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Abstract

Magnetic clouds (MCs) are highly magnetized plasma structures that have a low proton temperature and a magnetic field vector that
rotates when seen by a heliospheric observer. More than 25 years of observations of magnetic and plasma properties of MCs at 1 AU
have provided significant knowledge of their magnetic structure. However, because in situ observations only give information along the
trajectory of the spacecraft, their real 3D magnetic configuration remains still partially unknown. We generate a set of synthetic clouds,
exploring the space of parameters that represents the possible orientations and minimum distances of the satellite trajectory to the cloud
axis, p. The synthetic clouds have a local cylindrical symmetry and a linear force-free magnetic configuration. From the analysis of syn-
thetic clouds, we quantify the errors introduced in the determination of the orientation/size (and, consequently, of the global magneto-
hydrodynamic quantities) by the Minimum Variance method when p is not zero.
� 2007 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Magnetic clouds (MCs) are highly magnetized plasma
structures that have a low proton temperature and a mag-
netic field vector that rotates when seen by a heliospheric
observer.

Even though MCs have been studied for more than 25
years, there is no agreement about their true magnetic con-
figurations. This is mainly because the magnetic field data
retrieved in situ by a spacecraft correspond only to the
one dimensional cut along its trajectory and, thus, it is nec-
essary to make some assumptions to infer the cloud 3D
structure from observations.
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Different distributions of the magnetic field inside the
MC have been considered by several authors. A cylindrical
magnetic configuration with a linear force-free field was
proposed by Goldstein (1983), the so-called Lundquist’s
model (Lundquist, 1950). This model has been considered
as a relatively good approximation of the field distribution
inside MCs by several authors (e.g., Burlaga and Behan-
non, 1982; Lepping et al., 1990; Burlaga, 1995; Burlaga
et al., 1998; Lynch et al., 2003, 2005; Dasso et al., 2005b,
2006). However, many other different models have been
also used to describe the magnetic structure of MCs. Some
authors take a cylindrical shape for the cloud, but consider
a non-linear force-free field (Farrugia et al., 1999). Mulli-
gan et al. (1999); Hidalgo et al. (2000, 2002); and Cid
et al. (2002) propose different models with non-force-free
fields. Non-cylindrical static models have been also applied
to MCs (e.g., Hu and Sunnerup, 2001; Vandas et al., 2003;
Hu and Dasgupta, 2005).
ed.
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From in situ observations and assumptions on the mag-
netic distribution inside the MC, it is possible to estimate
some global magnetohydrodynamic quantities, such as
magnetic fluxes and helicity (e.g., Dasso et al., 2003; Mand-
rini et al., 2005; Gulisano et al., 2005; Attrill et al., 2006;
Dasso et al., 2006). In order to obtain good estimations
of these quantities, it is necessary to find the correct MC
orientation, improve the estimation of its size and compo-
nents of B in the cloud frame.

The Minimum Variance method (MV) has been exten-
sively used to find the orientation of structures in the
interplanetary medium (see e.g., Sunnerup and Cahill,
1967; Burlaga and Behannon, 1982). The Minimum Var-
iance method applied to the observed temporal series of
the magnetic field can estimate quite well the orientation
of the cloud axis, when the distance between the axis and
the spacecraft trajectory in the MC (the impact parame-
ter, p) is low with respect to the cloud radius (see e.g.,
Klein and Burlaga, 1982; Bothmer and Schwenn, 1998;
Gulisano et al., 2005). The MV method has two main
advantages with respect to other more sophisticated tech-
niques that are also used to find the orientation of an
MC: (1) it is relatively easy to apply, and (2) it makes
a minimum number of assumptions on the magnetic con-
figuration. Unfortunately, when p is significant, the MV
approach is no longer accurate and it provides an orien-
tation which deviates from the real one. However, quan-
titative estimations of the errors in the cloud orientation
given by the MV technique for finite values of p have
not been exhaustively done.

Some authors have used the MV technique to determine
the orientation of MCs (e.g., Klein and Burlaga, 1982;
Bothmer and Schwenn, 1998; Farrugia et al., 1999; Xiao
et al., 2004; Gulisano et al., 2005). Other authors use the
MV method to get a first order approximation for the
MC orientation. Then, they use this estimation as a seed
in a non-linear least-squares fit of a magnetic model to
the data. This approach is expected to improve the cloud
orientation and allows to find the value of p (e.g., Lepping
et al., 1990, 2003, 2006; Dasso et al., 2005b). However, we
notice that the solutions of this fitting can depend on the
seed introduced as input. Moreover, these methods need
important additional hypothesis to build a magnetic model
(e.g., Shimazu and Marubashi, 2000; Mulligan et al., 2001;
Hidalgo et al., 2002; Cid et al., 2002; Hu and Sunnerup,
2002; Lynch et al., 2003; Hidalgo, 2003). Conversely, the
MV method just requires a well ordered large scale vari-
ance of B in the three spatial directions. Several of these
different sophisticated techniques have been compared ana-
lyzing the output of numerical simulations of MCs (Riley
et al., 2004). These authors found that these techniques give
orientations that differ from the real ones by �10� to 30� in
the latitude angle of the MC axis and by �10� in the longi-
tude angle, even for low values of p/R (where R is the cloud
radius). Larger differences in the MC orientation are found
for larger values of p/R (see Tables I and II in Riley et al.,
2004).
In order to estimate the error introduced by the Mini-
mum Variance method, we generate a set of synthetic
clouds, considering a cylindrical geometry and a linear
force-free field (Lundquist’s model, 1950). The clouds in
the set have different orientations and p. We perform a
Minimum Variance study in a similar way as the one
applied to cloud observations from one spacecraft. The
direction associated to the intermediate eigenvalue gives
the estimated direction of the MC axis (see Section 2).
Assuming a null impact parameter, we estimate the MC
radius. Then, we fit a Lundquist’s model to the synthetic
data to determine the physical parameters (magnetic field
strength and twist) keeping the orientation fixed (as given
by the MV method). This last step is done to estimate the
propagation of the errors in the axis orientation and
p = 0 in the global quantities (magnetic fluxes and helicity).
We also provide an estimation of p/R from the data rotated
to the frame of the MV eigenvectors. This permits us to
correct the values of the global quantities when p/R is
finite. In Section 2, we describe briefly the Minimum Vari-
ance method applied to magnetic clouds, the physical
model, and the global quantities. In Section 3, we explain
how we generate the synthetic clouds. In Section 4, we
compare the results of our MV analysis with the original
parameters that characterize the generated clouds. Finally,
in Section 5, we summarize our findings and conclude.
2. Minimum Variance technique

2.1. The method

The MV method finds the direction n in which the pro-
jection of a series of N vectors has a minimum mean qua-
dratic deviation and also provides the directions of
intermediate and maximum variance (e.g., Sonnerup and
Scheible, 1998). This method is very useful to determine
the orientation of structures that present three clearly dis-
tinguished variance directions. In particular, when this
method is applied to the magnetic field B, the mean qua-
dratic deviation in a generic direction n is

r2
n ¼

1

N

XN

k¼1

ðBk:n� hBi:nÞ2 ð1Þ

where Bk corresponds to each element (k) of the magnetic
field series. The field mean value is

hBi ¼ 1

N

XN

k¼1

Bk ð2Þ

The MV method finds the direction where r2
n is mini-

mum under the constraint |n| = 1. The Lagrange multipliers
variational method can be used in this determination. k is
the Lagrange multiplier in the following system of
equations:

o

oni
fr2

n � kðjnj2 � 1Þg ¼ 0 ð3Þ



A.M. Gulisano et al. / Advances in Space Research 40 (2007) 1881–1890 1883
where i = 1,2,3 corresponds to the three components of n.
After applying Eq. (3), the resulting set of three equations
can be written in matrix form as

r2
nnj ¼

X3

i¼1

ðmijniÞ ¼ knj ð4Þ

where

mij ¼ hBiBji � hBiihBji ð5Þ

The indexes i, j represent the field components. The
matrix mij is symmetric with real eigenvalues k1, k2 and
k3 and orthogonal eigenvectors (X̂ MV , Ŷ MV , ẐMV ), which
represent the directions of minimum, maximum and inter-
mediate variation of the magnetic field (the symbol 00^00 on
top of a variable means that it is a unit vector). The eigen-
values provide the corresponding variance r2

n associated
with each direction. Thus, from the eigenvectors (X̂ MV ,
Ŷ MV , ẐMV ), it is possible to construct the rotation matrix
T such that the components of the field in the MV frame
of reference can be written as

BMV ¼ T � B ð6Þ

We will call BX MV the field component that corresponds
to X̂ MV (Minimum Variance direction), BY MV to that of
the maximum variance direction, and BZMV to that having
the intermediate variance.

2.2. Cylindrical linear force-free model for MCs

The local magnetic structure of MCs at 1 AU has been
frequently modeled as a cylindrical linear force-free field
(Lundquist, 1950) by several authors (see e.g., Burlaga,
1988; Lepping et al., 1990; Lynch et al., 2003; Dasso
et al., 2005b; Gulisano et al., 2005). In this case, the mag-
netic field is given by

B ¼ B/Ûþ BZẑþ Brr̂ ¼ B0½J 1ðarÞÛþ J 0ðarÞẑ� ð7Þ

where Jn is the Bessel function of the first kind of order n,
B0 is the strength of the axial field at the cloud axis (i.e., at
r = 0), and a is a constant, such that the twist of the mag-
netic field lines near the cloud axis turns out to be

s0 ¼ sð0Þ ¼ a=2 ð8Þ

The gauge-independent magnetic helicity per unit length
(L) for this model is (Dasso et al., 2003)

H r

L
¼ pB2

0R2

s0

J 2
0 2s0Rð Þ þ J 2

1ð2s0RÞ � J 0ð2s0RÞJ 1ð2s0RÞ
Rs0

� �
;

ð9Þ

where R is the radius of the MC.
The magnetic flux across a surface transverse to the

cloud axis (that is, with a normal along the ẑ axis of the
cylindrical structure) is

F z ¼
pB0RJ 1ð2Rs0Þ

s0

ð10Þ
The flux per unit length across a surface defined by the
radial direction and the axis of the cloud (i.e., a surface
with a normal pointing along the Û direction) is (see e.g.,
Mandrini et al., 2005)

F /

L
¼ B0½1� J 0ð2Rs0Þ�

2s0

ð11Þ
2.3. Minimum Variance method applied to magnetic clouds

The large and coherent rotation of the magnetic field
vector observed by the spacecraft when p � 0, allows us
to associate: (1) the large scale maximum variance direction
to the azimuthal direction (variation of the observed com-
ponent of the field of the order of 2 B0, see B/ in Eq. (7)),
(2) the minimum variation to the radial direction (the var-
iance will be close to zero, see Br in Eq. (7)), and (3) the
intermediate variance to the axial direction (variation of
the order of B0, see Bz in Eq. (7)) (see e.g., Bothmer and
Schwenn, 1998).

However in Lundquist’s model, as well as in the obser-
vations of real clouds, the modulus of the magnetic field
does not remain constant, being maximum near the cloud
axis and minimum toward the cloud boundaries. More-
over, for MCs in expansion and due to magnetic flux con-
servation in the expanding parcels of fluid, |B| can decrease
significantly while the spacecraft observes the cloud (see
e.g., Berdichevsky et al., 2003; Dasso et al., in press). This
decrease of |B| with time is called the ‘aging’ effect since the
in situ observations are done at a time, which is more dis-
tant from the launch time as the spacecraft crosses the MC.
This decrease of |B| can affect significantly the result of the
MV method. However, the relevant information to find the
cloud orientation is in the rotation of the magnetic field.
Thus, to decouple the variation of |B| from the rotation,
we apply the MV technique to the normalized field vector
series: b(t) = B(t)/|B(t)|.

Because MV does not give the positive sense of the var-
iance directions, we choose this sense for X̂ MV so that it
makes an acute angle with the Earth–Sun direction
(X̂ GSE). We also choose ẐMV so that BZMV is positive at the
cloud axis, and Ŷ MV is closing the right handed system of
coordinates.

3. Generation of synthetic clouds

To generate the set of synthetic MCs we use Lundquist’s
model to represent their magnetic configuration. The input
parameters for this model are: B0 = 20 nT, a = 2.4/R (i.e.,
we set the MC boundary in coincidence with aR equal to
the first zero of the Bessel function of order zero), and
R = 0.1 AU. The cloud velocity is set to 300 km/s. This is
only used to construct the magnetic field time series that
an observer located at the Lagrangian point L1 would mea-
sure in Geocentric Solar Ecliptic (GSE) coordinates (the
value of the velocity is not affecting the results). Once the
magnetic field model and cloud velocity are fixed, the set
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of different clouds is generated taking different values for p

and different orientations with respect to the GSE system
of coordinates. The set of cloud orientations are given by
the angles: h (latitude angle, the angle between the cloud
axis and the ecliptic plane), and u (longitude angle, the
angle between the projection of the cloud axis on the eclip-
tic plane and the Earth–Sun direction (X̂ GSE), measured
counterclockwise).

The intrinsic cloud reference system and the GSE system
of coordinates can be related using the following rotation
matrices:

X̂ cloud

Ŷ cloud

Ẑcloud

0
B@

1
CA ¼ R2 � R1 �

X̂ GSE

Ŷ GSE

ẐGSE

0
B@

1
CA ð12Þ

where

R1 ¼
sin h cos u sin h sin u � cos h

� sin u cos u 0

cos h cos u cos h sin u sin h

0
B@

1
CA ð13Þ

and

R2 ¼
cos d sin d 0

� sin d cos d 0

0 0 1

0
B@

1
CA: ð14Þ

Without loosing generality we choose d (the angle of an
arbitrary rotation in the plane ðX̂ cloud; Ŷ cloudÞ) such that
X̂ GSE � Ŷ cloud ¼ 0, that is

tan d ¼ � tan u
sin h

ð15Þ

Thus, in this case, the spacecraft trajectory in the MC
frame turns out to be

rðtÞ ¼ dðtÞX̂ GSE þ pŶ cloud ð16Þ
with

dðtÞ ¼ �V cloud

Dt
2
þ V cloudðt� t0Þ ð17Þ

where d(t) is the ‘signed’ distance traveled by the spacecraft
within the cloud, this quantity is taken negative when the
spacecraft is approaching the cloud axis and positive when
it is leaving the cloud center, and Dt = (tf � t0) is the total
transit time (with t0 and tf the time at which the spacecraft
enters and leaves the structure, respectively).

The projection of the trajectory on the plane
X̂ cloud; Ŷ cloud

� �
, which is the polar coordinate q(t), is

qðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X ðtÞcloud

� �2 þ Y ðtÞcloud

� �2
h ir

ð18Þ

where

X ðtÞcloud ¼ dðtÞðcos d sin h cos u� sin d sin uÞ
Y ðtÞcloud ¼ p ¼ constant

�
; ð19Þ

then, the angle (usat) between the projection of the trajec-
tory on the plane X̂ cloud; Ŷ cloud

� �
and the X̂ cloud satisfies
sin usat ¼
YðtÞcloud

jqðtÞj

¼ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðtÞ2ðcos d sin h cos u� sin d sin uÞ2 þ p2

q ð20Þ

cos usat ¼
XðtÞcloud

jqðtÞj

¼ dðtÞðcos d sin h cos u� sin d sin uÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðtÞ2ðcos d sin h cos u� sin d sin uÞ2 þ p2

q ð21Þ

The magnetic field time series inside the synthetic cloud
is

BðtÞ ¼ B0J 0ðaqðtÞÞẐcloud þ B0J 1ðaqðtÞÞûsatðtÞ; ð22Þ
where ûsatðtÞ is related to sin usat and cos usat as

ûsatðtÞ ¼ � sin usatðtÞX̂ cloud þ cos usatðtÞŶ cloud: ð23Þ
Note that to compute B(t) we need q(t) and conse-

quently d(t) and Dt (see Eqs. (17) and (18)). To compute
Dt, we set t = tf (or equivalently t = t0) in Eqs. (17) and
(18), so that q = R, then we find

Dt ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � p2

p
V cloud cos d sin h cos u� sin d sin uð Þ ð24Þ

To obtain the time series of B(t) from Eq. (22) we take
p/R from 0 to 0.9 and the following sets of orientations:
(h,u) = (45,90)(60,80)(70, 90)(80, 105)(89,120) (the axis of
the MC from 45� to almost parallel to ẐGSE and almost per-
pendicular to the Sun–Earth line), (h,u) = (5, 200)(30, 180)
(the cloud axis almost on the ecliptic plane and in the Sun–
Earth direction), (h,u) = (0, 90)(10, 270) (the cloud axis
almost on the ecliptic and perpendicular to the Sun–Earth
line), and (h,u) = (10, 130).

4. Analysis of synthetic clouds

4.1. General results

From the time series of B(t) (Eq. (22)), a given orienta-
tion and p, we generate the corresponding time series (in
the GSE components), which emulates the observations
of the spacecraft (i.e., the ‘observations’ of the synthetic
cloud). We then apply the MV technique to the normalized
field vectors (b(t) = B(t)/|B(t)|) of these synthetic time
series.

We estimate the MC orientation: the latitude angle
(hMV) and the longitude angle (uMV), which for p 6¼ 0 will
be different from the correct values of h and u chosen at
the end of Section 3. From Eq. (24), using Vcloud and Dt,
we estimate the radius (RMV) assuming that p is null (since
it is unknown).

Siscoe and Suey (1972) proposed a criterion to deter-
mine the anisotropy of a given normalized vector series
vk, computing the eigenvalues (k) and the eigenvectors of
the matrix Mij = Ævivjæ. For a set of 100 vectors, as used
in our case, they found a significance criterion to determine
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together with the quadratic regression curve (solid line).
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if the set presents significantly distinct spatial directions.
This criterion is kmin/kint < 0.72 and kmax/kint > 1.37 (a fully
random series of vectors satisfies it in 95% of the cases).
For the vector series corresponding to the MC field (bk),
the Minimum Variance method finds eigenvalues and
eigenvectors of the matrix mij = Æbi bjæ � ÆbiæÆbjæ (see Section
2.1).

Upper (lower) panel of Fig. 1 left shows the ratio
between the minimum and intermediate (maximum and
intermediate) eigenvalues obtained from MV (using mij)
applied to the set of the generated synthetic MCs, as a
function of p/R. Note that, as expected, these eigenvalues
ratios do not depend on the orientation of the cloud
(because the eigenvalues are invariant under rotations).
kmin stays lower than 5 · 10�4 kint, while kmax stays above
5kint.

Fig. 1 right shows eigenvalues ratios using the matrix Mij

(as done by Siscoe and Suey), where we take vk = bk.
Notice that the criterion of Siscoe and Suey is very well sat-
isfied for large values of p/R, and the eigenvalue separation
becomes even larger for increasing values of p/R. However,
this only assures well distinct variance directions, but it
does not measure how good is the approximation of the
MC axis by the intermediate eigenvalue direction. The cri-
terion of Siscoe and Suey is only a necessary condition, far
from being sufficient for a good determination of the MC
orientation.

4.2. Comparison with the expected cloud orientations

In Fig. 2 we report the angle g between the generated
cloud axis (Ẑcloud) and the one obtained by MV (ẐMV ), as
a function of p/R, we plot only one curve since g does
not depend on the MC orientation. It can be seen that
the deviation from the real generated orientation increases
with p/R. For p/R � 0.2, we obtain g � 2� and when p/R
reaches the extreme value �0.9, we get g � 18�. We remark
that for real observations, cases with p/R � 0.9 will be
more affected by the interaction between the MC and the
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Fig. 1. Left: upper (lower) panel shows the ratio between the minimum and in
for the set of generated MCs as a function of p in units of the MC radius. Right
we take vk = bk for the set of generated MCs.
solar wind (see e.g., Dasso et al., 2005a) with a consequent
observation of B(t) significantly different from the ideal
modeled magnetic configuration; this will introduce biases
which are not present in our synthetic MC set.

The deviation angle g is well represented by a quadratic
curve (Fig. 2) since the PCC (Pearson correlation coeffi-
cient) is 0.999. It is noteworthy that this deviation in the
MC orientation is not evident from the eigenvalues ratios
(Fig. 1) discussed in the previous section. Despite the MV
technique finds well distinguished (minimum, maximum,
and intermediate) directions, when p/R is not small those
directions do not correspond to X̂ cloud; Ŷ cloud; Ẑcloud.

We compared the above results to those of an analysis
using the time series B(t), so without normalization, and
we found worse orientations (g � 20� for p/R � 0.5 and
g � 35� for p/R � 0.9). Thus, we conclude that to get better
estimations for the cloud axis orientation it is convenient to
apply the MV technique to the normalized time series b(t).
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termediate (maximum and intermediate) eigenvalues from MV (using mij)
: upper (lower) panel shows the ratios but now using the matrix Mij, where
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In Fig. 3 (Fig. 4) we report the deviation in the angles h
(u), as Dh = h � hMV(Du = u � uMV). We report these
deviations, in addition to the deviation g, since h and u
are frequently used in the literature to give the orientation
of MCs.

There is a general trend to obtain larger deviations in u
than in h, especially when |h| is large (this is an effect of the
spherical coordinates used close to where u is singular, at
the two poles). As expected, |Dh| and |Du| increase as p

increases, but with a different behavior for different cloud
orientations, which is quantified in Figs. 3 and 4. For all
the synthetic MCs hMV < h; thus, MV tends to give lower
values of the latitude angle as p increases.

When the cloud axis is close to the ecliptic plane and it is
perpendicular to the Sun–Earth direction, h is very well
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Fig. 3. Bias from Minimum Variance in h (Dh = h � hMV) in function of p

in units of the radius. Different orientations of the synthetic clouds are
represented by (h,u) = * (45,90), · (89,120), + (60,80), � (0,90), h

(70,90), } (10,130), w (5,200), (30,180), / (10,270), . (80,105).
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Fig. 4. Idem Fig. 3 but showing the difference in u (Du = u � uMV).
determined even for very large values of p (see symbols /
and � in Fig. 3). However, clouds with their axis either
nearly perpendicular to the ecliptic (see symbols: ·
(h = 89), . (h = 80), h (h = 70), and + (h = 60) in Fig. 3)
or nearly parallel to Sun–Earth direction (see symbols:
(u = 180), w (u = 200) in Fig. 3) give the largest errors,
e.g., Dh between �2� and 10� for p/R � 0.7.

For the cloud axis close to the Sun–Earth direction and
low latitudes, u is well determined even for very large val-
ues of p (see symbol: (u = 180) in Fig. 4). For increasing
values of the latitude, errors in u turn to be larger (see sym-
bols: + (h = 60), h (h = 70), . (h = 80), and · (h = 89) in
Fig. 4). We remark that the largest error in the determina-
tion of u, when h is 89� (cloud axis almost pointing to the
ecliptic north), is not meaningful because it comes from the
small differences in the determination of Ẑcloud (small g)
and, consequently, large deviations in its projection on
the ecliptic plane (i.e., on u). For latitudes lower than
h � 45� we obtain a Du < 20�, even for p/R as large as 0.9.
4.3. Comparison with the expected cloud parameters and

global magnitudes

To compare with the generated MCs, we fit the physical
parameters of Lundquist’s model to the BMV components,
using a non-linear least-squares fitting, as described in Das-
so et al. (2006). Then, from the fitted parameters, we calcu-
late Hr/L and the fluxes as discussed below.

We compute the mean value of BX MV , which is expected
to be zero in the case p = 0, we depict jhBX MV ij=B0MV versus
p/R in the upper panel of Fig. 5, together with the qua-
dratic regression curve that best fits the points. The devia-
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Fig. 5. Upper panel: jhBX MV ij=B0MV . Middle panel: DB0 = B0 � B0MV.
Lower panel: absolute value of the rotation angle of B in the plane of
maximum variance (|cMV|). All the quantities are plotted, in function of p

in units of the radius. Their quadratic regression curves are added.
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tion is larger when p increases. This deviation can provide a
quantitative estimation of the impact parameter by report-
ing the measured value ofDbx ¼ jhBX MV ij=B0MV in the upper
panel of Fig. 5, or simply by using the approximation
p � R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dbx=1:6

p
from the quadratic fit.

The magnetic field strength B0MV, found by fitting
Lundquist’s model, is also affected by the error introduced
by MV in the axis orientation. The middle panel of Fig. 5
shows the difference DB0 = B0 � B0MV. We also find a qua-
dratic dependence with p/R. The difference in the field
strength can be significant, for example �50% for p/
R = 0.5.

We also analyze the magnitude of the coherent rotation
of the magnetic field as defined by the angle c between the
field vector components that lie on the maximum variance
plane (BZMV ;BY MV ), taken at the front and end boundaries of
the MC. If the right cloud orientation is used, c = 180� for
all values of p because all the synthetic clouds satisfy Bz = 0
at the MC boundary. However, with the orientation found
with the MV method, |c| decreases as p/R increases due to a
mix of field components (lower panel of Fig. 5). Thus, we
find that the angle |c| varies from 180� (for p = 0) to
�120� in the extreme case when p = 0.9R (i.e., when the
spacecraft crosses the cloud close to its periphery). This is
still a large coherent rotation of the magnetic field.

Finally, in all panels of Fig. 5 we plot only a unique
curve to represent all the synthetic clouds for a given p/
R, since the values obtained do not depend on the MC
orientation.

Fig. 6 shows the radius obtained from MV (assuming
p = 0) in units of the model radius (R = 0.1 AU) as a func-
tion of p/R; thus, it quantifies the underestimation of the
real radius using RMV when p 6¼ 0. The solid line in this
figure corresponds to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� ðp=RÞ2Þ

q
, the value that would

be obtained for the correct orientations defined for the
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Fig. 6. RMV in units of the synthetic radius R (=0.1 AU) as a function of
p/R. Solid line corresponds to the small expected radius (because of the
assumption p = 0) computed from the orientations of the synthetic MCs.
Symbols are given as in Fig. 3.
synthetic clouds, but with the (only) bias given when the
underestimation of the size is due to the finite value of p.
This introduces an error in the cloud radius lower than
30% for p/R < 0.7. As expected, the only cases having sig-
nificant variations in the estimated radius because of errors
in the orientations are those where the cloud axis is nearly
parallel to the Sun–Earth direction: symbols } (h =
10�,u = 130�), (h = 30�,u = 180�), and w (h =
5�,u = 200�).

Fig. 7 shows the fitted values for a (aMV). As expected,
the value a = 24 AU�1 (used for all the synthetic clouds)
is recovered when p/R = 0. The solid line represents
a ¼ 24 AU�1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðp=RÞ2

q
, which corresponds to the value

of a that cancels J0(aR) for the underestimated radiusffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � p2

p
. Except for the same three MCs that give the

largest error in R (axis oriented near the Sun–Earth direc-
tion), the obtained values of a differ from a = 24 AU�1

basically due to the underestimation of the radius. The
right panel of Fig. 7 shows that, excluding the three cases
mentioned before, there is a small trend to cancel this
effect, because the fitted values of a are between

a = 24 AU�1 and a ¼ 24 AU�1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� ðp=RÞ2Þ

q
.

For every synthetic cloud we compute the magnetic
helicity (Eq. (9)) from the model and the fitted parameters
to the Lundquist’s model, using the MV orientation (HMV).

In Fig. 8 we plot DH=H ¼ H�HMV

H as a function of p/R. The

solid line corresponds to the helicity computed with the
correct (values used to the produce the synthetic clouds)
B0(=20 nT) and a(=24 AU�1), but considering the under-

estimated radius as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � p2

p
. HMV underestimates H for

two reasons: (1) the underestimation of the radius and (2)
the bias introduced in the fitted values of B0MV and aMV.
The radius underestimation can be partially corrected by
estimating the impact parameter from the observed
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Fig. 7. aMV as a function of p/R. Dashed line corresponds to the value set
to generate the synthetic clouds (a = 24 AU�1). The symbols for different
orientations are given as in Fig. 3. Solid line shows
a ¼ 24 AU�1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� ðp=RÞ2Þ

q
. The left panel shows the full set of clouds,

while the right panel shows a zoom.
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Fig. 10. Idem as Fig. 8 but for F//L values.
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jhBX MV ij=B0MV (upper panel of Fig. 5), but an underestima-
tion remains due to the error in the MC orientation
(Fig. 7). Indeed, from the middle panel of Fig. 5 (underes-
timation of B0 for finite values of p) and (Fig. 7) (overesti-
mation of a), and the main dependence on these two
parameters (Eq. (9)), it is expected that HMV will be further
underestimated. If the cloud size is corrected, the largest
error is �30% for p/R � 0.5. Thus, the largest source of
error (always an underestimation) in the magnetic helicity
value of ideal MCs is the influence of p on the estimation
of the radius.

We also compute DF z=F z ¼ F z�F MV
z

F z
(Fig. 9) and

DF /=F / ¼
F /�F MV

/

F /
(Fig. 10). Both fluxes have the same

sources of underestimation as the magnetic helicity above.
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Fig. 9. Idem as Fig. 8 but for Fz values.
From the above results, we conclude that the main reason
for underestimations of global quantities is the decrease of
RMV, which can be corrected if p is computed. We also note
that for the three global quantities, the largest deviations
appear in clouds oriented with their axes close to the
Earth–Sun direction.

5. Summary and conclusions

We study the bias introduced by the Minimum Variance
(MV) technique in the determination of the orientation and
size of magnetic clouds (MCs). We also analyze the influ-
ence of this bias and fitted parameters on the estimation
of their global quantities (magnetic fluxes and helicity)
for non-negligible values of the impact parameter p com-
pared to the MC radius R.

We explore this bias studying a set of synthetic cylindri-
cal and linear force-free field MCs. The physical parame-
ters for this model are chosen to be the same for all
clouds and the only differences in the set correspond to dif-
ferent orientations and impact parameters (p/R).

MCs can present signatures of strong expansion (an
effect not considered in our synthetic set of MCs) (e.g.,
Shimazu and Marubashi, 2000; Berdichevsky et al., 2003;
Nakwacki et al., 2005, 2006). However, the main source
of error when using MV for expanding MCs is introduced
by the strong decrease of |B|. This effect can be corrected if
MV is applied to the normalized time series: b(t) = B(t)/
|B(t)|. Moreover, Dasso et al. (in press) compared the orien-
tation of an MC using the normalized MV technique with
another technique that considers flux cancellation (Dasso
et al., 2006). Both methods were in a good agreement.
However, other effects can introduce biases on the MC
orientation and size. Examples are the deviation from a
cylindrical symmetry, ambiguous MC boundaries, or the
presence of a significant level of field fluctuations. Such
effects are not studied in the present work. This will be
the purpose of a future research.
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We quantify, in function of p, the dependence of the
increasing deviation (g) of the MC symmetry axis (Ẑcloud),
provided by MV applied to the normalized series of vec-
tors, from the generated one. We find a deviation of
g � 3� for p � 30% of the cloud radius; even more, g
remains being lower than 20� for p as high as 90% of the
MC radius. When MV is applied to B(t) we obtain larger
deviations; thus, we conclude that application of MV to
b(t) gives better results.

The criterion discussed in Siscoe and Suey (1972), based
on the quantification of the eigenvalue ratios, is a good esti-
mator to determine if a given vector set corresponds to well
distinguished spatial directions. This criterion has been used
in the literature to validate the goodness of the orientations
given by MV. However, we have found that even when this
criterion is very well satisfied, the MV directions can still
deviate significantly from the main cloud axes. Thus, this cri-
terion is not a good estimator of the quality of the cloud ori-
entation obtained with the MV method. We conclude that
this criterion should be taken with care, since to have well dis-
tinguished variance directions is a necessary but far from suf-
ficient condition to assure that the orientation found is the
real MC orientation.

A good determination of the latitude (h) and longitude
(u) of the main axis of the MC is important to obtain a
good estimation of the cloud size from its speed and range
of observed times. We have found that h is better deter-
mined for an MC with its axis nearly on the ecliptic plane
(i.e., h � 0�) and nearly perpendicular to the Sun–Earth
direction (u � 0� or u � 180�), even for values of p as large
as p � 0.9 (see Fig. 3). For all the studied cases we have
found typically Dh lower than 5� even for p/R as large as
0.9. The worse determination of u corresponds to the
MC axis nearly perpendicular to the ecliptic plane
(h � 90�), being this large uncertainty in u a geometric
amplification due to the description of the poles in spheri-
cal coordinates (the full range of u values are clustered
around the poles).

One of the main unknown parameters of an MC is its
radius, which can be significantly underestimated from
observations when p is a significant fraction of the MC
radius. This implies an underestimation of extensive global
magnetohydrodynamical quantities in MCs, as the magnetic
fluxes and helicity. The deviation from zero of the mean
value of the X̂ MV magnetic field component (in the direction
of lowest variance) can be used to obtain a first order estima-

tion of p, directly from observations, as p � R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dbx=1:6

p
for

Lundquist’s MCs. This estimation of p lets us improve the
estimation of the MC radius and, consequently, the estima-
tions of global quantities since the uncertainty in the cloud
size is one of the main sources of error.
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