalities are

to be implemented so that the new visited energy range is
extended only toward the lowest energies, the highest limit
roughly remaining E1

1, i.e., such that (E0
2,E1

1) is the new range
with E0

2 < E0
1 . The histogram H2 of the energy is collected again

and used to make a new bias for a further iteration with
potential E″ = E + kBT{ln[H

1(E)] + ln[H2(E)]} which will
produce roughly uniform sampling in (E0

2,E1
1) and visits in a

broader range (E0
3,E1

1) with E0
3 < E0

2. By proceeding in this way
the whole energy spectrum of the system can be visited from
the melt to ideally the global minimum, and the equilibrium
thermodynamic of the system can be characterized as a function
of the temperature. Indeed from the known bias and the
system’s configurations at all energies, reweighting procedures
can be used to recover the physics of the systems at
temperatures other than T used for the simulation.32 Our
method works exactly within this framework, but optimization
of the ensemble is also introduced by collecting on the fly the
histograms necessary to the Trebst et al. procedure and biasing
the multicanonical weight by means of eqs 3 and 4 over the
growing range of energies visited during the different iterations.
To be more explicit, suppose the first iteration of the
multicanonical method is completed and the multicanonical
weight is built up in the sampled range (E0

1,E1
1). We can identify

E0
1 with E−, and E1

1 with E+ and collect H, H−, and H+ while
running the second iteration. At the end of the second iteration
these histograms can be used to optimize the multicanonical
weight in the range (E0

1,E1
1) by means of eqs 3 and 4, whereas

the standard multicanonical weight is built up in (E0
2,E0

1).
Running the third iteration with this composite weight will
enhance the roundtrip speed in the range visited during the first
iteration, while working as the standard multicanonical method
below E0

1. In particular the visited energy range will develop
toward lower energies as desired. If we now identify E0

2 with E−,
we can collect the quantities to optimize the weight over the
range (E0

2,E1
1) visited during the second iteration. By proceeding

in this way we can optimize the multicanonical weight over the
growing energy range visited iteration by iteration, thus
enjoying the advantages of both the multicanonical and
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optimized ensemble methods and overcoming the deficiencies
of each one. Though both the algorithms adapted and
combined in the original procedure proposed here are neither
presented nor implemented as parallel techniques, the method
described above, was given a parallel implementation so as to
take advantage of multiprocessor computers and further
improve the statistics by combining the results of different
parallel runs. Essentially each processor works as described
above, but the underlying multicanonical, optimized weights,
and histograms are built up by combining the different
processes’ outcomes. All of the necessary histograms collected
among the processes were combined through a procedure
derived from the Fenwick’s direct multiple histogram
reweighting method.37 According to this procedure the
histograms coming from the different processes are weight-
averaged, the weights being built up using the hypothesis that
the update of a histogram follows the Poisson statistics. In this
way the uncertainty for each bin in the histogram is a direct
function of the number of hits in that bin, and both the weights
and the average can be built up in one step with no more
information than the available histograms.37,38 The procedure
was applied to the same pure and bimetallic clusters studied by
means of MD and MC. All the runs employed 48 parallel
processes (random walkers) and completed within 15 to 35
iterations, depending on the size of the systems. The number of
MC steps was assigned to each iteration according to a
geometric progression starting from a minimum value for the
first iteration to a maximum one for the last. The number of
MC steps per process necessary to complete the runs, ranged
from 90 million for the smallest clusters to 250 million for the
biggest ones. Since one MC steps corresponds, in our hybrid
Monte Carlo algorithm, to one step of Molecular Dynamics,
the computational burden given in terms of MC steps coincides
with that given in terms of number of potential energy function
evaluations.

III. RESULTS AND DISCUSSIONS
Pure Clusters. Caloric curves, i.e., potential energy as a

function of temperature, were constructed for both Au and Co
clusters of different sizes starting at low temperature from their
global minimum, obtained through the basin-hopping algo-
rithm, in the case of cMC and cMD.
In the macroscopic limit, these curves are a useful tool to

monitor the occurrence of phase transitions, which imply a
sudden jump in the energy with respect to the temperature.
This occurs at the melting temperature Tm.
This strategy, however, is not suitable for a reliable estimate

of the correct melting temperature in the nanoscopic limit,
where it is more appropriate to speak of a melting temperature
range. Small clusters and nanoparticles do not have a sharp
phase transition. Instead, melting occurs over a finite interval of
temperatures, although the width of the interval becomes
smaller as the nanoparticles increase in size.38

In Figure 1 caloric curves for pure gold clusters of 55, 147,
and 309 atoms are shown, as well as the global minima
structures (insets). As it can be observed the well-known
melting-point depression is captured using the three methods
mentioned above. In general terms, a good agreement is found
between all simulation techniques, in particular in the regions
before and after the melting range. In the case of optimized
mMC simulations, a more sudden jump in the curve is
observed (see Au309) and it appears at lower temperature. By
construction mMC is able to perform many transitions across

the melting point during the simulation. This allows for an
accurate sampling of the configurations on the potential energy
surface (PES) contributing to the transition bottleneck, by
allowing for the same degree of ergodicity at all energy levels.
On other side, ergodicity of cMD and cMC is ideally reached
with some infinite sampling, which is not the case of typical
simulations. As can be observed in the caloric curves, for the
largest system the melting range appears at different temper-
atures for the three methods, although the difference is
relatively small, especially if we consider the model limitations
for reproducing experimental melting temperatures. For
studying the performance of cMD technique with the
improvement in the sampling, we have varied the rate of
heating from 1.00 to 0.01 K ns−1 for Au147 and from 1.00 to
0.10 K ns−1 for Au309. Results are shown in Figure 2. As can be
observed, the melting region moves to lower temperatures and

Figure 1. Caloric curves for Au clusters with N = 55, 147, and 309
atoms (from top to bottom), using cMD, cMC, and optimized mMC
simulations. Initial structures corresponding to global minima are also
shown in the inset.
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gets closer to the value found with mMC as the rate of heating
becomes smaller. This is due to the improvement in the
sampling which allows a more complete exploration of the PES
during the transition. The behavior of cMC algorithm is similar
to cMD but with a slower convergence (not shown here). The
implementation of new types of moves could accelerate that
convergence.
On the other hand, for some systems mMC was not able to

reach a global minimum structure without exploring the
convergence as a function of the number of iterations, and
configurations of higher energy were found for low temper-
atures, getting stuck into a small pool of all the available
conformers (see blue curve in Figure 2a). Note however that,
even in this case, both cMD and mMC agree very well for what
concerns the melting temperatures. The main difference is that
the jump in the caloric curve is larger in cMD than in mMC,
because the former samples lower energy isomers at lower
temperature, since it starts from the global minimum. If the
number of iterations is increased in mMC for Au147, a
noticeable improvement of the results is obtained. We show
in Figure 2a how increasing the number of iterations from 20
(blue curve) to 22 (red curve) and the quantity of parallel
processors used from 24 to 48 yields better results, reaching
now, at low temperatures, the lowest energy structure.
As in the case of pure gold clusters, for cobalt the jump in the

melting curves increases with the size of the clusters, as
expected for metals in the nanoscale (see Figure 3). It is
interesting to note in this case the excellent agreement found
between the three techniques during the range of temperatures
before and after melting, and during the phase transition for
small systems. However, significant differences are found in the
region close to the melting-like, in particular for the largest
cluster (Co309). These differences could be attributed −in
principle− to the different sampling procedures used to
evaluate the energy of the systems, as we have pointed before.
We can also see that the temperature at which melting process
begins follows the same sequence as for pure gold clusters:
mMC < cMD < cMC.
A fact that is worth mentioning is that in all cases the energy

at low temperature is exactly the same (not shown in the
curves), even in the case of mMC, for most of the systems,
where the starting point is a canonical simulation at high
temperature (above the melting point), whereas, in the case of
cMD and cMC the starting points are the lowest-energy
structures obtained with the basin-hopping algorithm. An extra
capability of the mMC procedure is that there is no need to
know the structure of the global minimum in advance to

Figure 2. Comparison of the performance of mMC and cMD using different sampling, (a) Au147 and (b) Au309.

Figure 3. Caloric curves for Co clusters with N = 55, 147, and 309
atoms (from top to bottom), using cMD, cMC, and optimized mMC
simulations. Initial structures corresponding to global minima are also
shown in the inset.
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calculate the thermodynamic properties, such conformations
being, eventually, a result of the iterative method.
Co/Au Nanoalloys. After global optimization calculations

using the basin-hopping algorithm, in all cases, the tendency to
form core−shell structures emerged very clearly (see Figure 4),
even if the starting points for the calculation were randomly
generated bimetallic clusters, without any specific structural
motif.

The reorganization into core/shell structures occurs already
at the early stages of the global-optimization runs. This result is
interesting, as we have said, from a technological standpoint,
since it suggests the effectiveness of gold as possible passivating
agent. In the case of Co19Au52, a double icosahedron made of
two 55-atom icosahedra sharing several atoms was found as the
lowest-energy structure. Co39Au77 is of the icosahedral family.
The Co core is a distorted fragment of an icosahedron of 55
atoms. It is distorted in such a way that there are no reflection
symmetries (lack of any reflection plane) but it keeps a 5-fold
symmetry axis. So, that it is a chiral structure of C5v symmetry,
which is however different from those which were found in ref
26. Also about the melting temperatures of the nanoalloys the
results are interesting. Indeed the high value of this temperature
indicates strong thermal stability of the compound, suggesting
possible applications of these nanoalloys also in critical
environmental conditions.
In Figure 5 the caloric curves are shown for the three

nanoalloys considered. Again, a very good agreement is found
for the three simulation techniques when clusters are relatively
small (i.e., N = 55 atoms). However, when the number of
atoms increases as well as the number of homotops,39 a
discrepancy between the different methods was observed. For
instance, for the case of Co39Au77, cMC simulations show a
jump in E(T) at a relatively higher temperature. This could be
an effect of the moves−trials implemented in the cMC code
which are insufficient to sample the complex configurational
space. However, an excellent agreement is found between cMD
and mMC for Co39Au77.
In the case of optimized mMC simulations, with a number of

iterations ranging from 15 for the smallest cluster to 35 for the
largest one, it was possible to sample configurations that
contribute to the properties down to temperatures below 200
K.
Another significant property that can be used to study the

melting-like transition in detail is the heat capacity Cv, which

can be defined as a function of the fluctuations in the potential
energy as follows:

= ⟨ ⟩ − ⟨ ⟩
C

E E
k T

( )
v

2 2

B
2

(5)

where E is the potential energy, kB is the Boltzmann constant,
and T is the temperature.
In macroscopic systems, the melting point is defined as the

temperature where the heat capacity Cv vs temperature
diverges. It should be noted that in order to get correct values
of Cv the variance (⟨E2⟩ − ⟨E⟩2) should be uncorrelated. For
this reason we have performed an exhaustive analysis of the
correlation effect to ensure a good quality in the results of the
heat capacity. Figure 6 shows the heat capacity for Au55, Co55,
and Co13Au42 nanoalloy calculated with the three techniques.
The quality of the results obtained by means of the mMC

Figure 4. Final structures for the magic-number Co−Au nanoalloys
after global optimizations.

Figure 5. Caloric curves for nanoalloys with magic numbers N = 55,
71, and 116 (from top to bottom), using cMD, cMC, and optimized
mMC simulations. Selected snapshots of the atomic configurations
taken from the cMD simulations are shown.
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technique is evident. In the case of cMD and cMC large
fluctuations are observed.
A separate analysis deserves the smallest cluster (Co13Au42)

where the melting temperature is higher than that of the biggest
ones (i.e., Co19Au52 and Co39Au77), and also significantly higher
than that of both Au55 and Co55. This fact is probably related to
the particular stability that the “magic” geometry gives to that
specific composition and size. In the case of nonmagic clusters,
not represented here, the melting temperatures are even lower.
The fact that the mixed cluster Co13Au42 melts higher than

both pure clusters is a quite surprising result, which shows
significant differences compared to the results previously
reported in the literature (see the discussion below). In order
to check whether this result could be an artifact of our model,
we have also run simulations with the Co−Co parameter set of
ref 24 that have confirmed the same qualitative effect with
minor quantitative differences.
Let us discuss our finding in comparison with the available

results in literature. Previous simulations in different systems
(AgCu, AgNi, and AuCu) have shown that doping an
icosahedron with a single central impurity may increase
significantly the melting temperatures even for quite large
icosahedra. Mottet et al.40 have shown that significant upward
shifts of the melting point are achieved by putting a single Ni or
Cu impurity in the central site of Ag icosahedra, for size up to
561 atoms. This effect was attributed to the strain release
induced by the “small” central atom in the compressed central
site of the icosahedron.
In the case of Cu/Au icosahedra an analogous effect was

observed in cMC simulations by Cheng et al.,41 who showed
that the doping of icosahedral Au55 clusters with a single Cu
atom can raise the melting point significantly, by up to 150 K,
and the melting point of the three-shell Cu12Au43 cluster is 280
K higher than that of pure icosahedral Au55. However in that
case, the melting temperature of Cu55 was 780 K, indicating
that the melting temperature of the Cu12Au43 three-shell
structure is in the middle of both pure materials, as we can
speculate a priori.
Finally, for Ag27Cu7 and Ag27Ni7, cMD simulations have

shown melting temperatures that are higher than those of pure
high-symmetry clusters at nearby sizes.42 In this case the pure

clusters also have a different symmetry than the nanoalloys. On
the other hand, the pure clusters of the same size have a low
symmetry and this causes a low melting point. In summary, the
case of Co13Au42 is special because it is a high-symmetry
nanoalloy which melts higher than the cluster of the more
cohesive element (Co) that has the same size and the same
type of high-symmetry.
The phonon density of state (DoS) is defined as the

vibrational spectrum corresponding to a given system. In
molecules, such spectrum is determined by vibrations of the
individual bonds, it has a discrete nature, and it can be inferred
via infrared (IR), Raman, and other spectroscopies. In bulk
systems, the spectroscopic lines become broad bands, and
systems of intermediate sizes such as clusters or nanoparticles
have features ranging between those of the molecular and the
extended systems.43 The DoS function S(ν) was calculated
using the microcanonical MD trajectories, in order to study the
distribution of vibrational normal modes of the Co13Au42
nanoalloy system. The DoS function can be obtained from
the Fourier transform of the velocity autocorrelation function
C(t)

∫ν =
τ τ

τ
πν

→∞ −

−S
k T

C t t( )
2

lim ( )e di t

B

2

(6)

where ν is the frequency and C(t) is the velocity
autocorrelation function.44 A more detailed understanding
into the microscopic dynamics could be appreciated analyzing
the velocity autocorrelation function of a collection (α) of
atoms, Cα(t) instead of the whole function. In this sense, the
sets of atoms were chosen according to their coordination
number (cn), in order to distinguish between core (cn > 10)
and surface (cn < 10) atoms, considering only nearest-
neighbors for the calculations of cn.
Therefore a set of DoS functions Sα(ν) can be computed for

all systems. This function reveals the vibrational behavior of the
selected set of atoms.
Figure 7 shows the Sα(ν) functions for Au55 and Co55 clusters

computed at 200 K. Both DoS spectra showed a solid-like
behavior due to the absence of density of states at zero
frequency. Since the Au55 cluster at the global minimum does
not present a high-symmetry structure, the DoS does not show
noticeable distinguishing frequencies, as expected for any
amorphous-like structure, in good agreement with previous
results reported by Garzoń et al.45

A different behavior is observed in the case of the Co55
cluster where three vibrational modes are clearly distinguished
at high frequencies of the DoS. These normal modes
correspond mainly to the vibration of inner atoms. Even
more, both the core and shell atoms share the same
characteristic frequencies.
Figure 7 (lower panel) shows the Sα(ν) functions for the

Co13Au42 nanoalloy. As can be observed the normal modes at
high frequencies (corresponding to the core (Co) atoms) are
decoupled from the normal modes of the shell ones (Au); that
is, there are not shared frequencies, as can be observed for the
case of Co55, where at high and even at low frequencies there
are several normal modes of the core and shell atoms with the
same frequency. This effect could be responsible for the highest
melting temperature of the nanoalloy with respect to the pure
clusters of the same size. The Co13 core is stabilized by the
presence of a Au42 shell. Since the Au42 shell does not have any
normal mode of frequency similar to the Co13 core, the

Figure 6. Heat capacity (Cν) for Au55 (black line), Co55 (red line), and
Co13Au42 (blue line) nanoalloys using optimized mMC, cMD, and
cMC simulations.
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subsystems cannot transfer efficiently the energy and therefore
is thermally more stable than the pure ones.
Comparison of the Simulation Methods. As a summary,

we can compare the performance and results obtained from the
three techniques implemented in this work: cMD, cMC, and
optimized mMC. In the case of cMD and cMC, the knowledge
of the starting configuration is needed. At the initial stages of
caloric curves, the sampling is highly limited by the low
temperature, which confines the PES exploration in small
regions of configuration space around the initial minimum. If
the PES is multifunnel and simulation starts from a local
minimum structure, it will be difficult to jump to a different
funnel. If the structure of energy minimum is known, sampling
is correct in the limit of low temperatures, so that a good
performance can be obtained below and above the melting
range. In the zone of the solid−liquid transition an exhaustive
sampling is necessary if cMD or cMC are used, that implies
slow heating rates for multifunnel PES especially for relatively
large clusters in the case of cMD, or the inclusion of other types
of trial moves, such as large jumps or exchanges in the case of
cMC. In this case, the results obtained depend strongly on the

quality of the sampling. If the PES is dominated by a single
funnel, sampling is much easier and heating rates of 1 K/ns can
be sufficient for clusters of several hundred atoms. For
multifunnel PES and small sizes, even starting from a structure
which is not the global minimum may lead to a correct
description of the melting, because the cluster can rearrange to
the lowest-energy configuration while heating. However this is
not warranted, so that starting from the global minimum is
recommended.
Optimized mMC has in principle the advantage of starting

from a high temperature state, so no need of knowledge of the
lowest energy structure is required. The sampling with this
technique is broader, due to the smoothing of probability
profile and subsequent reweighting of the states in the
ensemble. Results in the melting region are more accurate,
and much less noisy. By other hand, calculations with this
methodology require higher computational resources and time.
Moreover, mMC sometimes fails to find the lowest energy
configuration if the number of iterations is not sufficient. The
correct number of iterations is indeed rather difficult to decide
a priori. In fact, in some cases we decided to increase the
number of iterations of the mMC simulations because we
already knew the global minimum structure, and we realized
that the mMC simulation was not yet able to find it.
In summary, our results show that the study of the melting of

nanoparticles and nanoalloys is a difficult problem, so that the
use of different computational techniques is recommended in
order to overcome the drawbacks that each of them would
present if used alone. In particular, a pre-exploration of the low-
energy part of the PES by some global optimization tool seems
to be necessary in any case. For cMD and cMC, global
optimization is necessary to give the correct starting
configuration. In the case of mMC, global optimization is
recommended because it gives reference results that are useful
to understand whether a sufficient sampling has been obtained
at low temperatures, below the melting range.

IV. CONCLUSIONS

We presented a detailed analysis of the melting transition in
pure Au and Co clusters as well as in Co/Au nanoalloys with
core−shell structure. Three different simulation techniques
were used to explore the melting transition. In general terms we
observe good agreement between the techniques; however,
some important differences are found in the temperature region
close to the melting. The optimized multicanonical Monte
Carlo technique seems to be the most appropriate to capture
with high precision the melting point, but it is recommended to
supplement it by global optimization searches to check the
quality of sampling at low temperatures.
Finally, for Co/Au nanoalloys, a novel phenomenon was

observed in particular for the Co13Au42 cluster, where an
enhancement in the thermal stability, compared to both pure
clusters of the same size, was detected. That is, the melting
temperature of the Co13Au42 cluster is higher than those of the
Au55 and even the Co55 clusters. Note that Co55 presents the
same kind of high-symmetry icosahedral structure as Co13Au42
and it has a much stronger total binding energy than Co13Au42.
To our knowledge, this enhancement of the melting temper-
ature has never been observed before.
A novel property has been examined by analyzing the energy

contributions from different group of atoms (core and shell). In
this sense, we found that the 42 Au shell atoms in the Co13Au42

Figure 7. Sα(ν) functions for Au55 (upper panel), Co55 (middle panel),
and Co13Au42 nanoalloy (lower panel). Red full lines correspond to the
total DoS, whereas the green and blues dotted lines represent the core
and shell DoS, respectively.
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cluster are energetically more stable than the corresponding
atoms of the Au13Au42 pure cluster.
The vibrational density of state functions have been used to

study the vibrational dynamics of the inner and surface atoms.
In particular we have found in the Co13Au42 nanoalloy that the
normal modes at high frequencies (corresponding to the core
(Co) atoms) are decoupled from the normal modes of the shell
atoms (Au). These findings constitute a motivation for further
research.
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