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ABSTRACT 
 

This contribution is focused on the analysis of the structure of packed beds of spherical 

particles at relatively low aspect ratios (i.e., particle to tube diameter ratio) as those arising 

in multitubular fixed bed reactors. On one hand, the computed tomography (CT) technique 

is employed to evaluate the position of each particle in the packing and from this 

information local properties such as particle center distribution and radial porosity profile 

were obtained. On the other hand, results from a previously developed algorithm to 

simulate packings were compared with those from our CT data and from literature sources. 

The agreement was very satisfactory. 
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INTRODUCTION 
 

Cylindrical packed beds are widely used in almost all chemical process industries. 

Examples of paramount importance are catalytic fixed bed reactors with either single or 

two-phase flow. The model employed to simulate the reactor determines the degree of 

information required about the packed bed structure (Dixon et al., 2006; Castillo-Araiza et 

al., 2007). For the nowadays increasing use of the Computational Fluid Dynamics (CFD) it 

becomes necessary to know the positions of all particles in the bed. In addition, aiming to 

formulate heterogeneous discrete models for catalytic reactors it should be feasible to 

estimate the spatial distribution of the solid phase. 

Many experimental studies on packing structure have been made during the last decades 

from different points of view. Destructive and non-destructive techniques have been used 

to obtain packing information of different types. For the most part, the former 

investigations have been focused on the evaluation of porosity and empirical expressions 

have been proposed to predict overall porosities and radial porosity profiles (Mariani et al., 

1998, de Klerk, 2003). However, a much complete description of particle packing is 

obtained by evaluating the location of particle centers in the bed. This can be accomplished 

by employing several non-destructive techniques: X-ray radiography (Mueller, 1991), X-

ray computed tomography (Toye et al., 1998; Irazoqui et al., 2004; Suzuki et al., 2008), 

gamma-ray computed tomography (Wang et al., 2001), magnetic resonance imaging (Ren 

et al., 2005), among others. Indeed, packing properties arise as a consequence of the 

location of the particles in the bed (Mariani et al., 2002). Hence, it is clear that the 

knowledge of the location of the particles is the more basic information about the packing 

structure. Overall bed porosity, radial and axial porosity profiles, contact-point distribution, 

particle center distribution and external surface area profiles can be readily evaluated from 

the knowledge of particle location (Mariani et al., 2001).  
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A convenient alternative to conduct experimental measurements for particle locations in 

the bed arises from the development of computational tools to simulate particle packing. A 

classification of 3D algorithms to generate packed bed structure can be made by 

distinguishing between soft and hard sphere approaches, depending on the allowance of 

overlapping between spheres or not. A discussion of the several approaches to formulate 

3D algorithms has been undertaken by Salvat et al. (2005). 

In a previous paper (Salvat et al., 2005) we have presented an algorithm to simulate the 

structure of packed beds of spherical particles of uniform size in cylindrical containers, 

which is based on the soft spheres approach. The algorithm renders the position of each 

sphere in the container. Experimental data of overall bed porosities from different sources 

were employed to successfully validate the results obtained by simulation (Salvat et al., 

2005).  

The main purpose of this contribution is to present results for local packed-bed 

properties obtained by simulation and compare them with experimental data from different 

sources, including X-ray Computed Tomography (CT) experiments for selected aspect 

ratios (i.e., tube to particle diameter ratio) first reported in this paper. Special attention is 

given to the low range of aspect ratios, typical of fixed bed reactors exchanging heat 

through the wall, where experimental data are scarce. Simulated and experimental results 

are analysed by emphasizing the relation between particle center distribution and radial 

porosity profiles. 

 

MODEL AND ALGORITHM FOR SIMULATING BED PACKING 

When loading a cylindrical container with solid particles, an equilibrium condition is 

reached just when all forces acting on every particle are balanced. They are gravitational, 
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friction and contact forces. Also, there are two physical restrictions to sphere 

accommodation: vessel and bottom walls. 

It has been experimentally demonstrated that while a vessel is being filling with 

particles friction forces inhibit their close accommodation. From a practical point of view, 

however, particles in an actual packed bed become more tightly accommodated by the 

effect of vibration (Nowak et al., 1997) or after some period on operation. As the algorithm 

to be described next simulates the accommodation of particles from a certain initial 

condition, friction forces between particles and between particles and the vessel wall have 

been ignored, expecting in this way that the results for the final resting position of the 

particles closely resembles a real packed bed on operation. 

To account for the effect of contact forces, a certain degree of interpenetration between 

the spheres is allowed. The repulsion force generated from interpenetration is assumed to 

be proportional to the overlapping magnitude, as in elasticity theory. In an early stage of 

the procedure, the intensity of the repulsive force is kept relatively low, while in the final 

stage the intensity is increased so as to produce a very tiny overlap. The effect gained from 

this strategy is the achievement of more compact beds, closer to those found in practice.  

The lateral wall of the container will also be considered as a deformable body. The 

force exerted by the lateral wall on a contacting sphere is radially directed towards the 

container axis.  

The behavior of the base of the bed should also be defined. Although the base might be 

considered as being deformable too, it has been checked that this feature brings no 

significant consequence for the results. Therefore, a rigid base exerting an action to 

balance the axial force on each particle resting on is assumed.  

Summarizing, the following features are considered in formulating the algorithm to 

generate packed beds in cylindrical containers: a) the spheres are mono-sized; b) 
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gravitational field is accounting for; c) the friction forces are neglected; d) the spheres as 

well as the lateral wall are deformable; e) the base of the container is rigid; f) the contact 

forces between spheres and between spheres and the wall are evaluated on the basis of 

elasticity theory. 

The net force acting on the i-th sphere can be expressed as,  i, nF
G

i, nF
G

= i, Lw i, Bw ij,C
j

F F W F+ + +∑
G G G G

 (1)

where: 

i, LwF
G

 : force exerted by the lateral wall on the i-th sphere 

W
G

 : sphere weight 

ij,CF
G

 : contact force exerted by the j-th sphere on the i-th sphere 

i, BwF
G

 : force exerted by the container’s bottom on the i-th sphere  

All forces acting on every sphere pass through the center of mass, therefore it is not 

necessary to set out torque balances.  

The formulation for every force is: 

i,Lw iw ˆF k R(=− δ
G

) r d  (2a);  ij,C ij ij
ˆF k R( ) =− δ

G
  (2b);       (2c) ˆW  M g z= −

G

where 

R(ξ): Ramp function ={ 0, if 0 
,     if 0

ξ≤
ξ ξ>  

δij: overlapping between i-th sphere and j-th sphere p i j 2
D x x= − −

G G
 

δiw: overlapping between i-th sphere and the lateral wall i p(r D /2) Rt= + −  

The forces  are not formulated because it is supposed that their values are just 

enough to make zero the axial component of 

i, BwF
G

i, nF
G

of those spheres contacting the container 
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bottom. It is worth remarking that i, LwF
G

and ij,CF
G

 are repulsive in nature and they become 

nil when there is no overlapping (Eqs. 2a,b). For the sake of simplicity the constant k is 

assumed to be the same for both, i, LwF
G

and ij,CF
G

. 

Once the aspect ratio a=2Rt/Dp and the number of particles Np are defined, the purpose 

of the algorithm described next is to define a set of positions for all particles that will 

render  (in an approximate sense) for i=1,…, Np.  i, nF =
GG
0

 

Algorithm 

The algorithm can be described considering four stages: generation, initial, intermediate 

and final stages. The generation stage is needed to define an initial distribution of particles, 

while the other three stages are characterized by a specific effect on the packing structure 

(expansion, compaction, force balancing). Even when the division into stages is somewhat 

arbitrary, it arises as a result of tuning the algorithm to attain robustness and better 

convergence speed. The following quantities should be monitored to identify the transition 

between each stage: packing mass center (MC), maximum overlapping between particles 

(δij,max) and maximum overlapping between particles and the wall (δiw,max). 

Except in the generation stage, the displacement of particles is guided by the need to 

reduce the net force ( ) acting on every sphere. From the values i,nF
G m

ixG  and  at iteration 

m, the new position of the i-th sphere is calculated as: 

m
i,nF
G

m 1
ix +G

mm 1 m m
i i i,nx x U F+ = +

GG G        (3) 

where Um is the step-length chosen at iteration m. Substituting i,nF
G

according to Eqs. (1) 

and (2) 

m 1 m m m m m
i i k iw ij ij gj

ˆˆ ˆx x  - C R( ) r R( )d  - C D z+ ⎡= δ + δ⎣ p⎤
⎦∑G G    (4) 
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m
kC  = km Um        (5a);       = M g Um Dp

-1 (5b) m
gC

m
kC  and  are the elasticity and gravity parameters at iteration m. As the elasticity 

parameter will have to be changed in the course of the calculations, it is also written 

generically as dependent on the iteration level, km. 

m
gC

Further details about the algorithm operation were described elsewhere (Salvat et al., 

2005). 

MATERIALS AND EXPERIMENTAL METHOD 

Acrylic tubes were packed with mono-sized spherical polypropylene particles. As a first 

step, particles were carefully selected to warrant a uniform size and the tube was randomly 

filled. With the aim of achieving a reproducible procedure to obtain compact packings 

(often called dense random packing) a commercial shaker was used. Shaking was applied 

until the bed height remains unchanged. Once shaking was stopped the packing was 

conveniently fixed to avoid further displacement of the particles.  

Experimental results from two aspect ratios (a=4.29 and a=5.04) will be presented and 

analyzed in this contribution. For both packed beds the bed height to particle diameter ratio 

was set to be greater than 50 to assure that “ends effects” are negligible (Zou and Yu, 

1995).    

X-ray computed tomography (CT) studies were carried out in a PICKER PQ5000 

helical tomograph with a BOXELQ workstation, set up in a medical center (Centro de 

Imágenes Médicas – CIMED) at La Plata, Argentina.  

In order to illustrate the results of the procedure to obtain images, Figure 1 shows eight 

consecutive cuts for a packing having an aspect ratio a=4.29. A spherical particle is viewed 

as a white circular contour with a diameter depending on the distance between the cut and 

the parallel plane containing the particle center. At least two cuts intersecting the same 

 7



sphere are needed to determine the position of its center; hence, the space between cuts 

should avoid the chance of missing a particle. Then, the space was set in about a third of a 

particle diameter. It is worth mentioning that cuts near a sphere pole generally lead to 

blurred contours, as can be appreciated for the pointed particle in Figure 1 (a). On the 

contrary, for cuts (b) and (c) in Figure 1, the same particle was intersected relatively far 

from its poles and the resulting contour becomes very well defined. Another important 

aspect to facilitate the image processing is to reduce as much as possible the thickness of 

the tomographic cut (known as slice). The least thickness allowed by the apparatus (1 mm) 

was adopted for all experiments. Besides, spheres with a considerable larger diameter than 

the slice thickness were employed (Dp=0.02504 m for a=4.29 and Dp=0.01905 m for 

a=5.04). 

The images obtained by tomography were processed by means of a code written in 

Visual Basic. For each contour, a dummy circle was drawn to exactly match it. The 

procedure repeated for at least two cuts showing the same sphere readily allows evaluating 

the position of the sphere center.  

From the above summarized image processing, the position (angular, radial and axial 

coordinates) of each sphere center in the packing could be calculated. 

 

RESULTS AND DISCUSSION 

From the position of all sphere centers in the packing it is possible to evaluate all the 

packing properties at local or global scale (Mariani et al., 2001). Due to the fundamental 

character of particle center distribution, it is convenient first to analyze this property from 

experimental and simulated points of view. 

 

Experimental and simulated radial distribution of particle centers 
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Figure 2.a shows the radial distribution of particle centers experimentally obtained by 

CT for a=5.04. A highly ordered first layer of particles adjacent to the tube wall (from a 

distance of about one particle radius) can be clearly appreciated. Besides, a more diffuse 

second layer can be identified toward the inside of the bed. A relatively dispersed number 

of centers are observed in the region closer to the tube axis. In Figure 2.b the simulated 

radial distribution of particle centers for the same aspect ratio (a=5.04) is presented. It can 

be appreciated that both, experimental and simulated, distributions show the same pattern. 

Some visual differences between Figures 2.a and 2.b arise because the number of particles 

employed in the simulation is larger than in the CT experiments. Thus, particles located in 

the region around the tube axis tend to gather in an even more diffuse third layer, as can be 

seen from the simulation in Figure 2.b. 

Aiming to quantitatively compare experimental and simulated radial distributions of 

particle centers, the cumulative fraction of particle centers (CPC) (set to zero at the tube 

axis) is presented in Figure 3 as a function of dimensionless radial coordinate ρ= r/Dp (e.g., 

at the tube wall ρ = 2.52, for a=5.04).  

It is clear from Figure 3 that the curves for experimental (a) and simulated (b) 

distributions match very well, even when the number of particles used in both cases is 

different. Sharp slopes at certain radial positions indicate a high concentration of particle 

centers. Approximately 60 % of the particles are located in the layer against the wall; 30% 

in the second layer, at a distance slightly lower than one and a half particle diameters from 

the tube wall. The remaining 10% are more or less dispersed in the region of the center of 

the tube (ρ<1).  

From the curve (c) of Figure 3, it can be appreciated that a slight increase in aspect 

ratio (from 5.04 to 5.60) leads to the building of a fairly neat third particle layer close to 
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the tube axis, as revealed by the steep increase in the cumulative fraction of particle centers 

in the range 0.5<ρ<0.7 (2.1-2.3 particle diameters from the tube wall). 

From the comparison between curves (b) and (c) of Figure 3, it can be concluded that 

more particles stay in the region close to the bed axis for a=5.04 than for a=5.60. This fact 

leads in turn to lower local porosities for a=5.04. This observation will be further discussed 

in the next section.  

The radial density distribution of particle centers (RPC) is presented in Figure 4 for 

a=5.04 (simulated results). For the sake of convenience, the sharp peak corresponding to 

the first layer of particles at ρ≈2.02 was omitted. The distributions correspond to two bed 

slices of about 300 particles at different axial positions of the same packing. Ends effects 

are negligible in both slices. Even when the curves are very similar, slight differences in 

numerical values arise. These differences will be reflected in the values estimated for the 

rest of the packing properties (e.g., radial porosity).  

 

Radial porosity profile  

It is worth recalling that all the local packing properties, including the radial porosity 

profile, can be obtained from the radial distribution of particle centers, by following the 

approach proposed by Mariani et al. (2001). Basically, to evaluate the local porosity at a 

certain radial position the areas of the intersection of the spheres in the bed with the surface 

of an imaginary cylinder coaxial with the bed at that radius should be computed.    

The comparison between experimental and simulated radial porosity profiles for two 

aspect ratios, a=5.04 and a=4.29 is presented in Figures 5 and 6. The profiles are plotted as 

a function of the dimensionless distance from the vessel wall, y= (Rt-r)/Dp and correspond 

to average values along the whole bed height. 
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Both porosity profiles, experimental and simulated, are almost indistinguishable from 

y=0 to y≈1 (approximately the first maximum). In addition, the position and the values of 

the extrema (maximum and minima) present a remarkable agreement.   

The more noticeable, but still moderate, differences in Figures 5 and 6 can be observed 

towards the tube axis. Concerning these differences, some comments are worthy. First, it 

should be pointed out that the differences can be attributed to some randomness of the 

packing in this region. If the radial porosity is evaluated in different bed slices along the 

bed axis, instead of on the whole height, fluctuating values arise. For example, taking 

slices of 5 cm height, the values of local porosity at y=2 in the simulated packing with 

a=4.29 range from 0.636 to 0.893. This variation is caused by the dispersion of particles 

centers in the second layer of the different slices.  

Although it can be concluded that local porosity in the region close to the tube axis can 

not be predicted without a certain level of uncertainty, it is also clear that in this region the 

local porosity are definitely lower at a=5.04 (Fig. 5) than at a=4.29 (Fig. 6). This is due to 

the fact that the aspect ratio a=5.04 allows the accommodation of a significant number of 

particles centered close to the tube axis (see Fig. 3, curves a and b), while a=4.29 does not 

(see the images in Figure 1). 

A similar situation as for a=4.29 occurs for a =5.60 (Figure 3, curve c). 

The radial porosity profile for a=5.60 obtained by simulations is compared in Fig. 7 

with experimental data from Benenati and Brosilow (1962). It is worth noting that the three 

minima arise as a consequence of the existence of three ordered layers of particles. A very 

good agreement between both profiles is evident from Fig. 7.  

To further test the algorithm to simulate packings, the experimental porosity profile 

from Giese et al. (1997) at a higher aspect ratio of a = 9.30 is compared in Figure 8 with 

the simulated profile. The latter closely follows the experimental data. For this aspect ratio 
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(a=9.30) the typical damped oscillatory behavior of the radial porosity profile can be 

clearly observed.  

It is important to mention that other comparisons between simulations and 

experimental data from different sources with aspect ratios ranging from 4 to ∞ were 

carried out. In general, the agreement was highly satisfactory.  

 

CONCLUSIONS  

With the aim of analyzing the structure of packed beds of mono-sized spherical 

particles in cylindrical containers two tools have been employed: experimental data from 

X-ray computer tomography (CT) and simulated results obtained by using a numerical 

algorithm previously proposed. In both cases, all local and global properties of the bed can 

be calculated from the known position of the particles in the bed. 

The radial distribution of particle centers and porosity profiles evaluated from the CT 

data at relatively low aspect ratios were satisfactorily compared with the results predicted 

by the algorithm. 

In addition, simulated radial porosity profiles were compared with experimental data 

from different literature sources with the purpose to further test the algorithm predictive 

capabilities. In all cases, results from the simulation agree very well with the experimental 

profiles and a remarkable matching of the position and the value of the extrema was also 

evident.  

From the above summarized results it can be concluded that the developed algorithm is 

an adequate tool to predict local packed bed properties. 
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NOMENCLATURE 

a:  aspect ratio, = 2Rt/Dp  

m
kC :  elasticity parameter at the m-th iteration , = km Um 

m
gC :  gravity parameter at the m-th iteration, = M g Um Dp

-1 

Dp:  sphere diameter [m] 

ijd̂ :  unit vector defined from the center of the i-th sphere to the center of the j-th sphere 

i, BwF
G

:  force exerted by the container’s bottom on the i-th sphere [N] 

ij,CF
G

:  contact force exerted by the j-th sphere on the i-th sphere [N] 

i, LwF
G

:  force exerted by the lateral wall on the i-th sphere [N] 

i, nF
G

:  net force acting on the i-th sphere [N] 

g:  acceleration of gravity [m s-2] 

k:  elasticity coefficient [N m-1] 

L:  packing height [m] 

M:  sphere mass [kg] 

Np:  total number of particles in the packing 

Rt:  container radius [m] 

ri:  radial coordinate of i-th sphere measured from the container axis [m] 

r̂ :  radial unit vector 

Um:  step-length at the m-th iteration [m N-1] 

W
G

:  gravitational force on a sphere  [N] 

x:  dimensionless radial coordinate measured from the container wall, =(Rt-ρ)/Dp 
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m
ixG :  position vector of the i-th sphere at the m-th iteration [m] 

y:  dimensionless distance from the vessel wall, = (Rt-r)/Dp. 

z:  axial coordinate measured from the bottom of the bed [m] 

ẑ :  axial unit vector (upwardly oriented) 

 

Greek letters & Special symbols 

δij:  overlapping between i-th sphere and j-th sphere,= p i j 2
D x x− −

G G
 [m] 

δij,max:  maximum value out of all δij [m] 

δiw:  overlapping between i-th sphere and the lateral wall, = i p(r D /2) Rt+ −  [m] 

δiw,max: maximum value out of all δiw [m] 

ρ:  dimensionless radial coordinate =ρ/Dp 

i 2:  Euclidean norm 
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CAPTIONS TO THE FIGURES 
 
Figure 1:  Set of images of consecutive axial cuts obtained by CT. Aspect ratio a=4.29 

 

Figure 2: Distribution of particle centers (coordinates are normalized with tube radius) 

a- Experimental data - Aspect ratio a = 5.04 

b- Simulated results - Aspect ratio a = 5.04 

 

Figure 3: Cumulative fraction of particle centers (CPC) as a function of radial coordinate ρ. 

 a- Experimental data - Aspect ratio a = 5.04 

b-   Simulated result - Aspect ratio a = 5.04 

 c- Simulated result - Aspect ratio a = 5.60 

 
Figure 4: Radial distribution of particle centers (DPC) as a function of radial coordinate ρ. 

Aspect ratio a = 5.04. Series (♦) and (○) correspond to two slices at different 

axial positions of the simulated bed. 

 

Figure 5: Comparison between experimental and predicted radial porosity profile. 

Aspect ratio a = 5.04. Experimental data from CT. 
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Figure 6: Comparison between experimental and predicted radial porosity profile. 

Aspect ratio a = 4.29. Experimental data from CT. 
 
 

Figure 7: Comparison between experimental and predicted radial porosity profile. Aspect 

ratio a = 5.60. Experimental data from Benenati and Brosilow (1962)  

 

Figure 8: Comparison between experimental and predicted radial porosity profile. Aspect 

ratio a = 9.30. Experimental data from Giese et al. (1998) 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 7 
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