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 Development of Prolactin Receptor Antagonists 

 Prolactin (PRL) was identified in the late 1920s as a 
hormone produced in the anterior pituitary and able to 
stimulate milk synthesis by the mammary gland  [1, 2] . It 
was later shown that PRL production/secretion by the pi-
tuitary was mainly under the inhibitory control of dopa-
mine, acting via the dopamine 2 receptor (D2R) expressed 
in lactotrope cells (for a review, see Freeman et al.  [3] ). 
This discovery paved the way for the development of do-
pamine agonists now used routinely as therapeutic in-
hibitors of PRL secretion in patients exhibiting patholog-
ical hyperprolactinemia  [4] . Besides endocrine PRL, local 
PRL production has been documented in various tissues 
referred to as extrapituitary sites of PRL production, 
where the hormone is assumed to act in an autocrine/
paracrine manner (for a review, see Ben-Jonathan et al. 
 [5] ). These include the breast, the prostate, the skin or 
cells of the immune system to cite only a few. Interest-
ingly enough, various studies reported that the level of 
PRL protein expression was enhanced in tumors affecting 
some of these tissues, e.g. breast and prostate tumors  [6, 
7] . Based on its ability to stimulate proliferation of vari-
ous cell types  [8–10] , it was then suggested that such an 
increased PRL expression may participate in the promo-
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 Abstract 

 The anterior pituitary is permanently regulated by processes 
of apoptosis and proliferation in order to maintain tissue ho-
meostasis. Several factors have been implicated in this regu-
lation and lately, prolactin (PRL) has been included into that 
list. However, since PRL is secreted by anterior pituitary lac-
totropes, the actual outcome of its autocrine/paracrine ac-
tions on pituitary cells has remained difficult to assess. The 
availability of the pure PRL receptor antagonist Del1-9-
G129R-hPRL has been helpful to circumvent this problem. 
While PRL has been traditionally associated with increased 
cell proliferation, recent studies revealed that this hormone 
actually induces apoptosis and decreases proliferation of an-
terior pituitary cells, by mechanisms involving the PRL recep-
tor. The aim of this short review is to overview our current 
understanding of the regulation of pituitary homeostasis by 
PRL. Moreover, studies involving Del1-9-G129R-hPRL have 
helped anticipate to what extent future treatments involv-
ing PRL receptor inhibitors may interfere with processes reg-
ulated by PRL at the central level.  © 2013 S. Karger AG, Basel 
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tion of tumor growth. However, since the regulation of 
PRL gene expression in extrapituitary tissues is virtually 
unknown, this hypothesis could not be addressed using 
pharmacological inhibitors able to block PRL expression 
in peripheral tumors. This was the rationale to develop 
PRL receptor (PRLR) antagonists aimed to block PRL bi-
ological actions at the level of the receptor when PRL ex-
pression cannot be targeted  [6] . 

  The PRLR belongs to the cytokine receptor superfam-
ily, which involves non-tyrosine kinase, single-pass trans-
membrane chains  [11] . Prolactin receptor signaling is 
triggered by the formation of a heterotrimeric complex 
involving one ligand bound to two identical receptor 
moieties forming a homodimer ( fig.  1 a). This ternary 
complex involves 3 intermolecular interactions called 
sites 1 and 2 (between PRL and each receptor) and site 3 
(between the two receptors)  [12] . The active complex 
then triggers various intracellular signaling cascades in-
cluding the canonical Jak2/STAT5 pathway, MAPK, Akt 
and Src cascades (for a review, see Goffin et al.  [6] ). Sim-
ilar to the development of the growth hormone receptor 
antagonist Somavert  [13] , the rational design of compet-
itive PRLR antagonists reported by various teams has 
generally involved the introduction of appropriate muta-
tions at binding site 2, which results in the functional in-
hibition of the interaction between PRL and one of the 
two receptor moieties (for a review, see Goffin et al.  [14] ) 
( fig. 1 a). The lead compound that we have developed is 
called Del1-9-G129R-hPRL, due to the truncation of the 
9 N-terminal residues and the steric hindrance intro-
duced at position 129 (Arg substituted for Gly)  [15] . The 
antagonistic properties of Del1-9-G129R-hPRL have 
been assessed by us and several collaborators using a wide 
panel of in vitro and in vivo assays, involving various cell 
types (breast, prostate, skin, neural cells, etc.) of mouse, 
rat or human origin  [16–21] . Using pharmacological ap-
proaches to achieve acute inhibition of PRLR signaling, 
these studies have shown that (1) Del1-9-G129R-hPRL is 
devoid of residual agonism, (2) efficiently competes with 
exogenous PRL when added in >10-fold molar excess to 
compensate for its lower affinity for the PRLR, and (3) 
partially inhibits the actions triggered by autocrine PRL 
when added in high excess (at undetermined fold since in 
extrapituitary tissues locally produced PRL is frequently 
below detection limits). Due to the short half-life of the 
antagonist, we turned to a transgenic approach to evalu-
ate its long-term effects in vivo. Transgenic mice express-
ing Del1-9-G129R-hPRL systemically (called below
Tg Del1-9-G129R  mice) did not display gross pathological 
phenotypes. We noticed that 6-month-old females had 

irregular reproductive cycles which tended to normalize 
with age [unpubl. data] but this did not significantly alter 
fertility. Since female mice deficient for the PRLR gene 
(PRLR-KO) are infertile  [22] , the absence of a marked 
reproductive phenotype of Tg Del1-9-G129R  females indicat-
ed that total inhibition of PRLR signaling was not achieved 
in these animals, as would have been expected from a 
competitive antagonist. This transgenic model also re-
vealed the antitumor (antiproliferative) activity of the 
PRLR antagonist in the context of autocrine PRL-induced 
prostate tumors  [23]  ( fig. 1 b). This is to our knowledge 
the first molecule that has been shown to functionally 
counteract the actions triggered by locally produced PRL. 

  The effects of PRLR antagonists on various peripheral 
PRL target cell types/tissues as well as their potential ther-
apeutic use as tumor growth inhibitors have been widely 
discussed in recent review articles  [6, 7, 24] ; therefore, 
these issues will not be considered hereafter. One of the 
open questions in the above context is to what extent fu-
ture treatment involving PRLR signaling inhibitors may 
interfere with processes regulated by PRL at the central 
level, including PRL production per se. This question is 
particularly relevant since many of the feedback mecha-
nisms regulating pituitary PRL production remain poor-
ly understood. In contrast to other pituitary hormones 
that are regulated by identified peripheral secondary 
messenger(s), e.g. insulin-like growth factor-1, one of the 
major downregulators of pituitary GH secretion, such a 
putative factor has not yet been identified for the PRL sys-
tem. Thus, the aim of this short review is to overview our 
current understanding of the feedback mechanisms by 
which PRL controls its own production and, more gener-
ally, regulates pituitary homeostasis, and to highlight, 
where appropriate, the added value of PRLR antagonists 
in advancing our knowledge.

  Prolactin Actions in the Hypothalamus 

 Physiological adaptations to pregnancy and lactation 
induced by PRL involve its action at the level of the central 
nervous system (CNS). Prolactin acts in the forebrain 
subventricular zone inducing the production of neuronal 
progenitors that migrate to the olfactory bulb  [25] . In 
pregnant females, this process is essential to appropriate 
behavioral adaptive changes in the postpartum period, 
required for normal offspring development (reviewed in 
Larsen and Grattan  [26] ).

  In addition, PRL regulates the hypothalamic-pitu-
itary-gonadal axis. The anovulatory effect of hyperpro-
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lactinemia is due, at least in part, to the inhibition of the 
release of hypothalamic gonadotrophin-releasing hor-
mone mediated by PRL. Recently, it was reported that this 
property of PRL involves the inhibition of kisspeptin neu-
rons, the major regulators of gonadotrophin-releasing 
hormone release, which express the PRLR  [27] .

  Prolactin also controls its own pituitary secretion by 
acting at the hypothalamic level. Although PRL is ex-
pressed in the CNS, mainly in hypothalamic neurons 
 [5] , Larsen and Grattan  [28]  demonstrated that inhibi-
tion of pituitary PRL secretion by bromocriptine in-
creased postpartum anxiety and impaired maternal be-
havior, and that subcutaneous PRL administration re-
stored the normal maternal behavioral patterns. In fact, 
PRL enters the brain via the choroid plexus by a PRLR-
mediated mechanism, and it was shown that the expres-
sion of PRLR in choroid plexus increased during lacta-
tion  [29] . These observations suggest that PRL effects at 

the CNS level are mainly exerted by PRL secreted by the 
pituitary gland. 

  Oxytocin acts as a PRL-releasing peptide under some 
physiological conditions  [30]  and PRL inhibits the activ-
ity of paraventricular oxytocinergic neurons, suggesting 
the existence of an inhibitory feedback loop  [31] . Cervical 
stimulation leads to two daily surges of PRL secretion, via 
pelvic nerve afference  [32]  to the CNS. The signal is then 
transmitted via noradrenergic neurons in the locus coe-
ruleus to the hypothalamic paraventricular nucleus  [33] , 
which leads to an increase in oxytocin release that finally 
stimulates PRL secretion  [30] . Then, PRL inhibits the ac-
tivity of oxytocin-releasing neurons in the paraventricu-
lar nucleus  [31] , completing a negative feedback loop. 
However, the most documented action of PRL in the hy-
pothalamus involves the control of dopaminergic neu-
rons in the arcuate nucleus. Under physiological condi-
tions, anterior pituitary PRL release is tonically inhibited 

Hypothalamus

Posterior
pituitary

Anterior
pituitary

TH neurons 
Stat5b signalling 
Catecholamine 

Cell homeostasis
Apoptosis
Prolifera on

PRLR regula on

Breast, Prostate 
Prolifera on

Kera nocytes 
Apoptosis 

Intracellular signalling

Autocrine-
paracrine

Autocrine-
paracrine

PRL

Del1-9-G129R-hPRL
(PRLR antagonist) 

a b

  Fig. 1.   a  Mechanism of action of PRLR antagonist. Prolactin binds 
to a PRLR homodimer which results in the activation of intracel-
lular signaling. PRLR antagonists (e.g. Del1-9-G129R-hPRL) are 
sterically mutated at site 2, which prevents functional interaction 
with the PRLR; hence, they act as competitive antagonists in the 
presence of PRL.  b  Simplified representation of PRL actions that 
have been shown to be inhibited by Del1-9-G129R-hPRL antago-

nist at the central and peripheral levels. PRL acts on hypothalamic 
TH neurons (feedback) and on pituitary cells (autocrine/para-
crine) to regulate PRL production and pituitary homeostasis. 
Breast, prostate and keratinocytes are given as three examples of 
peripheral target tissues/cells regulated by circulating and/or auto-
crine/paracrine PRL (see text for details). 
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by dopaminergic signals originating from the hypothala-
mus  [34] . Prolactin thus participates in a short negative 
feedback loop by stimulating the activity of hypothalam-
ic neuroedocrine dopaminergic neurons, and increasing 
dopamine release (for a review, see Freeman et al.  [3] ). 
The hypothalamus expresses the PRLR  [35–37] , and it 
was demonstrated using in vitro cell culture preparations 
of the fetal rat mediobasal hypothalamus that PRL stim-
ulation induces expression and activity of tyrosine hy-
droxylase (TH)  [38] , the rate-limiting enzyme in cat-
echolamine synthesis which in vivo eventually increas-
es dopamine input into the anterior pituitary. The effect 
of PRL on hypothalamic catecholamine synthesis was
significantly reduced using a 10-fold excess of Del1-9-
G129R-hPRL, indicating that this action is PRLR-specific 
( fig. 1 b)  [38] . The latter study provided evidence for the 
usefulness of this antagonist as a molecular tool to inves-
tigate further the biological effects and mechanisms of 
action of PRL on hypothalamic neurons. It was next dem-
onstrated that STAT5B was the primary mediator of PRL 
actions in TH-positive cells from the mediobasal fetal rat 
hypothalamus  [39, 40]  and mouse hypothalamus  [40] . 
The involvement of STAT5B was unexpected since PRLR 
preferentially signals via STAT5A. Interestingly enough,
although Del1-9-G129R-hPRL significantly inhibited 
STAT5 phosphorylation induced by PRL in TH-positive 
neurons,  ∼ 20% of cells remained positive for nuclear (ac-
tive) STAT5 even at extremely high antagonist concen-
tration (>100 μ M ). Since these studies confirmed that 
Del1-9-G129R-hPRL was devoid of residual agonistic ac-
tivity towards the rat PRLR even at these concentrations, 
this observation suggested that some TH-positive neu-
rons may exhibit very high sensitivity to low PRL concen-
trations and/or resistance to PRLR signaling inhibitors 
 [39] . This may account for the absence of detectable hy-
perprolactinemia in Tg Del1-9-G129R  mice  [23]  despite the 
clear inhibitory action of the PRLR antagonist on dopa-
mine synthesis as demonstrated in these in vitro studies. 

  Prolactin Actions in the Pituitary 

 In the majority of its target tissues, most of the docu-
mented effects of PRL on cell renewal relate to the stimu-
lation of cell proliferation (for reviews, see  [3, 41, 42] ). 
Nevertheless, PRL has also been shown to exert antipro-
liferative/proapoptotic actions in some specific tissues, 
and we and others have identified that the pituitary falls 
into this second category. Typical examples of these op-
posite effects on cell renewal are given below.

  Prolactin, Proliferation and Apoptosis  
 Prolactin stimulates proliferation of mammary gland 

epithelium  [43] , hepatocytes  [44] , pancreatic beta cells 
 [45] , prostate epithelial cells  [23] , astrocytes  [46] , neurons 
 [25]  and various cells of the immune system  [47] . Many 
of these actions are associated with adaptation to litter 
care, e.g. lactation and maternal behavior. Mammary 
gland development during pregnancy depends mainly on 
PRL action that induces proliferation and differentiation 
of the secretory epithelium, especially during lobuloal-
veolar differentiation  [22] . After lactation, the mammary 
gland undergoes involution which involves cellular apo-
ptosis induced by various signals, including a decrease in 
PRL-induced JAK/STAT signaling  [48] . Prolactin con-
tributes to maternal behavior by stimulating proliferation 
of neural stem cells in the forebrain subventricular zone, 
which in turn leads to increased numbers of neurons in 
the olfactory bulbs  [25] . These actions of PRL on neuro-
genesis and maternal behavior have been recently re-
viewed by Grattan’s group  [26] . In the pancreas, PRL is 
responsible for beta cell proliferation, allowing normal 
glucose homeostasis during pregnancy  [45] . 

  Prolactin also controls nonreproductive actions, as in 
the immune system. It regulates T cell differentiation, B 
cell-mediated tolerance and enhances proliferative re-
sponses to several mitogens and, by a PRLR-mediated ef-
fect, PRL stimulates mitosis of normal and lymphoma-
derived lymphocytes  [49] . As a hallmark of PRL prolif-
erative properties, the growth of PRL-dependent Nb2 rat 
lymphoma cell line has been used for three decades as the 
reference bioassay to measure PRL activity and concen-
tration in biological fluids  [50] . 

  Prolactin can also induce apoptosis in many contexts, 
which is usually beyond the actions conventional wisdom 
attributes to this hormone. In the rat, the peak of circulat-
ing PRL occurring at proestrus is responsible for inducing 
luteolysis of the corpora lutea of the preceding cycle  [51–
53] . Prolactin is locally synthesized and secreted by kera-
tinocytes in the human hair follicle and via a short loop 
mechanism, it induces apoptosis and inhibits prolifera-
tion of these cells  [54] . Chondrocyte apoptosis is needed 
in the process of endochondral bone formation; PRL was 
shown to increase this process, which is assumed to favor 
bone elongation in pregnant and lactating rats  [55] . It was 
also reported that PRL increases apoptosis of a human 
myeloma-derived cell line  [56] . 

  The proapoptotic actions of PRL are further supported 
by the fact that the canonical signaling cascade of its re-
ceptor, namely Jak2/STAT5, may in some instance lead 
to proapoptotic responses  [3, 41, 42, 57] . For example, the 
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induction of apoptosis by oncostatin M (another hema-
topoietic cytokine structurally close to PRL) in osteosar-
coma cells requires functional STAT5 to regulate Bax/
Bcl-2 ratio  [58] . Similarly, activation of Jak2/STAT5 
pathway in rat cerebella granule neurons induces apopto-
sis, also by regulating the expression of Bcl-2 family pro-
teins  [59] . In fact, the ultimate effects of PRL in a given 
tissue depend on many parameters including the PRLR 
isoform(s) that is(are) expressed and the particular phys-
iological context. As discussed below, PRL-regulated cell 
apoptosis is a key mechanism in pituitary homeostasis. 

  Prolactin and Anterior Pituitary Cell Renewal  
 Anterior pituitary functions are regulated by multiple 

signals. These involve signals originating upstream, in the 
hypothalamus and signals originating from downstream 
target organs. These messenger molecules regulate pitu-
itary hormone secretion, but also the cellular turnover of 
the gland. Several factors regulate cell proliferation and 
apoptosis in the anterior pituitary, such as dopamine  [60, 
61] , estradiol  [62, 63] , and various cytokines such as tu-
mor necrosis factor-α  [64] , Fas ligand  [65]  and interleu-
kin-6  [66] . 

  Hormones secreted by pituitary cells may also act as 
local paracrine/autocrine factors, which is the case for 
PRL  [67] . Prolactin receptors are expressed by anterior 
pituitary cells  [68–71] ; therefore, one of the primary tar-
get cells PRL meets once it is secreted are lactotropes  [72] . 
Prolactin receptor signaling inhibits PRL synthesis at the 
transcriptional level in lactotrope cells, which involves 
specific pituitary transcription factors  [73] . Also, inhibi-
tion of its own secretion  [72, 74]  and increased PRLR in-
ternalization  [75, 76]  are two other mechanisms by which 
PRL modulates its production, and consequently its ac-
tions at the pituitary level. 

  In addition to regulating its own production/secre-
tion, PRL also regulates pituitary cell turnover. It was first 
proposed that, as in many tissues (see above), PRL could 
act as a growth factor for anterior pituitary cells  [77, 78] . 
Since D2R KO mice develop hyperprolactinemia, pitu-
itary hyperplasia and, finally, pituitary adenomas, it was 
suggested that both the lack of dopamine inhibition and 
stimulation of cell proliferation induced by high circulat-
ing levels of PRL were responsible for the anterior pitu-
itary cell growth observed in these mice  [79] . However, it 
was later observed that PRL KO  [80]  and PRLR KO  [81]  
mice also exhibited anterior pituitary hyperplasia. It was 
concluded that activation of PRLR signaling was not in-
volved in promoting pituitary adenoma formation. How-
ever, double PRLR/D2R KO mice develop anterior pitu-

itary hyperplasia at earlier ages and prolactinomas are 
larger than in single KO mice. This additive effect sug-
gests that in fact the absence of PRLR signaling may in-
trinsically promote pituitary tumorigenesis, indepen-
dently of dopamine action  [81] . In contrast, it was ob-
served that exogenous PRL diminishes the proliferation 
rate of primary cultures of lactotropes prepared from 
D2R KO mice  [81] . However, the direct effects of PRL in 
anterior pituitary cells, especially lactotropes, are usually 
difficult to assess unequivocally since the stimulus (i.e. 
PRL) is intrinsically present in the system  [73] . Although 
pituitary PRL can be controlled with dopamine analogs, 
the latter intrinsically affect apoptosis and proliferation in 
these cells  [60] , therefore a dopamine-independent mod-
el was needed to address such questions. We took advan-
tage of the Del1-9-G129R-hPRL antagonist to block the 
actions of endogenous PRL in order to better delineate 
the direct (autocrine) effects of PRL on PRL-secreting 
cells ( fig. 1 b). Thanks to this unique molecular tool, we 
were able to show that PRL acts as a paracrine/autocrine 
antiproliferative and proapoptotic factor on primary cul-
tures of male rat anterior pituitary cells, specifically but 
not exclusively on lactotropes  [71] . These findings defi-
nitely confirmed that the pituitary hyperplasia observed 
in D2R KO mice is not generated by a PRL proliferative 
action as had been initially proposed  [79] . Furthermore, 
the availability of Tg Del1-9-G129R  mice gave us the opportu-
nity to investigate the effect of chronic blockade of PRLR 
signaling in mice still expressing both the PRLR and its 
ligand, which more closely mimics the physiological 
 context. We observed that Del1-9-G129R-hPRL ex-
pression induced moderate pituitary hyperplasia and
15-fold increase in the anterior pituitary proliferation in-
dex. Accordingly, the pituitary weight of Tg Del1-9-G129R  
mice was 25% higher compared to controls; direct com-
parison of pituitary hypertrophy induced by functional 
(Tg Del1-9-G129R ) versus genetic (PRLR KO) PRLR signaling 
inhibition  [81]  could not be made since the animals in-
volved in the two studies were not age-matched. Taken 
together, these findings indicate that PRL acts as an anti-
proliferative factor on anterior pituitary cells.

  In females, through pregnancy and lactation and dur-
ing estrus, the number of anterior pituitary cells increas-
es, mainly due to the expansion of the lactotrope popula-
tion. At the end of each of these periods, apoptosis pro-
cesses restore the number of cells, maintaining tissue 
homeostasis. In the rat, 1.5% of anterior pituitary cells are 
renewed daily, this turnover being higher in females than 
in males, and dependent on the stage of the estrous cycle 
 [67] . In sexually mature females, hypothalamic, pituitary, 
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and ovarian hormones present particular profiles of se-
cretion that defines the endocrine environment in each 
stage of the estrous cycle. In the rat, these cyclic changes 
are reflected in anterior pituitary cell turnover: prolifera-
tion takes place mainly during estrus whereas the higher 
rate of apoptosis occurs at proestrus  [82, 83] . Changes in 
circulating levels of gonadal steroids that characterize 
each stage of the estrous cycle could be, at least in part, 
responsible for the cyclic changes in proliferation and 
apoptosis observed in the anterior pituitary  [67] . During 
proestrus, when the peak of anterior pituitary cell apo-
ptosis is observed  [63] , an increase in estradiol and PRL-
circulating levels occurs in both rats  [3]  and mice  [84, 85] . 
As PRL is a proapoptotic factor for anterior pituitary cells, 
we hypothesize that this hormone could be involved in 
the control of the changes that occur in the anterior pitu-
itary gland at each estrous cycle. Our laboratories are cur-
rently investigating the pituitaries of PRLR KO mice and 
Tg Del1-9-G129R  female mice to address this hypothesis. 

  The molecular mechanisms by which PRL exerts pro-
apoptotic effects to regulate pituitary cell homeostasis are 
currently unknown. Two major isoforms of PRLR have 
been reported, referred to as long and short PRLR, which 
display only partial overlap in their intracellular signaling 
capacities (reviewed in Ben-Jonathan et al.  [42] ). In addi-
tion, since short PRLR has been reported to exert a dom-
inant negative effect on the ability of the long isoform to 
activate the Jak/STAT pathway  [86, 87] , the ultimate ef-
fects of PRL depend on the PRLR isoforms expressed and 
on their relative ratio. Prolactin regulates expression of its 
own receptor in several tissues, such as hypothalamus 
 [35–37, 88] , ovary  [89] , brain  [70] , fallopian tubes  [90]  
and pancreas  [91] . Anterior pituitary cells from both mice 
 [71, 90]  and rats  [68, 69]  express both PRLR isoforms. In 
male mouse pituitary, the long PRLR is the main isoform 
expressed, representing about 90% of total pituitary PRLR 
 [71] . Interestingly enough, chronic expression of Del1-9-
G129R-hPRL in transgenic mice leads to a 10-fold in-
crease in long PRLR versus only a 2-fold increase of short 
PRLRmRNA expression, indicating that PRL regulates 
the expression of its receptor in an isoform-specific man-
ner  [71] . In female rats, PRLR isoform expression in the 
pituitary varies during the estrous cycle  [69] , suggesting 
that gonadal steroids are involved in its regulation. In pre-
pubertal rat pituitary, the short PRLR isoform was report-
ed to be the main isoform expressed that was further in-
creased by PRL treatment  [90] . In adult female rat pitu-
itary, although the long PRLR isoform is the most 
abundant at both proestrus and diestrus, long PRLR ex-
pression increases 1.5-fold at diestrus compared to pro-

estrus  [69] . Nagano and Kelly  [69]  proposed that PRLR 
expression at proestrus may be negatively regulated by 
the proestrus surge of PRL acting directly or indirectly at 
the pituitary level. In fact, ovariectomy, which decreases 
circulating levels of PRL, was reported to increase PRLR 
expression  [70] . Our ongoing studies using Tg Del1-9-G129R  
female mice suggest that functional blockade of PRLR 
signaling alters expression of anterior pituitary PRLR in 
both isoform-specific and estrous cycle stage-specific 
manner. Taken together, these studies suggest that the 
regulation of PRLR expression may be one of the mecha-
nisms by which PRL controls pituitary (lactotrope) cell 
turnover and homeostasis, although downstream signal-
ing pathways involved remain to be investigated.

  Conclusion 

 In summary, PRL exerts proapoptotic and antiprolif-
erative effects which are critical to maintain pituitary cell 
homeostasis. Deficiencies in PRLR signaling lead to the 
accumulation of anterior pituitary cells that are not re-
moved and continue to proliferate, which results in pitu-
itary hyperplasia. As pituitary adenomas are the most 
common intracranial tumors, understanding the physiol-
ogy of anterior pituitary cell turnover is useful to better 
understand prolactinoma pathogenesis and to design 
new treatments. Furthermore, these studies also suggest 
that therapeutic inhibition of PRLR signaling in the con-
text of peripheral tumors (e.g. breast or prostate cancer), 
using PRLR antagonists or blocking antibodies  [92] , 
should take into account potential side effects of such 
drugs on pituitary cell homeostasis. 
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