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Game theory in models of pedestrian room evacuation
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We analyze the pedestrian evacuation of a rectangular room with a single door considering a lattice gas scheme
with the addition of behavioral aspects of the pedestrians. The movement of the individuals is based on random
and rational choices and is affected by conflicts between two or more agents that want to advance to the same
position. Such conflicts are solved according to certain rules closely related to the concept of strategies in game
theory, cooperation and defection. We consider game rules analogous to those from the Prisoner’s Dilemma and
Stag Hunt games, with payoffs associated to the probabilities of the individuals to advance to the selected site.
We find that, even when defecting is the rational choice for any agent, under certain conditions, cooperators can
take advantage from mutual cooperation and leave the room more rapidly than defectors.
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I. INTRODUCTION

The fields of interdisciplinary physics and complex sys-
tems are nowadays producing important contributions to the
problems of pedestrian dynamics and enclosures evacuation by
introducing mathematical models which enable the prediction
of the pedestrian flow in crowded areas [1,2]. Understanding
the dynamics of pedestrians and anticipating the problems that
may arise in emergency situations is critical in the design
of large spaces that will be occupied by many people [2].
The efficient evacuation of the occupants of such places
under a state of emergency is fundamental when trying to
minimize the negative effects of panic and confusion, clogging,
and avalanches. In addition to this important application, the
mathematical modeling of pedestrian dynamics has a purely
academic interest for interdisciplinary physics because of its
similarity with makeshift linked to granular media [1].

Within this context, pedestrian dynamics has been exten-
sively studied from both theoretical [3–8] and experimental
point of views [9–13]. The associated pedestrian flow is usually
modeled as a many-body system of interacting individuals. The
literature on this subject is rather extensive [14–23], exposing
several different approaches to the problem. Just to mention
some examples, in Ref. [12], the authors introduce the active
walker model to describe human trail formation, and they
show that the pedestrian flow system exhibits various collective
phenomena interpreted as self-organized effects. In Ref. [24]
the author suggest that the behaviors of pedestrian crowds are
similar to gases or fluids. Other authors prefer the formalism of
cellular automata and lattice gases [25] to frame their models
[25,26]. This is the approach we are going to adopt in this work.

One of the most difficult aspects of modeling pedestrian
flow is to take into account the effects of subjective elements
related to the characters of the agents that can affect the
interactions among them and, consequently, the global motion
of the crowd [13,27–30]. Most of the models have focused
on describing the flow of individuals in pure mechanistic
approaches, including the behavioral reaction of the evacuees
during their movement through social forces. This is the most
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common case in many works based on molecular dynamics-
like schemes [1,6]. The social force model considers that the
motion of an agent is governed by the desire of reaching
a certain destination and by the influence it suffers from
the environment, which includes the other agents [1,12,23].
Meanwhile, the behavioral aspect has been hardly considered
in lattice gas models.

By including a game dynamics considering cooperative
and defective strategies for the resolution of conflicts be-
tween pedestrians, the present work introduces behavioral
and characterological ingredients in a simple way. With
the consideration of the different strategies we are pointing
at describing internal states of the individuals, which are
independent of what is happening outside. This intends to
include psychological features of the individuals that were not
considered in previous works.

In the present lattice gas model, N pedestrians are set on
a rectangular room represented by an L × W lattice, with the
restriction that each site cannot hold more than one walker. The
pedestrians move to empty sites according to a preferential
direction dictated by the need of escaping from the room
[9,31]. Conflicts between agents that want to get to the same
position are solved using specific game rules and taking into
account previously defined strategies (of cooperation or defec-
tion) which represent the character of the agents. Hence, the
considered pedestrian dynamics include games between agents
which affect their possibilities of leaving the room. Our main
results indicate that, under certain conditions, cooperators can
take advantage from mutual cooperation and leave the room
more rapidly than defectors, even in some situations in which
defecting is the most favorable strategy a priori.

There are other works where game theory was introduced
in the context of room evacuation [32,33]. In the first work
the elements of game theory are actually not closely related
to the behavioral characteristic of the players, and consider
mainly the rational player concept, similarly to what happens
by including social forces. In the second work, the authors
propose a dynamics that can be associated to a Chicken game
(see Ref. [34] and this work below), where defection is not the
best choice. However, in that work the results do not reveal
any emergent dynamics associated to the strategies.
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Summarizing, the aim of this work is twofold. First, we
want to analyze the particular problem of room evacuation
before mentioned. Second, we aim at showing a general way in
which the characterological features of the pedestrians can be
taken into account, together with the need of walking towards
a desired direction.

In the following section we introduce some basic concepts
of game theory and 2 × 2 symmetric games that are relevant
for the pedestrian dynamics that we will consider.

II. 2 × 2 SYMMETRIC GAMES

A two players game can be characterized by the set of the
strategies that the players can adopt and by the payoff received
by each strategy when confronting any other. If the game is
symmetric, i.e., both players have access to the same set of
strategies and payoffs, the information can be loaded into an
n × n matrix, with n the number of strategies. In 1966 Guyer
and Rapoport [34] cataloged all the 2 × 2 games. There are 12
symmetric games; eight of them are trivial, in the sense that
there is no conflict of interest as both players prefer the same
outcome. The remaining four games represent four distinct
social dilemmas.

In a 2 × 2 game there are only two different strategies that
can be defined as cooperative (C) and defective (D).

Furthermore, we can consider only relative payoff values,
and this left us with four generic payoffs represented in the
following matrix:

C D

C CC CD

D DC DD

Here each matrix element indicates the payoff of a player
adopting the strategy at the row when competing with a player
adopting the strategy at the column. CC is the payoff to each
of the two players, when both cooperate; DD is the payoff
when both defect. When one player cooperates and the other
defects, the payoffs of the cooperator and the defector are CD
and DC, respectively. The relative values of the four payoffs
characterize the whole family of symmetric 2 × 2 games.

In order to be consistent with the names assigned to the
strategies, the payoff CC must be preferred to CD, meaning
that a cooperation from the opponent is always preferable to
defection. Also, DC must be better than DD. Still, there is
something missing to define a dilemma. If defection is bad,
it is natural to avoid it, unless there is a temptation to defect.
There are three situations in which this can occur. Either there
is an incentive to defect when the other player cooperates
(DC > CC), or there is an incentive to defect when the other
player defects (DD > CD), or both.

The social dilemmas can be represented by four different
games that fulfill at least one of the aforementioned conditions:

(1) Prisoner’s Dilemma: DC > CC > DD > CD
(2) Stag Hunt: CC > DC > DD > CD
(3) Deadlock: DC > DD > CC > CD
(4) Chicken: DC > CC > CD > DD
We want to focus on the two first cases. In particular,

the Prisoner’s Dilemma (PD) represents situations in which
obtaining cooperation is difficult because of the increased

individual incentives to defect. Despite that players can realize
that they would be better if they both cooperate than if
they both defect, defecting is individually the best choice.
It is a dominant strategy. Under this scenario, organizational
cooperation involves convincing the individuals to work
towards a common goal even if they have to give up personal
incentives to defect.

In turn, Stag Hunt (SH) represents a situation in which co-
ordination is difficult because of the uncertainty about what the
opponent will do. Unlike in PD, both players realize that they
are best off when they coordinate on (C, C), but do not want to
select C if they think that the other player will not do the same.
Therefore, organizational coordination involves being con-
vinced that others will work towards the common goal as well,
in which case it is individually rational for everyone to do so.

III. MODEL

In this work we analyze the evacuation of a rectangular
room of size L × W with a single door of length Ld located
at the center of one of the walls. We consider a discrete time
and space dynamics in which the pedestrians (or agents) can
occupy the sites of a square lattice and can perform jumps
to first neighbor sites according to certain rules. When more
than one agent attempts to jump to the same site at the same
time a conflict occurs. To solve the conflict the involved agents
(which in a square lattice can be between two and four) play
a game using previously defined strategies. As a result of the
game, either there can be a winner which finally gets to the
desired position, or there can be no winner and all the involved
agents lose their opportunity to move at that time step.

The discrete sites are labeled as (x,y) with 1 � x � L

and 1 � y � W . The sites with x = 1,x = L, and y = W

belong to the walls and cannot be occupied by agents. The
same occurs for the sites with y = 1 excepting for those with
xl � x � xr that correspond to the door exit. We consider
a door symmetrically located setting xl = L/2 − Ld/2 and
xr = L/2 + Ld/2. For the sake of simplicity, throughout the
paper we consider Ld = L/10.

We define an initial density of agents 0 � ρ � 1, which
implies an initial number of agents equal to Int(ρ × L × W).
The agents are placed at random positions 1 < x < L, 1 <

y < W at t = 0. At each time step, the dynamics involves three
stages. First, every agent chooses a neighboring site where to
attempt to jump. Second, all the conflicts are identified and
solved according to the game rules. Finally, the winners of
the conflicts (as well as the agents that can move without
conflict) jump to their desired positions. The agents that reach
the door are taken out of the system. The simulation finishes
when all the agents have abandoned the room. In the following
subsections we explain each of the three instances in detail.

A. First stage: Choosing the site where to attempt to jump

Each agent can attempt to jump to any of the four neigh-
boring sites, which we simply label as up, down, left, and right
[see Fig. 1(a)]. With probability R (0 � R � 1), the direction
of the jump attempt is chosen at random. Conversely, with
probability 1 − R the direction of the jump attempt is chosen
according to a desired (or rational) direction, which is defined
for each agent pointing essentially toward the door in a way that

032806-2



GAME THEORY IN MODELS OF PEDESTRIAN ROOM . . . PHYSICAL REVIEW E 89, 032806 (2014)

FIG. 1. Model for agents motion. (a) Allowed directions (up,
down, left, right) for the motion of an agent (central circle) and
desired direction (dd). (b) Field of desired direction in a square room.

we explain in detail below. Importantly, the angle α defining
such a desired direction is continuous between 0 and 2π .
Then the desired direction is projected on the discrete allowed
directions in order to define the probabilities for attempt to
jump. This is done as follows. For instance, consider the case
depicted in Fig. 1(a). In such a case, we define the probabilities
for an attempt to jump to the up, down, right, and left
directions as pu = R/4,pd = R/4 + (1 − R) cos(α)/Z,pr =
R/4, and pl = 1

4R + (1 − R) sin(α)/Z, respectively. Here
Z = | cos(α)| + | sin(α)| is a normalization constant required
to have pu + pd + pr + pl = 1. Note that in this case pu and
pr contain only the term proportional to R, associated to the
random choice, while pd and pl include also a term which is
proportional to (1 − R) and to the projections of the desired
direction. Now, considering an arbitrary desired direction
defined by an angle 0 � α � 2π increasing clockwise from
α = 0 (corresponding to the down direction), we have the
general definition

pu = 1

4
R + (1 − R)

− cos(α){1 − sgn[cos(α)]}
2Z

,

pd = 1

4
R + (1 − R)

cos(α){1 + sgn[cos(α)]}
2Z

,

(1)

pr = 1

4
R + (1 − R)

− sin(α){1 − sgn[sin(α)]}
2Z

,

pl = 1

4
R + (1 − R)

sin(α){1 + sgn[sin(α)]}
2Z

.

Note that the desired or rational direction contributes only
to the probabilities of jumping to the discrete directions on
which it has a positive projection. Moreover, the probability R

measures the randomness of the motion in such a way that for
R = 0 only the two discrete directions defined by the desired
direction are allowed, while for R = 1 all four directions have
equal probabilities.

The desired direction is defined through a target posi-
tion (xT ,yT ) toward which the agents point. For an agent
located at x,y we set xT = (L + 1)/2 (independently of x

and y), yT = −L/10 + 2L/5{−y/
√

(y − L/2 + 5)2 + y2 +
sin[tan−1(a)]} for y < a(x − xr ) or y < −a(x − xl) and yT =
−L/10 otherwise. Here xr and xl are the right and left limits
of the door and a = 3. Figure 1(b) shows the field of desired
directions for a square room. The dependence of yT on (x,y) is
chosen in order to produce a recirculation pattern that prevents
the agents from remaining “trapped” close to the bottom wall.

This can be considered as equivalent to an effective repulsion
exerted by the bottom wall. Such recirculation pattern is
important to get a realistic escape dynamics like the one
shown in Fig. 2. The consideration of a fixed target position
(independent of the agent position) produces nonrealistic
dynamics close to the y = 1 wall. For instance, for a fixed
target position at the center of the door, an agent located at
the exit would walk along the door until it reaches its center
instead of getting out of the room immediately.

Now we can finally explain the detailed procedure for
determining the attempt to jump for each agent at each time
step. First, the desired direction and the probabilities given
in Eq. (1) are computed. Second, using the probabilities (1),
the agent performs two attempts of finding an empty neighbor
site for the jump. This means that one of the four allowed
directions is selected according to the probabilities given by
Eq. (1). Then, in the case that the corresponding neighbor site
is empty, it is marked as chosen for an attempt to jump by
the considered agent. Meanwhile, if the neighboring site is
not empty, the procedure of selecting one of the four allowed
directions according to the Eq. (1) is repeated once. In case
that a nonempty neighbor site is selected again, the agent will
not move at that time step.

The consideration of two attempts of finding an empty site
models the existence of certain degree of information that the
agent has concerning the situation of the surrounding sites.
The agent is allowed to select a second site if the first choice
corresponds to a nonempty site. Note that the consideration
of a single attempt would represent a situation in which the
agent selects the site to try to move without taking into account
whether the site is empty or not. Thus, the agent would act like
a blind person that only knows where he wants to go, but he
cannot see if there is someone there. Conversely, if a relatively
large number of attempts is considered, say, four or more, the
original probabilities pu,pd,pr , and pl would begin to lose
sense, since the agent would always find an empty site (if
there is any). From another point of view, each time step of the
dynamics models the action of the agents during a short time.
Thus, it is reasonable to assume that, during such a small time,
the agent can change its decision of where to try to perform its
next step only once. Nevertheless, we have verified that the re-
sults of the model show only small quantitative changes when
the number of attempts is changed in the range from two to ten.

B. Second stage: Solving the conflicts

When a given site is chosen by more than one agent on
their attempt to jump, we say that there is a conflict at that
site. Thus, once all the pedestrians have chosen their sites
where to attempt to jump (excepting those that have lost their
opportunity of jumping due to having chosen a nonempty site),
all the conflicts have to be identified and solved in order to
determine what agents will be able to move at this time step.
The conflicts and their solutions imply an effective interaction
between the agents which affects the dynamics.

A conflict can involve two, three, or four agents, due to
the existence of four allowed directions for arriving to a given
site. Each conflict is solved through a game. As a result of
the game, a winner may be selected to jump to the desired
site, while the rest of the players (the losers) will lose their
opportunity to move at that time step. It is important to stress

032806-3



S. BOUZAT AND M. N. KUPERMAN PHYSICAL REVIEW E 89, 032806 (2014)

FIG. 2. Room evacuation for a population with only cooperators. Parameters L = W = 50,ρ = 0.4,R = 0.3.

that, with a certain probability that we indicate later, a game
can have no winner. In such a case, all the players will lose
their opportunity to move.

The definition of the game demands the consideration of
strategies for the players. We consider that at the beginning of
the dynamics each pedestrian adopts an attitude (strategy) that
can be either cooperative (C) or a defective (D). In this work
we are not including evolutionary aspects so that the strategies
of the agents are conserved throughout the evacuation process.
At the moment of the conflict, and according to the strategies
chosen by each of the individuals involved in the conflict, the
players will be assigned a probability to win, i.e., to jump to
the desired site.

For a game which involves only two agents the game rules
considered are the following. First, in a two cooperators game
there is always a winner (that jumps to the desired position),
which is chosen at random between the two players. Second, in
a game between a cooperator and a defector, the cooperator has
no chance to win while the defector can win with probability
1/P . Here P � 1 is a parameter that measures the conflictive
attitude of the defectors, which makes them focus more on
the competition than on the movement itself. Third, in a game
between two defectors, one of them is randomly selected, and
then, with probability 1/P , it becomes a winner. Thus, each of
the agents has probability 1/(2P ) of wining, while the proba-
bility of having a winner is 1/P . Note that the larger the value
of P , the lower the probabilities of stepping for the defectors,
both when interacting with defectors and with cooperators. In

particular, in a game with at least one defector, the existence
of a winner is ensured only for P = 1. Thus, values P > 1 are
used to model situations in which defectors sometimes lose
their opportunity to move due to their conflictive attitude. In
this sense, P is a punishment to defection.

The rules for solving conflicts on n agents are the following.
In a game with n cooperators and no defectors, there is always
a single winner, which is randomly selected between all the
players. In a game with a single defector and m = n − 1
cooperators, all the cooperators lose, and the defector has
probability 1/P of wining (i.e., the probability of having a
winner is 1/P ). In a game with more than one defector and
a number of cooperators equal to m � (n − 2), one of the
defectors is randomly selected, and then, with probability
[(n − m − 1)P ]−1, it becomes the winner. Hence, each de-
fector has probability [(n − m)(n − m − 1)P ]−1 of winning
while the cooperators always loose. The probability of having
a winner is [(n − m − 1)P ]−1.

By considering the probabilities of winning of the agents
as payoffs, it is possible to give an interpretation of the rules
for solving conflicts in terms of game theory. This can be done
by following the ideas in Ref. [35] for iterative normal games
(see also Ref. [36]), where the payoff matrices are defined in
terms of temporal averages of the payoffs of individual games.
For instance, note that in our system, any cooperator will get
probability of moving equal to 1 on half of the two-players
games in which it confronts another cooperator, while it will
get 0 on the other half. Thus, the average probability 1/2 can
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be considered as the (average) payoff for the CC interaction
of the two players game. Now, by considering the average
probabilities of moving for the cases of CD, DC and DD
interactions, we get to the following payoff matrix for the two
players games:

C D

C 1
2 0

D 1
P

1
2P

Note that in the first row we have the payoffs for C agents, while
in the second one those for D agents. It is important to stress
the fact that the matrix contains mean values that make sense
only when considering several matches. For instance, the CC
element should not be interpreted as if in a single encounter
between two cooperators each one obtains an independent
probability 1/2 of moving, which will lead to a probability
1/4 of both moving at the same time.

Using the above indicated matrix, the two players inter-
action considered is straightforwardly analyzable in terms of
game theory. We observe that when 1 � P < 2 the matrix is
analogous to the payoff matrix of the Prisoner’s Dilemma,
while for values of P higher than 2, the analogous situation
is the Stag Hunt. As mentioned before, in both cases there is
an incentive to defect. While in the first case D is clearly a
dominant strategy, this is not true for the Stag Hunt. Still,
in both cases, cooperators can take advantages only from
mutual cooperation, that is more attractive when P > 2. The
lower bound for P is imposed to fulfill the requirement
2CC > DC + CD, which prevents alternating cooperation and
defection in an evolutionary game.

For encounters of n players we can construct the following
payoff matrix containing the probabilities of winning of a C
player (first row) and a D player (second row) in the cases in
which all the rest players are cooperators (first column) and in
the cases in which the player (C or D) competes against m <

n − 1 cooperators and n − 1 − m defectors (second column):

(n − 1)C, 0 D m C, (n − 1 − m)D

C 1
n

0

D 1
P

1
(n−m)(n−m−1)P

Note that the matrix elements are calculated according to the
above indicated rules for solving conflicts of n players.

C. Third stage: Movement of agents

As stated before, once all the conflicts have been solved,
all the winners as well as all the agents that can move without
conflict are finally moved to their selected sites. In case that
one agent gets to a position with y = 1 (i.e., it reaches the
exit), it is taken out of the system, and the number of escaped
agents is increased by one.

IV. RESULTS

We characterize the evacuation dynamics of the system
by computing the mean exit time, which is defined as the
average over realizations of the number of time steps required

to evacuate the room completely. We also study the time
dependence of the mean number of escaped agents, i.e., the
average over realizations of the number of agents that have
reached the exit at a given time.

Before considering the general case of a population with
both cooperators and defectors, we study the extreme cases in
which all the agents have the same strategy.

A. Only cooperators: The random game case

First, we consider a population in which all the agents are
cooperators. In this case, any conflict leads to a random game
in which there is always a winner. Namely, for a game between
n cooperators, each of them has a probability 1/n of becoming
the winner and, thus, moving to the desired site. Note that the
parameter P results irrelevant. In Fig. 2 we show snapshots
of the positions of all the agents at six different stages of the
evacuation process for a single realization and for a system
consisting in a room with L = W = 50.

Figure 3 shows the results for the mean exit times and
the number of escaped agents as a function of time for
the evacuation dynamics from a square room considering
different system parameters ρ,R, and L. In Fig. 3(a) we see
that the mean exit time increases with R more rapidly than
exponentially. This means that the randomness of the dynamics
strongly slows down the evacuation process. Note that the
randomness may be associated to an uncertainty of the agents
in their knowledge of the position of the door. We can also see
that the mean exit time increases with the initial density, as
could be expected. Figure 3(b) shows that such a growth with
ρ is linear at fixed R.

In Fig. 3(c) we study the dependence of the mean exit time
on the system size. We see that the growth is slower than
exponential and faster than linear.

Finally, Fig. 3(d) shows the evolution of the mean number
of escaped agents for different values of ρ and R. Here we
see that the growth is linear along most of the evolution.
Small deviations from the linear regime occur for very short
and very long times. This is due to the fact that the flux
of pedestrians out of the room is controlled mainly by the
local density at the exit (and by the parameter R, which is
constant). The local density at the exit at small times coincides
with ρ, and then it increases until it reaches a quasistationary
value. Such quasistationary density determines the slope of the
linear growth of the evacuation profile. Finally, at large times,
when the evacuation process is about to finish, the density
at the exit decreases and the flux at the door is reduced.
Figure 3(d) also shows that the slope of the linear growth
is essentially independent of the initial density. This indicates
that the quasistationary value of the density at the door depends
only on R, as could be expected.

B. Only defectors

Now we consider a population in which all the agents
are defectors. This is an extreme case opposite to the one
considered in the previous subsection. We focus on the
dependence of the results on the parameter P , which now
becomes relevant as it rules the probabilities of motion
resulting from all the conflicts.
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(a) (b)

(c) (d)

FIG. 3. Results for a population of only cooperators in a square room (L = W ). (a) Exit time as a function of R for different values of ρ

and L = 200. (b) Exit time as a function of ρ for different values of R and L = 200. (c) Exit time as a function of L for different values of ρ.
The small inset shows the same curves in logarithmic scale. (d) Evolution of the number of escaped agents for different values of ρ and R for
L = 200.

Figure 4(a) shows the mean exit time as a function of the
initial density ρ for different values of P , while Fig. 4(b) shows
the mean exit time as a function of P for different values of ρ.
For the sake of comparison, in both insets we also include the
results for the only-cooperators case studied in the previous
subsection. It can be seen that the mean exit time grows linearly
both with ρ [Fig. 4(a)] and with P [Fig. 4(b)]. Moreover the
mean exit time for the only-cooperators case is always smaller
than that for the only-defector case at any value of P . This
last fact can be understood as a consequence of the delays for

(a) (b)

FIG. 4. Evacuation dynamics for systems with only defectors.
(a) Mean exit time as a function of the initial density of agents ρ for
different values of P . For the sake of comparison we also indicate the
results for a system with only cooperators (squares). (b) Mean exit
time as a function of P for different values of ρ. The segments on the
left indicate the values for systems with only cooperators.

stepping after the conflicts, which are present only for games
with defectors.

C. Heterogeneous populations

Finally we study the evacuation problem for heterogeneous
populations with both cooperators and defectors. In this case
there is an additional relevant parameter of the system. Namely,
the initial fraction of defectors ρD (0 � ρD � 1) defined in
such a way that the number of defectors is Int(ρD × ρ × L ×
W ) with ρ, the initial density of agents.

In Fig. 5(a) we show the mean exit time as a function of
the initial fraction of defectors ρD for fixed values of ρ,R,
and L considering different values of P . It can be seen that
for P = 1 the exit time is almost independently of ρD . This
is so because in this case the penalization for defectors is
null excepting for games with more than two defectors, which
are likely only at large ρD . At larger values of P the exit time
grows approximately linearly with ρD . In Fig. 5(b) we show the
normalized exit time, defined as [t(ρD) − t(ρD = 0)]/t(ρD =
1), where t(ρD) is the mean exit time obtained for an initial
fraction of defectors ρD . The plot shows us that the curves for
large enough P are close to collapse, indicating a quasilinear
behavior with ρD . However, a close look to the figure reveals
that the dependence on ρD may be exactly linear only for a
value of P close to P = 2 (i.e., the limit between PD and SH
games), while it is superlinear for smaller values of P (PD
game) and slightly sublinear for larger values of P (SH game).

One important question we pose here is whether coopera-
tors can or cannot take advantages from mutual cooperation
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(a) (b)

FIG. 5. Evacuation dynamics for heterogeneous populations. (a)
Exit time as a function of the initial fraction of defectors (ρD) for
different values of P . (b) Normalized exit time (defined as [t(ρD) −
t(ρD = 0)]/t(ρD = 1), where t(ρD) is the mean exit time obtained
for an initial fraction of defectors ρD) as a function of the fraction of
defectors for the same systems as in (a). All the calculations are for
L = 200,ρ = 0.4, and R = 0.3.

as it was verified in other systems where cooperation arise as
an emerging phenomena [37–46]. With this goal in mind we
characterize the dynamics of the system by three quantities,
all of them aiming at revealing the relative success of
the cooperators in finding the exit. First, we sample the
composition of the population inside the room, comparing
the instantaneous fraction of cooperators with the initial one.
We define a normalized instantaneous fraction of cooperators
in the room as

ρi
c(t) = ρc(t) − ρc(0)

ρc(0)
, (2)

where ρc(t) is the fraction of cooperators in the room at time t

[so that ρc(0) = 1 − ρD]. A positive (negative) value of ρi
c(t)

indicates that the population in the room has a greater (lower)
fraction of cooperators than the initial one. Meanwhile, a
positive (negative) derivative of ρi

c(t) indicates that defectors
(cooperators) are being more successful in finding the exit.
Figure 6 shows the time behavior of this quantity for two
values of the initial density of defectors and several values
of P for two different values of ρ. We observe that for small
values of P we have ρi

c > 0 throughout the evolution, meaning
that the defectors clearly surpass the cooperators in finding the
exit. Note that not only ρi

c(t) is positive, but its derivative
increases with time, indicating the continuous increment of
the fraction of cooperators in the room. But as P increases and
even still in the PD regime (P = 1.8 in the figure), the values
of ρi

c become negative, meaning that the cooperators start to
profit from mutual cooperation. While defectors lose time in
futile arguments, the cooperators leave the room. ρi

c(t) and its
derivative are negative, reflecting the ability of cooperators to
reach the exit.

We have studied several initial configurations with different
initial conditions including varying values for the initial den-
sity of individuals, the initial fraction of defectors and the room
size. With some small variations, we have found qualitatively

(a)

(b)

FIG. 6. Normalized instantaneous fraction of cooperators within
the room [defined in Eq. (2)] for different values of P . Results for
L = W = 200, R = 0.3, and ρ = 0.4 considering an initial fraction
of cooperators equal to ρc(0) = 0.4 (a) and ρc(0) = 0.8 (b).

the same results indicating the success of defectors at small P

and the success of collaborators at large P .
To complement this measure, we analyze the strategy of the

individuals exiting the room at each time step and calculate
the fraction of cooperators among them. We compare this
fraction with the corresponding to the cooperators remaining
in the room and define the normalized fraction of exiting
cooperators as

ρe
c (t) = ηc(t) − ρc(t)

ρc(t)
. (3)

Here ηc(t) is the ensemble averaged fraction of cooperators
among exiting individuals at time t . Figure 7 shows the time
behavior of ρe

c (t) under the same conditions analyzed in
Fig. 6. Again, the fraction of exiting defectors is higher than

(a)

(b)

FIG. 7. Normalized fraction of cooperators exiting the room
[defined in Eq. (3) for different values of P ]. Results for L =
W = 200, R = 0.3, and ρ = 0.4 considering an initial fraction of
cooperators equal to ρc(0) = 0.4 (a) and ρc(0) = 0.8 (b).
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(a)

(b)

FIG. 8. Clustering of cooperators in the room [defined in Eq. (4)]
for different values of P . Results for L = W = 200, R = 0.3, and
ρ = 0.4 considering an initial fraction of cooperators equal to ρc(0) =
0.4 (a) and ρc(0) = 0.8 (b).

the expected one for small values of P , but the situation is
reversed as P increases.

As cooperators can advantage defectors only when inter-
acting with other cooperators, any evidence of cooperators
performing better than defectors at leaving the room must be
reflected in the emergence of some degree of clustering of co-
operators that enhance the mutual cooperation. If cooperators
are not clustered, the defectors will outstrip them. Although,
as we show later, the effect of clustering of cooperators can
be visually appreciated, it is better to provide a quantitative
characterization of this phenomenon. For these, we count
the instantaneous fraction of cooperating neighbors of each
cooperating individual i in the room ωc(i,t), and then we define

Cc(t) = 1

Nc(t)

∑

i

ωc(i,t)/ρc(t), (4)

where Nc(t) and ρc(t) are the number and the fraction of
cooperators in the room at time t . We exclude isolated
individuals from this count. Note that, with this definition, a
value Cc(t) = 1 indicates that the mean fraction of C neighbors
of a C individual is the same as the fraction of C individuals in
the room, indicating no clustering effects. Meanwhile, a value
Cc(t) > 1 reveals aggregation of cooperators.

The results in Fig. 8 confirm the occurrence of the expected
clustering phenomenon. We observe that for P > 1.5, Cc(t)
is considerably larger than 1 at the same time intervals at
which we have ρe

c (t) > 0 (see Fig. 6) and dρi
c(t)/dt < 0 (see

Fig. 7). This means the clustering emerges when cooperators
are performing better than defectors in reaching the exit.
The temporal behavior of Cc(t) shows that the clustering of
cooperators starts from the very beginning of the run and
decreases once the majority of the cooperators have left the
room. This confirms that the dynamics of the system leads to a
partial segregation into cluster of cooperators, which leaves
them in a situation of taking advantage from the benefits
of mutual cooperation. For values of 1 < P < 1.5, Cc(t)
fluctuates very close to 1, indicating a negligible clustering
effect. The high values of Cc(t) found in the case P = 1
seems to contradict our previous arguments because this
indicates a clustering effect in a situation in which defectors are
performing better at finding the exit, since we have [ρe

c (t) < 0]
and [dρi

c(t)/dt > 0]. However, the effect at P = 1 is different
in nature from the one observed for high values of P . Actually,
the origin of this clustering of collaborators is associated to the
fact that defectors, free to move due to low values of P manage
to approach the exit, displacing the cooperators and producing
a segregation that isolates the later from the door.

The results thus indicate that cooperators can take advan-
tage from mutual cooperation for large enough values of P ,
typically P > 1.5, well within the PD regime where still the
DC payoff is larger than the CC one. The benefits from mutual
cooperation are further enhanced in the SH regime (P > 2).

The snapshots shown in Fig. 9 help us to appreciate the
clustering effects better. In Fig. 9(a) corresponding to the case
P = 1 we see how the cooperators remain clustered far from

(a) (b) (c)

FIG. 9. (Color online) Instantaneous state of the C and D populations within a square room of size L = 200. Results for selected times of
three different runs for (a) P = 1, (b) P = 1.3, and (c) P = 2.2. Each of the snapshots corresponds to a time at which Cc(t) is close to attaining
its maximum value, namely, t = 700,t = 500, and t = 600 for panels a, b, and c, respectively. In all the panels the gray squares (yellow online)
indicate C agents whereas dark squares (dark blue online) indicate D agents. The remaining parameters are R = 0.3,ρ = 0.4, and ρc = 0.4 in
all the cases.
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the door while the defectors leave the room more easily, as
just explained. In Fig. 9(b) (P = 1.3) the clustering effects
are negligible. Finally, Fig. 9(c) (P = 2.2) shows a situation
in which collaborators are taking advantage of clustering to
leave the room before the defectors.

V. CONCLUSIONS

One of the shortcomings of the lattice gas models used
in pedestrian dynamics is the lack of inclusion of behavioral
aspects. Considering this situation, the present work has a
clear goal: To develop a simple model able to consider
some individual attitudes that may affect the movement of
interacting pedestrians. Motivated by this objective, we have
amalgamated models for pedestrian evacuation with game
theory concepts and analyzed the emergence of nontrivial
effects that may manifest. The results show that the emerging
phenomena observed in an evolutionary Prisoner’s Dilemma
are also present here. In the works [37–46] the systems are
spatially extended and allow for the cooperators to form
clusters. In the present work the evolutionary aspects have not
been so far included, but the growth of clusters is promoted by
the mobility of the individuals. As a result of this clustering,
the cooperators can profit from the only advantage they have
over the defectors: the mutual cooperation. When this happens,
cooperators have more success in reaching the exit than
defectors, as reflected in the plots.

It is important to understand the limitation and scope of
the present model. We are not intending to reproduce a real
situation in detail but to point out the effects that behavioral

aspects may have on the denouement of an emergency evac-
uation scenario. When comparing our results with previous
works, we observe that if we strip our model away from the
game theory elements, nothing new can be said. The results
are in agreement with previous works based on gas lattice
scheme. The temporal behavior of the escape time as well
as the dependence with the parameters involved in the model
reproduce the already known results [3,4,11,18]. But when
different strategies or behaviors among the pedestrians are
considered, some unexpected results arise. We have not found
any literature on mathematical modeling of room evacuation
where the importance of cooperative behavior is discussed. In
Ref. [47], however, the authors present a related work on car
dynamics. They analyze the cooperation and defection at a
nonsignalized crossroad in a car traffic model. They find that
cooperation maximizes the flow of vehicles and minimizes the
number of accidents. Nevertheless, in such work, cooperation
is a priori the best choice, and thus the comparison with the
present work is limited. Searching the literature, we have not
found direct empirical evidence about what was pointed out in
this work.

Future work envisions the inclusion of evolutionary strate-
gies, differentiated social roles, off-lattice dynamics, and
different geometries and obstacles.

ACKNOWLEDGMENTS

The authors acknowledge support from CONICET (under
Grant No. PIP 112-200801-00076) and from CNEA, both
Argentinian agencies.

[1] D. Helbing, I. J. Farkas, P. Molnár, and T. Vicsek, in Pedestrian
and Evacuation Dynamics, edited by M. Schreckenberg and
S. D. Sharma (Springer, Berlin, 2002), pp. 21–58.

[2] D. Helbing, L. Buzna, and A. Johansson, T. Werner. Transport.
Sci. 39, 1 (2005).

[3] C. Burstedde, K. Klauck, A. Schadschneider, and J. Zittartz,
Physica A 295, 507 (2001).

[4] Y. Tajima and T. Nagatani, Physica A 292, 545 (2001).
[5] A. Kirchner and A. Schadschneider, Physica A 312, 260 (2002).
[6] D. Helbing, I. Farkas, and T. Vicsek, Nature (London) 407, 487

(2000).
[7] D. Helbing, M. Isobe, T. Nagatani, and K. Takimoto, Phys. Rev.

E 67, 067101 (2003).
[8] N. Bellomo and C. Dogbe, SIAM Rev. 53, 409 (2011).
[9] M. Muramatsu, T. Irie, and T. Nagatani, Physica A 267, 487

(1999).
[10] V. J. Blue and J. L. Adler, J. Transport. Res. Board 1678, 135

(2000).
[11] K. Takimoto and T. Nagatani, Physica A 320, 611 (2003).
[12] D. Helbing and P. Molnár, Phys. Rev. E 51, 4282 (1995).
[13] A. Seyfried, T. Rupprecht, O. Passon, B. Steffen, W. Klingsch,

and M. Boltes, Transport. Sci. 43, 395 (2009).
[14] S. Hoogendoorn and P. H. L. Bovy, Optim. Control Appl.

Methods 24, 153 (2003).
[15] S. K. Baek, P. Minnhagen, S. Bernhardsson, K. Choi, and B. J.

Kim, Phys. Rev. E 80, 016111 (2009).

[16] J. Tanimoto, A. Hagishima, and Y. Tanaka, Physica A 389, 5611
(2010).

[17] X. P. Zheng and Y. Cheng, Physica A 390, 1042 (2011).
[18] K. Yamamoto, S. Kokubo, and K. Nishinari, Physica A 379, 654

(2007).
[19] H. J. Huang and R. Y. Guo, Phys. Rev. E 78, 021131 (2008).
[20] A. F. Miguel, Phys. Lett. A 373, 1734 (2009).
[21] M. Chraibi, A. Seyfried, and A. Schadschneider, Phys. Rev. E

82, 046111 (2010).
[22] G. Baglietto and D. R. Parisi, Phys. Rev. E 83, 056117

(2011).
[23] G. A. Frank and C. O. Dorso, Physica A 390, 2135 (2011).
[24] L. F. Henderson, Nature (London) 229, 381 (1971).
[25] U. Frisch, B. Hasslacher, and Y. Pomeau, Phys. Rev. Lett. 56,

1505 (1986).
[26] M. Fukui and Y. Ishibashi, J. Phys. Soc. Jpn. 68, 2861

(1999).
[27] A. Seyfried, B. Steffen, and T. Lippert, Physica A 368, 232

(2006).
[28] D. Helbing, R. Jiang, and M. Treiber, Phys. Rev. E 72, 046130

(2005).
[29] Q. Y. Hao, M. B. Hu, X. Q. Cheng, W. G. Song, R. Jiang, and

Q. S. Wu, Phys. Rev. E 82, 026113 (2010).
[30] Q. Y. Hao, R. Jiang, M. B. Hu, B. Jia, and Q. S. Wu, Phys. Rev.

E 84, 036107 (2011).
[31] M. Muramatsu and T. Nagatani, Physica A 286, 377 (2000).

032806-9

http://dx.doi.org/10.1287/trsc.1040.0108
http://dx.doi.org/10.1287/trsc.1040.0108
http://dx.doi.org/10.1287/trsc.1040.0108
http://dx.doi.org/10.1287/trsc.1040.0108
http://dx.doi.org/10.1016/S0378-4371(01)00141-8
http://dx.doi.org/10.1016/S0378-4371(01)00141-8
http://dx.doi.org/10.1016/S0378-4371(01)00141-8
http://dx.doi.org/10.1016/S0378-4371(01)00141-8
http://dx.doi.org/10.1016/S0378-4371(00)00630-0
http://dx.doi.org/10.1016/S0378-4371(00)00630-0
http://dx.doi.org/10.1016/S0378-4371(00)00630-0
http://dx.doi.org/10.1016/S0378-4371(00)00630-0
http://dx.doi.org/10.1016/S0378-4371(02)00857-9
http://dx.doi.org/10.1016/S0378-4371(02)00857-9
http://dx.doi.org/10.1016/S0378-4371(02)00857-9
http://dx.doi.org/10.1016/S0378-4371(02)00857-9
http://dx.doi.org/10.1038/35035023
http://dx.doi.org/10.1038/35035023
http://dx.doi.org/10.1038/35035023
http://dx.doi.org/10.1038/35035023
http://dx.doi.org/10.1103/PhysRevE.67.067101
http://dx.doi.org/10.1103/PhysRevE.67.067101
http://dx.doi.org/10.1103/PhysRevE.67.067101
http://dx.doi.org/10.1103/PhysRevE.67.067101
http://dx.doi.org/10.1137/090746677
http://dx.doi.org/10.1137/090746677
http://dx.doi.org/10.1137/090746677
http://dx.doi.org/10.1137/090746677
http://dx.doi.org/10.1016/S0378-4371(99)00018-7
http://dx.doi.org/10.1016/S0378-4371(99)00018-7
http://dx.doi.org/10.1016/S0378-4371(99)00018-7
http://dx.doi.org/10.1016/S0378-4371(99)00018-7
http://dx.doi.org/10.3141/1678-17
http://dx.doi.org/10.3141/1678-17
http://dx.doi.org/10.3141/1678-17
http://dx.doi.org/10.3141/1678-17
http://dx.doi.org/10.1016/S0378-4371(02)01540-6
http://dx.doi.org/10.1016/S0378-4371(02)01540-6
http://dx.doi.org/10.1016/S0378-4371(02)01540-6
http://dx.doi.org/10.1016/S0378-4371(02)01540-6
http://dx.doi.org/10.1103/PhysRevE.51.4282
http://dx.doi.org/10.1103/PhysRevE.51.4282
http://dx.doi.org/10.1103/PhysRevE.51.4282
http://dx.doi.org/10.1103/PhysRevE.51.4282
http://dx.doi.org/10.1287/trsc.1090.0263
http://dx.doi.org/10.1287/trsc.1090.0263
http://dx.doi.org/10.1287/trsc.1090.0263
http://dx.doi.org/10.1287/trsc.1090.0263
http://dx.doi.org/10.1002/oca.727
http://dx.doi.org/10.1002/oca.727
http://dx.doi.org/10.1002/oca.727
http://dx.doi.org/10.1002/oca.727
http://dx.doi.org/10.1103/PhysRevE.80.016111
http://dx.doi.org/10.1103/PhysRevE.80.016111
http://dx.doi.org/10.1103/PhysRevE.80.016111
http://dx.doi.org/10.1103/PhysRevE.80.016111
http://dx.doi.org/10.1016/j.physa.2010.08.032
http://dx.doi.org/10.1016/j.physa.2010.08.032
http://dx.doi.org/10.1016/j.physa.2010.08.032
http://dx.doi.org/10.1016/j.physa.2010.08.032
http://dx.doi.org/10.1016/j.physa.2010.12.007
http://dx.doi.org/10.1016/j.physa.2010.12.007
http://dx.doi.org/10.1016/j.physa.2010.12.007
http://dx.doi.org/10.1016/j.physa.2010.12.007
http://dx.doi.org/10.1016/j.physa.2007.02.040
http://dx.doi.org/10.1016/j.physa.2007.02.040
http://dx.doi.org/10.1016/j.physa.2007.02.040
http://dx.doi.org/10.1016/j.physa.2007.02.040
http://dx.doi.org/10.1103/PhysRevE.78.021131
http://dx.doi.org/10.1103/PhysRevE.78.021131
http://dx.doi.org/10.1103/PhysRevE.78.021131
http://dx.doi.org/10.1103/PhysRevE.78.021131
http://dx.doi.org/10.1016/j.physleta.2009.03.020
http://dx.doi.org/10.1016/j.physleta.2009.03.020
http://dx.doi.org/10.1016/j.physleta.2009.03.020
http://dx.doi.org/10.1016/j.physleta.2009.03.020
http://dx.doi.org/10.1103/PhysRevE.82.046111
http://dx.doi.org/10.1103/PhysRevE.82.046111
http://dx.doi.org/10.1103/PhysRevE.82.046111
http://dx.doi.org/10.1103/PhysRevE.82.046111
http://dx.doi.org/10.1103/PhysRevE.83.056117
http://dx.doi.org/10.1103/PhysRevE.83.056117
http://dx.doi.org/10.1103/PhysRevE.83.056117
http://dx.doi.org/10.1103/PhysRevE.83.056117
http://dx.doi.org/10.1016/j.physa.2011.01.015
http://dx.doi.org/10.1016/j.physa.2011.01.015
http://dx.doi.org/10.1016/j.physa.2011.01.015
http://dx.doi.org/10.1016/j.physa.2011.01.015
http://dx.doi.org/10.1038/229381a0
http://dx.doi.org/10.1038/229381a0
http://dx.doi.org/10.1038/229381a0
http://dx.doi.org/10.1038/229381a0
http://dx.doi.org/10.1103/PhysRevLett.56.1505
http://dx.doi.org/10.1103/PhysRevLett.56.1505
http://dx.doi.org/10.1103/PhysRevLett.56.1505
http://dx.doi.org/10.1103/PhysRevLett.56.1505
http://dx.doi.org/10.1143/JPSJ.68.2861
http://dx.doi.org/10.1143/JPSJ.68.2861
http://dx.doi.org/10.1143/JPSJ.68.2861
http://dx.doi.org/10.1143/JPSJ.68.2861
http://dx.doi.org/10.1016/j.physa.2005.11.052
http://dx.doi.org/10.1016/j.physa.2005.11.052
http://dx.doi.org/10.1016/j.physa.2005.11.052
http://dx.doi.org/10.1016/j.physa.2005.11.052
http://dx.doi.org/10.1103/PhysRevE.72.046130
http://dx.doi.org/10.1103/PhysRevE.72.046130
http://dx.doi.org/10.1103/PhysRevE.72.046130
http://dx.doi.org/10.1103/PhysRevE.72.046130
http://dx.doi.org/10.1103/PhysRevE.82.026113
http://dx.doi.org/10.1103/PhysRevE.82.026113
http://dx.doi.org/10.1103/PhysRevE.82.026113
http://dx.doi.org/10.1103/PhysRevE.82.026113
http://dx.doi.org/10.1103/PhysRevE.84.036107
http://dx.doi.org/10.1103/PhysRevE.84.036107
http://dx.doi.org/10.1103/PhysRevE.84.036107
http://dx.doi.org/10.1103/PhysRevE.84.036107
http://dx.doi.org/10.1016/S0378-4371(00)00336-8
http://dx.doi.org/10.1016/S0378-4371(00)00336-8
http://dx.doi.org/10.1016/S0378-4371(00)00336-8
http://dx.doi.org/10.1016/S0378-4371(00)00336-8


S. BOUZAT AND M. N. KUPERMAN PHYSICAL REVIEW E 89, 032806 (2014)

[32] S. M. Lo, H. C. Huang, P. Wang, and K. K. Yuen, Fire Safety J.
41, 364 (2006).

[33] D. M. Shi and B. H. Wang, Phys. Rev. E 87, 022802
(2013).

[34] A. Rapoport and M. Guyer, General Systems 11, 203
(1966).

[35] J. Hofbauer and K. Sigmund, Evolutionary Games and Popula-
tion Dynamics (Cambridge University Press, Cambridge, 1998).

[36] J. W. Weibull, Evolutionary Game Theory (MIT Press,
Cambridge, MA, 1998).

[37] M. Doebeli and C. Hauert, Ecol. Lett. 8, 748 (2005).
[38] V. M. Eguiluz, M. G. Zimmermann, C. J. Cela-Conde, and

M. San Miguel, Am. J. Sociol. 110, 977 (2005).
[39] F. Fu, X. Chen, L. Liu, and L. Wang, Phys. Lett. A 371, 58

(2007).
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