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Threshold resummation for the inclusive-hadron cross section in pp collisions
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We study the resummation of large logarithmic perturbative corrections to the partonic cross sections
relevant for the process pp ! hX at high transverse momentum of the hadron h. These corrections arise
near the threshold for the partonic reaction and are associated with soft-gluon emission. We perform the
resummation to next-to-leading logarithmic accuracy. We present numerical results for the fixed-target
regime and find enhancements over the next-to-leading order cross section, which significantly improve
the agreement between theoretical predictions and data. We also apply the resummation for Relativistic
Heavy-Ion Collider kinematics and find that subleading terms appear to play a rather important role here.
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I. INTRODUCTION

Cross sections for single-inclusive hadron production in
hadronic collisions, H1H2 ! hX, play an important role in
QCD. At sufficiently large hadron transverse momentum
pT , one expects that QCD perturbation theory can be used
to derive predictions for the reaction. Since high pT implies
large momentum transfer, the cross section may be factor-
ized at leading power in pT into convolutions of long-
distance pieces representing the structure of the initial
hadrons and the fragmentation of a final-state quark or
gluon into the observed hadron, and parts that are short-
distance and describe the hard interactions of the partons.
The long-distance contributions are universal, i.e., they are
the same in any inelastic reaction, whereas the short-
distance pieces depend only on the large scales related to
the large momentum transfer in the overall reaction and,
therefore, can be evaluated using QCD perturbation theory.
Because of this, and because of the fact that single-
inclusive hadrons (e.g., pions) are rather straightforward
observables in experiment, cross sections for H1H2 ! hX
offer a variety of important insights into strong interaction
dynamics.

If the long-distance pieces, parton distribution functions
and fragmentation functions, are known from other pro-
cesses, especially deeply-inelastic scattering and hadron
production in e�e� annihilation, one may test the pertur-
bative framework outlined above. In particular, one may
examine the relevance of higher orders in the perturbative
expansion. Any discrepancies between the predictions and
experimental data may also provide information about
power-suppressed contributions to the cross section.

Alternatively, one may also gain information about frag-
mentation functions. For example, e�e� annihilation is
mostly sensitive to quark-to-hadron fragmentation func-
tions, whereas data from hadronic collisions may also
provide information on gluon fragmentation. In addition,
the reaction H1H2 ! hX may be used to probe the struc-
ture of the initial hadrons. Of particular relevance here are
spin effects, associated with polarized initial protons. At
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the BNL Relativistic Heavy-Ion Collider (RHIC), one
measures spin asymmetries in polarized pp ! hX scatter-
ing, in order to investigate the spin structure of the nucleon.
Finally, high-pT hadrons are also important probes of
strongly interacting matter in a high-energy nuclear envi-
ronment, as generated by heavy-ion collisions. Here, had-
ron production in proton-proton collisions provides an
important baseline for the study of nuclear dynamics.

Whatever the uses of processes H1H2 ! hX, a central
piece is in each case the perturbative partonic hard scat-
tering and our ability to reliably evaluate it. Lowest-order
(LO) calculations of the partonic short-distance cross sec-
tions were performed a long time ago [1], and later im-
proved when the next-to-leading order (NLO) corrections
were computed [2– 4]. On the experimental side, an ex-
tensive data set on high-pT single-inclusive hadron data
has been collected, both from scattering off fixed targets
and from colliders at much higher energies. Detailed com-
parisons of NLO calculations with the experimental data
have been carried out recently in [5–8]. They show the
overall trend that NLO theory significantly underpredicts
the cross section data at fixed-target energies, but yields a
good description [8–10] of the collider data.

In the present paper, we further improve the theoretical
calculations by implementing the all-order resummation of
large logarithmic corrections to the partonic cross sections.
At partonic threshold, when the initial partons have just
enough energy to produce a high-transverse momentum
parton (which subsequently fragments into the observed
hadron) and a massless recoiling jet, the phase space
available for gluon bremsstrahlung vanishes, resulting in
large logarithmic corrections to the partonic cross section.
To be more specific, if we consider the cross section as a
function of the hadron transverse momentum pT , inte-
grated over all hadron rapidity, the partonic threshold is
reached when

���̂
s

p
� 2p̂T , where

���̂
s

p
is the partonic center-

of-mass (c.m.) energy, and p̂T � pT=z is the transverse
momentum of the produced parton fragmenting into the
hadron, the latter taking the fraction z of the parton mo-
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mentum. Defining x̂T � 2p̂T=
���̂
s

p
, the leading large contri-

butions near threshold arise as �k
Sln

2k�1� x̂2T� at the kth
order in perturbation theory, where �S is the strong cou-
pling. Sufficiently close to threshold, the perturbative se-
ries will be only useful if such terms are taken into account
to all orders in �S, which is what is achieved by threshold
resummation [11–13]. This resummation has been derived
for a number of cases of interest, to next-to-leading loga-
rithmic (NLL) order. As far as processes with similar
kinematics are concerned, it has been investigated for
high-pT prompt-photon production in hadronic collisions
[14–17], and also for jet production [12,18,19], which
proceeds through the same partonic channels as
inclusive-hadron production. We will actually make use
of the results of [18,19] for the resummed jet cross section
in our analysis below.

The larger x̂T , the more dominant the threshold loga-
rithms will be. Since ŝ � x1x2S, where x1;2 are the partonic
momentum fractions and

���
S

p
is the hadronic c.m. energy,

and since the parton distribution functions fall rapidly with
increasing x1;2, threshold effects become more and more
relevant as the hadronic scaling variable xT � 2pT=

���
S

p

goes to one. This means that the fixed-target regime with
3 GeV & pT & 10 GeV and

���
S

p
of 20–30 GeV is the

place where threshold resummations are expected to be
particularly relevant and useful. We will indeed confirm
this in our study. Nonetheless, because of the convoluted
form of the partonic cross sections and the parton distri-
butions and fragmentation functions (see below), the
threshold regime x̂T ! 1 plays an important role also at
much higher (collider) energies. Here one may, however,
also have to pay attention to terms that are subleading near
threshold.

In Sec. II we provide the basic formulas for the
inclusive-hadron cross section at fixed order in perturba-
tion theory, and display the role of the threshold region.
Section III presents details of the threshold resummation
for the inclusive-hadron cross section. In Sec. IV we give
phenomenological results. We focus primarily on the fixed-
target regime, but also give some exploratory results for
collider energies. We do not present an exhaustive phe-
nomenological analysis of all hadron production data
available, but select some representative examples.
Finally, we summarize our results in Sec. V. The appendix
compiles some useful formulas for the threshold-
resummed cross section.

II. PERTURBATIVE CROSS SECTION AND THE
THRESHOLD REGION

We consider single-inclusive hadron production in had-
ronic collisions,

H1�P1� �H2�P2� ! h�P3� � X; (1)

at large transverse momentum pT of hadron h. We inte-
grate over all angles (equivalently, pseudorapidities �) of
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the produced hadron. We note from the outset that this does
not directly correspond to the experimental situation where
always only a certain range in pseudorapidity is covered;
we will return to this point later on. The factorized cross
section for the process can then be written in terms of the
convolution

p3
Td��xT�
dpT

�
X
a;b;c

Z 1

0
dx1fa=H1

�x1; �
2
FI�

	
Z 1

0
dx2fb=H2

�x2; �
2
FI�

	
Z 1

0
dzz2Dh=c�z;�

2
FF�

	
Z 1

0
dx̂T�

�
x̂T �

xT
z

���������
x1x2

p

�

	
Z �̂�

�̂�

d�̂
x̂4Tŝ
2

d�̂ab!cX�x̂
2
T; �̂�

dx̂2Td�̂
; (2)

where �̂ is the pseudorapidity at parton level, with �̂� �

��̂� � ln
�1�
��������������
1� x̂2T

q
�=x̂T�. The sum in Eq. (2) runs

over all partonic subprocesses ab ! cX, with partonic
cross sections d�̂ab!cX, parton distribution functions
fa=H1

and fb=H2
, and parton-to-hadron fragmentation func-

tions Dh=c. The scales �FI and �FF denote the factorization
scales for the initial and final states, respectively. The
dependence on them, and on the renormalization scale
�R, is implicit in the partonic cross section in Eq. (2).

The partonic cross sections are computed in QCD per-
turbation theory. Their expansions begin at O��2

S� since the
LO partonic processes are the 2 ! 2 reactions ab ! cd.
Therefore,

d�̂ab!cX�x̂2T; �̂� � �2
S��R�
d�̂

�0�
ab!cd�x̂

2
T; �̂�

� �S��R�d�̂
�1�
ab!cX�x̂

2
T; �̂� �O��2

S��:

(3)

It is customary to express x̂2T and �̂ in terms of a different
set of variables, v and w:

x̂ 2
T � 4vw�1� v�; e2�̂ �

vw
1� v

: (4)

At LO, one then has

ŝd�̂�0�
ab!cd�v;w�

dvdw
�

ŝd ~̂��0�
ab!cd�v�
dv

��1� w�; (5)

where the ��1� w� function simply expresses the fact that
x̂T cosh��̂� � 1 for 2 ! 2 kinematics. It allows us to trivi-
ally perform the �̂ integration of the partonic cross section.
Defining

�ab!cX�x̂
2
T� �

Z �̂�

�̂�

d�̂
x̂4Tŝ
2

d�̂ab!cX�x̂2T; �̂�

dx̂2Td�̂
; (6)
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the LO cross section for the process gg ! gg becomes, for
example,

��0�
gg!gg�x̂2T� � 18�2

S!
�1�

x̂2T
4 �

3��������������
1� x̂2T

q : (7)

Analytical expressions for the NLO corrections
d�̂�1�

ab!cX�v;w� have been obtained in [2,4]. Schemat-
ically, they read:

ŝd�̂�1�
ab!cX�v;w�
dvdw

� A�v���1� w� � B�v�
�
ln�1� w�
1� w

�
�

� C�v�
�

1

1� w

�
�
� F�v;w�; (8)

where the � distributions are defined in the usual way,

Z 1

0
f�w�
g�w���dw �

Z 1

0

f�w� � f�1��g�w�dw: (9)

The function F�w; v� in Eq. (8) represents all remaining
terms without distributions in w. The terms with � distri-
butions in Eq. (8) generate at NLO level the large loga-
rithmic contributions we discussed earlier, and which we
will resum to all orders in �S. After integration over �̂, the
term 
ln�1� w�=�1� w��� yields a contribution /

ln2�1� x̂2T� to ��1�
ab!cX, plus terms less singular at x̂T �

1. At higher orders, the leading logarithmic contributions
are enhanced by terms proportional to �k

S
ln
2k�1�1�

w�=�1� w��� in d�̂�k�
ab!cX�v;w�=dvdw, or to �k

Sln
2k�1�

x̂2T� in ��k�
ab!cX. As we discussed earlier, these logarithmic

terms are due to soft-gluon radiation and, because there are
two additional powers of the logarithm for each new order
in perturbation theory, may spoil the perturbative expan-
sion unless they are resummed to all orders.

As follows from Eq. (2), since the hadronic variable xT is
fixed, x̂T assumes particularly large values when the par-
tonic momentum fractions approach the lower ends of their
ranges. Since the parton distributions and fragmentation
functions rise steeply towards small argument, this gener-
ally increases the relevance of the threshold regime and the
soft-gluon effects are relevant even for situations where the
hadronic center-of-mass energy is much larger than the
transverse momentum of the final-state hadrons. This ef-
fect, valid in general in hadronic collisions, is even en-
hanced in single-inclusive hadron production since only a
fraction z of the available energy is actually used to pro-
duce the final-state hadron.
III. RESUMMED CROSS SECTION

We will now present the formulas for the threshold-
resummed partonic cross sections. We will do this only
for the case of the fully rapidity-integrated cross section,
which turns out to significantly simplify the analysis. The
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resummation for the � dependence of the kinematically
related prompt-photon cross section was performed in
Ref. [17], and we could in principle follow the techniques
developed there to derive the � dependence of the re-
summed inclusive-hadron cross section. However, this
process is of much greater complexity than prompt pho-
tons, as will become evident below, and it appears that a
successful resummation at fixed rapidity will require fur-
ther new techniques. We hope to address this in a future
publication. As far as phenomenology is concerned, we
will later on mimic the effects of the experimentally cov-
ered limited rapidity ranges by rescaling our resummed
prediction by an appropriate ratio of NLO cross sections.
Such an approximation was shown in [17] to work ex-
tremely well for the resummed prompt-photon cross sec-
tion, where it was found that the shape of the cross section
as a function of rapidity does not change much when going
from NLO to the resummed result. This gives confidence
that it may be applicable also in the case of inclusive-
hadron production we are interested in.

A. Mellin moments and threshold region

The resummation of the soft-gluon contributions is car-
ried out in Mellin-N moment space, where the convolu-
tions in Eq. (2) between parton distributions, fragmentation
functions, and subprocess cross sections factorize into
ordinary products. We take Mellin moments in the scaling
variable x2T as

��N� �
Z 1

0
dx2T�x

2
T�

N�1 p
3
Td��xT�
dpT

: (10)

In N-space Eq. (2) becomes

��N� �
X
a;b;c

fa=H1
�N � 1; �2

FI�fb=H2
�N � 1; �2

FI�

	Dh=c�2N � 3; �2
FF��̂ab!cX�N�; (11)

with the Mellin moments of the parton distribution func-
tions and fragmentation functions, and where

�̂ ab!cX�N� �
Z 1

0
dx̂2T�x̂

2
T�

N�1�ab!cX�x̂
2
T�

�
1

2

Z 1

0
dw

Z 1

0
dv
4v�1� v�w�N�1

	
ŝd�̂�1�

ab!cX�w; v�
dwdv

: (12)

Here, the threshold limit w ! 1 (or, for the rapidity-
integrated cross section, x̂2T ! 1) corresponds to N ! 1,
and the leading soft-gluon corrections arise as terms /
�k
Sln

2kN.
It is instructive to examine the interplay of rapidity

integration and large-N limit, for example, in case of the
NLO cross section in Eq. (8). As we mentioned earlier, the
-3
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soft-gluon terms are associated with the � distribution
pieces in (8), which have coefficients that may be written
as functions of v only. One has
Z 1

0
dv
4v�1� v�w�N�1f�v� �

Z 1

0
dv
4v�1� v�w�N�1

	

�
f
�
1

2

�
�O

�
1

N

��
;

(13)

which implies that at large N the variable v is ‘‘squeezed’’
to v � 1=2, and hence, as follows from (4), the partonic
rapidity is forced to �̂ � 0. This means, for example, that
near threshold it is justified to take the NLO partonic cross
sections as proportional to the Born cross section,

ŝd�̂�1�
ab!cX�v;w�
dvdw

�
ŝd ~̂��0�

ab!cd�v�
dv

�
A0��1� w�

� B0

�
ln�1� w�
1� w

�
�
� C0

�
1

1� w

�
�

�
;

(14)

with coefficients A0; B0; C0 evaluated at v � 1=2. We will
follow this reasoning also for the resummed cross section
to which we turn now.

B. Resummation to NLL

In Mellin-moment space, threshold resummation results
in exponentiation of the soft-gluon corrections. Foremost,
there are radiative factors for the initial and final partons,
which contain the leading logarithms. At variance with the
color-singlet cases of Drell-Yan and Higgs production
[11,20,21], and with prompt-photon production [14,15]
which has only one color structure at Born level, several
color channels contribute to each of the 2 ! 2 QCD sub-
processes relevant for inclusive-hadron production. As a
result, there are color interferences and correlations in
large-angle soft-gluon emission at NLL, and the resummed
cross section for each subprocess becomes a sum of ex-
ponentials, rather than a single one.

In determining the resummed formula, we are in the
fortunate situation that the effects of the color interferences
for soft-gluon emission in the 2 ! 2 processes ab ! cd
have been worked out in detail in Refs. [18,19] for the case
of jet production in hadronic collisions, which proceeds
through the same Born processes. We take advantage of the
formulas derived there. The results in [18,19] have actually
been given for arbitrary rapidity; for the case of the
rapidity-integrated cross section we consider here it is
sufficient to set �̂ � 0 in the expressions of [18,19] when
diagonalizing (by changing the color basis) the soft anoma-
lous dimension matrix computed there. A difference be-
tween inclusive hadrons and jets occurs regarding the
treatment of the final-state parton c producing the jet or
the hadron. In our case, this parton is ‘‘observed,’’ that is,
114004
we are considering a single-inclusive parton cross section.
Such a cross section has final-state collinear singularities
which are factorized into the fragmentation functions. As
far as resummation is concerned, the final-state observed
parton therefore is similar to the initial-state partons and
receives essentially the same radiative factor as the latter
[22].

Combining these results of [11,18,19,22], we can cast
the resummed partonic cross section for each subprocess
into the rather simple form

�̂�res�
ab!cd�N�1��Cab!cd�

a
N�

b
N�

c
NJ

d
N

	

�X
I

GI
ab!cd�

�int�ab!cd
IN

�
�̂�Born�
ab!cd�N�1�;

(15)

where the sum runs over all possible color configurations I,
with GI

ab!cd representing a weight for each color configu-
ration, such that

P
IG

I
ab!cd � 1. �̂�Born�

ab!cd�N� denotes the
N-moment expression for the Born cross section for the
process, as defined in Eq. (12). We list the moment space
expressions for all the Born cross sections in the appendix.
Each of the functions �i

N , JdN , ��int�ab!cd
IN in Eq. (15) is an

exponential. �a
N represents the effects of soft-gluon radia-

tion collinear to initial parton a and is given, in the MS
scheme, by

ln�a
N �

Z 1

0

zN�1 � 1

1� z

Z �1�z�2Q2

�2
FI

dq2

q2
Aa��S�q2��; (16)

and similarly for �b
N . Collinear soft-gluon radiation to

parton c yields the same function, but with the initial-state
factorization scale �FI replaced with the final-state one,
�FF. The function JdN embodies collinear, soft or hard,
emission by the nonobserved parton d and reads:

lnJdN �
Z 1

0

zN�1 � 1

1� z

�Z �1�z�Q2

�1�z�2Q2

dq2

q2
Ad��S�q2��

�
1

2
Bd��S�1� z�Q2�

�
: (17)

Large-angle soft-gluon emission is accounted for by the
factors ��int�ab!cd

IN , which depend on the color configura-
tion I of the participating partons. Each of the ��int�ab!cd

IN is
given as

ln��int�ab!cd
IN �

Z 1

0

zN�1 � 1

1� z
DIab!cd��S��1� z�2Q2��:

(18)

Finally, the coefficient Cab!cd contains N � independent
hard contributions arising from one-loop virtual cor-
rections.
-4
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In the above formulas, Eqs. (16)–(18), we have defined
Q2 � 2p2

T . Furthermore, each of the functions F � Aa,
Ba, DIab!cd is a perturbative series in �S,

F ��S� �
�S

!
F �1� �

�
�S

!

�
2
F �2� � . . . ; (19)

with [23]:

A�1�
a �Ca;A

�2�
a �

1

2
Ca

�
CA

�
67

18
�
!2

6

�
�
5

9
Nf

�
; B�1�

a �+a;

(20)

where Nf is the number of flavors, and

Cg � CA � Nc � 3;

Cq � CF � �N2
c � 1�=2Nc � 4=3;

+q � �3CF=2 � �2; +g � �2!b0;

b0 �
1

12!
�11CA � 2Nf�:

(21)

The expansion of the coefficients Cab!cd reads:

Cab!cd � 1�
�S

!
C�1�
ab!cd �O��2

S�: (22)

In the exponents, the large logarithms in N now occur
only as single logarithms, of the form �k

Sln
k�1�N� for the

leading terms. Subleading terms are down by one or more
powers of ln�N�. Knowledge of the coefficients A�1;2�

a , B�1�
a ,

D�1�
Iab!cd allows us to resum the full towers of leading

logarithms (LL) �k
Sln

k�1�N�, and NLL �k
Sln

k�N� in the
exponent. Along with the coefficients C�1�

ab!cd one then
gains control of three towers of logarithms in the cross
section, �k

Sln
2k�N�, �k

Sln
2k�1�N�, �k

Sln
2k�2�N�, which is

likely to lead to a much improved theoretical prediction.
We also note that the factors �i

N depend on the initial- or
final-state factorization scales in such a way that they will
compensate the scale dependence (evolution) of the parton
distribution and fragmentation functions. One therefore
expects a decrease in scale dependence, which indeed
has been found in previous studies for other threshold-
resummed cross sections.

We finally examine the qualitative impact of the resum-
mation. To this end, we note that, neglecting the running of
the strong coupling, the LL terms in the exponents in
Eqs. (16) and (17) become
114004
�a
N � exp

�
�S

!
Caln

2�N�
�
;

JdN � exp
�
�
�S

2!
Cdln

2�N�
�
:

(23)

Therefore, for each partonic channel, the leading loga-
rithms are

�̂ �res�
ab!cd�N� / exp

�
�S

!

�
Ca � Cb � Cc �

1

2
Cd

�
ln2�N�

�
:

(24)

The fact that this exponent is clearly positive for each of
the partonic channels means that the soft-gluon effects will
lead to an enhancement of the cross section. Particularly
strong enhancements are to be expected for gluonic chan-
nels;, for example, for the process gg ! gg one has Ca �
Cb � Cc � Cd=2 � 15=2. The feature that partonic cross
sections can give Sudakov enhancements is related to the
fact that finite partonic cross sections are obtained after
collinear (mass) factorization, so that soft-gluon effects are
partly already contained in the (MS-defined) parton distri-
bution functions and, in our case, fragmentation functions.

C. Exponents at NLL

We now give explicit formulas for the expansions of the
resummed exponents to NLL accuracy. Since the functions
�i
N and JdN are ‘‘universal’’ in the sense that they depend

only on the type of the external parton, but not on the
subprocess, their expansions are known and we recall them
for the sake of completeness:

ln�a
N��S��2

R�; Q
2=�2

R;Q
2=�2

F�

� lnNh�1�a �,� � h�2�a �,;Q2=�2
R;Q

2=�2
F�

�O��S��S lnN�k�; (25)

lnJaN��S��2
R�; Q

2=�2
R� � lnNf�1�a �,� � f�2�a �,;Q2=�2

R�

�O��S��S lnN�
k�; (26)

where , � b0�S��2
R� lnN. The functions h�1;2� and f�1;2�

are given by

h�1�a �,� �
A�1�
a

2!b0,

2,� �1� 2,� ln�1� 2,��; (27)
h�2�a �,;Q2=�2
R;Q

2=�2
F� � �

A�2�
a

2!2b20

2,� ln�1� 2,�� �

A�1�
a +E

!b0
ln�1� 2,� �

A�1�
a b1
2!b30

�
2,� ln�1� 2,� �

1

2
ln2�1� 2,�

�

�
A�1�
a

2!b0

2,� ln�1� 2,�� ln

Q2

�2
R

�
A�1�
a

!b0
, ln

Q2

�2
F

; (28)

f�1�a �,� � �
A�1�
a

2!b0,

�1� 2,� ln�1� 2,� � 2�1� ,� ln�1� ,��; (29)
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f�2�a �,;Q2=�2
R� � �

A�1�
a b1
2!b30

�
ln�1� 2,� � 2 ln�1� ,� �

1

2
ln2�1� 2,� � ln2�1� ,�

�

�
B�1�
a

2!b0
ln�1� ,� �

A�1�
a +E

!b0

ln�1� ,� � ln�1� 2,�� �

A�2�
a

2!2b20

2 ln�1� ,� � ln�1� 2,��

�
A�1�
a

2!b0

2 ln�1� ,� � ln�1� 2,�� ln

Q2

�2
R

: (30)
Here, as before b0 � �11CA � 2Nf�=12!, and

b1 �
1

24!2 �17C
2
A � 5CANf � 3CFNf�: (31)

We remind the reader that the scale �F represents the
initial-state (final-state) factorization scale �FI (�FF) for
the radiative factors for the initial (final) state. The func-
tions h�1� and f�1� above contain all LL terms in the
perturbative series, while h�2� and f�2� are of NLL accuracy
only. For a complete NLL resummation one also needs the
coefficients ln��int�ab!cd

IN whose NLL expansion reads:

ln��int�ab!cd
IN ��S��

2
R�; Q

2=�2
R�

�
D�1�

Iab!cd

2!b0
ln�1� 2,� �O��S��S lnN�k�: (32)

As we mentioned earlier, the D�1�
Iab!cd, and the correspond-

ing ‘‘color weights’’ GIab!cd, are both process and ‘‘color
configuration’’ dependent. All the coefficients D�1�

Iab!cd and
GIab!cd that we need to NLL are listed in the appendix.

D. Coefficients C�1�
ab!cd

We have verified for each subprocess that expansion of
the resummed formulas above to O��3

S� correctly reprodu-
ces the logarithmic terms / �3

Sln
2�N�; �3

S ln�N� known
from the full fixed-order calculations [2,4]. Comparison
to those calculations also allows us to extract the first-order
coefficients C�1�

ab!cd. Numerical results for the coefficients
are presented in the appendix.
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E. Matching to the NLO cross section, and inverse
Mellin transform

As we have discussed above, the resummation is
achieved in Mellin-moment space. In order to obtain a
resummed cross section in x2T space, one needs an inverse
Mellin transform. This requires a prescription for dealing
with the singularity in the perturbative strong coupling
constant in Eqs. (16)–(18) or in the NLL expansions,
Eqs. (27)–(32). We will use the Minimal Prescription
developed in Ref. [24], which relies on use of the NLL
expanded forms Eqs. (27)–(32), and on choosing a Mellin
contour in complex-N space that lies to the left of the poles
at , � 1=2 and , � 1 in the Mellin integrand:

p3
Td�

�res��xT�
dpT

�
Z CMP�i1

CMP�i1

dN
2!i

�x2T�
�N��res��N�; (33)

where b0�S��2
R� lnCMP < 1=2, but all other poles in the

integrand are as usual to the left of the contour. The result
defined by the minimal prescription has the property that
its perturbative expansion is an asymptotic series that has
no factorial divergence and therefore no ‘‘built-in’’ power-
like ambiguities. Power corrections may then be added, as
phenomenologically required.

When performing the resummation, one of course wants
to make full use of the available fixed-order cross section,
which in our case is NLO (O��3

S�). Therefore, a matching
to this cross section is appropriate, which may be achieved
by expanding the resummed cross section to O��3

S�, sub-
tracting the expanded result from the resummed one, and
adding the full NLO cross section:
p3
Td�

�match��xT�
dpT

�
X
a;b;c

Z CMP�i1

CMP�i1

dN
2!i

�x2T�
�N�1fa=h1�N;�

2
FI�fb=h2�N;�

2
FI�Dc=h�2N � 1; �2

FF�

	 
�̂�res�
ab!cd�N � 1� � �̂�res�

ab!cd�N � 1�jO��3
S�
� �

p3
Td�

�NLO��xT�
dpT

; (34)
where �̂�res�
ab!cd�N� is the resummed cross section for the

partonic channel ab ! cd as given in Eq. (15). In this way,
NLO is taken into account in full, and the soft-gluon
contributions beyond NLO are resummed to NLL. Any
double-counting of perturbative orders is avoided.
IV. PHENOMENOLOGICAL RESULTS

Starting from Eq. (34), we are now ready to present
some first resummed results at the hadronic level. This is
not meant to be an exhaustive study of the available data
for inclusive-hadron production; rather we should like to
-6
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investigate the overall size and relevance of the resumma-
tion effects. We will only consider !0 production in pp
collisions and compare to a few selected sets of data.

Let us begin by specifying some ‘‘default’’ choices for
the distribution functions that we will use in our studies.
We will use the MRST2002 set of parton densities [25] and
the pion fragmentation functions of [26] (referred to as
‘‘KKP’’). For comparison, we will also present some re-
sults for Kretzer’s set [27] of fragmentation functions. Note
that, according to Eq. (34), it is a great advantage to have
parton densities and fragmentation functions available in
moment space. Technically, since the MRST distributions
are not available in moment space, we first performed a fit
of a simple functional form to the MRST distributions, of
which we were then able to take moments. This had to be
done separately for each parton type and for each scale.
Concerning the fragmentation functions, Kretzer’s set is
anyway set up in moment space, and we found it possible
to analytically take moments of the KKP parametrization.

As we discussed at the end of subsection III B, we
generally expect fairly large effects from soft-gluon re-
summation for inclusive-hadron production. This makes it
rather important to be sure that the resummed soft-gluon
terms indeed constitute the dominant part of the cross
section and do not, for example, lead to an overestimate
of the higher orders. We therefore start by identifying the
kinematic regions where soft-gluon contributions are likely
to dominate the cross section. A gauge for this is obtained
pT(GeV)

pp → π0+X         pT∗dσ/dpT (nb∗GeV2)pp → π0+X         p3

RHIC √s=200 GeV

NLO
Expansion

MRST2002   KKP      all |  η |

E706 √s=31.5 GeV

10
-2

1

10 2

10 4

10 6

10 8

10 9

3 4 5 6 7 8 9 10 11

FIG. 1 (color online). Comparison of full NLO cross sections
(solid lines) for pp ! !0X with the NLO [O��3

S�] expansion of
the resummed cross section (dashed lines), for two different
energies. We have chosen the factorization and renormalization
scales as pT .
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by comparing the resummed formula expanded to NLO to
the full fixed-order (NLO) perturbative result, that is, by
comparing the last two terms in Eq. (34). Figure 1 shows
this comparison for a typical fixed-target energy

���
S

p
�

31:5 GeV, and for RHIC’s
���
S

p
� 200 GeV. As can be

observed, the expansion faithfully reproduces the NLO
result. In the fixed-target regime the agreement is excellent,
except perhaps at the lowest pion transverse momenta,
pT � 3 GeV, where the soft approximation tends to yield
a slight overestimate. This is obviously related to the fact
that the smaller pT (at fixed energy), the further one is
away from threshold, so that the soft-gluon approximations
become less reliable. The same is expected to happen if the
energy is increased at fixed transverse momentum. Indeed,
as the curves for

���
s

p
� 200 GeV in Fig. 1 show, the NLO-

expanded resummed result, while still remarkably close to
the full NLO prediction, gives a less accurate picture of the
latter than at fixed-target energies. Our conclusion from
Fig. 1 is therefore that the contributions associated with the
near-threshold region are dominant in the fixed-target re-
gime, implying that resummation will be relevant and
accurate here, even at relatively small transverse momenta.
At colliders, our resummed cross section will likely be too
large, and further improvements in the theoretical frame-
work may be needed.1 We will briefly return to this point at
the end of this paper. In the following we will primarily
focus on the fixed-target regime.

We next investigate how large the higher-order contri-
butions provided by NLL resummation are. To this end, we
go back to Eq. (34) and take the full resummed result,
defined in the minimal prescription and matched to NLO.
As before, the cross sections are integrated over all rap-
idities. We define a resummed ‘‘K-factor’’ as the ratio of
the resummed cross section to the NLO cross section,

K�res� �
d��match�=dpT

d��NLO�=dpT

; (35)

which is shown for the fixed-target regime, and for scales
�R � �FI � �FF � pT , by the solid line in Fig. 2. As can
be seen, K�res� is very large, meaning that resummation
results in a dramatic enhancement over NLO. It is then
interesting to see how this enhancement builds up order by
order in the resummed cross section. We therefore expand
the matched resummed formula beyond NLO and define
the ‘‘soft-gluon K-factors’’

Kn �
d��match�=dpT jO��2�n

S �

d��NLO�=dpT

; (36)
1It is worth recalling that our matching procedure given by
Eq. (34) ensures that the NLO cross section is always fully and
exactly taken into account in our final ‘‘matched’’ cross section,
so that any overestimate would only occur at NNLO and beyond.
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pT(GeV)

pp → π0+X      E∗d3σ/dp3 (nb/GeV2)

ζ=1

ζ=1/2
ζ=2

NLO NLL

MRST2002   KKP
E706 √s=31.5 GeV | η | < 0.75
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FIG. 3 (color online). NLO and NLL resummed results for the
cross section for pp ! !0X for E706 kinematics. We have used
the KKP fragmentation functions [26]. Results are given for
three different choices of scales, �R � �FI � �FF � 2pT ,
where 2 � 1=2; 1; 2. Data are from [28].

1

2
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6

Resummed

pT

Kn

√s = 31.5 GeV

0

1

2

3

4

5

6

2 3 4 5 6 7 8 9 10

FIG. 2. ‘‘K-factors’’ relative to NLO as defined in Eqs. (35)
and (36) for pp ! !0X in the fixed-target regime.

2Note that analyses of hadron production in the additional jet
in e�e� ! b *bjet events [29] do constrain D!

g significantly. The
D!
g ’s in the sets of [26,27] are in reasonable agreement with

these data, with the one of [27] arguably setting a lower bound
on D!

g .
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which for n � 2; 3; . . . give the additional enhancement
over full NLO due to the O��2�n

S � terms in the resummed
formula. Formally, K1 � 1 and K1 � K�res� of Eq. (35).
The results for K2;3;4;5;6 are also shown in Fig. 2. One can
see that there are very large contributions even beyond
NNLO, in particular, at the higher pT . Clearly, the full
resummation given by the solid line is required here.

As we have mentioned earlier, we have determined the
resummed formulas for the fully rapidity-integrated cross
section, whereas in experiment always only a certain lim-
ited range of rapidity is covered. In order to be able to
compare to data, we therefore approximate the cross sec-
tion in the experimentally accessible rapidity region by

p3
Td�

�match�

dpT

�� in exp. range�

� K�res� p
3
Td�

�NLO�

dpT
�� in exp. range�; (37)

where K�res� is as defined in Eq. (35) in terms of cross
sections integrated over the full region of rapidity. In other
words, we rescale the matched resummed result by the
ratio of NLO cross sections integrated over the experimen-
tally relevant rapidity region or over all �, respectively.

In Fig. 3 we compare the NLL resummed and NLO
predictions to the available data from E706 [28] for pp !

!0X at
���
S

p
� 31:5 GeV. The data cover j�j< 0:75. We

use the KKP fragmentation functions [26] and give results
for three different choices of scales, �R � �FI � �FF �
2pT , where 2 � 1=2; 1; 2. It is evident that the NLO result
falls far short of the data, which is an observation that has
114004
been made before [5–7]. Furthermore, there is a very large
scale dependence at NLO. The situation is significantly
improved when the NLL resummation is taken into ac-
count. As we already saw in Fig. 2, the NLL matched cross
section is considerably higher than the NLO one, and it
shows a markedly improved comparison to the E706 data,
probably satisfactory in view of the overall uncertainties.
Furthermore, the scale dependence is considerably reduced
compared to the NLO calculation, and hence the accuracy
of the prediction is improved.

Figure 4 shows the same result, but now for the Kretzer
set [27] of pion fragmentation functions. These functions
are known to be overall significantly smaller than the ones
of KKP, in particular, for the gluon fragmentation function
which is not well determined from the e�e� ! hX data.2

One therefore finds that all theory curves are shifted down-
ward with respect to the results shown in the previous
figure. Nevertheless, the effects due to threshold resumma-
tion remain large.

To give another example, Fig. 5 presents a comparison
to data from the WA70 experiment, corresponding to
-8
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pp → π0+X        E∗d3σ/dp3 (mb/GeV2)
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ζ=2

NLO

NLL
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FIG. 6 (color online). Same as Fig. 3, but comparing to the
RHIC PHENIX data of [9].
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pp → π0+X      E∗d3σ/dp3 (nb/GeV2)
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ζ=1/2
ζ=2

NLO NLL

MRST2002   Kretzer
E706 √s=31.5 GeV | η | < 0.75
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FIG. 4 (color online). Same as Fig. 3, but for the set of
fragmentation functions of [27].
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���
S

p
� 31:5 GeV and jxFj< 0:45. Again a significant en-

hancement due to NLL resummation is found, resulting in
a much improved agreement between theory and data.

Finally, in Fig. 6 we repeat the calculations for the case
of proton-proton collisions at RHIC with

���
S

p
� 200 GeV
pT(GeV)

pp → π0+X        E∗d3σ/dp3 (pb/GeV2)

ζ=1

ζ=1/2
ζ=2

NLO

NLL

MRST2002   KKP

WA70 √s=22.9 GeV        | xF | < 0.45
10
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FIG. 5 (color online). Same as Fig. 3, but comparing to the
pp ! !0X data of WA70 [35] at

���
S

p
� 22:9 GeV.
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and j�j< 0:35. The data are from the measurement per-
formed by the PHENIX Collaboration [9]. Again, an en-
hancement from resummation is found which, however, is
smaller than in the previous figures. This is expected since
we are further away from threshold here, due to the much
higher energy. Nevertheless, the enhancement is quite
significant at the larger pT , where in fact the resummed
result appears to lie too high. We emphasize, however, that
according to our results shown in Fig. 1 it is likely that the
NLL resummation gives an overestimate of the higher-
order corrections in this case. We therefore do not take
the enhancement too literally and reserve its closer inves-
tigation to a future study. We note that also in this case
there is a considerable reduction in the scale dependence,
and that again the fragmentation functions of [27] lead to a
smaller cross section.

V. CONCLUSIONS AND OUTLOOK

We have studied the NLL all-order resummation of
threshold logarithms in the partonic cross sections relevant
for the process pp ! hX at high transverse momentum of
the hadron h. This study has in part been motivated by the
observed shortfall of fixed-order (NLO) cross sections
when compared to experimental data in the fixed-target
regime, in contrast with the excellent agreement of data
and theory at colliders. Our numerical results indeed show
a strong enhancement of the cross section over the next-to-
leading order one for typical fixed-target kinematics,
significantly improving the agreement between data and
theoretical predictions. At higher energies, such as at
-9
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RHIC, the resummation effects are less important, but
more theoretical analysis is needed here due to the likely
relevance of subleading terms.

We emphasize that the contributions generated by re-
summation are a well-defined class of higher-order correc-
tions to the leading-power partonic cross sections that will
be present in the full perturbative series order by order and
actually dominate it. Our results are then also to be seen in
the context of the size of possible nonperturbative power-
suppressed corrections to the cross section. Any residual
shortfall of the resummed theoretical prediction would
need to be attributed to such contributions. In previous
studies, ‘‘intrinsic’’ transverse momenta of partons have
often been taken into account in (LO or NLO) calculations
of inclusive-hadron cross sections [6,30], in order to bridge
the large gaps between data and NLO theory in the fixed-
target regime. These can perhaps best be viewed as models
of the power-suppressed contributions. In light of our
results, however, much of the enhancements needed for a
satisfactory description of the fixed-target data appears to
come from perturbative contributions, so that power-
suppressed contributions are probably of rather moderate
size. It is interesting to note that resummed perturbation
theory itself may provide information on the structure of
power corrections, through ambiguities in the perturbative
series [31] arising from the pole in the perturbative running
coupling in the expressions Eqs. (16)–(18). A recent study
[32] addressed this issue in the case of single-inclusive
cross sections at large xT and indeed estimated power
corrections to be not very sizable. On the other hand, it is
known [15–17] that threshold resummation effects are not
very large for the prompt photon cross section in the fixed-
target regime, where discrepancies between data and NLO
theory of similar magnitude as for pion production have
been observed in some cases. This issue clearly needs
further study.

We finally emphasize that we regard this study only as
the beginning of a more detailed analysis of threshold
resummation for inclusive-hadron cross sections. There
are several points in which further developments are desir-
able. First of all, as we noted earlier, it would be possible in
principle (albeit challenging technically) to perform the
resummation correctly for the fully rapidity-dependent
cross section. To do this appears all the more interesting
since it was observed [7] that the discrepancies between
114004
NLO and fixed-target data actually increase (at fixed pT)
toward larger rapidities. We expect resummation effects to
become even more important as well at large �, simply
because one is approaching threshold more closely. It is
also possible to improve the resummation by resumming
also terms of the form �k

Sln
2k�1�N�=N in the partonic cross

sections. Such terms arise from collinear emissions
[20,21,33]; they are suppressed with respect to the LL
and NLL terms but may nonetheless be of relevance if
one is further away from threshold as, for example, in the
fixed-target regime at lower pT , or a collider energies. We
expect that such additional contributions would also fur-
ther decrease the scale dependence. With these improve-
ments in place, detailed phenomenological studies of
power corrections might become possible. We finally
also note that another important field for further study
would be the effects of threshold resummation on spin
asymmetries, in particular, on the double-longitudinal
spin asymmetries ALL measured by E704 [34] and at
RHIC [9]. We believe that the significant enhancements
due to resummation that we found in this work strongly
motivate all these further studies.
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APPENDIX: RESULTS FOR THE VARIOUS
SUBPROCESSES

In this appendix we compile the moment-space expres-
sions for the Born cross sections for the various partonic
subprocesses, and the process dependent coefficients
C�1�
ab!cd, DIab!cd, and GI

ab!cd. Since the C�1�
ab!cd have

rather lengthy expressions, we only give their numerical
values for Nf � 5 and the factorization and renormaliza-
tion scales set to �FI � �FF � �R � Q.
qq0 ! qq0:
�̂�Born�
qq0!qq0 �N� �

!CF

3CA
�5N2 � 15N � 12�B

�
N;

5

2

�
;

G1qq0!qq0 � 1=3; G2qq0!qq0 � 2=3; D�1�
1qq0!qq0 � �4 ln2; D�1�

2qq0!qq0 � 0;

C�1�
1qq0!qq0 � 20:2389 �Nf � 5�:

(A1)
q *q0 ! q *q0:
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�̂�Born�
q *q0!q *q0 �N� �

!CF

3CA
�5N2 � 15N � 12�B

�
N;

5

2

�
;

G1q *q0!q *q0 � 1=9; G2q *q0!q *q0 � 8=9; D�1�
1q *q0!q *q0 � �10=3 ln2; D�1�

2q *q0!q *q0 � 8=3 ln2;

C�1�
1q *q0!q *q0 � 22:4483 �Nf � 5�:

(A2)

q *q ! q0 *q0:

�̂�Born�
q *q!q0 *q0 �N� �

!CF

6CA
�N � 1��N � 3�B

�
N � 1;

5

2

�
;

G1q *q!q0 *q0 � 1; D�1�
1q *q!q0 *q0 � �10=3 ln2; C�1�

1q *q!q0 *q0 � 7:91 881 �Nf � 5�: (A3)

qq ! qq:

�̂�Born�
qq!qq�N� �

2!CF

3C2
A

�CA�5N2 � 15N � 12� � 2N�3� 2N��B
�
N;

5

2

�
;

G1qq!qq � 9=11; G2qq!qq � 2=11; D�1�
1qq!qq � �4 ln2; D�1�

2qq!qq � 0;

C�1�
1qq!qq � 19:535 �Nf � 5�:

(A4)

q *q ! q *q:

�̂�Born�
q *q!q *q�N� �

!CF

15C2
A

�CA�11N
3 � 59N2 � 102N � 60� � N�N � 3��5� 2N��B

�
N;

7

2

�
;

G1q *q!q *q � 5=21; G2q *q!q *q � 16=21; D�1�
1q *q!q *q � �10=3 ln2; D�1�

2q *q!q *q � 8=3 ln2;

C�1�
1q *q!q *q � 19:9643 �Nf � 5�:

(A5)

q *q ! gg:

�̂�Born�
q *q!gg�N� �

!CF

3CA
�2CF�N � 2��5� 2N� � CA�N � 1��N � 3��B

�
N � 1;

5

2

�
;

G1q *q!gg � 5=7; G2q *q!gg � 2=7; D�1�
1q *q!gg � �10=3 ln2; D�1�

2q *q!gg � 8=3 ln2;

C�1�
1q *q!gg � 12:4329 �Nf � 5�:

(A6)

qg ! qg:

�̂�Born�
qg!qg�N� �

!
6CA

�CFN�7� 5N� � 2CA�5N
2 � 15N � 12��B

�
N;

5

2

�
;

G1qg!qg � 45=88; G2qg!qg � 25=88; G3qg!qg � 18=88; D�1�
1qg!qg � �14=3 ln2;

D�1�
2qg!qg � 10=3 ln2; D�1�

3qg!qg � �2=3 ln2; C�1�
1qg!qg � 15:4167 �Nf � 5�:

(A7)

qg ! gq:

�̂�Born�
qg!gq�N� �

!
6CA

�CFN�7� 5N� � 2CA�5N
2 � 15N � 12��B

�
N;

5

2

�
;

G1qg!gq � 45=88; G2qg!gq � 25=88; G3qg!gq � 18=88; D�1�
1qg!gq � �8 ln2;

D�1�
2qg!gq � 0; D�1�

3qg!gq � �4 ln2; C�1�
1qg!gq � 22:4474 �Nf � 5�:

(A8)

gg ! gg:

�̂�Born�
gg!gg�N� �

!CA

5CF
�9N3 � 45N2 � 72N � 40�B

�
N;

7

2

�
;

G1gg!gg � 1=3; G2gg!gg � 1=2; G3gg!gg � 1=6; D�1�
1gg!gg � 0;

D�1�
2gg!gg � �10 ln2; D�1�

3gg!gg � 6 ln2; C�1�
1gg!gg � 21:1977 �Nf � 5�:

(A9)

gg ! q *q:
114004-11



DANIEL DE FLORIAN AND WERNER VOGELSANG PHYSICAL REVIEW D 71, 114004 (2005)
�̂�Born�
gg!q *q�N� �

!
12CACF

�2CF�N � 2��5� 2N� � CA�N � 1��N � 3��B
�
N � 1;

5

2

�
;

G1gg!q *q � 5=7; G2gg!q *q � 2=7; D�1�
1gg!q *q � 0; D�1�

2gg!q *q � 6 ln2;

C�1�
1gg!q *q � 16:7962 �Nf � 5�:

(A10)
In the above expressions, B�a; b� is the Beta-function.
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