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ABSTRACT: The paper presents a three-dimensional coupled numerical solution of momentum, 
energy and solute conservation equations, for binary alloys solidification. The mushy zone is 
modelled as a porous medium, saturated in liquid, following Darcy’s law. Microsegregation 
is governed either by lever rule or Scheil models. The resulting solute, momentum and energy 
transport equations are solved using the Streamline-Upwind Petrov/Galerkin method. All 
these equations are coupled but solved with a single staggered scheme. The full algorithm 
was implemented in the 3D finite element code THERCAST. Two applications cases are 
given: solidification of Sn-Pb and Pb-Sn alloys in a parallelepipedic cavity. Comparisons 
with experimental measurements and with two other simulation codes are made. Full 3D and 
pseudo-2D calculations are also compared. Finally the mesh size effect on the accuracy of the 
solution is discussed. 

RÉSUMÉ. Cet article présente une résolution 3D couplée des équations de conservation de 
l’énergie, du soluté et de la quantité de mouvement pour les alliages binaires. La zone 
pâteuse est représentée par un milieu poreux saturé de liquide dont l’écoulement est supposé 
suivre une loi de type Darcy. La règle des leviers et le modèle de Scheil sont les deux modèles 
de microségrégation implémentés. Les équations de conservation sont résolues en utilisant 
une formulation Streamline-Upwind Petrov/Galerkin de manière couplée avec un schéma à 
un seul passage. Cet algorithme a été introduit dans le code THERCAST et validé sur deux 
applications : un alliage Sn-Pb et un alliage Pb-Sn dans une cavité parallélépipédique. Une 
comparaison a ensuite été réalisée avec les résultats expérimentaux et ceux des logiciels 
SOLID et CALCOSOFT. Enfin une étude de l’effet du maillage sur la précision des résultats 
est présentée. 
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1. Introduction 

Macrosegregation is a critical problem in alloy solidification. This 
inhomogeneity in solute concentration at the scale of the product is due to the 
transport of solute at a macroscopic scale. In this paper, we consider only the 
transport of solute due to the thermo-solutal convection for which the driving force 
is mainly located in the mushy zone. In order to solve this problem, conservation 
equations over the whole part domain, including the mushy domain may be obtained 
using either the classical mixture theory (Bennon et al., 1987; Prakash et al., 1989) 
or spatial averaging techniques (Ni et al., 1991; Ahmad et al., 1997).  

The main objective of the present work is the prediction of the macrosegregation 
pattern in a solidifying binary alloy. First we present the equations and the strategy 
adopted in THERCAST®, a three-dimensional finite-element code developed by 
CEMEF (Bellet et al., 2004). The implementation of the mixture theory and the 
spatial averaging technique has been already presented (see Fachinotti et al., 2003 
for details). Then we focus on the evolution of THERCAST with the 
implementation of two classical microsegregation models (lever rule and Scheil) and 
the coupled resolution of energy, solute and momentum conservation equations. 
Also the introduction of the SUPG-PSPG formulation of the mechanical problem is 
presented.  

The obtained results for two test cases (Hebditch et al., 1974), will be compared 
to experimental measurements on sections, and to those of SOLID, a 2D finite-
volume code (Combeau et al. ,1990) and also to those of CALCOSOFT (Desbiolles 
et al., 2003), the only other 3D finite element macrosegregation simulation code 
found in the literature. 

2. Resolution of conservation equations 

The analysis of fluid flow, temperature and solute distribution in a solidifying 
material needs the coupled resolution of the equations stating the conservation of 
momentum, energy and solute. 

2.1. Main assumptions of the model 

The present model of binary alloy solidification assumes 

− laminar, constant-viscosity, Newtonian flow in the liquid; 

− solid and liquid phase densities are equal and constant (ρl=ρs=ρ0), except in the 
buoyancy force term of the motion equation, where density depends on the 
temperature T and on the solute concentration in the liquid phase wl according 
to the Boussinesq approximation: 
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where βT and βw are the thermal and solutal expansion coefficients, respectively, 
and wl is the concentration in the liquid phase. Note that in this case, mass and 
volume concentrations coincide. 

− a saturated mixture, i.e.: 

1=+ ls gg           [2] 

being gs (resp. gl) the solid (resp. liquid) fraction; like solute concentration, those 
phase fractions are either mass or volume fractions. 

− rigid and fixed solid phase, corresponding to a columnar solidification. 

− the mushy region is modelled as an isotropic porous medium whose 
permeability is defined by the Carman-Kozeny formula 
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where λ2 is the secondary dendrite arms spacing. 

− local thermodynamic equilibrium at the interface between liquid and solid 
phases 

**
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where  (resp. ) is the solute content in the solid phase (resp. liquid) at the 
interface, k is the partition coefficient, Tm is the melting temperature, and m the 
liquidus slope (assumed constant). 

*
sw *

lw

We refer to (Voller et al., 1989) for a discussion on the range of validity of these 
assumptions.  

2.2. Microsegregation model 

Equations [7] and [8] are obtained using the mixture theory. The mean 
concentration results from the integration over a representative volume of the 
concentration in the two phases (Bennon et al., 1987). 

llss wgwgw +=         [6] 
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where w is the mean concentration, wl the average concentration in the liquid 
phase and ws the average concentration in the solid phase. 

Only two classical models are considered here: the lever rule and the Scheil 
model. The diffusion in the liquid at microscopic scale is considered as perfect for 
both models. The diffusion in the solid is perfect for lever rule, while there is no 
diffusion in the solid in Scheil model. This leads to a simple averaging equation for 
Lever rule, but for Scheil model it is necessary to take into account the solidification 
history because of the non-uniform solid concentration in the representative volume. 

Lever rule: ( )( ) llllss wgkkwgwgw −+=+= 1      [7] 

Scheil model:      [8] ll

g
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0
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In the following applications, only the lever rule has been used because of its 
simplicity and also to compare with other codes. 

2.3. Momentum conservation 

As presented in a previous paper (Fachinotti et al., 2003), the classical mixture 
theory (Bennon et al., 1987; Prakash et al., 1989) yields the following equation of 
motion: 

VgVV
K

p
dt
d μρμρ −+∇−∇⋅∇= ~)(0        [9] 

where V and p are the unknown averaged velocity (V=glVl) and the pressure field, 
respectively, μ is the dynamic viscosity and g is the gravity acceleration. 

The time-discretised form of equation [9] is obtained using the Euler-backward 
finite-difference technique. 

The spatial discretisation was originally carried out using mixed P1+/P1 
tetrahedral finite elements (Jaouen, 1998). Inside each element, the velocity is 
interpolated by a linear function enriched by a piece-wise linear bubble function, 
while the pressure is linear and continuous. Together with these elements, a ALE 
formulation is used, where the variables are updated by the upwind nodal technique 
(Bellet et al., 2004) which includes a lagrangian transport of the variables. 

In this paper we also test an other formulation newly implemented in 
THERCAST. The SUPG-PSPG formulation, presented for finite element 
calculations by (Tezduyar et al., 2000), is based on three stabilization coefficients: a 
SUPG coefficient (stream-upwind/Petrov-Galerkin), a PSPG coefficient (pressure-
stabilizing/Petrov-Galerkin) and a LSIC coefficient (least-squares on 
incompressibility constraint). 
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This formulation leads to the following weak form equation:  
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where v* et p* are the test functions (here equal to the interpolation functions), and 
τSUPG is the streamline-upwind coefficient, τPSPG the pressure-stabilizing coefficient, 
and τLSIC the least-square stabilization on the incompressibility constraint. 

The SUPG-PSPG formulation demonstrates a good stability when increasing 
time step and a good accuracy. 

2.4. Mass conservation 

Regarding the above hypotheses, the mass conservation equation reduces to: 

0=⋅∇ V                       [11] 
where V is the averaged velocity of the liquid phase. 

2.5. Solute conservation 

Redistribution of solute is governed by the equation 

( ) 0=∇⋅∇−∇⋅+
∂
∂ ww

t
w

l εV                     [12] 

where w is the average solute concentration and ε is a diffusion coefficient, usually 
negligible but necessary for numerical purposes. For this reason the diffusion term 
can be expressed in terms of w instead of wl as usual. 

Following (Voller et al. ,1989), the time-integrated version of equation [12] is 
written as: 
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0
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t
ww
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Δ
− VV ε                  [13] 

The superscript 0 refers to the values at the previous time step t0=t−Δt. The 
discretized form of the advection term is splitted to avoid a non-linear resolution as 
presented by (Voller et al. ,1989). 
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The weak form of equation [13] is solved using the well-known Streamline 
Upwind/Petrov-Galerkin finite element method (Brooks et al., 1982), with linear 
tetrahedral elements. 

2.6. Energy conservation 

We have implemented an enthalpy-based heat transfer model, which is governed 
by the energy balance equation written in the form 

( ) ( ) 00 =∇⋅∇−∇⋅+
∂
∂ TTc

t
h

p κρV                    [14] 

where κ is the thermal conductivity. According to the above mentioned 
hypotheses, the temperature T is related to the average volumic enthalpy h by the 
following equation: 

Lgdch l

T

T
p 00

0

ρτρ += ∫                     [15] 

where cp and L are the material specific heat and latent heat of fusion, 
respectively. 

Linear tetrahedral finite elements are used to discretise equation [14] in the 
spatial domain, while the Euler-backward finite difference technique is applied for 
time integration. The above-mentioned SUPG method is used for solving the 
advection-diffusion equation [14]. The eutectic transformation causes a jump in h(T) 
function. This non-linearity is treated using a Newton-Raphson algorithm. 

2.7. Resolution strategy 

The resolution is based on a weak coupling of the four equations. During a time 
increment, the resolution procedure is described by five steps: 

1- Resolution of energy conservation (eventually with a time step optimization 
based on a maximal temperature increment per time step) to obtain the average 
mixture enthalpy h 

2- Resolution of solute conservation equation to obtain the average mixture 
concentration w 

3- Knowing w and h, the dependent nodal variables gl, T, wl are computed locally 
according to the adopted microsegregation model. 
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4- Resolution of momentum conservation equation to obtain the average mixture 
velocity V and the pressure p. 

5- Updating of all the variables 

Additional steps are necessary in case of remeshing, because in this case, a 
transport of the variables to the new positions of nodes is necessary. 

In this work, this explicit staggered scheme is used for coupling the equations, 
which means that each equation is solved once time per time step because the full 
coupling of these equations leads to a prohibitive calculation time. 

3. APPLICATION 

The application cases consist of the solidification of Pb-48wt%Sn and Sn-
5wt%Pb ingots studied by (Hebditch et al., 1974). The phase diagram of lead-tin 
binary alloys is presented in Figure 1. In this test, the alloys are solidified in a 
parallelepipedic cavity (6 cm high, 10 cm wide and 1.3 cm thick, see Figure 2), 
which is insulated on all sides excepted the vertical side on the left. The position of 
the sections used for experimental measurements is also indicated in Figure 2. 

3.1. Sn-5%wtPb alloy 

The material and physical data are presented in Table 1. The computation has 
been performed with a non-structured mesh (29245 tetrahedral elements) refined at 
the walls. This case is considered as pseudo-2D by imposing two planes of 
symmetry and using only one element in the thickness in order to compare 
THERCAST results to those of the 2D code SOLID. A constant time step of 0.05s 
has been adopted. Figure 3 shows that the development of segregated channels in the 
mushy zone is similar with the two codes SOLID and THERCAST. 
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Figure 1. Phase diagram of the Pb-Sn alloy 

 

Figure 2. Hebditch-Hunt test problem 

Thermal Conductivity λ 55 W m-1 K-1 Initial Temperature Tinit 226 oC 
Specific Heat cp 260 J kg-1 K-1 Initial Concentration w0 5 wt% 
Latent Heat of Fusion L 61×103 J kg-1 Reference Density ρ0 7000 kg m-3 
Melt Temperature Tm 232 oC Dynamic Viscosity μ 10-3 Pa s 
Liquidus Line Slope m -1.286 K (wt%)-1 Secondary Dendrite Arm Spacing λ2 65 μm 
Partition Coefficient k 0.0656 Heat Convection Coefficient h 300 W m-2 K-1  
Eutectic temperature 183 oC Thermal Expansion Coefficient βT 0.6.10-4 K-1 
External Temperature Text 25 oC Solutal Expansion Coefficient βw -5.3 10-3 (wt%)-1 
  Solutal Diffusivity ε 3.10-9 m2 s-1 

Table 1. Material and physical properties for Sn-5%wtPb case. 
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a) THERCAST, FEM 3D 

 
b) SOLID (Ahmad et al., 1997), FVM 2D 

Figure 3. Comparison of solid fraction for Sn-5wt%Pb at 100s 

Such segregated channels lead to a destabilization of the solidification front (see 
Figure 4). In those channels, the solidification is delayed due to the liquid 
enrichment, which increases the permeability and consequently gives rise to higher 
velocities. Then, those regions show high solute, liquid fraction and velocity 
gradients. The accuracy of the calculation is then highly conditioned by the local 
mesh size. 
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Figure 4. Zoom on the solidification front for Sn-5wt%Pb at 100s with THERCAST 

3.2. Pb-48wt%Sn alloy 

The material and physical data are presented in Table 2. This computation is 
carried out with the same mesh as the previous alloy for pseudo-2D simulations but 
using a variable time step. The time step varies to limit the incremental temperature 
variation between 2 and 5°C. This technique leads to an optimized time step and a 
shorter computation time. In this case we also compare the two resolutions of the 
momentum equation: the upwind nodal formulation (Jaouen, 1998) and the SUPG-
PSPG formulation. 

Also a full 3D simulation has been done for this case. The mesh density is 
similar as the previous pseudo-2D case. The time step is adapted throughout the 
computation using the same technique as before. The calculation for the full 3D case 
is made using only the SUPG-PSPG formulation. 

Thermal Conductivity λ 50 W m-1 K-1 Initial Temperature Tinit 232 oC 
Specific Heat cp 200 J kg-1 K-1 Initial Concentration w0 48 wt% 
Latent Heat of Fusion L 53.55×103 J kg-1 Reference Density ρ0 9000 kg m-3 
Melt Temperature Tm 327.5 oC Dynamic Viscosity μ 10-3 Pa s 
Liquidus Line Slope m -2.334 K (wt%)-1 Secondary Dendrite Arm Spacing λ2 40 μm 
Partition Coefficient k 0.307 Heat Convection Coefficient h 400 W m-2 K-1  
Eutectic temperature 183 oC Thermal Expansion Coefficient βT 10-4 K-1 
External Temperature Text 25 oC Solutal Expansion Coefficient βw 4.5 10-3 (wt%)-1 
  Solutal Diffusivity ε 10-9 m2 s-1 

Table 2. Material and physical properties for Pb-48%wtSn case. 
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a) THERCAST, upwind nodal, pseudo 2D b) THERCAST, SUPG-PSPG, pseudo 2D 

c) SOLID, structured mesh, FVM 2D 
d) THERCAST, SUPG-PSPG, 3D 

Figure 5. Comparison of average concentration for Pb-48wt%Sn alloy at 400s 
(labels on isolines indicate the relative variation with respect to the initial 
concentration, in percent) 

3.2.1. Comparison of the results 

The average concentration pattern at 400 s is close to the one calculated with 
SOLID. But at the top of the cavity, some wiggles appear in the channel of enriched 
liquid when using the upwind nodal formulation. This problem seems to perturb 
only locally the solution. These wiggles do not appear when the SUPG-PSPG 
formulation is used on both pseudo-2D and 3D calculations. These two calculations 
are in very good agreement. So we can deduce that the three-dimensional effects are 
negligible in this configuration. This result validates the calculation on such pseudo-
2D geometries, when it is possible, in order to decrease the computation time. 

Compared to SOLID, the THERCAST results (Figure 5) show a smaller +20% 
segregation area on the right of the ingot. In this area the solute concentration is also 
more homogeneous compared to SOLID results. This lower segregation is certainly 
caused by a stronger flow field in the liquid bulk during the solidification. 

At the end of the solidification, THERCAST results are in good agreement with 
SOLID and CALCOSOFT results (Desbiolles et al., 2003) and also with 



12     Title of the journal. Volume X – no X/2002 

experimental data. In Figure 6, the results in the three lower sections are close to the 
experimental measurements except near the right wall in the 25mm section. On the 
contrary, in top section (near the liquid channel), some discrepancy in the results has 
been found. As previously shown, the positive segregation predicted by 
THERCAST is lower than experimental data which is even clearer on the 55mm 
section. This point needs to be investigated to better predict the end of the 
solidification. Moreover these results should be improved by taking into account the 
ingot deformation in the models. 

 

Figure 6. Macrosegregation on four horizontal sections at the end of solidification 
for the Pb-48wt%Sn alloy 

3.2.2. Effect of the mesh size on the prediction of macrosegregation 

In this last section, we would like to illustrate the mesh effect on the 
macrosegregation calculation by studying the formation of the solidification front in 
the top left corner of the cavity for pseudo-2D meshes at time 10s. We have seen 
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that for the first calculation made with the upwind nodal approach this area 
presented oscillations for the mean concentration in solute. So it seems important to 
better understand how and why this problem occured. 

Three different meshes with increasing refinement have been selected. The first 
mesh (16331 nodes, 47731 elements) is refined near all the walls and coarse in the 
center part. The second mesh (18986 nodes, 55710 elements) is similar but the top 
part of the left corner (where the liquid channel appear) is finer. The last mesh 
(112699 nodes, 336078 elements ) is highly refined particularly in the top part. 

A zoom, corresponding to the region at the top left corner of the meshes, the 
liquid fraction and the mean concentration in solute at time 10s are presented in 
Figure 7. 

 
Liquid Fraction 

 
Mean Concentration (W-W0) 

 

Figure 7. Liquid fraction and mean concentration at 10s for the Pb-48wt%Sn alloy 
on three different meshes 
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These results clearly show that the irregularities previously described come from 
the coarseness of the mesh. We can also deduce that such problems can be avoided 
by using a mesh highly refined everywhere since interface moves all along the 
computation. It will then lead to a huge calculation time. An efficient solution would 
be to adapt automatically the local mesh density during the calculation. 

4. Conclusions 

A 3D FEM modeling of macrosegregation has been presented and implemented 
in the solidification code THERCAST. The solidification simulation of a Sn-
5%wtPb alloy shows that THERCAST seems able to predict channel formation and 
the associated macrosegregation. The application cases show good agreement with 
both experimental measurements and SOLID results. THERCAST has been also 
successfully compared with CALCOSOFT, a 3D finite element code. 

The 3D and pseudo-2D approaches show good agreement in the Pb-48%Sn case, 
which validates the use of pseudo-2D simulations for similar geometries. The study 
of the mesh influence then demonstrates a strong link between irregularties in the 
solution and the mesh size in critical areas of high liquid fraction gradient. 

THERCAST provides a useful tool for the study of macrosegregation in three-
dimensional solidification of binary alloys. 

In the future, a more accurate resolution is needed in the channel where complex 
flow field takes place due to important gradients of liquid fraction and permeability. 
This should lead us to develop an adaptive remeshing strategy in order to increase 
the accuracy in these particular areas. 
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