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Abstract. In this paper we study the frustrated J1−J2 quantum Heisenberg model on the square lattice for
J2 > J1/2, in a magnetic field. In this regime the classical system is known to have a degenerate manifold
of lowest energy configurations, where standard thermal order by disorder occurs. In order to study its
quantum version we use a path integral formulation in terms of coherent states. We show that the classical
degeneracy in the plane transverse to the magnetic field is lifted by quantum fluctuations. Collinear states
are then selected, in a similar pattern to that set by thermal order by disorder, leaving a Z2 degeneracy.
A careful analysis reveals a purely quantum mechanical effect given by the tunneling between the two
minima selected by fluctuations. The effective description contains two planar (XY -like) fields conjugate
to the total magnetization and the difference of the two sublattice magnetizations. Disorder in either or
both of these fields produces the locking of their conjugate observables.

1 Introduction

The properties of the two-dimensional Heisenberg model
have received considerable interest in the last years [1–12],
in part because of the possible connection between mag-
netism and high-temperature superconductivity. In this
sense, one of the most typical examples of a two-
dimensional frustrated spin system is given by the J1−J2

antiferromagnetic Heisenberg model on the square-lattice.
The classical version of this model, for large enough

J2/J1, has a continuous manifold of degenerate ground
states related by the rotation of one sub-lattice with re-
spect to the other. Thermal and quantum fluctuations
can stabilize collinear spin configurations [1,3], a particu-
lar case of the phenomenon known as Order By Disorder
(OBD) [2]1.

It is generally accepted that quantum and thermal fluc-
tuation select the same ground state from the classical
manifold. However, there exist some examples where the
quantum fluctuations select a different ground state [13]
than thermal ones. For this reason, it is interesting to
study the quantum and thermal contributions to the
free-energy in order to distinguish their selection fea-
tures. Besides its theoretical interest, the present model
is appropriate for describing compounds like Li2VOSiO4,

a e-mail: lamas@fisica.unlp.edu.ar
1 A related Heisenberg model consisting of interpenetrat-

ing triangular and dual hexagonal antiferromagnetic lattices,
where coplanar spin configurations are selected, was recently
proposed [12].

Li2VOGeO4 and VOMoO4 in which dominant magnetic
interactions consist of first and second nearest neighbors
exchange [6,7].

We focus here on the partially polarized system, in
the presence of an external magnetic field. The quantum
model at zero magnetic field (magnetization m = 0) has
been subject of much recent controversy [14–16]. Notice
that, as soon as we are considering the m �= 0 situation,
we are explicitly assuming that we have gone out of any
putative non-trivial gapped phase related to the m = 0
case. The phenomenology at m = 0 is certainly very in-
teresting and still the matter of many works, but it is not
the concern of the present paper.

The path integral description of the magnetic degrees
of freedom in partially polarized spin systems [9] repre-
sents a good alternative to study ordering due to disorder
phenomena. In particular, semiclassical quantum fluctua-
tions incorporated in such a path integral approach might
go beyond the usual spin-wave fluctuation analysis.

For the strongly frustrated J1 − J2 antiferromagnetic
Heisenberg model on the square lattice, in the presence
of an external magnetic field, the arising effective de-
scription contains two planar XY -like fields. One of them
(hereafter the symmetric field) is canonically conjugate to
the magnetization degrees of freedom along the magnetic
field, while the other (the antisymmetric field) is conju-
gate to the difference between sublattice magnetizations.
The presence of topological terms (Berry phases) with
coefficients that depend on the total magnetization may
either allow or forbid the XY vortex proliferation that
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disorders the planar degrees of freedom. Delocalization of
the spin components in the transverse plane is canoni-
cally related to the total magnetization. This approach
thus allows for the study of plateaux formation in magne-
tization curves [17]. An effective potential is also found
for the antisymmetric field, allowing for possible non-
trivial instanton-like excitation processes. By tuning the
couplings it may be possible to reduce the spin stiffness
and favor the proliferation of such instanton configurations
driving the system into a disordered phase where broken
symmetries are restored.

From all the above, the magnetization dependent topo-
logical terms controlling the weight of field configurations
with non-vanishing vorticity turn out to be relevant in
the mechanism of quantum order by disorder selection.
The aim of the the present work is the analysis of their
consequences.

The paper is organized as follows: in Section 2 we
present the model Hamiltonian and its classical ground
state degeneracy. In Section 3 we derive a low energy effec-
tive action in the framework of path integration. Section 4
is devoted to computing the free energy of the system at
finite temperature; vortex free and topological non trivial
configurations are treated separately. In Section 5 we draw
our main results arising from the presence of Berry phase
terms in the low energy effective action. Section 6 presents
the conclusions and open routes for further research.

2 The model and its classical degeneracy

We study a spin-S next-nearest-neighbor antiferromag-
netic Heisenberg model on the square lattice in the pres-
ence of a homogeneous magnetic field. The Hamiltonian
is given by:

H = J1

∑
NN

S(r) · S(r′) + J2

∑
NNN

S(r) · S(r′)

−h
∑

r

Sz(r) (1)

where J1, J2 are positive. The magnetic field h points in
the z direction, vectors r and r′ belong to the two di-
mensional square lattice r = nxx̂ + ny ŷ, with x̂ = a(1, 0),
ŷ = a(0, 1), a is the lattice spacing and the summations
denoted as NN and NNN run on nearest-neighbor and
next-nearest-neighbor sites, respectively. Despite its sim-
plicity, this model is paradigmatic in quantum magnetism
since it shows order from disorder selection [3] at h = 0,
a magnetization plateau at saturation fraction M = 1/2,
and field induced ordering [11]. In the following sections
we study the degenerate classical ground state for h > 0
and the low energy theory describing thermal and quan-
tum fluctuations around it.

At zero magnetic field and J2 < J1/2 the minimum
energy configuration corresponds to a Néel order, whereas
for J2 > J1/2 the ground state breaks up into two square√

2×√
2 sub-lattices [1]. Each sub-lattice is ordered anti-

ferromagnetically, leaving a classical ground state degen-

α

Fig. 1. Sketch of a given classical configuration on the plane.
Each sub-lattice is ordered antiferromagnetically with a rela-
tive angle α between sub-lattices.

eracy associated to global rotations of all the spins be-
longing to one of the sub-lattices. In order to describe the
strongly frustrated J2 > J1/2 regime we parameterize the
ground state manifold as

Sl(r) =

⎛
⎜⎜⎝

√
S2 − m2 cos(Q · r + αl)

√
S2 − m2 sin(Q · r + αl)

m

⎞
⎟⎟⎠,

where l = 1, 2 is the sublattice index, m is the homoge-
neous magnetization, Q is a pitch angle and αl is a sub-
lattice dependent phase. To label the degenerate ground
states we can choose one reference spin from each sub-
lattice, and use the relative angle α = α2 − α1 between
these two spins to parameterize the non-trivial degener-
acy, the ground-state energy being independent of α. In
order to represent the ground state manifold, we take in
the following Q = (π

a , 0), α1 = 0 and α2 = α.
In the presence of a magnetic field the classical spins

are canted towards the field direction (m �= 0) and the
classical energy can be written as:

E

Nc
= 4m2J1 + J2(8m2 − 4S2) − 2mh,

where Nc is the number of unit cells. Minimizing with
respect to m we obtain

m =
h

(4J1 + 8J2)
.

In Figure 1 we show the projection on the x-y plane of
one of the many configurations that minimize the energy
of the system.

3 Low energy effective action

In the absence of a magnetic field, the thermal and quan-
tum fluctuations of the J1 − J2 Heisenberg model have
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been carefully studied within the spin-wave approach [3].
At non-zero magnetic field, since we are dealing with a
magnetized classical state we can use a particular path
integral approach in terms of coherent states [9,17] to es-
timate the free energy of the system.

First, we introduce two angular fields by sub-lattice to
represent the spins as:

Sl(r) =

⎛
⎜⎜⎝

S sin(θl(r) cos(φl(r))

S sin(θl(r)) sin(φl(r))

S cos(θl(r))

⎞
⎟⎟⎠

and parameterize their fluctuations around the classical
solution in terms of fields ϕ and ϑ,

φl(r) = Q · r + αl + ϕl(r)

θl(r) = θ0 + ϑl(r),

where θ0 is the classical solution (m = S cos θ0), which
in the present case is given by θ0 = arccos

(
h

S(4J1+8J2)

)
.

Expanding up to second order in the fluctuating fields we
have:

S cos (θ0 + ϑl(r)) � S cos θ0 − S sin θ0 ϑl(r)

−S

2
cos θ0(ϑl(r))2

S sin (θ0 + ϑl(r)) � S sin θ0 + S cos θ0 ϑl(r)

−S

2
sin θ0(ϑl(r))2.

Should we take ϕ and ϑ as canonical conjugates and cal-
culate the Poisson brackets {Sz, S±}ϕ,ϑ, we would obtain
i�{Sz, S±}ϕ,ϑ = −S(sin θ0−ϑ cos θ0) (±�S±). In order to
generate the correct SU(2) algebra, one instead defines
the canonical conjugate for ϕl as

a2

S
Πl(r) = − sin θ0ϑl(r) − 1

2
cos θ0(ϑl(r))2. (2)

The spin operators in terms of the canonical conjugate
pairs read

S±
l (r) = e±iQ·re±iϕl(r)

[
S sin θ0 − a2 m

S sin θ0
Πl(r)

− a4 S2

S2 − m2

1
S sin θ0

Π2
l (r)

]
, (3)

Sz
l (r) = m + a2Πl(r). (4)

Notice from the last equation that the Πl fields describe
fluctuations in the spin components along the magnetic
field direction.

Using expressions (3) and (4) in Hamiltonian (1), tak-
ing the continuum limit and retaining terms up to second
order in the fields, we can write H = H0 +Hϕ +Hπ. Here

H0 is a contribution independent of the fields while Hϕ

and Hπ are given by:

Hϕ =
∫

d2r

{(
S2 − m2

)(
J2 +

J1

2
cos(α)

)

×
[
(∂xϕ1)

2 + (∂xϕ2)
2
]

+
(
S2 − m2

)(
J2 − J1

2
cos(α)

)

×
[
(∂yϕ1)

2 + (∂yϕ2)
2
]}

Hπ =
∫

d2r
{
4J1a

2Π1Π2 + 4J2a
2
(
Π2

1 + Π2
2

)}
.

The r dependence in the fields has been omitted for sim-
plicity. As a further step towards a spin coherent states
path-integral formulation, we write an effective action as

S = Sϕ + Sπ,

where

Sϕ =
∫

d2r

∫
dτ

{(
S2 − m2

)(
J2 +

J1

2
cos(α)

)

×
[
(∂xϕ1)

2 + (∂xϕ2)
2
]

+
(
S2 − m2

)(
J2 − J1

2
cos(α)

)

×
[
(∂yϕ1)

2 + (∂yϕ2)
2
]

+ i

(
S − m

a2

)
(∂τϕ1 + ∂τϕ2)

}

Sπ =
∫

d2r

∫
dτ
{
4J1a

2Π1Π2 + 4J2a
2
(
Π2

1 + Π2
2

)
− iΠ1∂τϕ1 − iΠ2∂τϕ2} . (5)

The first order derivatives of ϕ1, ϕ2 with respect to imag-
inary time appear in the path integral approach as the
Berry connection associated to the continuous set of spin
coherent states (parameterized on the sphere by the same
angular variables as the classical spins); in the present
Euclidean effective action Berry terms are easily recog-
nized for they are purely imaginary. The integral of the
Berry connection along different closed trajectories gives
rise to complex Berry phases [18]. These will lead to im-
portant interference effects when computing the free en-
ergy of the system.
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After writing the path-integral one can readily inte-
grate out the Gaussian Π-fields to get the effective action:

Seff =
∫

d2r

∫
dτ

{(
S2 − m2

)(
J2 +

J1

2
cos(α)

)

×
[
(∂xϕ1)

2 + (∂xϕ2)
2
]

+
(
S2 − m2

)(
J2 − J1

2
cos(α)

)
× [(∂yϕ1)2 + (∂yϕ2)2

]
+

1
4a2(2J2 + J1)

(∂τϕ1 + ∂τϕ2)
2

+
1

4a2(2J2 − J1)
(∂τϕ1 − ∂τϕ2)

2

+ i

(
S − m

a2

)
(∂τϕ1 + ∂τϕ2)

}
. (6)

Notice that one can write this action in a decoupled form
in terms of symmetrical and anti-symmetrical fields

ϕs =
1
2
(ϕ1 + ϕ2), (7)

ϕa =
1
2
(ϕ1 − ϕ2), (8)

which yields

Seff = Ss + Sa,

with

Ss =
∫

d2r

∫
dτ

{
2(S2−m2)

(
J2 +

J1

2
cos(α)

)
(∂xϕs)

2

+ 2(S2 − m2)
(

J2 − J1

2
cos(α)

)
(∂yϕs)

2

+
1

a2(2J2 + J1)
(∂τϕs)

2 + i2
(

S − m

a2

)
(∂τϕs)

}
,

(9)

Sa =
∫

d2r

∫
dτ

{
2(S2 − m2)

(
J2 +

J1

2
cos(α)

)
(∂xϕa)2

+ 2(S2 − m2)
(

J2 − J1

2
cos(α)

)
(∂yϕa)2

+
1

a2(2J2 − J1)
(∂τϕa)2

}
. (10)

Both the symmetrical and the anti-symmetrical fields are
governed by XY -like actions. We briefly recall below the
role of topologically distinct field configurations in the
two-dimensional XY model [19].

In order to compute the finite temperature free en-
ergy of the system one performs a path integral over peri-
odic trajectories in imaginary time. Here vorticity comes
into play, as planar angular variables can wind an integer
number of times before reaching their initial value to sat-
isfy periodic boundary conditions. The winding number

of a configuration encodes topological information, in the
sense that configurations with different winding cannot
be continuously deformed into each other. A continuous
parameterization of trajectories cannot then sweep all pe-
riodic configurations, and the path integral must (at least
conceptually) be carried out separately on each winding
sector.

When applying the coherent states path integral to
magnetized systems (as originally discussed in Ref. [9])
one gets for the azimuthal angles not only an XY -like ac-
tion but also a Berry phase contribution, which takes the
form of a winding number (integral of a first order deriva-
tive of an angular field). Thus the Berry term measures
vorticity; this is the reason why it is dubbed topological.
Before decoupling, such contribution is shown in the last
line in equation (6). However, after decoupling such a term
is present only in the symmetric field effective action, in
equation (9), and not in the corresponding equation (10)
for the anti-symmetric field. Most importantly, the coeffi-
cient S −m in front of the Berry term dictates the weight
of topologically non trivial configurations (vortices) in the
quantum free energy. On generic grounds, the issue about
the presence of magnetization plateaux is closely related
to the coefficient of the Berry phase term in equation (9)
(see for instance [9]).

An important comment is due here. In related sys-
tems where order by disorder does not take place, the
antisymmetric field is found to be gapped via a mass-like
term [9,17,20,21]. This forces ϕa to very weakly fluctuate
around zero, so that the fields ϕ1 and ϕ2 remain tightly
bounded in every region of imaginary time. Thus, if one of
the fields has some vorticity, the other will have the same
vorticity. The presence of a such a mass term then im-
plies that the antisymmetric field is essentially vortex free
and the contribution from the Berry phase term (which
arises precisely from the vorticity) concerns only the sym-
metric field. By contrast, in the system at hand the anti-
symmetric field in equation (10) remains massless. The
fields ϕ1 and ϕ2 are not tightly bounded and can thus
produce different contributions for the vorticity. This plays
an important role in the Ising transition discussed in the
following sections.

4 Analysis of the free energy

Once the low energy fields are recognized as XY -like fields,
the consideration of vortex proliferation and the associ-
ated Kosterlitz-Thouless (KT) disorder transition is due.
In fact, studying the entire XY -like model from scratch is
technically very difficult. We proceed first describing the
vortex free contributions (non winding configurations) to
the free energy, essentially treating the angular fields as
real bosonic fields. Then we discuss the weight of topolog-
ically non-trivial (vortex) contributions.

4.1 Vortex free regime

Let us consider the preceding action first assuming that
the fields ϕl (l = 1, 2) have only vortex free configurations.
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These regular fields can be treated as standard periodic
scalar fields: one can Fourier transform and express the
fields in terms of the momentum and Matsubara frequency
modes

ϕl(r, τ) =
∞∑

n=−∞

1
(2π)β

∫
d2keik·re−iωnτϕl(k, ωn)

where ωn = 2πn
β . We obtain for the action

S =
1

(2π)2

∞∑
n=−∞

∫
d2k

{(
ε2 +

J2

a2 (4J2
2 − J2

1 )
ω2

n

)

× (|ϕ1(k, ωn)|2+|ϕ2(k, ωn)|2)
−
(

J1

2a2 (4J2
2 − J2

1 )
ω2

n

)

× (ϕ1(k, ωn)ϕ∗
2(k, ωn)+ϕ∗

1(k, ωn)ϕ2(k, ωn))
}

where

ε2 =(S2−m2)
[(

J2+
J1

2
cos(α)

)
k2

x+
(

J2− J1

2
cos(α)

)
k2

y

]
.

(11)
We can evaluate Z =

∫ D[φ]e−S by integrating the fields,

log(Z) = N(β)

− 1
2

∞∑
n=−∞

∫
d2k

(2π)2
log

[(
ε2+

J2

a2 (4J2
2−J2

1 )
ω2

n

)2

−
(

J1

2a2 (4J2
2 − J2

1 )
ω2

n

)2
]

. (12)

Notice that all dependence in k and the parameter α is
contained in ε. After some algebra we can write

log(Z) = N ′(β) − 1
2

∞∑
n=−∞

∫
d2k

(2π)2
{

log
[
ω2

n + ω2
+

]

+ log
[
ω2

n + ω2
−
]}

(13)

where ω± = 2εa
√

J2 ± J1/2. Now we use that

log
(
ω2

n + ω2
±
)

= log
(

ω2
n +

1
β2

)
+
∫ ω2

±

1
β2

d(t2)
ω2

n + t2
(14)

and log(ω2
n + 1

β2 ) = −2 log(β) + log(2π2n2 + 1). Then we
have

log(Z) = Ñ(β) − 1
2

∞∑
n=−∞

∫
d2k

(2π)2

{∫ ω2
+

1
β2

d(t2)
ω2

n + t2

+
∫ ω2

−

1
β2

d(u2)
ω2

n + u2

}
, (15)
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F

Fig. 2. Free energy in terms of the sub-lattices relative angle α.
The plot corresponds to J2 = 0.6J1 and low magnetization, for
different values of β denoted in the plot legend. Minimum val-
ues correspond to collinear configurations (α = 0 and α = π).

where we have included all the vacuum contributions in
the first term. Now we can perform the summation to
obtain

log(Z) =
∫

d2k

(2π)2

{
log
[
csch

(
βω+

2

)]

+ log
[
csch

(
βω−

2

)]}
.

Finally, after some rearrangements, we obtain an expres-
sion for the free energy,

F =
1
2

∫
d2k

(2π)2
(ω+ + ω−)

+
1
β

∫
d2k

(2π)2
[
log
(
1 − e−βω+

)
+ log

(
1 − e−βω−

)]
.

(16)

Equation (16) makes apparent the role of quantum and
thermal fluctuations: the first term represents the quan-
tum zero point contribution to the free energy whereas
the second term is the thermal contribution. From equa-
tion (16) it is easy to extract the zero temperature (quan-
tum) contribution FQ, which is simply the first term,

FQ =
1
2

∫
d2k

(2π)2
(ω+ + ω−)

and the thermal contribution of the purely classical
model FCl. The latter is obtained from the second term
in the limit β → 0 whose dominant contribution is given,
up to α independent terms, by:

FCl =
1
β

∫
d2k

(2π)2
log[ω+ω−].

We show in Figure 2 plots of the free energy in equa-
tion (16) in terms of the relative angle between sub-
lattices, for low magnetization and several temperatures.
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The free energy shows (as expected) two minima. The
minima of both quantum and thermal contributions are lo-
cated in α = 0 and α = π, corresponding to the collinear
configurations (0, π) and (π, 0). This translates into an
emergent Z2 symmetry of the system at large scales. The
selection of an angle, at either the values 0 or π implies the
spontaneous breaking of the Z2 symmetry. One expects
this symmetry to be restored at higher temperatures.

Both FCl and FQ coincide with the results obtained by
Henley [1] for the planar model using classical and quan-
tum spin wave theory. Our approach provides neverthe-
less a more complete analysis, allowing us to study the
crossover from the quantum to the purely classical regime
and more importantly, allowing the study of non-trivial
topological contributions given by the Berry phase terms.
We discuss these contributions in the following section.

4.2 The Z2 and KT transition temperatures

An emergent Z2 chiral symmetry in a continuous frus-
trated magnet can be found in many examples as the
J1−J2 XY model [1], the J1−J2 Heisenberg model as well
as the fully frustrated XY model [2]. At low temperatures
one expects a quasi-long-range order for the spin vari-
ables and an ordered pattern for the chiral degree of free-
dom (broken Z2 symmetry) while at high temperatures
both degrees of freedom should be disordered with short
range correlations. One then expects a Kosterlitz-Thouless
(KT) transition at finite temperature TKT for the spin de-
grees of freedom and an Ising-like transition for the chi-
ral degrees of freedom at a temperature TIsing ≥ TKT

(for restoring Z2 symmetry implies disorder). Numerical
Monte Carlo results [4] suggest that these critical temper-
atures, although very close, are different. Moreover, the
model seems to have a rather large cross-over scale at
the vicinity of the critical points making quite difficult
the confirmation of the nature of the transitions as tradi-
tional Ising and KT type [22,23].

Notice that in the presence of a magnetic field the
length of the planar component of the spin decreases
with the magnetization or magnetic field h. One then ex-
pects both KT and Ising critical temperatures to decrease
with h.

The situation becomes more interesting when we con-
sider the topological term in equation (9). When a magne-
tization plateau is present (either S−m integer or rational,
as discussed in detail in Sect. 5), even at zero tempera-
ture the spin degrees of freedom have short range corre-
lations implying TKT → 0. The question whether TIsing

also tends to zero for this value of the magnetization or re-
mains non-zero is governed by the structure of the ground
state of the quantum system and is discussed qualitatively
below.

In Figure 3 we suggest two different scenarios for the
behavior of both critical temperatures as a function of
magnetization, one for which the chiral symmetry Z2 is
broken and another where it is not. It is our purpose in
the next section to argue that both scenarios are possible,
and that in principle by tunning the microscopic parame-
ters one could pass from one case to the other. Numerical

T

m0 mp msat

b)

T

m0 mp msat

a)

Fig. 3. Possible scenarios for the KT and Ising transitions.
Dashed black lines correspond to KT transitions whereas solid
red lines correspond to Ising transitions. In case (b) the Z2

symmetry is restored at zero temperature by tunneling pro-
cesses for values of the magnetization where the Berry phase
term disappears.

techniques would reveal more useful to predict a precise
value for the transition point, though this challenging task
is beyond the scope of the present work. Notice that in the
m = 0 limit the model is SU(2) symmetric, having only a
Z2 transition [5,24].

5 Vorticity and Berry phase contributions

In the calculation of the free-energy of Section 4.1 the vor-
tex contribution to the action was not taken into account.
Indeed, the Matsubara decomposition of the fields ϕ1

and ϕ2 assumes periodicity in imaginary time and is only
well defined for smooth configurations, namely if the field
configurations with vortices are excluded. In general, the
vortex free description of the preceding section remains
valid as long as the stiffness of the fields is large enough to
penalize vortex configurations (that is, below the KT tran-
sition temperature).

On general grounds a topological Berry term provides
in the path integral a weight for each configuration, mea-
sured by its vorticity (2π times the integer winding num-
ber): when appearing with a non integer coefficient the
vortex contributions tend to cancel out by destructive in-
terference, thus penalizing vortex proliferation. On the
other hand, when the coefficient is integer vortex configu-
rations interfere constructively, just as in the XY model.
This rationale leads to the distinction of integer or non-
integer values of S − m when evaluating the influence of
the topological term in equation (9).

In the particular case of integer S − m, the Berry
term provides a trivial phase ei(S−m)2π = 1 in the free
energy computation, then vortices can arise as in a stan-
dard XY model. The consequence of vortex proliferation
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is the presence of a magnetization plateau [9,17]: this is
monitored by the behavior of the symmetric field

ϕs =
1
2
(ϕ1 + ϕ2) (17)

which governs the physics of the total magnetization of
the system. It is invariant under global rotations, thus a
Goldstone mode of the system, and is conjugate to the
fluctuation of the total magnetization Π1 + Π2. Its de-
localization due to vortex proliferation translates into a
locking of its conjugate field at a fixed (quantized) value.
This is nothing else than the presence of a magnetization
plateau.

When S − m = p
q is rational, only vortices with vor-

ticity q can proliferate (larger q weakens the effect). The
consequence is again a magnetization plateau, character-
ized by a degeneracy of the ground state given by q [9].

For generic values of S−m (neither integer nor simple
fractions), due to the Berry phase term in the symmetric
action, destructive interference takes place between dif-
ferent vortex configurations [9]. Vortex effects are indeed
averaged out of the partition function.

The behavior of the anti-symmetric field

ϕa =
1
2
(ϕ1 − ϕ2) (18)

is also affected by the Berry term in the symmetric ac-
tion, in a way particular to the present model. Usually,
such a field gets a mass term in the effective action. In the
present case, the flatness of the potential obtained in equa-
tion (10) for the anti-symmetric field is the result of the
continuous degeneracy of the classical ground states, not
protected by any symmetry. Hence, it is not a Goldstone
mode and a potential term could appear in addition. Such
a potential term can be taken from the free energy of fluc-
tuations around the configurations selected by the order
from disorder mechanism [12]. In this sense, the free en-
ergy shown in Figure 2 plays the role of a pseudo potential
for ϕa. This field is conjugate to Π1 − Π2, directly linked
to the relative spin angle α between sub-lattices.

The presence of two minima in the pseudo potential
is important, since it allows for non-trivial tunneling pro-
cesses, if allowed by the Berry phase term in the symmetric
action. In weakly frustrated systems, the antisymmetric
field is gapped due to the presence of a mass term in the
effective action. This term fixes the value of the field ϕa

preventing vortex formation, and hence tunneling events.
Then, in the weakly frustrated case, only the symmetric
field ϕs may present a non-zero vorticity.

In the present case, due to the strong frustration, the
antisymmetric field is not necessarily locked. The dou-
ble minima potential then allows for tunneling processes
where the vortices corresponding to ϕa can still prolifer-
ate, disordering it and restoring the Z2 symmetry.

Such processes involve the anti-symmetric combination
of ϕ1 and ϕ2, the original sublattice fields. Nevertheless,
the proliferation (or not) of vortex configurations for ϕs

affects the number of available vortex configurations for
each sublattice field, and then for their anti-symmetric

combination ϕa. In this way the Berry phase for ϕs, in
particular the value of the coefficient S − m, influences
the tunneling process.

We discuss this mechanism below.

Tunneling effects and Ising transition

In the preceding sections we have assumed that, at low
enough temperatures, the emergent Z2 symmetry is bro-
ken. This is certainly the case for generic values of S −m,
because the tunneling between the two minima of the ef-
fective potential for ϕa implies topologically non trivial
processes, generically suppressed by the Berry phase term.

Let us consider in contrast the case where S − m is
an integer. The Berry phase term can just be dropped
off from the action and the computation of the partition
function now allows for the presence of such topologically
non trivial processes where, in a localized region of the
space, the relative angle between the two sub-lattices goes
from 0 to π and then goes back to 0 again when evolving
in imaginary time. two minima of the effective potential.

The inclusion of these kind of processes in the par-
tition function is analogous to the well known low tem-
perature expansion of the Ising model. In that case, the
“instanton-like” excitations correspond to a small domain
of “−” spins in a sea of otherwise fully ordered “+” spins
in an effective three dimensional classical Ising model. In
our case, the energetic cost of a domain wall is propor-
tional to the stiffness of the antisymmetric field ϕa which
is in turn controlled by the couplings J1 and J2.

Once the condition on S − m for coherent tunneling
is satisfied, it is the value of the microscopic parameters
which makes favorable breaking or not the Z2 symmetry.
Reducing the stiffness of ϕa can be easily achieved by for
instance approaching the limit J2 → J1

2 . This favors the
proliferation of those instantons towards a point at which
the system could enter the disordered phase, restoring
the Z2 symmetry. Whether simply approaching this limit
may be enough to restore the Z2 symmetry is a question
that goes beyond the scope of the present article but the
possibility of a zero temperature Ising transition is cer-
tainly an interesting issue that deserves further analysis.
Related results in quasi one-dimensional systems can be
found in [17,20,21].

6 Conclusions and further discussions

In this paper we have studied the order-by-disorder se-
lection in the J1 − J2 Heisenberg model on the square
lattice, in the presence of a magnetic field, by using a
path integral approach appropriate for partially polarized
spin systems. Quantum and thermal fluctuations select
the collinear states from the largely degenerate manifold
of classical ground states. The low energy effective theory
of quantum fluctuations is written in terms of a symmet-
ric field ϕs, related to global magnetization, and an anti-
symmetric field ϕa related to the spin imbalance between
sublattices. The path integral approach provides a topo-
logical Berry phase, with consequences going beyond the
usual spin-wave analysis.
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While the global magnetization is described by the
symmetric field, we mainly focus on the Z2 symmetry still
present after order by disorder selection, and the influ-
ence of the obtained Berry terms in Z2 symmetry restora-
tion. Let us recall that restoring the Z2 symmetry im-
plies disordering the field ϕa. The locking of its conjugate
variable Πa to a (quantized) value which is not necessar-
ily zero measures the difference of magnetization between
sublattices, also known as spin imbalance. In this case not
only the total magnetization would be locked to a special
value [9] (which reveals the disordering of ϕs and the pres-
ence of a plateau in the magnetization curve) but also the
difference of magnetization between the two sub-lattices
would be locked to quantized values.

In view of the results in this work, one could further
discuss some perspectives for future investigation:

The restoration of the rotational symmetry may also
indicative of the formation of singlets in the system, trig-
gering a transition from a ground state pattern with a
clear semiclassical interpretation of the spins (with no
singlet formation) to a more quantum-mechanical and
less degenerate ground-state. Such kind of plateau phases
were dubbed classical and quantum plateaux by Hida and
Affleck in the study of one-dimensional systems [25].

Another feature which is presumably related to the
formation of singlets mentioned above is the possible fac-
torization of the wave function into separable states. The
most known examples of factorized systems may be the
Majumdar-Gosh chain [26], as well as the 2-dimensional
Shastry-Sutherland spin 1/2 system [27], but such kind of
phenomena have been shown to occur in a large variety of
quantum magnets which are known to have OBD mech-
anism. In the presence of a magnetic field, and close to
saturation, it has been shown that the wave function can
be written as the tensor product of localized magnons in
a sea of polarized spins [28]. In fact, the kagome model at
the 1

3 plateau has a wave function which has a large over-
lap with a test wave function consisting, again, in a tensor
product of resonating plaquettes [13]. Such wave function
factorization also occurs in highly frustrated one dimen-
sional systems [21]. In particular, it has been rigorously
shown that a fully dimerized wave function is the ground
state of a family of zig-zag ladder Hamiltonians [29]. In
the case at hand, the factorization would separate the two
sublattices, with very little entanglement between sites be-
longing to each of them.

The quantum nature of the ground state of the highly
frustrated spin system discussed in this work and the pos-
sible mechanisms involving the tunneling effect described
above deserve future investigation.
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