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Abstract—In this paper the dynamics of broadcasting
wireless ad-hoc networks is studied through probabilistic
modelling. A randomized transmission discipline is assumed
in accordance with existing MAC definitions such as WLAN
with Decentralized Coordination or IEEE-802.15.4. Message
reception is assumed to be governed by node power-down
policies and is equivalently assumed to be randomized. Alto-
gether randomization facilitates a probabilistic model inthe
shape of an integro-differential equation governing the prop-
agation of information, where brownian node mobility may
be accounted for by including an extradiffusion term. The
established model is analyzed for transient behaviour and a
travelling wave solution facilitates expressions for propaga-
tion speed as well as parametrized analysis of network re-
liability and node power consumption. Applications of the
developed models for node localization and network dimen-
sioning are discussed at the end of the paper.

Keywords: ad-hoc networks, broadcasting, probabilistic
modelling, integro differential equations.

1 Introduction

Wireless ad-hoc networks have received much attention
over the past decade; a number of technologies such
as WLAN, Bluetooth, and latest ZigBee (based on the
IEEE802.15.4 standard) have emerged facilitating their
practical use. Various principles for routing and schedul-
ing [1] have been studied and real life applications have
been suggested within fields like personal communica-
tion, cooperative robot systems [3] and sensor networks
[2].
Within routing a taxonomi of principles have been ce-
mented in the literature ranging from static routing over
hybrid mechanism to highly dynamic almost stateless pro-
tocols like flooding (see [1] for an overview).
Information propagation in ad-hoc networks resembles
rumour and epidemic spreadings in complex sociologic

networks. Such phenomena have traditionally been mod-
elled by partial differential equations on random graphs
or regular lattices (see e.g. [4]) or on planar continuum
(see e.g. [5]).
In this paper a model for a spatial continuum is developed
for communication in wireless mobile ad-hoc networks.
The derived model accounts for radio signal fading, lo-
cal message discard and station mobility. The developed
model is accompanied by examples of applications of this
type of models along with perspectives on the possibilities
for enhancing the model within the presented framework.

2 Model assumptions

The following section specifies details of model assump-
tions, such as the distribution of nodes in the network,
information propagation by radio transmission, discard
of messages from memory and node mobility. All of
the above model aspects are assembled into a compound
model at the end of the section.

2.1 Node distribution

In wireless ad-hoc networks nodes may be distributed ran-
domly over some domainD or they may be deployed ac-
cording to some predefined plan. Additionally nodes may
be stationary or mobile, e.g. a subset of nodes may belong
the a fixed infrastructure, whereas a majority of nodes
would be mobile as for example in an animal household
system with radio based health monitoring or in popula-
tions of mobile robots.
A model of node distribution should account for both de-
terministic deployment and random distribution. We as-
sign to each nodei the time dependent probability mea-
sureLi of location, i.e.Li(A, t) expresses the probability
that nodei is located within the subsetA at timet.
Adding up for the entire set of nodes yields the additive
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positive measureL, i.e.

L(A, t) =
∑

i

Li(A, t) (1)

whereL(A, t) expresses the expected number of nodes
within A at timet.

2.2 Radio transmission

In the sequel we develop our model by tracing the lifes-
pan of a particular piece of information/messageM from
its original birth att = x = 0. The messageM is ini-
tally generated and subsequently broadcast according to
a randomized transmission discipline following a Pois-
son process. Nodes within range receiveM , store it in
memory and start broadcasting it, as if it were generated
locally. To save battery power, nodes adopt a random-
ized power down schedule. Upone wake up each node
determines whether it is receiving or transmitting. In re-
ception mode nodes keep awake for some time after sleep
mode is resumed and maintained for a random period of
time. In transmission mode a number of messages kept
in memory are broadcast after which sleep mode is re-
sumed. Alltogether we model the transmission ofM be-
tween two nodesi at x andj at y to happen with proba-
bility λ K(x, y) dt within a time interval[t, t + dt], when
it is assumed thati holdsM at time t andj has not re-
ceivedM previous tot. The intensityλ may depend
on a number of factors including; power down schedule,
number of messages in memory, collision probability etc.,
whereas the continuous functionK(x, y) accounts for en-
vironmental/distance effects on radio signal quality, i.e. it
captures the probability that a message transmitted from
x is received aty.

2.3 Message discard

At wake up time a number of messages in memory are
selected randomly for broadcast. Since a large number
of stored messages reduces the broadcast selection
probability of each message and since memory is limited,
a mechanism for discarding messages is called for.
Generally we suggest a stage model, where the state of a
messageM evolves through a sequence of stages during
its stay in each node. A final stage represents discard
from memory. In this stage only a message sequence
number, associated to the originating node, is kept to
prohibit duplication of messages.
Transition between stages takes place according to a stage
dependent Poisson process. In this manner any message
life time distribution may be approximated. However in
the sequel we assume only two stages; an active stage
and a discarded stage, i.e. the life time of any message
is exponentially distributed with the discard rateα as

intensity parameter. Thus a message in the active stage at
time t is dicarded with probabilityα dt within [t, t + dt].

2.4 Network model

We denote byf(x, t) the conditional probability that a
generic node located atx holdsM at timet. Therefore
h(A, t) =

∫
A

f(·, t) dL expresses the expected number of
nodes inA holdingM at timet, whereas

∫
A

1− f(·, t)dL
gives the expected number of nodes inA not holdingM at
time t. Similarly letg(x, t) denote the conditional proba-
bility that a generic node located atx, discardedM pre-
vious tot. The expected number of nodes receptive toM
within A at timet is therefore

∫
A

1 − f(·, t) − g(·, t) dL.
Consider two neighbourhoodsA andB, wherex ∈ A ⊂
D andy ∈ B ⊂ D then the expected number of success-
full transmissions ofM betweenA andB within [t, t+dt]
is given by

∫
B

1−f(·, t)−g(·, t) dL ·λK(x, y)h(A, t) dt.
Overall we consider a partition{Ai} of D including
atoms{pj} of positive location measureL(pj), where
xi ∈ Ai.
Including message discard, we have for any small neigh-
bourhoodA of some pointx ∈ D

h(A, t + dt) = h(A, t) − αh(A, t) dt + (2)∫
A

1 − f(·, t) − g(·, t) dL · λ
∑

j

K(x, xj)h(Aj , t) dt

so that

f(x, t + dt) = f(x, t) − αf(x, t) dt + (3)

(1 − f(x, t) − g(x, t)) · λ
∑

j

K(x, xj)h(Aj , t) dt

almost everywhere w.r.t. the location measureL. Refining
the partition{Ai} and lettingdt approach zero, gives the
following integro differential equation for almost everyx
(w.r.t. L)

ḟ(x, t) = −αf(x, t) + (4)

(1 − f(x, t) − g(x, t)) · λ

∫
D

K(x, η)f(η, t) dL(η)

Following an equivalent approach we may state forg

ġ(x, t) = α f(x, t) (5)

2.5 Node mobility

Mobility affects information propagation in two ways; it
changes node locations over time and it moves informa-
tion carried by mobile nodes where messages are active.
The former effect is considered above whereas the latter
is treated subsequently in two stages; a model is created



where information is carried solely by physical movement
and secondly this model is included as an additional term
in equation 4.
Several models accounting for node mobility exist includ-
ing determinstic as well as random movement. In this
work we consider the case of brownian motion, i.e. where
positional differences remain independent and gaussian
with zero mean and variancevt, wherev is the normal-
ized speed andt is the elapsed time.
For an initial location measureLi(·, 0), brownian motion
generally transforms the location measure as follows

Li(A, t) =

∫
A

∫
D

N (y, x, vt) Li(dy, 0) dx (6)

whereN (·, x, vt) is the normal density with meanx and
variancevt.
Consider some subsetA ⊂ D, then without radio trans-
mission the expected number of copies inA at timet+dt
is given by

∫
A

f(x, t + dt) L(dx, t + dt) = (7)
∫

A

∫
D

f(y, t) N (y, x, v dt) L(dy, t) dx

A standard argument for stochastic differential equations
[6] shows that, for uniformL, f is a solution to the diffu-
sion equation

ḟ(x, t) = v trfXX(x, t) (8)

where trfXX(x, t) denotes thetrace of the Hessian
fXX(x, t). Moreover for any initial location measure
limt→∞ Li(A, t) = |A|/|D|. Generally for an abso-
lute continuous location measureL(·, t) with smooth den-
sity fL(·, t), equation 7 yields a bounded time derivative
ḟ(x, t).

2.6 Compound model

We construct our compound model for a particular set of
scenarios; namely where exactly one stationS is known
to be atx0 at time t = 0, and at that particular time a
messageM is generated inS. All N − 1 >> 1 other
stations are assumed to be uniformly distributed onD, so
thatL(A, 0) = |A|ρ+(x0 ∈ A). After an arbitrarily small
delay∆ radio broadcast happens instantaneously and all
stations (includingS) broadcast and discardM according
to the Poisson processes discussed above.
According to 6 L(·, ∆) is absolute continuous, w.r.t.
Lebesque measure and its associated densityfL(·, ∆) is
smooth. Immediately after the first broadcastf is given
by

f(x, ∆) =

∫
D

K(x, y) N (y, x, v dt) dy (9)

producing a smoothf(·, ∆).
Fromt = ∆ both the radio transmission dynamics 6 and
the mobility dynamics 7 yield bounded time derivaties of
f . The total expected numberh(A, t + dt) of stations
holding M within some subsetA ∈ D at time t + dt
is therefore the expected numberh(A, t) at timet added
to the number of copies enteringA by radio transmission
as well as the copies entering by movement and finally
subtracted the number discarded. Altogether a compound
model would be

ḟ(x, t) = −αf(x, t) + (1 − f(x, t) − g(x, t)) ·

λ

∫
D

K(x, η)f(η, t) L(dη) + M(x, t) (10)

whereM denotes the time derivative off contributed the
mobility dynamics 7.

3 Travelling wave solution

In the previous section a compound model including ef-
fects from radio transmission and movement on informa-
tion propagation. From an initial momentt = ∆ > 0
arbitrarily close to the timet = 0, where a messageM is
generated in a stationS located atx0, information prop-
agation dynamics 10, 5 and mobility dynamics 6 govern
the evolution of the active state probabilityf and location
measureL. Well defined initial conditions are given in
terms off(x, ∆) = K(x0, x) andL(·, ∆).
After some time location becomes close to uniform, i.e.
limt→∞ fL(x, t) = ρ and information dynamics 10 be-
comes

ḟ(x, t) = −αf(x, t) + (1 − f(x, t) − g(x, t)) ·

λρ

∫
D

K(x, η)f(η, t) dη + v trfXX(x, t) (11)

ġ(x, t) = α f(x, t)

For (K(x, y) = K(|x − y|), and large|x|, we shall antic-
ipate the existence of a travelling wave solution to 11, i.e.
1

α
g(x, t) = w(ct − |x|), wherec is the speed of the trav-

elling wave and| · | denotes euclidian distance. Rewriting
equation 11 for thewave shape functionw gives

c w′′(y) = α w′(y) − (1 + c w′(y) − α w(y)) ·

λρ

∫
D

K(x, η) w′(ct − |η|) dη + (12)

v (w′′′(y) + w′′(y)
D − 1

|x|
)

wherey = ct− |x| andD is the spatial dimension, which
in practical situations is 2 or 3. The last term in 12 con-
tradicts the assumed travelling wave solution. However



since this term vanishes for large|x|, such a solution it
still anticipated for large|x|, i.e. far from the pointx0

whereM was originally generated. Also we utilize the
following approximation valid for large|x|

∫
D

K(x, η) w′(ct−|η|) dη ≈

∫ ∞

−∞

H(|x|−|η|) w′(ct−|η|) d|η|

(13)
where the kernelH in this paper is only conjectured to
exist.
The travelling wave speed which may be interpreted as the
speed by which a message is carried over long distances.

3.1 Wave speed

We approximate the leading edge of the travelling
wave linearly around its value for large negativey, i.e.
early and far away wheref ≈ 0 andg ≈ 0 Thus

c w′′(y) = (14)

α w′(y) + λρ

∫ ∞

−∞

H(z − y) w′(z) dz + v w′′′(y)

which is a second order ODE inw′, with two linearly in-
dependent exponential solutions. Following the so called
linear conjecture [5], the speed of the leading edge defines
the speed of the entire wave. The leading edge is domi-
nated by the one exponential solutionl(y) = exp(β y)
with the smallest decay coefficientβ. Thus

c β = α − λρ

∫ ∞

−∞

H(τ) exp(βτ) dτ + v β2 (15)

or

c = C(α, λ, ρ, H, β) (16)

=
α − λρ

∫ ∞

−∞
H(τ) exp(βτ) dτ

β
+ v β

The decay depends highly on initial conditions, why wave
speed practically remains undetermined. However a min-
imum speed may be found fromcmin(α, λ, ρ, H) =
minβ C(α, λ, ρ, H, β).
Applying the leading edge approximation to 11 and inte-
grating overD yields forv = 0

İ(t) = I(t) (−α + λρ

∫
D

K(x, η) dη ) (17)

whereI(t) =
∫

D
f(x, t) dx. Since 17 is an approxima-

tion from above it states that forα > λρ
∫

D
K(x, η) dη

a travelling wave solution cannot exist. Conversely we
may anitcipate a travelling wave with a minimum speed
cmin(α, λ, ρ, H) in the opposite case.

3.2 Wave shape

By definition f(x, t) denotes the conditional prob-
ability that a node located atx at time t holds the
messageM . Likewise g denotes the probability that
the node previously discardedM . Thus f + g is
the probability thatM was previously received. How-
ever sincelimt→∞ f(x, t) = 0 the limit value P =
limt→∞ g(x, t) = limt→∞ αw(y). As for the leading
edge we use a linear approximation for the trailing edge
aroundP/α, i.e. w(y) ≈ P/α (1 − exp(γ y)) for large
positivey. The following relation is therefore approxi-
mately fulfilled for largey.

−cγ2 φ = αγ φ + γλρ (1 − cγ P/α φ − P (1 − φ)) ·∫ ∞

−∞

H(z) exp(γ z) dz + v γ3φ (18)

whereφ = exp(γ y). For largey, φ ≈ 0, so

P = P(v, α, λρ, c, γ) (19)

= 1 −
v γ2 − c γ + α

λ ρ
∫ ∞

−∞
H(z) exp(γ z) dz

Sincec and γ are determined by initial conditions and
therefore in practice undetermined, we settle for a lower
boundPmin = minc,γ P(v, α, λρ, c, γ) for P . The small-
est upper bound obtainable from 19 isP = 1 since the
second term ofP vanishes for largeγ.

4 Model applications
A compound model for information propagation is devel-
oped above, including radio transmission and node mo-
bility.

4.1 Location estimation

A transient compound model is given in terms of the
integro-differential equation 10 and the functional equa-
tion 6 tracking the time dependent distribution of mo-
bile nodes. Together with the initial conditions put forth
in sections 2.5 and 2.6, a particular conditional solution
fx0

(x, t) to the propagation dynamics, given message
generation at a particular pointx0, may be obtained nu-
merically. Evaluatingfx0

at some pointyi gives the con-
ditional reception time densityrx0,i(t) of messages gen-
erated atx0 and received atyi. Fromrx0,i we get recep-
tion probabilitiesRx0,i(τ) = α

∫ τ

0
rx0,i(t) dt. Reception

time densities and reception probabilities may serve as the
basis for the estimation ofx0, i.e. localization of the posi-
tion whereM was generated as well as for estimating the
message generation timeτ .



One applicable strategy would record reception times
t1, .., tR of M from the timet∗ whereM was first re-
ceived at a station amongy1, .., yR until t∗ + T . If some
generation-time densityp is available a Bayesian estimate
is given by

(τ∗, x∗) = (20)

arg maxτ,x p(τ) Πi∈RT
Rx,i(t

∗ + T − τ)rx,i(ti − τ)

· Πi6∈RT
(1 − Rx,i(t

∗ + T − τ))

whereRT ⊆ {1, .., R} denotes the set of reception nodes
whereM is received within[t∗, t∗ + T ]. For the esti-
mator 20 it is assumed reception times{ti} are assumed
conditionally independent given the message generation
locationx0 and generation timeτ .

4.2 Network dimensioning

As argued in section 3 a stationary solution for some
network parameter settings, i.e.λ, α, ρ andK(e) is an-
ticipated in the shape of a travelling wave, wheree de-
notes electrical energy consumed by each message trans-
mission. The speedc of the wave depends on initial con-
ditions, but a lower boundcmin is obtained depending
solely on network settingscmin is likely to increase with
λ, ρ ande and decrease withα. A similar argument leads
to a lower boundP for the reception probability at long
distances, depending only on network settings. Average
energyE spent on relaying some message is given by
E = e Pλ/α at long distances. During dimensioning
of the ad-hoc network demands on speed, reliability and
lifetime are likely to be provided in the shape of upper
delay bounds and lower reception probability bounds as
well as average battery power. If messages are generated
with an average rateµ in a network withN nodes the
average power spent for transmission at each station is
µ(e(1 + λ/α) + E) taking into account the first and sub-
sequent transmissions at the message generating station.
All together the above dependencies reveals, in coherence
with intuition, that network dimensioning is a trade off be-
tween speed/reliability and battery lifetime.

5 Conclusion

In this paper a probabilistic model is constructed for infor-
mation propagation in randomized wireless ad-hoc broad-
casting networks. The constructed model accounts for ra-
dio propagation by radio transmission as well as brownian
motion of nodes. A well defined initial value problem is
formulated, which may serve as the basis for numerical
particular solutions. Also a stationary, travelling wave so-
lution is anticipated, yielding parametric expressions for

propagation speed and network reliability. Applications
are suggested including a Bayesian approach for location
estimation and guidelines for network dimensioning as-
suming a stationary solution.
Directions for future research include treatment of a vari-
ety of mobility models as well as verification of the ob-
tained models through simulation and experimental work.
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